

Genes, inflammation, and age-related diseases Trompet, S.

Citation

Trompet, S. (2010, June 2). *Genes, inflammation, and age-related diseases*. Retrieved from https://hdl.handle.net/1887/15579

Note: To cite this publication please use the final published version (if applicable).

Chapter 8

The -2481C variant allele of the lysine acetyltransferase PCAF is associated with reduced vascular mortality. Results from three independent prospective studies

Douwe Pons* , Stella Trompet* , Anton JM. de Craen, Peter E Thijssen, Paul HA Quax, Rutger J Wierda, Peter J van den Elsen, Pascalle S Monraats, Mark M Ewing, Willemijn Passtoors, Joris M Deelen, Aeilko H Zwinderman, Pieter AFM Doevendans, René A Tio, Robbert J de Winter, Moniek PM de Maat, Bastiaan T Heijmans, P Eline Slagboom, Olga A Iakoubova, Naveed Sattar, Jim Shepherd, Rudi GJ Westendorp, J Wouter Jukema, also on behalf of the PROSPER, WOSCOPS and GENDER study groups.

* Both authors contributed equally to this work

Submitted for publication

Abstract

This study was designed to investigate the influence of genetic variation in the promoter of the gene encoding P300/CBP associated factor (PCAF), a lysine acetyltransferase (KAT) on coronary heart disease (CHD) mortality. We investigated the association of genetic variation in the promoter region of the PCAF-gene on CHD mortality in two statin trials (PROSPER and WOSCOPS) available to us and on restenosis risk in a third study of percutaneous coronary intervention (GENDER). We combined the results from these cohorts to examine overall effects on CHD mortality and on restenosis risk and determined the contribution of PCAF in an animal model of reactive stenosis. Compared with the homozygous -2481G allele in the PCAF promoter, we observed a significant reduction in CHD mortality risk with the homozygous -2481C PCAF promoter allele in PROSPER (risk reduction 22%; 2%-37%) and in WOSCOPS (risk reduction 17%; 14%-39%), and of restenosis in GENDER (risk reduction 20%; 3%-33%). A combined risk reduction for CHD death/ restenosis for the three studies was 21% (15%-26%; p= 8.1 x $10⁻⁴$). Furthermore, this PCAF allele was significantly **associated with all cause mortality in PROSPER (p=0.001). Functional analysis showed that the -2481 G/C polymorphism affected factor binding to this region of the PCAF promoter, and modulation of PCAF gene expression was detectable upon cuff-placement in an animal model of reactive stenosis. Our observations promote the concept that epigenetic processes are under genetic control and that, other than environment, genetic variation in genes encoding KATs may also determine susceptibility to CHD outcomes and mortality.**

Introduction

Investigations into the pathogenetic mechanisms of human complex disease, such as cardiovascular disease and cancer, may lead to better risk prediction, treatment and new targets for future therapy. Cell proliferation regulatory pathways and pro-inflammatory transcription factors, such as NFKB, have been associated with progression of these diseases (1). In the past decade, research into cardiovascular diseases such as atherosclerosis and restenosis, has been focused on the identification of genetic factors that determine disease risk. Several genes involved in inflammation and cell proliferation appeared to be common denominators of these diseases (2-6). It has become clear, however, that part of the gene-environmental interactions relevant for complex diseases is regulated by epigenetic mechanisms such as histone acetylation and DNA methylation (7). Epigenetic processes modulate gene expression patterns without modifying the actual DNA sequence and have profound effects on the cellular repertoire of expressed genes (8). Evidence is growing that epigenetic mechanisms also regulate the expression of genes in the inflammatory and cell proliferation pathways (9,10) and may therefore also play a role in cardiovascular disease (11- 13) and in cancer (14).

A major influence on gene expression is attributed to the counterbalancing action of lysine acetyltransferases (KATs) and lysine deacetylases (KDACs) (15). KATs acetylate histones by transfer of an acetyl-group to the ε -portion of lysine residues, which results in an open modification of chromatin structure and in accessibility of DNA to transcription factors and recruitment of the basal transcription initiation machinery. Conversely, gene repression is mediated via KDACs, which remove acetyl groups and counteract the activity of KATs resulting in a closed chromatin structure. Thus far, the main focus has been to investigate the environmental influence on epigenetic processes. Research in this field has shown that epigenetic differences arise during the lifetime of monozygotic twins (8). Furthermore, oxidative stress has been shown to influence the balance between KATs and KDACs in favour of KATs, leading to an increase in inflammation (16). Notably, genetic variations in the genes encoding KATs and KDACs, which affect the activities of the enzymes they encode, have a bearing on the global and gene-specific levels of histone acetylation. As such, these genetic variations in the genes encoding KATs and KDACs could also be important determinants contributing to susceptibility to major human diseases.

P300/CBP associated factor (PCAF) is a transcriptional co-activator with intrinsic KAT-activity. Besides its role in lysine acetylation of histones at the site of NFKB-regulated genes and the resultant inflammatory gene activation (17,18), PCAF is also found to act as a factor acetyltransferase (FAT) that acetylates non-histone proteins, including several tumor-suppressor proteins, such as p53 (19,20) and the phosphatase and tensin homolog (PTEN) (21). Because PCAF is involved in proliferation and inflammation, common denominators of the major diseases determining human mortality, with clear evidence for inflammatory factors predicting incident CVD events (22), incident cancers (23) and mortality, we hypothesized that the PCAF-gene could be of major importance in the development of cardiovascular disease and cancer, and death from such disease.

We investigated the impact of genetic variation in the promoter region of the PCAF-gene on allcause mortality and mortality due to coronary heart disease and cancer in the PROSPER-study, a randomized controlled trial in which 5804 elderly patients (age 70-82) at risk for vascular disease were randomized to pravastatin or placebo (24). In order to validate the observed effects and to be able to extrapolate our findings to a younger population, we investigated the PCAF gene in the WOSCOPS study, a randomized controlled trial similar to the PROSPER-study, designed to determine the effect of pravastatin in middle-aged men with hypercholesterolemia without a history of cardiovascular disease. Finally, in order to further test the validity of results in the two statin trials, and to get insights in the mode of action, we investigated these variants in another large prospective study, the GENDER-study, a prospective follow-up study that included 3104 patients undergoing percutaneous coronary intervention (PCI) (25). The primary endpoint in this study was clinical restenosis, a process that is known to be mainly determined by inflammation and proliferation (4).

Besides the effect of genetic variants on KAT activity of PCAF, which would affect global and gene-specific levels of histone acetylation, the total quantity of acetylated histones can also change during life as a result of exposure to environmental factors. This is illustrated by studies with monozygotic twins showing that older monozygotic twins differ more from each other in histone H3- and H4-acetylation than young monozygotic twins (8). Therefore, as a result of genetic variants of PCAF that affect KAT activity in addition to exposure to environmental factors, cumulative effects on histone acetylation profiles could become more evident with increasing age. Because of this, we investigated in these three large prospective follow-up studies with various age ranges whether the effect of the PCAF gene on mortality and vascular events is associated with increasing age.

In short, all patients were analyzed for 2 polymorphisms (SNPs) in the promoter region of the PCAF-gene. Of these polymorphisms, the -2481G/C SNP was significantly associated with CHD mortality risk in both PROSPER and WOSCOPS, and, in addition, with differential risk for restenosis in the GENDER study. The -2481G/C SNP in the PCAF promoter affected transcription factor binding as was demonstrated in an electrophoretic mobility shift assay (EMSA) analysis. Finally, we demonstrate in an animal model for reactive stenosis (26) that PCAF expression is indeed rapidly upregulated after vascular injury, which supports the notion that PCAF is involved in vascular remodeling.

Methods

Study Design and Follow-up of the PROSPER Study

The protocol of PROSPER has been described elsewhere (27). PROSPER is a prospective multicenter randomized placebo-controlled trial to assess whether treatment with pravastatin diminishes the risk of major vascular events in elderly individuals. Between December 1997 and May 1999, we screened and enrolled subjects in Scotland (Glasgow), Ireland (Cork), and the Netherlands (Leiden). Men and women aged 70-82 years were recruited if they had pre-existing vascular disease or increased risk of such disease because of smoking, hypertension, or diabetes. A total number of 5804 subjects were randomly assigned to pravastatin or placebo. In this genetic substudy, we evaluated the predefined endpoints all-cause mortality and mortality due to vascular events and cancer. Mean follow-up was 3.2 years (range 2.8-4.0) and 604 (10.4%) patients died during the study (24). Of these patients, 292 (48%) died from vascular disease and 206 (31%) from cancer.

Study Design and Follow-up of the WOSCOPS Study

The WOSCOPS study (the West of Scotland Coronary Prevention Study), a primary prevention trial, included 6595 men who had LDL cholesterol levels between 174 and 232 mg/dL (4.5 and 6.0 mmol/L), who had no history of myocardial infarction, but were considered to be at enhanced risk for developing CHD (28). All participants were randomly assigned to receive 40 mg of pravastatin or placebo daily. The present genetic study was performed in a previously described nested casecontrol cohort (29). In brief, the prospective nested case-control study included all of the 580 ontrial CHD events (death from CHD, nonfatal MI, or revascularization procedures) from the WOSCOPS cohort as case subjects and 1,160 control subjects matched to case subjects by age and smoking. In the present genetic study we used death from coronary heart disease as our primary endpoint.

Study Design and Follow-up of the GENDER Study

The present study sample has been described previously (25). In brief, the GENetic DEterminants of Restenosis project (GENDER) was a multicenter follow-up study designed to study the association between various gene polymorphisms and clinical restenosis. Patients eligible for inclusion in the GENDER-study were treated successfully for stable angina, non-ST-elevation acute coronary syndromes or silent ischemia by PCI in four out of 13-referral centers for interventional cardiology in the Netherlands. Patients treated for acute ST-elevation myocardial infarction were excluded. Experienced operators, using a radial or femoral approach, performed standard angioplasty and stent placement. During the study, no drug-eluting stents were used. Follow-up lasted for at least nine months, except when a coronary event occurred. Clinical restenosis, defined as TVR, either by PCI or coronary artery bypass grafting (CABG), was the primary endpoint. Median follow-up duration was 9.6 months (interquartile range 3.9) and 304 (9.8%) patients underwent TVR during follow-up. A prespecified subpopulation of 478 patients was scheduled for re-angiography at 6 months, according to standard procedures as described previously (30). Identical projections were used before, during and 6 months after the PCI for all assessed angiograms. Quantitative Computer Analyses (QCA) were independently performed by Heartcore (Leiden, the Netherlands).

For all three studies, all endpoints were adjudicated by independent clinical events committees. The protocols meet the criteria of the Declaration of Helsinki and were approved by the Medical Ethics Committees of each participating institution. Written informed consent was obtained from all participating patients.

Genotyping

Blood was collected in EDTA tubes at baseline and genomic DNA was extracted following standard procedures. As a first step to investigate this gene, we selected 2 validated polymorphisms in the PCAF-promoter. The -4556 C/T (rs2623074) and the -2481 G/C (rs2948080) polymorphisms were selected on the basis of their high minor allele frequency (5%) and measured using the Sequenom Massarray genotyping platform. A multiplex assay was designed using Assay designer software (Sequenom). As quality controls, 5-10% of the samples were genotyped in duplo. No inconsistencies were observed. Cluster plots of the signals from the low and the high mass allele were drawn. Two independent researchers carried out scoring. Disagreements or vaguely positioned dots produced by Genotyper 4.0 (Sequenom Inc.) were left out of the results.

Gene Expression Micro-array

Gene expression micro-array data were generated in 50 unrelated nonagenarians from the Leiden Longevity Study, 50 of their offspring and 50 controls. The 150 samples that met the RNA quality criteria were hybridized on 54k CodeLink Human Whole Genome Bioarrays (GE Healthcare, currently of Applied Microarrays). cDNA synthesis, amplification and biotin labeling and hybridization onto the microarray were performed according to the manufacturer's instructions. Two probes on the microarray corresponded to the PCAF gene region; GE693780, corresponding to Unigene alignment Hs.668165 and GE81332, corresponding to an exon of the PCAF gene.

Cells and Cell Culture

The cell lines (HeLa, U251, Raji) used in this study were obtained through the ATCC (Rockville, MD, USA) and were cultured in Iscove's modified Dulbecco's medium (IMDM; BioWhittaker Europe, Verviers, Belgium) supplemented with 10% (v/v) heat-inactivated fetal calf serum (FCS; Greiner, Alphen a/d Rijn, The Netherlands), 100 IU/ml streptomycin and 100 IU/ml penicillin. For interferon- γ (IFN- γ) induction, cells were treated with 500U/ml of IFN- γ (Boehringer-Ingelheim, Alkmaar, The Netherlands) for 4 hours, hereafter nuclear extracts were prepared (see below). HUVECs were cultured in Medium 199 with Earl's salt and L-glutamine (Life Technologies, Breda, The Netherlands), supplemented with 20% (v/v) FCS (PAA, Pasching, Austria), 100 IU/ml streptomycin and 100 IU/ml penicillin, 10 IU/ml heparine (Leo Pharma, Breda, The Netherlands) and 25 mg bovine pituitary extract (BPE; Life Technologies).

Transcription Factor Binding Site Search

Potential transcription factor binding sites were identified using the TFSEARCH program (http://www.cbrc.jp/research/db/TFSEARCH.html), which searches the TRANSFAC database (31). Cutoff was set at 75% of the consensus TF binding site.

Nuclear Extracts and Electrophoretic Mobility Shift Assay (EMSA)

Nuclear extracts and EMSAs were performed as described previously (32). In brief, 2 μl of nuclear extracts (HeLa, HUVEC, U251, Raji) in binding buffer were incubated for 30 min on ice, with 2 ng of a $\lceil 3^{33}P \rceil$ -labeled dsDNA probe. The probe sequences were similar to either the C or G promoter variants of the PCAF-gene (PCAF-C: 5'-GCAATAAGCCTC-CTCAATCCTTTGCCCTTG-3';PCAF-G: 5'-GCAATAAGCCTCCTGAATCCTTTGCCC-TTG-3'). Probe sequences for transcription factors MZF1 and GATA1-3 were similar to their previously described consensus sequence (MZF1 (zinc fingers 1-4): 5'- GATCTAAAAGTGGGGAGAAAA-3'; MZF1(zinc fingers 5-13): 5'- GATCCGGCTG-GTGAGGGGGAATCG-3'; GATA: 5'- GGACCTTGATCTTATCTT-3') (33,34).

For competition assays, nuclear extracts were incubated with unlabelled oligonucleotides in 100 fold excess for 30 min on ice, prior to incubation with the labeled probe. In case of IFN- γ treated samples, cells were stimulated with IFN- γ (500U/ml; Boehringer-Ingelheim) for 4-hours prior to preparing nuclear extracts. Samples were run on a 6% polyacrylamide gel in 0.25x TBE-buffer. Gels were densitometrically analyzed using the ImageJ software (35).

Mouse Model for Reactive Stenosis

The institutional committee on animal welfare approved all animal experiments. For all experiments hyperlipidemic male ApoE*3-Leiden mice (36) were fed a high-cholesterol diet (ArieBlok, Woerden, The Netherlands). Blood samples to determine plasma cholesterol were collected at time of surgery. After 3 weeks on diet, a non-constrictive polyethylene cuff was placed loosely around one femoral artery and mice were sacrificed at several time points after surgery. After sacrifice, at t=0 hours (control, no cuff placement), 6 hours, 24 hours, 2 days, 3 days, 7 days and 14 days, both femoral arteries were isolated and snap-frozen in liquid nitrogen (n=6 mice for each timepoint).

RNA Isolation and cDNA Synthesis from Femoral Artery Tissue

Per time point, femoral arteries were pooled to n=4, allowing better isolation of RNA. After RNA isolation, cDNA was synthesized and RT-PCR analysis was performed as previously described (37).

PCAF mRNA Quantification

Expression levels of PCAF were measured by virtue of quantitative RT-PCR using TaqMan® gene expression assay (Mm00451387 m1). PCR runs were carried out in the ABI PRISM 7700 sequence detection system (Applied Biosystems, Foster City, CA, USA). HPRT was assayed as control gene and its cycle threshold (Ct) was substracted from the Ct of the gene of interest, yielding Δ Ct. For each timepoint, $\Delta\Delta$ Ct was determined by substracting the average Δ Ct at timepoint 0 hours from the Δ Ct at each other timepoint. This $\Delta\Delta$ Ct was used to calculate the displayed fold increase for each gene (38).

Statistical Analysis

Allele frequencies were determined by gene counting. The Chi-squared test was used to test the consistency of the genotype frequencies at the SNP locus with Hardy-Weinberg equilibrium.

Hazard ratios (HR) with 95% confidence intervals (CI) were calculated using a Cox-proportional hazards model. All analyses were adjusted for sex and age. The analyses with PROSPER data were additionally adjusted for pravastatin use and country. In the GENDER-study, polymorphisms were included in a multivariable model containing clinical and procedural risk factors for restenosis, such as diabetes, smoking, hypertension, stenting, total occlusion and residual stenosis >20%. A combined-effect analysis was performed to pool the results of the effect of the -2481G/C polymorphism on study endpoints (all-cause mortality, CHD death and clinical restenosis) and coronary endpoints (CHD death in two studies and clinical restenosis in the third study) in the three separate studies at old age. The random-effects model was used to consider both the between-study and within-study variability. The pooled hazard ratio over the genotypes was assessed with ordinary logistic regression. The SPSS software (version 12.0.1, SPSS Inc, Chicago, IL) was used for all statistical analyses.

Results

PROSPER study

Participant characteristics are presented in table 1. Genotyping success rates were higher than 96% for all polymorphisms and there were no significant deviations from Hardy-Weinberg equilibrium.

Using a Cox proportional hazards model, which included several clinical variables such as sex, age, pravastatin use, and country, we found a significant association of the -2481 G/C promoter polymorphism with all-cause mortality in PROSPER. As presented in table 2 and figure 1, heterozygotes had a reduced mortality risk by 17% (2% to 30%, p=0.03), whereas individuals homozygous for the -2481C allele had a 39% lower mortality (16% to 56%, p=0.003). The effect of PCAF is more profound in the association with coronary heart disease (CHD) death (risk reduction 22% (2% to 37%), $p=0.03$) compared to the association with cancer mortality (risk reduction 13% (9% to 30%), p=0.22). Due to its proximity to the -2481 G/C polymorphism, we also present the data of the -4556 C/T polymorphism (table 2). It shows a small and non-significant trend towards a

decrease in all-cause mortality. The linkage disequilibrium (LD)-coefficient between these promoter polymorphisms was 0.79.

All data are presented in number (%) unless otherwise stated.

^a In PROSPER, WOSCOPS, and GENDER, measured in 5583, 1090 and 2850, participants, respectively. ^b In PROSPER, WOSCOPS, and GENDER, measured in 5595, 1092, and 2852, participants, respectively.

WOSCOPS study

To validate the association of the -2481 G/C polymorphism with CHD mortality, and to investigate whether its effect is also present in a population largely without vascular disease, we aimed to replicate our findings in a previously described 29 nested case-control cohort of the WOSCOPS study. Baseline characteristics of the WOSCOPS study are presented in table 1.

In this case, the -2481 G/C polymorphism was associated with a non-significant trend towards protection against death from coronary heart disease (CHD) (risk reduction 17% (-14% to 39%), $p=0.26$) at all ages. Heterozygotes (risk reduction 11% (-39% to 42%), $p=0.62$) and homozygotes (risk reduction 37% (-36% to 71%), p=0.24) had a non-significantly lower mortality risk. Although these data did not reach statistical significance, the point estimate for CHD mortality in WOSCOPS was similar to that observed in the PROSPER study (figure 1). The -4556 C/T polymorphism was

not significantly associated with the risk of CHD death (risk reduction 20% (-36% to 53%), p=0.40).

GENDER study

To extent the observed results in the PROSPER study, we tested the relevance of the gene to clinical conditions in which cell proliferation and inflammation play a role in a large patient population included in the GENDER-study. In this study patients were followed for at least 9 months after a PCI to determine absence or presence of clinical restenosis, as defined by the need for target vessel revascularization (TVR). We considered TVR a suitable intermediate endpoint as it is a direct consequence of mainly proliferative and inflammatory processes.⁴

In agreement with the results from the PROSPER and WOSCOPS-study, the -4556 C/T polymorphism was not associated with the risk for TVR in the GENDER-study, whereas the -2481 G/C polymorphism showed a significant association with TVR (p-trend $= 0.02$) (table 3 and figure 1). Heterozygous patients were at lower risk for TVR (risk reduction 20% (-2% to 38%), p=0.07), and patients carrying two -2481C alleles had a greater protection against the development of restenosis (risk reduction 36% (0% to 59%), p=0.05). In analogy of the clinical restenosis (TVR) results, carriers of the -2481C allele also had less angiographic restenosis in a subpopulation of 478 patients undergoing angiography six months after the PCI (risk reduction 44% (4% to 67%), p=0.03) (table 3).

 $HR=Haz$ atio. CI=C enfidence interval. All hazard ratios and p-values were assessed with a Cox-proportional hazards model and adjusted for sex, age,

country, and use of pravastatin.

Table 3. Results of the association between two promoter polymorphisms in the PCAF gene and clinical and angiographic restenosis within the GENDER study.

ŝ ĥ Á ţ Ļ Ļ Á

 $HR=Hazard ratio$. $CI=Coenfdene$ interval. All hazard ratios and p-values were assessed with a Cox -proportional hazards model and adjusted for sex, age, and

clinical and procedural risk factors for restenosis.

Figure 1: Hazard ratios for all-cause mortality in PROSPER, for coronary heart disease death in WOSCOPS, and for clinical restenosis in GENDER by PCAF -2481 G/C genotype at all ages.

The PCAF -2481 G/C polymorphism is associated with mortality in the PROSPER study, with coronary heart disease death in the WOSCOPS study, and with clinical restenosis in the GENDER study in all age groups

Combined Effect Analysis

Hazard ratios were almost remarkably equal in all three studies (figure 1). Therefore and since all three studies have comparable endpoints, we conducted a combined effect analysis to show the effect of the -2481C on the study endpoints (CHD death in PROSPER and WOSCOPS, and clinical restenosis in GENDER) at all ages (figure 2). The pooled hazard ratio for the- 2481C allele was 0.79 ((95%CI: 0.74-0.85), p =8.1 x 10⁻⁴). Heterozygotes had a reduced risk (HR: 0.82, 95%CI: 0.68-0.98, p=0.03), and this risk was lower in subjects homozygous for the -2481C allele (HR: 0.61 95%CI: 0.44-0.84, p= 0.002).

Figure 2: Combined effect estimate of the hazard ratios of the PROSPER, WOSCOPS, and GENDER studies for the PCAF -2481 G/C polymorphism.

This figure represents the hazard ratios for the additive model of the PCAF -2481 G/C polymorphism. Coronary endpoints consist of CHD death for the PROSPER and WOSCOPS study, and clinical restenosis for the GENDER study do in all and repeat. The top panel is the combined effect analysis at all ages, the bottom panel in subgroups with age > 58 years.

Examining for an Age Effect

From the work of Fraga *et al*. we know that as a result from exposure to environmental factors the total quantity of acetylated histones can change during life and that older monozygotic twins differ more from each other in total histone H3- and H4-acetylation than young monozygotic twins (8). This means that some (cumulative) effects of histone acetylation could become more evident with increasing age. In the PROSPER study we could not demonstrate an effect of the -2481C allele with increasing age, since everyone participating in this study was between 70-82 years of age. However, in both the WOSCOPS and the GENDER studies, with a considerably wider age range, we could indeed identify an effect of the -2481C allele with increasing age. In two age strata we investigated the effect of the PCAF -2481 G/C promoter polymorphism on CHD death in the WOSCOPS study. Among participants ≥ 58 years old (median age), we found that the -2481C allele significantly reduced the risk of CHD death (risk reduction 39% (3% to 62%), p= 0.035), whereas there was no significant effect in the lower age group. We found similar results in the GENDER study. We again observed a strong protective effect of the C-allele in old patients (\geq 58 years, n=1800) (risk reduction 30% (12% to 45%), p=0.003) whereas there was no significant effect present in young patients (<58 years, n=1052).

We also conducted a combined effect analysis to show the effect of the -2481C allele at a high age only (median age >58). The pooled hazard ratio for the -2481C allele on coronary events (CHD death or TVR) in this high age group was 0.72 ((95%CI: 0.61-0.84), p=4.9 x 10⁻⁵), which is somewhat stronger than the effect at all ages (figure 2).

Gene Expression Microarray

To find an explanation for the age-related difference in effect of the -2841 genotype we compared the gene expression levels of PCAF between nonagenarians from the Leiden Longevity Study and middle-aged controls. For the probe corresponding to an exon of the PCAF gene a lower expression level was observed in the nonagenarians compared to the middle-aged controls (FC 0.84, p=0.004). No differential expression of PCAF was observed for a probe corresponding to an intronic region of the PCAF gene (FC 1.01, p-value 0.90), indicating that the observed expression difference with age is specific for the PCAF gene and not for an alternative splice variant.

Functional Involvement: The -2481 Region Encompassing the C/G PCAF Variants

Using the EMSA technique we tested whether the observed polymorphism would lead to differential protein binding in vitro. Using nuclear extracts of different cell types, we studied complex formation at the -2481 region of PCAF. We could detect constitutive protein binding to both PCAF-C and G-variants (figure 3). In both human umbilical vein endothelial cells (HUVECs) and U251 cells nuclear factor binding is enhanced by $IFN-\gamma$ stimulation. Densitometric analysis revealed that the PCAF G-variant exhibits slightly stronger protein binding than the C-variant. The affinity difference was confirmed by competition assays (data not shown).

EMSA showing binding of protein to the C- and G-variant of the -2481 region using nuclear extracts of various cell-lines. EMSA analysis revealed slightly stronger binding of protein to the G-variant of the -2481 region. Stimulation of HUVECs with interferon- γ increases nuclear factor binding to the labeled probe slightly. In IFN- γ stimulated U251 cells the difference between stimulated and unstimulated cells is much more pronounced. Numbers indicate the ratios of optical density $\binom{G}{C}$.

Using the TFSearch program, we identified possible binding sites for MZF1 and GATA1-3 in the PCAF C-variant promoter. However, ds-oligonucleotides representing binding sites for MZF1 and GATA1-3 did not compete with factor binding to the PCAF C-promoter variant (data not shown).

PCAF mRNA Expression in a Mouse Model of Reactive Stenosis

Placement of a small non-constrictive cuff around the femoral artery in hyper-cholesterolemic (13.9 \pm 3.6 mmol/L) ApoE3Leiden mice results in induction of neointima formation. In the developing neointima a rapid upregulation of the PCAF expression was observed after cuff placement in a time dependent manner (figure 4). PCAF expression showed a peak two days after vascular injury $\left(\sim1.5\right)$ fold increase) and reduces to baseline levels of expression after 7 days.

Expression of PCAF

The figure shows PCAF differentially expressed upon activation of the vessel wall in a time dependent manner, with an expression peak 48 hours after vascular injury. The data is presented as fold increase compared to the control arteries, using HPRT as an internal control for cDNA input.

Discussion

Our data indicate that the -2481C allele in the gene encoding PCAF, a protein which has been shown to acetylate histones at the site of NFkB regulated genes and several non-histone proteins, such as the p53 tumor-suppressor proteins, is associated with a significant survival advantage in three independent studies. We found in the PROSPER-study an advantage in survival mainly due to a significant risk reduction in CHD death. In line with this observation we also observed that the - 2481C allele was associated with a lower death by CHD in the WOSCOPS study in an age dependent manner. Furthermore, this allele also protects against clinical and angiographic restenosis in the GENDER-study. The effects of the -2481C allele on mortality, CHD death and clinical restenosis were more profound at older age (>58 years), which was also corroborated in a gene expression array where PCAF expression was found to be reduced in nonagenarians compared to middle-aged controls. The -2481G/C polymorphism in the PCAF promoter affects transcription factor binding, as was demonstrated by an EMSA band shift analysis. A role for PCAF in vascular disease was further confirmed in a mouse model for reactive stenosis, in which modulation of PCAF expression was detected during vascular remodeling.

Our observation in the PROSPER-study that this promoter variant associates to lower mortality from cardiovascular disease and cancer as well as clinical restenosis after PCI in GENDER, may indicate a role of PCAF in inhibiting cell proliferation also in more general terms. PCAF has been shown, for example, to activate p53-responsive enhancer elements within the p21waf1 promoter (20) and activity of p21waf1 is known to induce cell-cycle arrest in vascular smooth muscle cells (39-42). Furthermore, A20, a NFKB-dependent gene that has been shown to inhibit proliferation of VSMCs via increased expression of p21waf1, was able to prevent neointima formation after balloon angioplasty in a rat model of carotid artery stenosis (43).

Apart from its well-described role in cell-cycle regulation, PCAF is also known to be required to coactivate p65-dependent transcription and has been shown to directly activate the transcription of several NF_KB-regulated genes known to be involved in cardiovascular disease (44). Miao et al. has shown that PCAF could enhance the $p65$ mediated increase in TNF- α promoter activity and that high glucose increased the recruitment of PCAF to the TNF- α and COX-2 promoters (17). Furthermore, they demonstrated concomitant acetylation of specific lysine residues of histone H3 and H4 at these promoters. Since TNF- α and COX-2 have been implicated in the development of atherosclerosis (45,46), and restenosis (30,47), , and also cancer (48,49), our data suggest that PCAF may also play a role in the development of these diseases.

Our finding in the WOSCOPS and GENDER-study that the strong protective effect of the -2481C allele was more profound in patients older than 58 years old, whereas it seemed not present in young patients (<58 years old) is of particular interest. It could reveal the combined effect of a lifetime dysregulation of PCAF expression resulting from the -2481C genetic variant and the accumulating effect of exposure to environmental factors which affect histone acetylation profiles

during life as observed by Fraga *et al* (8)*.* In the PROSPER population such an age dependent effect was not observed as this trial included only patients >70 years old. As expected, here the effects on cardiovascular and cancer mortality associated with the PCAF -2481 G/C polymorphism were evident for the entire population. After observing an age-dependent effect in the WOSCOPS and GENDER study, we suggest that this polymorphism in PCAF is associated with an altered tendency to acetylate histones and non-histone proteins (such as the tumor-suppressor p53 whose function relies on acetylation, reviewed in Spange *et al*.(50)) and may therefore become important especially in elderly patients, who may have been under the influence of altered PCAF activity for many years.

Although our findings in the GENDER-study do not directly replicate the effect of the -2481 G/C polymorphism on CHD mortality in the elderly, they are of much value as this study has a mechanistically linked and better defined concise endpoint. Thus in this way patho-physiologic insights would be obtained and not just replication only. Restenosis after a PCI is very well investigated and is now known to be mainly the consequence of inflammatory and proliferative processes, which is underscored by the fact that stents eluting drugs that suppress these processes are highly efficacious in the prevention of restenosis. Therefore, we believe that our finding that the -2481C allele protects against restenosis in the GENDER-study does not only confirm its functional significance, but also provides mechanistic insights in its beneficial role in survival in the PROSPER and WOSCOPS studies.

Although we show the association between this locus involved in epigenetic control and clinical conditions in three large follow-up studies with a mechanistically linked endpoint, our studies warrant further investigation into the influence of the -2481 G/C polymorphism on the activity of the PCAF promoter or expression levels of NFKB-regulated genes. Our data that PCAF expression is reduced in nonagenarians when compared to middle-aged controls confirms a role for this gene in survival and suggests that the -2481C variant leads to reduced transcription of the PCAF gene. Further research has to be performed to test this hypothesis. In a first analysis we were able to demonstrate binding of nuclear protein extracts to the specific region flanking the -2481 G/C

polymorphism in the PCAF promoter. EMSA analysis showed that the G-variant exhibits a higher affinity for nuclear factor binding than the C-variant, albeit a relatively small difference. The difference observed, however, might lead to a dramatic different outcome if the effects accumulate over years. In initial experiments we were unable to elucidate the nuclear factor binding to the - 2481 region. Thus the protein(s) leading to the different outcome in disease remain(s) to be elucidated. It should be noted that $IFN-\gamma$ stimulation increases nuclear factor binding in HUVECs and U251 cells, suggesting a role for IFN- γ induced nuclear factors. To further explore the role of this gene in vascular disease, we quantified PCAF-transcripts in the stenotic vessel wall in a mouse model of cuff induced reactive stenosis in the femoral artery. During the stenotic process, the PCAF gene expression was rapidly upregulated, indicating that PCAF gene expression is activated upon vascular injury and suggesting that this transcriptional coactivator is involved in the development of reactive stenosis, at least in the early stages.

In conclusion, we showed in three large prospective studies that the -2481C allele in the PCAF promoter is associated with a significant survival advantage in elderly patients while also protecting against clinical and angiographic restenosis after PCI. Although the exact mechanisms of these actions are thus far unknown, we suggest that the effect of this allele on these endpoints may be due to the well-known involvement of PCAF in inflammatory and proliferative processes. Our results indicate that this locus may be involved in the modulation of cardiovascular event or mortality, probably by epigenetic histone modifications, which may be a target for future therapy.

Acknowledgements

We thank Dennis Kremer and Eka Suchiman from the Molecular Epidemiology Section of the Leiden University Medical Center, for their expert assistance with the Sequenom Massarray genotyping platform. Marja van Eggermond from the Department of Immunohematology and Blood Transfusion for her technical expertise. We thank Dr H.C. de Boer and prof.dr A.J. van Zonneveld, Department of Nephrology and the Einthoven Laboratory for Experimental Vascular Medicine for isolating and providing HUVECs. Supported by grants from the Netherlands Heart Foundation, the Interuniversity Cardiology Institute of the Netherlands (ICIN), the Macropa Foundation, the Center for Medical Systems Biology (CMSB), a center of excellence approved by the Netherlands Genomics Initiative/Netherlands Organisation for Scientific Research (NWO), and the EU Project HEALTH-F2-2007 223004 PHASE. The funders had no role in study design, data collection and analysis, decision to publish or the preparation of the manuscript.

ReferenceList

- (1) Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS. Atherosclerosis and cancer: common molecular pathways of disease development and progression. Ann N Y Acad Sci 2001;947:271-292.
- (2) Ponder BA. Cancer genetics. Nature 2001;411:336-341.
- (3) Auer J, Weber T, Berent R, Lassnig E, Lamm G, Eber B. Genetic polymorphisms in cytokine and adhesion molecule genes in coronary artery disease. Am J Pharmacogenomics 2003;3:317-328.
- (4) Agema WR, Jukema JW, Pimstone SN, Kastelein JJ. Genetic aspects of restenosis after percutaneous coronary interventions: towards more tailored therapy. Eur Heart J 2001;22:2058-2074.
- (5) Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, Hirschhorn JN, Berglund G, Hedblad B, Groop L, Altshuler DM, Newton-Cheh C, Orho-Melander M. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 2008;358:1240-1249.
- (6) Monraats PS, Pires NM, Agema WR, Zwinderman AH, Schepers A, de Maat MP, Doevendans PA, de Winter RJ, Tio RA, Waltenberger J, Frants RR, Quax PH, van Vlijmen BJ, Atsma DE, van der LA, van der Wall EE, Jukema JW. Genetic inflammatory factors predict restenosis after percutaneous coronary interventions. Circulation 2005;112:2417- 2425.
- (7) Gosden RG, Feinberg AP. Genetics and epigenetics--nature's pen-and-pencil set. N Engl J Med 2007;356:731-733.
- (8) Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005;102:10604-10609.
- (9) Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005;352:1967-1976.
- (10) Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM. Binding and modulation of p53 by p300/CBP coactivators. Nature 1997;387:823-827.
- (11) Pons D, de Vries FR, van den Elsen PJ, Heijmans BT, Quax PH, Jukema JW. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur Heart J 2009;30:266-277.
- (12) Turunen MP, Aavik E, Yla-Herttuala S. Epigenetics and atherosclerosis. Biochim Biophys Acta 2009.
- (13) Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH. Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 2008;118:934-946.
- (14) Tycko B. Epigenetic gene silencing in cancer. J Clin Invest 2000;105:401-407.
- (15) Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997;389:349-352.
- (16) Moodie FM, Marwick JA, Anderson CS, Szulakowski P, Biswas SK, Bauter MR, Kilty I, Rahman I. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J 2004;18:1897-1899.
- (17) Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 2004;279:18091- 18097.
- (18) Vogel NL, Boeke M, Ashburner BP. Spermidine/Spermine N1-Acetyltransferase 2 (SSAT2) functions as a coactivator for NF-kappaB and cooperates with CBP and P/CAF to enhance NF-kappaB-dependent transcription. Biochim Biophys Acta 2006;1759:470-477.
- (19) Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 1999;19:1202-1209.
- (20) Di Stefano V, Soddu S, Sacchi A, D'Orazi G. HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21Waf1 after nonapoptotic DNA damage. Oncogene 2005;24:5431-5442.
- (21) Okumura K, Mendoza M, Bachoo RM, DePinho RA, Cavenee WK, Furnari FB. PCAF modulates PTEN activity. J Biol Chem 2006;281:26562-26568.
- (22) Lowe GD. Circulating inflammatory markers and risks of cardiovascular and noncardiovascular disease. J Thromb Haemost 2005;3:1618-1627.
- (23) Allin KH, Bojesen SE, Nordestgaard BG. Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J Clin Oncol 2009;27:2217-2224.
- (24) Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, Ford I, Gaw A, Hyland M, Jukema JW, Kamper AM, Macfarlane PW, Meinders AE, Norrie J, Packard CJ, Perry IJ, Stott DJ, Sweeney BJ, Twomey C, Westendorp RG. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002;360:1623-1630.
- (25) Agema WR, Monraats PS, Zwinderman AH, de Winter RJ, Tio RA, Doevendans PA, Waltenberger J, de Maat MP, Frants RR, Atsma DE, van der Laarse A, van der Wall EE, Jukema JW. Current PTCA practice and clinical outcomes in The Netherlands: the real world in the pre-drug-eluting stent era. Eur Heart J 2004;25:1163-1170.
- (26) Lardenoye JH, Delsing DJ, de Vries MR, Deckers MM, Princen HM, Havekes LM, van Hinsbergh VW, van Bockel JH, Quax PH. Accelerated atherosclerosis by placement of a perivascular cuff and a cholesterol-rich diet in ApoE*3Leiden transgenic mice. Circ Res 2000;87:248-253.
- (27) Shepherd J, Blauw GJ, Murphy MB, Cobbe SM, Bollen EL, Buckley BM, Ford I, Jukema JW, Hyland M, Gaw A, Lagaay AM, Perry IJ, Macfarlane PW, Meinders AE, Sweeney BJ, Packard CJ, Westendorp RG, Twomey C, Stott DJ. The design of a prospective study of Pravastatin in the Elderly at Risk (PROSPER). PROSPER Study Group. PROspective Study of Pravastatin in the Elderly at Risk. Am J Cardiol 1999;84:1192-1197.
- (28) Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, Macfarlane PW, McKillop JH, Packard CJ. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995;333:1301-1307.
- (29) Packard CJ, O'Reilly DS, Caslake MJ, McMahon AD, Ford I, Cooney J, Macphee CH, Suckling KE, Krishna M, Wilkinson FE, Rumley A, Lowe GD. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 2000;343:1148-1155.
- (30) Monraats PS, Pires NM, Schepers A, Agema WR, Boesten LS, de Vries MR, Zwinderman AH, de Maat MP, Doevendans PA, de Winter RJ, Tio RA, Waltenberger J, 't Hart LM, Frants RR, Quax PH, van Vlijmen BJ, Havekes LM, van der LA, van der Wall EE, Jukema JW. Tumor necrosis factor-alpha plays an important role in restenosis development. FASEB J 2005;19:1998-2004.
- (31) Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 1998;26:362-367.
- (32) Gobin SJ, Peijnenburg A, Keijsers V, van den Elsen PJ. Site alpha is crucial for two routes of IFN gamma-induced MHC class I transactivation: the ISRE-mediated route and a novel pathway involving CIITA. Immunity 1997;6:601-611.
- (33) Ko LJ, Engel JD. DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol 1993;13:4011-4022.
- (34) Morris JF, Hromas R, Rauscher FJ, III. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core. Mol Cell Biol 1994;14:1786- 1795.
- (35) Abramoff MD, Magelhaes PJ, Ram SJ. Image Processing with ImageJ. Biophotonics International 2004;11:36-42.
- (36) van den Maagdenberg AM, Hofker MH, Krimpenfort PJ, de B, I, van Vlijmen B, van der BH, Havekes LM, Frants RR. Transgenic mice carrying the apolipoprotein E3-Leiden gene exhibit hyperlipoproteinemia. J Biol Chem 1993;268:10540-10545.
- (37) Pires NM, Eefting D, de Vries MR, Quax PH, Jukema JW. Sirolimus and paclitaxel provoke different vascular pathological responses after local delivery in a murine model for restenosis on underlying atherosclerotic arteries. Heart 2007;93:922-927.
- (38) Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.
- (39) Mnjoyan ZH, Dutta R, Zhang D, Teng BB, Fujise K. Paradoxical upregulation of tumor suppressor protein p53 in serum-stimulated vascular smooth muscle cells: a novel negativefeedback regulatory mechanism. Circulation 2003;108:464-471.
- (40) Kusama H, Kikuchi S, Tazawa S, Katsuno K, Baba Y, Zhai YL, Nikaido T, Fujii S. Tranilast inhibits the proliferation of human coronary smooth muscle cell through the activation of p21waf1. Atherosclerosis 1999;143:307-313.
- (41) Lee B, Kim CH, Moon SK. Honokiol causes the p21WAF1-mediated G(1)-phase arrest of the cell cycle through inducing p38 mitogen activated protein kinase in vascular smooth muscle cells. FEBS Lett 2006;580:5177-5184.
- (42) Kato S, Ueda S, Yamaguchi M, Miyamoto T, Fujii T, Izumaru S, Kume S, Toyozumi Y, Arima N, Morimatsu M. Overexpression of p21Waf1 induces apoptosis in immortalized human vascular smooth muscle cells. J Atheroscler Thromb 2003;10:239-245.
- (43) Patel VI, Daniel S, Longo CR, Shrikhande GV, Scali ST, Czismadia E, Groft CM, Shukri T, Motley-Dore C, Ramsey HE, Fisher MD, Grey ST, Arvelo MB, Ferran C. A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J 2006;20:1418-1430.
- (44) Kiernan R, Bres V, Ng RW, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 2003;278:2758-2766.
- (45) Sarzi-Puttini P, Atzeni F, Doria A, Iaccarino L, Turiel M. Tumor necrosis factor-alpha, biologic agents and cardiovascular risk. Lupus 2005;14:780-784.
- (46) Cipollone F, Prontera C, Pini B, Marini M, Fazia M, De Cesare D, Iezzi A, Ucchino S, Boccoli G, Saba V, Chiarelli F, Cuccurullo F, Mezzetti A. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation 2001;104:921-927.
- (47) Wang K, Tarakji K, Zhou Z, Zhang M, Forudi F, Zhou X, Koki AT, Smith ME, Keller BT, Topol EJ, Lincoff AM, Penn MS. Celecoxib, a selective cyclooxygenase-2 inhibitor, decreases monocyte chemoattractant protein-1 expression and neointimal hyperplasia in the rabbit atherosclerotic balloon injury model. J Cardiovasc Pharmacol 2005;45:61-67.
- (48) Mocellin S, Rossi CR, Pilati P, Nitti D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 2005;16:35-53.
- (49) Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999;18:7908-7916.
- (50) Spange S, Wagner T, Heinzel T, Kramer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 2009;41:185-198.