
Statistical compiler tuning
Haneda, M.

Citation
Haneda, M. (2006, September 26). Statistical compiler tuning. ASCI
dissertation series. Retrieved from https://hdl.handle.net/1887/4572

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4572

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4572

Statistical Compiler Tuning

Statistical Compiler Tuning

proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D.D. Breimer,

hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 26 september 2006

te klokke 16.15 uur

door

Masayo Haneda

geboren te Hyogo, Japan

in 1978

Promotiecommissie

Promotor: Prof. Dr. H.A.G. Wijshoff
Co-promotor: Dr. P.M.W. Knijnenburg
Referent: Dr. M.F.P. O’Boyle (The University of Edinburgh, UK)
Overige leden: Prof. Dr. Ir. H.J. Sips (Technische Universiteit Delft)

Prof. Dr. H. Corporaal (Technische Universiteit Eindhoven)
Prof. Dr. F.J. Peters
Prof. Dr. S.M. Verduyn Lunel
Prof. Dr. Ir. E.F. Deprettere

ISBN-10: 90-9020847-X

ISBN-13: 978-90-9020847-3

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.

ASCI dissertation series number 129.

Contents

1 Introduction 1

1.1 The implementation of compiler optimizations 1

1.2 Compiler optimizations for embedded systems 5

1.3 Iterative compilation . 7

1.4 Our approach . 10

1.5 Related work on generating optimal code 11

1.5.1 Generating optimal code for general purpose processors 11

1.5.2 Generating optimal code for embedded systems 12

1.6 Overview of this thesis . 13

1.7 Overview of publications . 14

2 Preliminaries 15

2.1 Orthogonal arrays . 15

2.2 Main effect . 17

2.3 Inferential statistics . 18

2.3.1 The Mann-Whitney test . 19

2.3.2 Determining the sample size . 22

3 Using main effect to optimize the execution time of a single application 23

3.1 The iterative search algorithm . 23

3.2 The experimental environment . 24

3.3 A case study . 27

3.4 Results . 28

3.5 Sensitivity of the algorithm to the threshold value 32

3.6 Conclusion . 33

4 Using the Mann-Whitney test to optimize the execution time of a single applica-

tion 47

4.1 Our methodology . 47

4.2 The experimental environment . 48

4.3 Results . 49

4.3.1 Example: the iterations for mcf . 54

4.3.2 Settings for SPEC2000 . 54

4.3.3 Number of iterations . 61

i

4.4 The robustness of the methodology . 62

4.5 Conclusion . 66

5 Using the Mann-Whitney test to optimize the code size of a single application 67

5.1 The experimental environment . 68

5.2 Results . 69

5.2.1 The optimization time requirements 69

5.2.2 Code size reduction . 72

5.2.3 The compiler settings . 73

5.3 Conclusion . 73

6 The determination of compiler settings for multiple applications taking into ac-

count interaction between optimizations 81

6.1 A methodology to define a compiler setting 82

6.1.1 The detection of interaction between optimizations 83

6.1.2 Defining interaction using a representative subset of the search space 85

6.2 The algorithm to find a compiler setting . 86

6.2.1 Step 1: Finding maximal subsets of positively interacting options . . 86

6.2.2 Step 2: Combining subsets . 87

6.2.3 Step 3: Selecting the best setting . 89

6.3 Results . 90

6.4 Observations . 92

6.5 Conclusion . 94

7 Using random search to determine a compiler setting 95

7.1 The experimental environment . 95

7.2 The random generation of compiler settings for a single program 96

7.3 Multiple program optimization . 101

7.3.1 The effectiveness of the new setting 104

7.4 Conclusion . 104

8 Conclusion 107

A Compiler Options 109

B Benchmark Suites 111

Samenvatting 127

Acknowledgement 129

Curriculum Vitae 131

ii

Chapter 1

Introduction

As Moore’s law predicts, the number of transistors on a chip doubles about every two years [33].

This causes computer architectures to become more and more complex, so that it becomes a

difficult task to optimize application codes for these architectures. Although researchers have

claimed that compilers must be responsible to transform an application into the most suitable

code for a target architecture automatically and many optimizations have been invented for

that purpose [39], hand optimization is still necessary to achieve the highest performance.

However, hand optimization cannot be the ultimate solution for this optimization problem

since the size of applications grows rapidly and it is clear that programmers will not be able

to oversee the complex task of optimizing their codes [21].

The problem of using compilers to optimize applications is two-fold. First, the effec-

tiveness of compiler optimizations changes depending both on the target architectures, the

target application, and the characteristics of the input data. Second, it is impossible to try

out all possible compiler settings to find the best one since the number of available compiler

optimizations causes the number of possible combinations of compiler settings to be sheer

overwhelming. In this thesis, we describe methodologies to cope with the complex task of

finding optimal compiler settings.

1.1 The implementation of compiler optimizations

A compiler can be generally defined as the software which is responsible for translating

a high-level programming language into a machine language (object code) [5]. However,

modern compilers do more than just translation. The translated code may contain redundan-

cies and inefficiencies, which can be removed without changing the original semantics. A

compiler, which is capable to perform these optimizations, is called an optimizing compiler.

Figure 1.1 shows the general structure of such an optimizing compiler.

In Figure 1.1, an input program is translated into a syntax tree, which is a tree representa-

tion of the program structure where the internal nodes stand for operators and the leaf nodes

represent their operands [5]. This syntax tree is translated into an intermediate representa-

tion, which enables code generation. Compiler optimizations are applied to the intermediate

1

2 1. Introduction

Parser

Program

Syntax Tree

Translator

Intermediate Representation

Optimizer

Intermediate Representation

Code generator

Object Code

Figure 1.1: General Structure of Compiler

representation and transform the original program structure into another structure to improve

the performance of the object code. It is very important to guarantee that the transformation

preserves the original semantics of the program. Several analysis techniques are needed to

understand the program and to examine the legality of these transformations [5][39][50].

Control-flow analysis is applied to understand the structure of a program [5]. A basic

block is defined as a sequence of instructions which can be entered only at the beginning of

the block and exited only at the end of the block. Basic blocks in a program are identified

during control-flow analysis. Basic blocks enable us to construct a control-flow graph which

reflects the dominance relation between basic blocks [5]. Assume that there are two basic

blocks A and B. We say a basic block A dominates a basic block B, if every path to B from

the entry of the control-flow graph includes A. According to this relation, it is possible to

identify loop structures in the program [5].

Data-flow analysis provides information about how data is processed in a program. This

analysis is important since the results can determine the legality of compiler optimizations.

The analysis is based on the relationship between definition and use of variables. The re-

sults of the analysis can be expressed in various ways: def-use chains, use-def chains [5], and

webs [38]. They represent definitions and uses for each variable. Static Single-Assignment

(SSA) [17] is one of the intermediate representations which naturally expresses def-use

chains.

As a result of data-flow analysis, it is possible to perform data dependence analysis. This

enables us to perform instruction scheduling and data-cache optimization, namely, by apply-

1.1. The implementation of compiler optimizations 3

do i=1,n

do j=1,n

b = b+a[i,j]

enddo

enddo

(a) Original Code

do j=1,n

do i=1,n

b = b + a[i,j]

enddo

enddo

(b) Transformed Code

Figure 1.2: Example of Loop Interchange

ing loop transformations. The best known and earliest data dependence test is the greatest

common divisor (GCD) test [6]. Further, there exist the Power test [63] which is a combina-

tion of Fourie-Motzkin elimination and the GCD test, and the Omega test [54] which is a test

for the existence of an integer solution to a set of equalities and inequalities which expresses

the access pattern to the (array) variables in a loop. Most of the instruction scheduling and

data-cache optimizations assume that the code to be transformed satisfies certain dependence

patterns, which can be the absence of dependences, or the direction of dependences, or the

distance of dependences [39]. Therefore, it is extremely important to determine the existence

and characteristics of dependences. On the other hand, a strong dependence analysis, like the

omega test, requires expensive computations.

An intermediate representation is defined by compiler developers, and its design depends

on the way the entire compiler has been designed and is implemented. Many modern com-

pilers maintain several intermediate representations, which are different in their level of ab-

straction of the program representation. For example, the DEC Alpha compiler has two kinds

of intermediate representation, CIL (Compact Intermediate Language) and EIL (Expanded

Intermediate Language). The Open Research Compiler (ORC) [3] implements 5 levels of in-

termediate representation. gcc 3.3.1 implements a tree representation to be translated to RTL

(register transfer language). gcc 4.1 has RTL and higher level intermediate representations

which are called GENERIC and GIMPLE [48] to implement SSA.

The intermediate representation on a high level of abstraction, which preserves proce-

dures and loop structures, is most suitable for applying data-cache optimizations, i.e., loop

transformations [50]. An example of a loop transformation is loop interchange. Loop inter-

change reverses the order of two adjacent loops in a loop nest. In Figure 1.2, one can see a

nested loop that can be interchanged. This optimization increases the locality of data access.

In Figure 1.2, the access to the array a[i, j] becomes contiguous after the application of loop

interchange.

Although loop transformations are suitable to be implemented on high level intermediate

representations, it is also possible to implement them on a low level intermediate representa-

tion. The effect of a compiler optimization at different levels of intermediate representation

may be different. In [50], major compiler optimizations are listed in their appropriate or-

der of application based on the experience of the author. An appropriate abstraction level of

4 1. Introduction

L: LOADF R1, A[t1]

ADDF R2, R1, R2

. . .

ADDF R4,R5,R4

CMP R2, R3

BLE L

(a) Original RISC Code

L: LOADF R1, A[t1]

ADDF R2, R1, R2

. . .

CMP R2, R3

BLE L

ADDF R4,R5,R4

(b) Transformed RISC Code

Figure 1.3: RISC Code for Delayed Branch

intermediate representation is also specified there.

Besides loop transformations, there are many target specific optimizations. They are im-

plemented on the low level intermediate representation which is close to the representation

of the target code since it uses more architecture specific operations. For example, strength

reduction which replaces expensive instructions by equivalent cheaper instructions is usually

implemented on the low level intermediate representation [5][50].

After optimization, the object code is generated from the intermediate representation by

translation. This translation needs architecture-specific information, namely, the instruction

set, the number of registers, etc. Efficient code can be generated when the final interme-

diate representation is well-suited for the target architecture. For example, pipelines which

are implemented in most modern architectures, can work effectively when the executable

code is scheduled to maximize the use of their computation utilities. For effective use of

pipelines, some architectures implement delayed branching which execute the next instruc-

tion of a branch instruction. A scheduling strategy must consider such architectural features

to generate effective code. Figure 1.3 shows an example of the RISC code for delayed branch-

ing, in which one can see that a ADDF instruction before the CMP instruction is moved after

the BLE instruction. Software pipelining [42] is also an important technique for scheduling.

This technique changes the order of instructions to hide memory latencies.

Multiple target compilers, for example gcc, have multiple code generators, one for each

architecture. As might be expected, multiple target compilers cannot produce code as effi-

cient as compilers which target a specific architecture. This is because optimizations are im-

plemented without taking into account the implementation of the architecture. Additionally,

most users only use standard optimization settings which are provided by the compilers. The

most suitable form of intermediate representation can be different depending on the target

architecture so that the appropriate optimizations also can be different.

Choosing an appropriate compiler optimization setting may improve the performance

of the code produced by a multiple target compiler. However, compiler setting tuning is a

difficult task since the search space is large, namely, the search space contains 2N search

points when the compiler has N independent optimizations with two states, on or off.

1.2. Compiler optimizations for embedded systems 5

1.2 Compiler optimizations for embedded systems

In [21], embedded computing is defined as all computing which is not general purpose. Gen-

eral purpose processors, like the Pentium from Intel, can handle any kind of application “ef-

ficiently”. However, there also exists a demand for processors which can achieve sufficient

efficiency on special purpose applications utilizing only a limited number of resources. For

example, it is of no use to have general purpose processors operating on gigahertz frequencies

for mobile phones. For mobile phones, power consumption, cost, and memory size are much

more important than high speed computation. Embedded systems target these requirements.

All embedded systems are unique since they are customized to achieve the best perfor-

mance for a small number of applications. However, it is possible to categorize them into

microprocessors, microcontrollers, and digital signal processors (DSPs) [21]. Microproces-

sors and microcontrollers are similar to general purpose processors but their computation

resources are limited. Microprocessors are often employed as the core of embedded systems

to control the processes on them. Microcontrollers are deployed to accomplish standalone

operations in (industrial) electronics.

Digital signal processors are designed to perform well for signal processing. Matrix op-

erations are heavily used in signal processing algorithms. So DSPs need special support for

these matrix operations: multiply-accumulate (MAC) operations. To achieve a MAC opera-

tion in one clock cycle, DSPs use deep pipelines which make wrongly predicted branches

costly. Also, DSPs sometimes have XY-memories, which are two separate local data memo-

ries. These DSPs have irregular instruction sets: some instructions must take one or both of

their operands from the X or Y local memory. It is obvious that writing software for DSPs is

difficult because of these peculiar features.

Traditionally, software development for embedded systems used mainly assembly lan-

guage. This tradition has changed since high level language compilers have started to support

embedded systems. Usually, these compilers are cross compilers, which enable one to develop

applications in their familiar environment (e.g., a desktop). Next, the executable is loaded into

a specific embedded system platform. A cross compiler with an assembler, a linker, a simu-

lator, and a debugger is called the cross-development toolchain. For example, gcc provides

toolchains for various embedded systems [13].

Standard C [4] is widely used as the high level language to write software for embedded

systems [21]. Also there exist high level languages which are specialized for embedded sys-

tems. A DSP has many specific architectural features and it is impossible to make good use of

them when programmers write their software in standard C. This causes programmers to use

mostly assembly language for writing time critical sections of the code. Embedded C++ [1]

and embedded JAVA [2] are also high level languages for embedded systems. Embedded C++

is a subset of C++. For example, embedded C++ does not allow using templates, exception

handling, namespaces, etc. Embedded JAVA can target any architecture if it supports a JAVA

virtual machine. Matlab [47] also provides an environment for the development of software

for embedded systems.

Because embedded systems are mostly designed specifically for one task, the design cri-

teria do not include backward compatibility and upgrade compatibility. The software has

6 1. Introduction

Figure 1.4: Growth in the Number of Logic Transistors

Figure 1.5: Growth in the Number of Lines of Software

1.3. Iterative compilation 7

to be strictly tuned to exploit instruction parallelism, to meet real-time constraints, to save

power consumption, etc. This has been done by expert programmers who directly write their

applications in assembly language. The trend of using high level languages to program the

software for embedded systems causes this process to be done by compilers.

As already mentioned, software for embedded systems should satisfy multiple constraints.

These constraints make the optimization strategy for compilers rather more complicated than

a strategy for general purpose processors. For example, loop unrolling, which is a very com-

mon optimization for general purpose processors to exploit instruction level parallelism, can-

not be applied bluntly for embedded processors because code size is increased, and this is not

desirable for embedded systems which have a limited and expensive memory. Programmers

need to decide whether the advantage of speedup is worth having despite of the disadvan-

tage of code size increase. Such a tradeoff is difficult for compilers to understand since they

have no dynamic information, like execution time or power consumption, of the resulting

code. Therefore, programmers usually spend much time to configure compiler settings or to

optimize the assembly code manually.

In most cases, the resulting codes from compilers are not as good as the ones which are

generated by specialists manually. It is difficult to exceed the performance of code written by

specialists, although it may be possible to generate codes which achieve reasonably accept-

able performance by a compiler if we can tune the compiler correctly. Software for embedded

systems used to be very small so that it was feasible that programmers write the corresponding

assembler code manually. This situation has changed recently. Figures 1.4 and 1.51 show the

results of a survey on the growth of the productivity of designers of hardware and software.

From these graphs, one can see that analogous to the growth of number of logic transistors,

the number of lines of code also grows (100 lines in 1980 and 1 million lines in 2000). Also,

one can see that the productivity of a programmer has not changed for decades. Software

for embedded systems also grows in size as embedded systems consist of more transistors.

It is clear that generating and optimizing the code manually becomes more difficult since the

productivity of a programmer does not change. Therefore, software for embedded systems

should be written in a high level language to increase the reusability, and compilers should

contribute to generate a highly optimized code.

1.3 Iterative compilation

Iterative compilation [8][40] has been proposed to maximally exploit the ability of a compiler

for each architecture. Compilers usually apply a fixed order of compiler optimizations with

the same heuristics. However, modern compilers implement many optimizations that can be

configured by users. In general, this property is not being used effectively. The reason is that

configuring compiler optimizations requires in depth knowledge of the implementation of

the compiler and of the characteristics of target architectures and target applications. Most

users do not have such knowledge so that the demand for tools that automatically tune com-

piler optimization has increased. The main characteristic of iterative compilation is the use

1These graphs are taken from [21]

8 1. Introduction

Figure 1.6: Iterative Compilation System

of execution times to tune compiler optimization. In other approaches, a model of the archi-

tecture is used to estimate the best compiler optimizations. The drawback of this approach is

that architectures are too complex to be modeled completely so that the resulting settings are

inaccurate.

A disadvantage of iterative compilation is that the cost of determining only one compiler

setting that is only valid for one target application and one target architecture, is high. For

instance, the iterative compilation system in [40] generates effective settings for two compiler

transformations in several hundreds of iterations, which in general is too expensive. However,

whereas iterative compilation is an expensive process to obtain better performance for just one

application and one target architecture, using iterative compilation to obtain a general setting

which can be used for many applications will spread the overhead over these applications,

thereby making the cost acceptable.

Figure 1.6 illustrates the process of iterative compilation. In the first stage of the process,

an arbitrary compiler setting is generated. The generated setting is compiled and executed in

the next stage. Then the stop criterion is evaluated to determine whether an acceptable setting

has been generated. The evaluation may involve profile information as well as direct feedback

from the iterative mechanism.

The quality of the generated setting is crucial for the success of this approach. In [40], loop

tiling and loop unrolling are applied to Matrix-Matrix multiplication, Matrix-Vector multipli-

cation, and Forward discrete cosine transform. (In [24], the iterative compilation system is

1.3. Iterative compilation 9

also applied to optimize three benchmarks in the SPEC95FP.) The tile sizes of the loop tiling

and the unroll factor of loop unrolling should be determined adequately. The best value of

these parameters depends on the target architecture and application. Examples of loop tiling

for a tile size of 64× 64 and loop unrolling for an unroll factor of 2 on a small kernel are

shown in Figures 1.7 and 1.8.

do i=1,n

do j=1,n

a[i,j]=b[i,j]+1

enddo

enddo

(a) Original Code

do TI=1,n,64

do TJ=1,n,64

do i=TI,min(TI+63,n)

do

j=TJ,min(TJ+63,n)

a[i,j] = b[i,j]+1

enddo

enddo

enddo

enddo

(b) Transformed Code

Figure 1.7: Example of Loop Tiling

do i=1,n

a[i] = a[i]+1

enddo

(a) Original Code

do i=1,n-1,2

a[i] = a[i]+1

a[i+1] = a[i+1]+1

enddo

(b) Transformed Code

Figure 1.8: Example of Loop Unrolling

Five different algorithms, a genetic algorithm, simulated annealing, grid search, window

search, and random search, were employed in [40] to identify the best combination of tile

sizes and unroll factors. Random search proved to be the quickest search algorithm for itera-

tive compilation to generate the best settings.

[25] investigates the effectiveness of iterative compilation to reduce energy consumption.

The authors conclude that several loop transformations, like loop unrolling and loop tiling,

can effect the energy consumption of the optimized code, and therefore, iterative compilation

is worthwhile to optimize a target code for energy reduction.

10 1. Introduction

1.4 Our approach

Modern compilers are equipped with a large number of optimization switches and it is nec-

essary to configure them carefully to obtain the best performance. Although the importance

of setting the right compiler switches is evident, there exist few strategies to configure these

compiler switches or flags. This is caused by the fact that the performance of a code is both

dependent on the target architecture and the application. Therefore, it is extremely hard if not

impossible to construct a generally applicable strategy. Additionally, the effect of the opti-

mization switches can be dependent on other compiler switches causing the actual effect to

be masked and not easily predictable. Therefore, it is inevitable for application developers to

spend much time on hand optimization of their applications to obtain the best performance.

The goal of our research is to find mechanism which determines the best set of compiler opti-

mizations automatically. This thesis describes the algorithms with the experimental results of

their application to the general compiler gcc. The results support our idea that searching for

optimal compiler settings is feasible. This thesis introduces three approaches for identifying

optimal compiler settings.

The first approach introduces the framework of Design of Experiments (DoE) [9]. DoE is

proposed for effective data collection and analysis. In the framework of DoE, collected data

is analyzed using statistical methodologies. In this thesis, we apply two kinds of statistical

analysis, namely, main effect [32] and the Mann-Whitney test [35]. We employ Orthogonal

Arrays (OAs) [32] to design our experiments. OAs are well known as suitable experimen-

tal plans which aim to qualify the effect of factors. In our approach, a column of an OA

corresponds to a compiler option so that a row of an OA determines one entire compiler opti-

mization setting. Main effect and the Mann-Whitney test are applied to the collected profiling

data, and they identify effective compiler options with a large effect. Main effect and the

Mann-Whitney test are conservative analyses so that they only identify few number of opti-

mizations that have a large effect. Therefore, we propose an iterative algorithm to repeat the

experiment by using the partial setting of compiler options which is identified in the previous

iterations to complete the compiler setting. This algorithm can find compiler settings which

outperform the standard -O3 settings from the gcc compiler.

The second approach emphasizes the interaction between compiler options. In this ap-

proach, we measure the effect of combined compiler options while the first approach mea-

sures the effect of each compiler option separately. In this approach, we use a fixed number

of compiler settings which are designed with an orthogonal array, and compute the effect

of interaction of particular combination of compiler options. The definition of interaction

is described in this thesis. This approach identifies an optimal compiler setting for multiple

applications. The resulting compiler setting performs better than the -O3 setting of the gcc

compiler.

The third approach employs iterative compilation [8][40] using random search to find an

optimal compiler setting. This approach shows that we can identify an optimal compiler set-

ting in a limited number of iterations. The major difference between this approach and the

previous approaches is that the previous methodologies only select optimizations which are

significantly effective, while the compiler setting which is selected by iterative compilation

1.5. Related work on generating optimal code 11

contains several no-effect optimizations because of the random generation of test settings.

This approach enables us to estimate how much improvement we can obtain from the com-

piler optimizations. Therefore, the results from this approach can be used to evaluate compiler

settings, for example, standard settings of the compiler (e.g., -Ox), or the compiler setting

which we identified with the previous approach. We also applied this iterative compilation to

find a compiler setting which is optimal for multiple applications. The resulting compiler set-

ting is compared with the estimated optimal compiler setting for each application. The results

show that the resulting settings achieve reasonably good performance for 7 applications.

1.5 Related work on generating optimal code

In this section, we describe related work to generate optimal code for an application. The

problem is discussed for two domains, which are general purpose processors and embedded

systems.

1.5.1 Generating optimal code for general purpose processors

General texts like the Dragon book [5], Waite and Goos [60], or Tremblay and Sorenson [58]

simply give a collection of possible backend optimizations without much discussion about

when to use them. Muchnick [50] simply sums up which optimizations should be employed

one after the other based on experience.

A number of approaches to select best optimizations have been proposed by searching

the optimization space. Iterative compilation [40] or the GAPS system that employs genetic

algorithms [52] search for source level transformations. [16] use genetic algorithms to find

optimal low level code sequences, paying attention to both performance and code size. [49]

use machine learning techniques based on oblique decision trees to find compiler heuristics

specific for a particular platform. [59] discusses an implementation of iterative compilation

in the Intel IA-64 production compiler. In contrast to these efforts, our approach uses statis-

tical analysis to systematically prune the search space and is focused on compiler switches.

[56] uses an evolutionary algorithm to automatically find effective compiler heuristics for a

particular application by searching for priority functions that drive optimizations. This work

does not address the general problem of setting compiler switches.

Granston and Holler [26] propose a tool for automatic selection of compiler options,

called Dr. Options. This tool uses information about the application supplied by the user and

a set of tuning rules that have been created by interviewing tuning experts and analyzing op-

timization experiments. Hence, much compiler and application specific knowledge must be

collected in order to create or even use such a tool. In contrast, our approach uses no knowl-

edge at all but only statistical analysis to find an optimal setting. VISTA [65] is an interac-

tive tool to assist the application programmer in finding optimizations and their phase order.

However, it does not provide automatic optimization selection. [64] provides a framework

12 1. Introduction

for predicting the impact of loop transformations to assist in selecting the optimal one. How-

ever, it is not clear how backend transformations can be incorporated in this framework and it

does not provide automatic selection facilities. Whitfield and Soffa [61] propose a framework

for specifying transformations and an automatic optimizer generator in order to experiment

with transformations. However, this does not solve the problem of which transformations to

enable.

Chow and Wu [12] approach the problem of determining which options to set for a given

application as a fractional factorial experiment based on aliasing or confounding [9]. The

effect of options is analyzed using a linear regression model. This approach has a number of

drawbacks compared to the present work. First, it is not clear whether such a linear model can

be used to accurately model compiler options. It is well known that many aspects of program

execution are non-linear. Hence, it is not clear that such a model may be used and the authors

do not give an argument for using it. Second, each alias actually is a generator for a collection

of other aliases [9]. Generators that minimize the number of derived aliases are only known

for a limited number of alias structures. It is far from clear how to alias many factors as we

would need for modern compilers and we are likely to end up with many derived aliases

that completely obscure what we are actually measuring. For this reason, Chow and Wu first

restrict attention to 9 interesting options for which a minimal set of generators is available.

However, this step requires detailed knowledge about the compiler. In contrast, our approach

can start with all options available without any need to make an initial selection. The most

important difference between [12] and our approach in this thesis, however, is that Chow and

Wu use complex statistical analysis requiring many new experiments to resolve ambiguities

and to find options with high main effects and interactions.

1.5.2 Generating optimal code for embedded systems

Although performance is obviously important for embedded systems and the previous ap-

proaches to optimization for performance can be applied to the embedded domain also, there

also exists another optimization goal for embedded systems, namely code size.

Code size is a main cost factor for many high volume electronic devices. Reducing code

size enables us to reduce the size of memory which has a high proportion of a product cost.

Also, reducing code size enables us to put more features in the same ROM which may en-

hance the value of a product. It is therefore important to reduce the size of the applications in

an embedded system.

Several methods have been proposed to deal with this problem, mostly based on com-

pressing the binaries. Code compression using, e.g., Huffman coding, is a much studied ap-

proach to code size reduction [7]. Wolfe and Chanin [62] presented the first paper on this

topic. In their approach, the code is compressed off-line and is executed by decompressing

the code into the cache by a special hardware unit. The method is transparent to the CPU and

only the cache refill engine needs to be modified. This approach was improved by Breter-

nitz and Smith [10], and Lekatsas and Wolf [44]. Lefurgy et. al. [43] apply a dictionary based

approach. Hoogerbrugge et. al. [36] approach code compression in a different way. They gen-

erate code for a virtual processor with a special instruction set. This code is the compressed

version of the original code. It is then translated (i.e., decompressed) before execution on

1.6. Overview of this thesis 13

the target processor by means of a dictionary. This approach allows macro-instructions that

encode sequences of target instructions. Ernst et. al. [20] produce compressed low-level in-

termediate code that needs to be decompressed and interpreted on the native machine. Franz

and Kistler [22] store a program in a platform independent intermediate representation that

is moreover compressed. This compressed representation is called a slim binary. To execute

a slim binary, it is decoded and native machine code is generated from the intermediate rep-

resentation. Although compression can achieve a high reduction in code size, its obvious

drawback is that it requires decompression at runtime. This can affect the performance of the

code, although it has been shown that this overhead can in some cases be hidden. Moreover,

ROM is required to store the decompression algorithm which reduces the gains achieved by

compression.

There exist some papers that study how the compiler can be used to reduce code size.

One important transformation that is specifically geared toward code size reduction is code

factoring [23]. This transformation can be seen as the inverse to function inlining. The assem-

bly code is searched for repeating patterns that are encapsulated in a new function and the

patterns are replaced by a call to this function. Cooper and McIntosh [15] improved the origi-

nal idea. The squeeze binary-rewriting tool uses aggressive inter-procedural optimization and

code factoring [18]. Mathias et. al. [46] employ genetic algorithms to detect repeating pat-

terns. The transformation reduces code size by 5 to 10%. As a drawback, code factoring can

give rise to longer execution times by increasing the number of dynamic instructions and

cache miss rates [57].

Instead of the compiler, the linker can also be adapted to produce size reduced binaries,

as has done in the work by De Bus et. al. [11]. Instead of minimizing code size, code size

constraints can also be enforced. Heydeman et. al. [34] use Integer Linear Programming to

find loop unroll factors to maximize performance under code size constraints. Naik and Pals-

berg [51] phrase register allocation and code generation as an Integer Linear programming

problem where the upper bound on the code size can be expressed as an additional constraint.

Cooper et. al. [16] have proposed to use genetic algorithms to search for short code sizes

using a research compiler. However, they only employ 10 options, in contrast to the ap-

proaches in this thesis which use 53 options. It is not immediately clear that such large num-

ber of options will not lead to combinatorial explosion in their approach. Moreover, their

compiler allows them to specify the order in which these optimizations are applied and the

same optimization may occur several times in an optimization sequence. However, this order

can generally not be manipulated in a production compiler.

1.6 Overview of this thesis

This thesis is organized as follows. Chapter 2 describes the statistical techniques which we

employ in this thesis. Chapter 3 shows our algorithm using the main effect of a compiler

option to determine compiler settings. Chapter 4 applies the Mann-Whitney test to determine

the significance of compiler options for determining compiler settings. In Chapter 5, the

Mann-Whitney test is applied to determine compiler settings which intend to reduce the code

14 1. Introduction

size of executables. Chapter 6 shows our methodology to employ the definition of interaction

between compiler options. Chapter 7 describes the application of iterative compilation to the

problem of defining an optimal compiler setting for multiple programs. Finally, Chapter 8

summarizes this thesis.

1.7 Overview of publications

Some parts of this thesis have been previously published.

• Chapter 4: Using the Mann-Whitney test to optimize the execution time of a single

application.

This chapter is published in the proceedings of the 14th International Conference on

Parallel Architectures and Compilation Techniques (PACT’05) [27]. Part of this chapter

is also published in the proceedings of the workshop on Performance Optimization

High-Level Languages and Libraries (POHLL’06) [31].

• Chapter 5: Using the Mann-Whitney test to optimize the code size of a single applica-

tion.

This chapter is published in the proceedings of the workshop on Embedded Computer

Systems: Architectures, Modeling, and Simulation (SAMOS’06) [30].

• Chapter 6: Determine a compiler setting for multiple applications taking into account

interaction between optimizations.

This chapter is published in the proceedings of the second conference on computing

frontiers (CF’05) [29].

• Chapter 7: Using random search to determine a compiler setting.

This chapter is published in the proceedings of the 19th annual international conference

on supercomputing (ICS’05) [28].

Chapter 2

Preliminaries

Design of Experiments (DoE) [9] provides a methodology to plan experiments from which

we can obtain data which allow statistical analysis. Orthogonal Arrays have been used in the

framework of DoE and are defined mathematically in [32]. In this chapter, we first explain the

features of orthogonal arrays, and how the main effect is computed from experimental data.

Next, we explain about inferential statistics and the Mann-Whitney test.

2.1 Orthogonal arrays

Orthogonal Arrays (OAs) have been proposed as an efficient design of experiments [32]. Each

element of an array expresses the setting of an experimental factor (i.e., a compiler switch).

The columns of an orthogonal array are associated with the experimental factors (compiler

switches), hence each row of an orthogonal array represents one experimental compiler set-

ting to be executed. In this thesis, we deal with binary compiler switches so that we use

orthogonal arrays which are constructed with +1’s and −1’s. In order to reduce the overall

experimental set up, we have chosen to use OAs of strength 2. This means that for any two

arbitrary columns, the patterns

+1+1 −1+1 +1−1 −1−1

occur equally often. This property is useful to avoid biased profiling data [32]. Figure 2.1

shows an example of an Orthogonal Array of strength 2. So, for instance, if we take the first

and fifth column we can see that each combination +1+1, −1+1, +1−1, and −1−1 occurs

exactly 3 times.

15

16 2. Preliminaries

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1

+1 −1 +1 −1 −1 −1 +1 +1 +1 −1

+1 +1 −1 +1 −1 −1 −1 +1 +1 +1

−1 +1 +1 −1 +1 −1 −1 −1 +1 +1

+1 −1 +1 +1 −1 +1 −1 −1 −1 +1

+1 +1 −1 +1 +1 −1 +1 −1 −1 −1

+1 +1 +1 −1 +1 +1 −1 +1 −1 −1

−1 +1 +1 +1 −1 +1 +1 −1 +1 −1

−1 −1 +1 +1 +1 −1 +1 +1 −1 +1

−1 −1 −1 +1 +1 +1 −1 +1 +1 −1

+1 −1 −1 −1 +1 +1 +1 −1 +1 +1

−1 +1 −1 −1 −1 +1 +1 +1 −1 +1

Figure 2.1: Example of an Orthogonal Array with 10 Columns

In order to derive these orthogonal arrays of strength 2, we make use of Hadamard matri-

ces [32]. Hadamard matrices are square matrices of +1’s and −1’s whose rows are orthogonal.

A Hadamard matrix of order n is denoted by Hn, and it satisfies:

HnHT
n = nIn (2.1)

Hadamard matrices have the following features:

• When Hn exists, n = 1, n = 2, or n is a multiple of 4.

• If and only if there exists a Hardamard matrix of order 4λ where λ is a given integer,

then a 4λ×4λ−1 orthogonal array of strength 2 can be constructed from it.

We can derive orthogonal arrays from Hadamard matrices, as follows [32]:

1. Symmetrically permute the rows and columns of an Hadamard matrix, so that the first

row and first column consists of +1’s.

2. Drop the first column from this Hadamard matrix.

3. Negate this Hadamard matrix.

So, orthogonal arrays which are derived from Hadamard matrices have as first row all −1’s.

Since this feature is convenient for our experiments, we employ them throughout this thesis.

Hadamard matrices have been found up to the order of 256, and they are available in [55].

We use these Hadamard matrices to produce the OAs that are used in this thesis. Later in this

thesis, we denote +1 by 1 and −1 by 0 to make the notations more easily readable.

2.2. Main effect 17

2.2 Main effect

The main effect represents the effect of an experimental factor (compiler optimization), with-

out taking into account the other factors in the analysis. In general, an OA of strength t allows

us to compute the interaction effect of ⌊ t
2
⌋ factors for t ≥ 2. Therefore, OAs of strength 2 can

be used to compute the main effect of compiler options.

In order to explain how to compute the main effect of options, we need some notation.

We use A to express an OA as a set of compiler settings. A is an N × k matrix, hence N

settings of k compiler switches are determined by A. A row of A, which corresponds to one

entire compiler setting, is denoted by s. The ith element of s (si) describes the setting of

the ith option of the compiler setting, namely, 1 corresponds to on and 0 corresponds to

off. Our methodology works independently of what is chosen as the optimization target, for

example it can be execution time, code size, energy consumption, and so on. In this thesis,

we use execution time as the optimization target. The execution time of given program that is

obtained using of a compiler setting s ∈ A is denoted by T (s).

The main effect of the option Oi with respect to OA A, which is denoted by E(Oi), is

defined in Equation 2.2.

E(Oi) =
(
∑

{s∈A:si=1} T (s))2

N/2
+

(
∑

{s∈A:si=0} T (s))2

N/2
− (

∑

{s∈A} T (s))2

N

=
(
∑

{s∈A:si=1} T (s)−∑{s∈A:si=0} T (s))2

N

(2.2)

The main effect of an option is computed with respect to the entire OA A. Equation 2.2 uses

the sum of squares of execution times when the option is switched on or off in an arbitrary

context of other options. The OAs have the properties that

1. There are exactly the same number of rows that switch an option Oi on as there are

rows which switch that option off, namely, N
2

.

2. For an arbitrary other option O j, in the set of rows in which Oi is switched on, there

are exactly N
4

rows that switch O j on and there are exactly N
4

rows that switch O j off.

Likewise for the set of rows that switch Oi off.

This last property of OAs ensures that main effect can be computed with high precision.

However, only sufficiently large main effects should be taken into consideration because the

main effect is calculated from measured data which might contain measurement errors. So,

whenever the computed main effect is small, the noise of the experimental data is too large to

ensure a correct setting of this option.

In order to determine the effects of the compiler options, we normalize the main effect

using the sum of main effects of all options. We call the normalized main effect relative effect,

and it is denoted by RE(Oi). RE(Oi) is given by

RE(Oi) =
E(Oi)

∑k
j=1 E(O j)

·100% (2.3)

Since the effects are expressed as squares in Equation 2.2, the actual effect of an option

can be both positive and negative. The main effect simply expresses whether an option does

18 2. Preliminaries

or does not affect execution time and not whether it improves or degrades performance. To

distinguish between these two possibilities, we define the improvement of option Oi with

respect to an OA A, denoted by I(Oi), as follows

I(Oi) =

∑

{s∈A:si=0}T (s)−∑

{s∈A:si=1}T (s)
∑

{s∈A:si=0}T (s)
(2.4)

This equation can be used to decide whether an option is beneficial for achieving better per-

formance or not.

2.3 Inferential statistics

Most experiments in the field of scientific computing aim to support a prediction or an esti-

mation of a phenomenon. The prediction or estimation is called an experimental hypothesis,

and the study of inferential statistics aims to predict whether an experimental hypothesis is

likely to be true. For our purpose where we want to decide whether compiler option A is

beneficial for application B, the experimental hypothesis reads

Experimental Hypothesis Compiler option A is effective to optimize applica-

tion B.

The following three steps describe the basic idea of inferential statistics. First, we define

a null hypothesis which negates an experimental hypothesis. When we want to know about

the effectiveness of compiler option A for application B, the null hypothesis is

Null Hypothesis Compiler option A is not effective to optimize application B.

We want to conduct an experiment that either confirms or rejects this null hypothesis. In

the latter case, the experimental hypothesis which is the negation of the null hypothesis is

accepted.

Second, we conduct an experiment which contains two groups which are respectively

called the control group and the experimental group. The control group consists of the ex-

perimental runs that do not use compiler option A. The experimental group consists of the

experimental runs which use compiler option A. The null hypothesis implies that the execu-

tion times from these two groups are the same. Hence, if we can conclude that the execution

times from these two groups are significantly different, then we may reject the null hypothe-

sis.

Third, we need to see the difference between two groups. A well known method is to com-

pare the average values of the two groups. When these two values are significantly different, it

may be appropriate to reject the null hypothesis and to conclude that compiler option A is ef-

fective for application B. Inferential statistics provides a so-called test statistic to evaluate the

difference. The test statistic enables us to assess a confidence rate to support an experimental

hypothesis. Inferential statistics knows many tests that can be applied to various experimental

data, and a test statistic is defined for each such test [19].

2.3. Inferential statistics 19

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 Time Rank

0 0 0 0 0 0 0 0 0 0 20 8

1 0 1 0 0 0 1 1 1 0 25 12

1 1 0 1 0 0 0 1 1 1 15 4

0 1 1 0 1 0 0 0 1 1 17 5

1 0 1 1 0 1 0 0 0 1 18 6

1 1 0 1 1 0 1 0 0 0 14 2

1 1 1 0 1 1 0 1 0 0 23 11

0 1 1 1 0 1 1 0 1 0 13 1

0 0 1 1 1 0 1 1 0 1 19 7

0 0 0 1 1 1 0 1 1 0 22 10

1 0 0 0 1 1 1 0 1 1 21 9

0 1 0 0 0 1 1 1 0 1 16 3

Table 2.1: Example of Experimental Settings for 10 Compiler Options

There are two kinds of analysis in inferential statistics, which are called parametric statis-

tics and non-parametric statistics [19]. They differ in what kind of data they can handle.

Parametric statistics requires some assumptions on the data distribution, and non-parametric

statistics allows us to analyze data without an underlying distribution. Parametric statistics

uses raw scores from experimental data and non-parametric statistics uses ranked experimen-

tal data. That is, we first order or rank the raw data and apply statistics on the resulting ranking

numbers [35].

Our approach uses orthogonal arrays as experimental designs. An example of an experi-

mental design is shown in Table 2.1. We divide the experiment into two groups according to

the value of one option. When we want to know the effect of option O1 in the experiment,

we select the rows which contain O1 = 1 for the experimental group, and we select the rows

which contain O1 = 0 for the control group. It is clear that the rows which contain O1 = 1

are all different from the other options. The same holds for the rows which contain O1 = 0.

This means that we cannot say that the distribution of values in the two groups have a normal

distribution. Therefore, we better employ non-parametric statistics in our method.

2.3.1 The Mann-Whitney test

The Mann-Whitney test is a well known test in inferential non-parametric statistics [35]. We

apply the Mann-Whitney test to analyze our experimental data. The Mann-Whitney test uses

ranked experimental data to handle the data of non-normal distribution.

We explain the Mann-Whitney test using an example. Table 2.1 shows an experimental

design and the resulting execution times for a compiler with ten options. The first ten columns

correspond to the ten compiler options and each row expresses a total compiler setting. The

last column shows the ranks in ascending order.

We want to decide whether compiler option O2 affects the optimization process signif-

20 2. Preliminaries

Group 1 (O2 = 1) Group 2 (O2 = 0)

4 8

5 12

2 6

11 7

1 10

3 9

Total T1 = 26 T2 = 52

Table 2.2: The Effect of Compiler Option O2

icantly. The experimental data is separated into two groups, one group uses option O2 and

the other does not use option O2. We call them group 1 and group 2, respectively. Table 2.2

shows that each group consists of six data points. The last row of the table is the sum of the

ranks for each group. We denote the total sum of each group by T1 and T2, respectively.

The test statistic in the Mann-Whitney test is based on the value of T1. In order to discuss

how the test works, assume that the two groups respectively contain m members and n mem-

bers and that the option to be analyzed is the only difference between the groups. Suppose

that the option is not effective, that is, that the null hypothesis is true. Then the assignment of

ranks is basically random, resulting from experimental errors in the measurements. Looking

at which values T1 can have, T1 is at least 1+ 2+ · · ·+m and at most (m+ 1)+ · · ·+ (m+ n).

The first value occurs when all measurements in group 1 happen to be slightly smaller than

the measurements from group 2. The second value occurs in the opposite case. For an inter-

mediate value, there are more possibilities to rank the measurements. Hence, the chance that

T1 has such an intermediate value is larger. It has been shown [19, 35] that T1 has a normal

distribution with mean

µ =
m(m+n+1)

2
(2.5)

and standard deviation

σ =

√

m ·n · (m+n+1)

12
(2.6)

The Mann-Whitney test considers the test statistic z which is given by

z =
T1−µ
σ
, (2.7)

That is, z measures how far T1 lies from the mean expressed in units of standard deviation.

Then z is normally distributed also and this distribution is given by

Y(z) =
1

σ
√

2π
e−

1
2

z2

(2.8)

A graphical representation of this normal distribution is shown in Figure 2.2. The normal

distribution expresses the chance to measure a certain value for z. Hence,
∫ ∞

−∞
Y(z)dz = 1

2.3. Inferential statistics 21

Figure 2.2: Normal Distribution of z

If the measured value of T1 is significantly different from the mean µ, then we may con-

clude that the null hypothesis is false because it is highly unlikely that we measure such a

value by chance. A standard criterion for “significant difference” is when z is larger than 1.96

or smaller than −1.96, as indicated in the figure. This means that the chance of measuring

such a value for z when the null hypothesis is true, is less than 5%.

For a value t with t > 0, P(t) denotes the chance that we measure a value for z such that

|z| ≥ t. That is, either z ≥ t or z ≤ −t. P(t) is given by

P(t) =

(

1−2 ·
∫ t

0

Y(z)dz

)

·100% (2.9)

In the Mann-Whitney test, a z value which leads to P(|z|) < 5% is often used to conclude

that the observed data is considered not to belong to the data which defines the normal dis-

tribution [45]. The probability to reject the null hypothesis is called the critical value. This

enables us to decide whether or not to reject the null hypothesis since the null hypothesis

assumes that the two groups in an experiment are the same. We employ a critical value of 5%

in this thesis.

In the current example, m = 6 and T1 = 26. Hence, the z value for O2 is computed as

follows:

σ =

√

6·6·(12+1)
12

=
√

39

µ =
6·(1+12)

2
= 39

z =
(26−39)√

39
= −2.08

By using Equation 2.9, we determine whether the observed data satisfies the criterion

P(|z|) < 5%. Since z = −2.08, this yields P(| −2.08|) = 3.75%. Hence O2 satisfies P(|z|) < 5%,

and we can conclude that compiler option O2 has a significant effect on the optimization. The

obtained z value is negative so that the observed data in group 1 implies shorter execution

times than group 2. This means that the effect of O2 is positive. This procedure can be applied

22 2. Preliminaries

for each optimization in Table 2.1. Therefore, we can determine the important options among

the 10 options with 12 experimental runs.

The example in this section uses very small dataset to simplify the problem. In general,

it is better to use big dataset for the reliability of analysis. Of course, we want to keep the

data size as small as possible because of the resource cost. The next section discusses the

appropriate size of experiment.

2.3.2 Determining the sample size

This section discusses how to determine the sample size, the size of the control and exper-

imental group. This is then used to determine the size of the Orthogonal Array. The size is

based on the so-called power analysis which aims to asses the reliability of the Mann-Whitney

test. Since the test estimates the effectiveness of compiler optimizations by executing several

compiler settings, there always exists the possibility that the outcome of the test is erroneous.

There are two types of errors which may occur when we apply the Mann-Whitney test. One

is that we reject the null hypothesis while it is true, and another one is that we do not reject

the null hypothesis while it is false. These two types of errors are called respectively a type I

error and a type II error.

We have specified the critical value in Equation 2.9 to decide whether the null hypothesis

is to be rejected or not. This value indicates the probability of a type I error since this prob-

ability shows how hard the observed data happens based on the null hypothesis. We have set

this probability to 5%.

The probability that a type II error does not occur is called the power of the hypothesis

test. Hence, the power of the test expresses the probability to reject the null hypothesis, given

that the null hypothesis is false. Obviously, we want to have this probability as large as possi-

ble, subjected to our conflicting wish to have the sample sizes as small as possible to reduce

profiling time. The power of the test is determined by the sample size and the critical value

for the Mann-Whitney test [35]. Since the critical value is set to 5% for the sake of reliability

of the test, we only can change the sample size to influence the power. To give more insight

in the concept of power, consider the distribution in Figure 2.2. A power of X% is determined

by the area that lies symmetrically around the mean and that takes up X% of the total area.

Hence, each power gives rise to a value for z.

Power analysis is a methodology which aims to choose an adequate sample size. The

analysis formulates the trade off due to the choice of the critical value for the Mann-Whitney

test and the sample size. A power of 80% is sufficient to have high confidence in the outcome

of the Mann-Whitney test [35]. We denote the critical value for the Mann-Whitney test by α

and the power by 1− β. That is, if we want to have a power of 80%, then β = 20%. Corre-

sponding z-values are expressed by zα and zβ, respectively. The sample size N is given by the

following formula [35].

N =
⌈

5 · (zα+ zβ)
2
⌉

(2.10)

Chapter 3

Using main effect to optimize the

execution time of a single

application

The Main effect is our first methodology employed to achieve our goal of finding optimal

compiler settings. This approach has first been described in [53] using the Simplescalar

framework, which is a microarchitecture simulator, and gcc 2.6. [53] concludes that the com-

piler settings which are determined using main effects of compiler optimizations outperform

the standard setting -O3, which is provided by gcc. This chapter shows the results of the same

algorithm as described in [53] using the Pentium 4 architecture and gcc 3.3.1. The major dif-

ference from [53] is that the results shown in this chapter use measured execution times of

applications, and the number of compiler optimizations, which is 14 in gcc 2.6 and more than

60 in gcc 3.3.1.

This chapter is structured as follows. In Section 3.1, we describe our algorithm using the

main effect. The experimental setting is described in Section 3.2. We interpret our algorithm

with one of the results from our experiment in Section 3.3. All results are shown in Sec-

tion 3.4, and we discuss the impact of a parameter in our algorithm in Section 3.5. Finally,

Section 3.6 summarizes this chapter.

3.1 The iterative search algorithm

In this section, we present our iterative algorithm, which employs the main effect. The algo-

rithm, given in Figure 3.1, aims to find an optimal compiler setting for a given application.

The iterative algorithm, first, identifies options with a large effect and switches them on or

off. Then another experiment is run to look at the remaining options to see what improve-

ment they can produce with the partial setting already constructed. Thus, the algorithm in

Figure 3.1 starts with a high dimensional optimization space and subsequently cuts down this

space by fixing some dimensions and zooming in on the remaining options that have a smaller

23

24 3. Using main effect to optimize the execution time of a single application

• Repeat:

– Compile the application with each row from OA A as compiler setting and

execute the optimized application.

– Compute the relative effect of option using Equation 2.2 and 2.3.

– If the effect of an option is larger than a threshold of 10%,

∗ if the option has a positive improvement according to Equation 2.4,

switch the option on, or else

∗ if it has a negative improvement, switch the option off.

– Construct a new OA A by dropping the columns corresponding to the op-

tions selected in the previous step.

• until

– All options are set, or

– The variance in the experimental data becomes less than 0.5%, or

– No more options have a significant effect.

Figure 3.1: Iterative search algorithm

effect.

Note that we do not select each option that has a positive effect but only those that have

an effect larger than a threshold of 10%. The value of this threshold has been determined

empirically. We use it since, due to the inaccuracy of small OAs, small measured effects can

be distorted. This threshold value filters this phenomenon.

It is obvious that this algorithm finds options that have a large impact on the execution of

an application in the primary stage of this iterative search. The options with small effect are

selected in later iterations, as well as the options which perform well when they are turned on

together. Suppose that there are two options O and O′ that have a small effect when turned

on separately but a significant effect when turned on together. Their main effects are small

during the early iterations. However, their relative effect becomes larger in later iterations. So

eventually, they will be selected. The algorithm stops when all options are set. However, we

also added an additional stop criterion for practical reasons.

3.2 The experimental environment

To show the effectiveness of our algorithm, a case study is performed using gcc 3.3.1 which

implements more than 60 optimizations [13]. Of these optimizations, 45 optimizations are

selected, and arranged into 42 factors as shown in Table 3.1(a). These optimizations are also

arranged into 27 factors, as shown in Table 3.1(b). Certain options are grouped together be-

cause they are most likely to influence each other. This is done because of the way the main

effect is computed. Interacting options are not dealt with directly. In order to investigate how

3.2. The experimental environment 25

1 defer-pop

2 force-mem

3 force-addr

4 inline-functions

5 optimize-sibling-calls

6 merge-constants

7 strength-reduce

8 thread-jumps

9 cse-follow-jumps

10 cse-skip-blocks

11 rerun-cse-after-loop

12 rerun-loop-opt

13 gcse

gcse-lm

gcse-sm

14 loop-optimize

15 crossjumping

16 if-conversion

17 if-conversion2

18 delete-null-pointer-checks

19 expensive-optimizations

20 optimize-register-move

21 schedule-insns

22 sched-interblock

23 sched-spec

24 schedule-insns2

25 sched-spec-load

26 sched-spec-load-dangerous

27 caller-saves

28 move-all-movables

29 reduce-all-givs

30 peephole

peephole2

31 reorder-blocks

32 reorder-functions

33 strict-aliasing

34 align-functions

35 align-labels

36 align-loops

37 align-jumps

38 rename-registers

39 cprop-registers

40 function-sections

41 data-sections

42 unroll-loops

(a)Total Option List

1 defer-pop

2 force-mem

3 force-addr

4 inline-functions

5 optimize-sibling-calls

6 merge-constants

7 strength-reduce

8 thread-jumps

9 gcse

gcse-lm

gcse-sm

cse-follow-jumps

cse-skip-blocks

rerun-cse-after-loop

10 loop-optimize

rerun-loop-opt

11 crossjumping

12 if-conversion

if-conversion2

13 delete-null-pointer-checks

14 expensive-optimizations

15 optimize-register-move

16 schedule-insns

sched-interblock

sched-spec

schedule-insns2

sched-spec-load

sched-spec-load-dangerous

17 caller-saves

18 move-all-movables

19 reduce-all-givs

20 peephole

peephole2

21 reorder-blocks

reorder-functions

22 strict-aliasing

23 align-functions

align-labels

align-loops

align-jumps

24 rename-registers

25 cprop-registers

26 function-sections

data-sections

27 unroll-loops

(b)Option List

(arranged into 27 factors)

Table 3.1: List of Option Set

26 3. Using main effect to optimize the execution time of a single application

Name (#Lines) Description

1 164.gzip gzip (GNU zip) is a data compression program.

(4333) gzip uses Lempel-Ziv coding (LZ77) as its compression algorithm.

2 175.vpr VPR is a placement and routing program for technology-mapped circuit.

(8899)

3 181.mcf The program is designed for the solution of single-depot vehicle

(1120) scheduling problems occurring in the planning process of public

transportation companies.

4 197.parser The Link Grammar Parser is a syntactic parser of English.

(6839)

5 256.bzip2 256.bzip2 is a data compression program.

(2955)

6 254.gap It implements a language and library designed mostly for

(27523) computing in groups (GAP is an acronym for Groups, Algorithms and

Programming).

7 255.vortex Vortex is a single-user object-oriented database transaction benchmark.

(31128)

Table 3.2: List of Benchmark Programs

well the main effect is handling interaction we also conducted experiments with the option

list in Table 3.1(a), which separates the options as much as possible.

In this chapter, we do not take into account omit-frame-pointer, since standard -Ox switches

also do not turn on this option (it cancels out debugging). inline is not used since this option

disables the inline directive in the target applications and we do not intend to change the

contexts of the applications. keep-static-consts and function-cse are not included since these

options aim to keep the assembler code readable. branch-count-reg is left out since this op-

tion disables the use of instructions regarding the branch count registers when it is negated.

prefetch-loop-arrays is not used since this option disables the use of prefetch instructions.

float-store and single-precision-constant are also left out to avoid generating invalid executa-

bles. The option delayed-branch is also not present since our target architecture Pentium 4

does not support delayed branching. As we mentioned in Section 2.1, we use Orthogonal Ar-

rays derived from Hadamard matrices. Therefore, the number of rows of an orthogonal array

which we can choose is a multiple of 4.

The option list in Table 3.1(b) contains 27 options, therefore we employ an 28× 27 or-

thogonal array in our experiments. It is the smallest size of an orthogonal array which can be

used in our experiments. Similarly, we choose a 44× 42 orthogonal array for the option list

in Table 3.1(a).

We use a Pentium 4 at 2.8GHz as our target architecture and the SPECint 2000 benchmark

suite with the train input dataset as the target application. We use 7 out of 12 programs from

the benchmark suite due to some technical problems (i.e., compile errors). The benchmark

programs are listed in Table 3.2. The UNIX time command is used to measure the execution

time. Execution time can be different when we run the same executable several times. To

smooth out this experimental fluctuation, we run the same executable code 10 times, and

take the average value of these runs. However, if a run causes the standard deviation of all

3.3. A case study 27

10 runs to change by more than 0.5% of the average value, then this run is deleted from the

experiments, and the overall average is taken from the remaining runs.

The gcc compiler provides users a number of optimizations, which can be configured

explicitly. All improvements discussed in this chapter are with respect to the optimization

level -O with the options in Table 3.1 explicitly turned off. We denote this setting as Obase.

Besides these, gcc provides several optimizations which cannot be disabled explicitly, namely

common subexpression elimination, dead code elimination, and so on. By definition Obase

includes these optimizations. The improvement of Onew is computed by using the following

equation. We denote the execution time of Obase by T (Obase), and the execution time of Onew

by T (Onew).
T (Obase)−T (Onew)

T (Obase)
(3.1)

Throughout this chapter, we refer to this definition when we discuss the improvement of a

compiler setting

3.3 A case study

First, we show how our algorithm works on parser which is one of the applications we used

using the 27 options in Table 3.1(b). Figure 3.2(a) shows the experimental data from the first

iteration of the algorithm. The X-axis represents 28 compiler settings, which are determined

by the 28 × 27 orthogonal array, and the Y-axis represents the improvement in execution

time. At the first iteration, no partial setting has yet been determined, so that the 28 compiler

settings are fully configured by the orthogonal array. The data values vary from −6% to 12%.

The average improvement of all these setting is expressed by the dotted line. Figure 3.2(b)

shows the measured main effect of the 27 options. The X-axis represents each of the 27

options and the Y-axis represents the effect, which is defined in Equation 2.3. A light color

bar shows that the option has a positive effect and a dark color bar means that the option has a

negative effect. There are several blank columns, for example for option 1, 3, and so on. This

is caused by the fact that the measured value is too small. In Figure 3.2, we can observe that

the 4th option, which corresponds to inline-functions, has a large positive effect. Since this

value exceeds the 10% threshold value, the algorithm sets this option on, and constructs the

next experiment to determine the reminder options. The setting is shown in Table 3.3.

Figure 3.3(a) shows the experimental data from the second iteration. The average im-

provement in the settings is significantly improved, from 3.7% to 8.6%. Also, the variation

in the experimental data is significantly smaller. We can say that the search space is much

smaller as an outcome of the first iteration. In this second iteration, the main effect of all the

options with the exception of option 4, is shown. In Figure 3.3(b), we can see that option 9,

which corresponds to gcse, has a positive effect, and options 15 and 16, which correspond

to optimize-register-move and schedule-insns, respectively, have negative effects, hence 9 is

turned on and 15, 16 are turned off. In the same way, the algorithm generates the third exper-

iment, and the outcomes are shown in Figure 3.4. Again, we can observe significant increase

on the average improvement of the compiler settings, from 8.6% to 10.7%, and the experi-

28 3. Using main effect to optimize the execution time of a single application

parser 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1

2 1 1 0 0

3 0 1 1 0 0 0 0 1

Table 3.3: Settings per Iteration for Parser (until 3rd iteration)

mental data has also less variance compared to previous iterations. Now, we turn on option

21 and turn off option 3, 11, and 20.

3.4 Results

In this section, we present the results of our algorithm which is applied to 7 applications in

the SPEC 2000 benchmark suite. We used both option lists shown in Table 3.1. Therefore, we

have two results, which are denoted in Figure 3.5 by Onew27 and Onew42 respectively. We also

put the improvement of the -O3 setting as a reference. The numbers in brackets indicate the

number of iterations needed to reach the final setting. The first number represents the number

of iterations using 27 options, and the second number represents the number of iterations

using 42 options. On average, it costs 9 iterations to identify a compiler setting. Table 3.5

shows the selected options for each iteration of the experiment using 27 options. Table 3.6

shows the selected options for each iteration of the experiment using 42 options. The setting

in the last iteration in Table 3.5 is denoted by Onew27, and the setting in the last iteration in

Table 3.6 is denoted by Onew42 in Figure 3.5. Omax in the tables is the setting, which has the

maximum improvement in the experiment. We put Omax in the tables to compare the Omax

setting with the selected options in the experiment. We also put the Onew27 setting, which is

expanded into 42 options, in Table 3.6.

Figures 3.8 and 3.9 show the results of the selected setting, which is the intermediate set-

ting with options not selected yet turned off when it is before the final iteration. Each graph

consists of 4 lines, denoted by partial-improvement, improvement-max, ave and Coefficient

of Variance. The dotted horizontal line represents improvement of the O3 setting. partial-

improvement represents the improvement of a compiler setting which only applies selected

optimizations during the experiment. improvement-max shows the maximum improvement in

the experimental data per iteration. ave represents the average improvement of the experimen-

tal data per iteration. Coefficient of Variance expresses the convergence of the experimental

data, which is the value of the normalized standard deviation using the mean of the data [9].

A small value of the coefficient of variance indicates the collected data has low variance.

From the results, we can see that our algorithm identifies better compiler settings than

the -O3 setting except for mcf and parser. Mostly, the compiler settings, which are identified

from the list of 27 options are better than the ones from the list of 42 options. Especially, we

observe degradation of performance for the Onew42 setting when configured for vpr.

The Onew settings and the Omax settings differ on the value of several options. The Omax

setting of bzip2 is found in the last iteration so that there is no difference between Omax and

Onew27. For the other benchmarks, Omax and Onew27 are different at several options.

In Figure 3.8(g), we observe that there is a large difference between the performance

of Onew27 and Omax, which yields the conclusion that our algorithm does not find optimal

3.4. Results 29

(a) Improvements for 28 Settings

(b) Main Effects for 27 Factors

Figure 3.2: 1st Iteration of parser (Main Effect OA28)

30 3. Using main effect to optimize the execution time of a single application

(a) Improvements for 28 Settings

(b) Main Effects for the Remaining Factors

Figure 3.3: 2nd Iteration of parser (Main Effect OA28)

3.4. Results 31

(a) Improvements for 28 Settings

(b) Main Effects for the Remaining Factors

Figure 3.4: 3rd Iterations of parser (Main Effect OA28)

32 3. Using main effect to optimize the execution time of a single application

Figure 3.5: Improvement of the -O3 Setting, Onew27, and Onew42 (Main Effect)

settings. These mis-selections occurred because the main effect, which determines the setting

of options, becomes too small after several iterations. Since the main effect of an option is

computed without taking into account the setting of the other options, the main effect is not

computed correctly because of the side effect of the other options. This means that a small

main effect should not be used to determine the setting of options.

3.5 Sensitivity of the algorithm to the threshold value

The threshold value 10% was determined by our observation in [53] which uses gcc 2.6.

Therefore, it should be reconsidered for this experiment using gcc 3.3.1 since the number of

factors is increased from 15 to 27 or 42. However, it may be that the threshold value of 10%

is still reasonable. We look at this possibility by focusing on vortex since for this benchmark

the performance difference between the Onew27 setting and the Omax setting is large, as shown

in Figure 3.8.

Figure 3.6 shows the relative effect after the first iteration. From this figure, we can con-

clude that 8% also acts as a good threshold value. After we apply a threshold value of 8%,

the results change as shown in Figure 3.7. The figure shows the improvement of the selected

options at each iteration for each of the two threshold values. This observation implies that

a threshold of 8% is a better choice to identify a compiler setting of vortex. The resulting

setting is shown in Table 3.4.

This example shows that our approach using the main effect can be more beneficial when

we can find a good threshold value to apply. However, it is difficult to formulate how to

3.6. Conclusion 33

Figure 3.6: Relative Effect from the Experimental Data of the First Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

8% 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0

10% 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1

Table 3.4: Settings for vortex Using Threshold 8% and 10%

determine such a threshold value.

3.6 Conclusion

In this chapter, we described our algorithm using the main effect of compiler option to de-

termine compiler settings. We have introduced the framework of Design of Experiments to

configure compiler optimization settings. An experiment which is planned by an orthogonal

array enables us to compute main effects of compiler options without collecting profile data

of all possible compiler settings. The experimental results are better than the standard setting

-O3 provided by gcc, from which we conclude that our algorithm is adequate to solve the

problem. This methodology is completely separated from the implementation of compiler

so that we can apply this methodology to any compiler with any target architecture and any

application.

34 3. Using main effect to optimize the execution time of a single application

Figure 3.7: Improvement of the Resulted Settings Using Threshold 8% and 10%

3.6. Conclusion 35

(a)bzip2

(b)gzip

Figure 3.8: Improvement per Iteration for 27 Options (Main Effect)

36 3. Using main effect to optimize the execution time of a single application

(c)mcf

(d)parser

Figure 3.8: Improvement per Iteration for 27 Options (Main Effect) (cont’d)

3.6. Conclusion 37

(e)vpr

(f)gap

Figure 3.8: Improvement per Iteration for 27 Options (Main Effect) (cont’d)

38 3. Using main effect to optimize the execution time of a single application

(g)vortex

Figure 3.8: Improvement per Iteration for 27 Options (Main Effect) (cont’d)

3.6. Conclusion 39

bzip2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 0 0

2 0 0 0

3 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0

6 0 0 1 0 1 0 0 1 0 0 0 0

Omax 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0

gzip 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 0 0 1

2 0 0 0 0 1

3 1 0 0 0 0 0 1

4 1 0 1 0 1 0 0 0 0 0 1

5 1 0 1 1 0 1 0 0 0 0 0 1 1

6 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 1 1

Omax 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0

mcf 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1

2 1 1 0 1

Omax 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 0

parser 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1

2 1 1 0 0

3 0 1 1 0 0 0 0 1

4 1 0 1 1 1 0 0 0 1 0 1

5 1 0 1 1 1 1 0 0 0 1 0 1

6 1 0 1 1 1 1 1 0 0 0 1 0 1

7 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1

8 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0

9 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0

10 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0

Omax 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1

vpr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 0 1

2 0 1 0 1 1

3 0 1 0 1 0 1 1

4 0 1 0 1 0 1 1 1 0

5 1 0 0 0 1 0 0 1 0 1 1 1 0

6 1 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0

7 1 1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0

Omax 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0

gap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 0 1

2 0 1 0 1

3 0 1 0 1 0 1 0

4 0 1 0 1 0 0 1 0 0 1 0

5 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1

6 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 1

7 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1

Omax 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0

vortex 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 0 1 0

2 0 1 1 0

3 1 0 1 1 1 0 0

4 1 0 1 1 1 0 0 1

5 1 0 1 1 1 0 1 0 1 0

6 1 0 1 0 1 1 0 0 1 0 0 1 0

7 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0

8 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0

9 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

10 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1

11 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1

Omax 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 1 0

O3 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0

Table 3.5: Settings per Iteration for 27 Options(Main Effect)

40 3. Using main effect to optimize the execution time of a single application

(a)bzip2

(b)gzip

Figure 3.9: Improvement per Iteration for 42 Options (Main Effect)

3.6. Conclusion 41

(c)mcf

(d)parser

Figure 3.9: Improvement per Iteration for 42 Options (Main Effect) (cont’d)

42 3. Using main effect to optimize the execution time of a single application

(e)vpr

(f)gap

Figure 3.9: Improvement per Iteration for 42 Options (Main Effect)(cont’d)

3.6. Conclusion 43

(g)vortex

Figure 3.9: Improvement per Iteration for 42 Options (Main Effect) (cont’d)

44 3. Using main effect to optimize the execution time of a single application

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

bzip2 1 0 1

2 0 1 0

3 0 1 0 0

4 0 1 1 0 0 0

5 0 1 0 1 0 0 0 0

6 0 1 0 1 0 0 0 0 0

7 0 1 0 1 1 0 0 0 0 0 0

8 0 0 1 0 1 1 0 0 0 0 0 0 0

9 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0

10 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

11 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0

12 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

13 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

14 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

15 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

Onew27 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0

Omax 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0

gzip 1 1

2 1 1 1

Onew27 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0

Omax 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0

mcf 1 1

2 1 1 1

3 1 1 1 1

Onew27 1 1 1 1 1

Omax 1 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

bzip2 1

2 1 1

3 1 1

4 1 1 1

5 0 1 1 1 1

6 0 0 1 1 1 0 1 1

7 0 0 1 1 1 0 1 0 1

8 0 0 1 1 0 1 0 1 0 1

9 0 0 1 1 0 1 0 1 0 1

10 0 0 1 1 0 1 0 1 0 1

11 0 0 1 1 0 1 0 1 0 1

12 0 0 1 1 0 1 0 1 0 1 1

13 0 0 1 0 1 0 1 0 1 0 0 1 1

14 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1

15 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1

Onew27 0 0 0 0 0 0 0 0

Omax 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1

gzip 1 1

2 1

Onew27 0 0 0 0 0 0 1 1 1 1

Omax 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1

mcf 1

2

3 0

Onew27 0 1

Omax 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1

Table 3.6: Settings per Iteration for 42 Options (Main Effect)

3.6. Conclusion 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

parser 1 1 0

2 1 0 1 0

3 1 1 0 1 0

4 0 1 1 0 1 0

5 0 1 1 0 1 0

6 1 0 1 1 1 0 1 0

7 1 0 1 0 1 1 0 1 0

8 1 0 0 1 0 1 1 0 1 0

9 1 0 0 1 0 1 1 0 1 0

10 1 0 0 1 0 1 1 0 1 0 1

11 1 0 0 1 0 0 1 1 0 1 0 1

12 1 0 0 1 0 0 1 1 0 1 1 0 1

13 1 0 0 1 0 0 1 1 0 1 1 1 0 1

14 1 0 0 1 0 0 1 1 0 1 1 1 1 0 1

Onew27 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0

Omax 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0

vpr 1 0

2 0 0

3 0 1 0

4 0 1 0

5 0 0 1 0 0

6 0 0 1 0 0 0

7 1 0 0 1 0 0 0 0

8 1 0 0 1 0 0 0 0

9 1 0 0 1 1 1 0 0 0 0 1

Onew27 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0

Omax 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

parser 1

2 0

3 0 1

4 0 1

5 0 0 1 1

6 0 1 0 1 1

7 0 1 1 0 1 1

8 0 1 1 1 0 1 1

9 1 0 1 1 1 0 1 1

10 1 0 1 1 1 0 1 1

11 1 0 1 1 0 1 0 1 1

12 1 0 1 1 0 1 0 1 1

13 1 0 1 1 0 1 0 1 1 0

14 1 0 1 1 0 1 0 1 1 0 1

Onew27 0 0 0 0 0 1 0 1 1 0 0 0 0 0

Omax 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0

vpr 1 1

2 0 1

3 0 1

4 0 1 1

5 0 1 1 1

6 0 1 1 1

7 0 1 1 1 1

8 1 0 1 1 1 1 1

9 1 1 0 1 1 1 1 1

Onew27 0 0 0 0 0 1 1 0 0 0 1 1 1 0

Omax 0 0 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0

Table 3.6: Settings per Iteration for 42 Options (Main Effect) (cont’d)

46 3. Using main effect to optimize the execution time of a single application

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

gap 1 0

2 0 1 1 1

3 0 1 1 1 1

4 0 1 0 1 1 1

5 0 1 1 0 1 1 1 0

6 0 1 1 0 1 1 1 0 0

Onew27 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0

Omax 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0

vortex 1 0

2 0 0

3 0 1 1 0

4 1 0 1 1 0 1

5 1 0 1 1 0 1 1

Onew27 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0

Omax 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0

O3 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

gap 1 1

2 1

3 1

4 0 1

5 0 0 1

6 0 0 1

Onew27 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1

Omax 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1

vortex 1

2 0

3 0 0

4 1 0 0

5 1 0 0 0

Onew27 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1

Omax 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 1

O3 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

Table 3.6: Settings per Iteration for 42 Options (Main Effect) (cont’d)

Chapter 4

Using the Mann-Whitney test to

optimize the execution time of a

single application

This chapter proposes another methodology to determine a compiler setting automatically.

We again use profile information to determine a compiler setting, since only real execution

times can accurately describe the interaction of compiler options, architectures, and applica-

tions. In Chapter 3, we used the so-called main effect of options to determine their setting.

However, subsequent experimentation showed that this approach has a number of shortcom-

ings. In this chapter, we employ a more sophisticated statistical technique, namely, inferential

non-parametric statistics and, in particular, the Mann-Whitney test, to predict the significance

of the effect of factors in an experiment [35]. We apply our methodology again to the GNU

Compiler Collection (gcc) version 3.3.1 and 10 benchmarks from the SPEC2000 benchmark

suite. For each benchmark, the setting found by our methodology performs better than the

standard -O1, -O2, and -O3 settings of gcc.

This chapter is structured as follows. Our iterative algorithm is given in Section 4.1. Sec-

tion 4.2 describes our experimental environment and we discuss our results in Section 4.3.

Section 4.4 investigates the effectiveness of compiler settings across different kinds of input

datasets. We summarize this chapter in Section 4.5.

4.1 Our methodology

Figure 4.1 describes our algorithm to determine a compiler setting for an application based

on the statistical theory discussed in the previous section.

The algorithm tries to detect compiler options with a significant effect. It starts with an

factor list which includes all compiler options, and produces a compiler setting using an

appropriate Orthogonal Array. We use execution times to obtain the test statistic for each

compiler option, and this tells us which options have a significant effect, and whether they

47

48 4. Using the Mann-Whitney test to optimize the execution time of a single application

• Choose an orthogonal array A with as many columns as there are options.

• Repeat

– Compile the application with each row from A as compiler setting and

execute the optimized application.

– Compute test statistic z for each compiler option with equation (2.7).

– If the test statistic meets P(|z|) < 5%,

∗ If z is negative then the compiler option has a positive effect, and the

option is turned on.

∗ If z is positive then the compiler option has a negative effect, and the

option is turned off.

– Remove the compiler options that have been selected from the factor list

and drop the same number of columns from A.

• Until

– All options are set, or

– No option with a significant effect is detected anymore, or

– The experimental data has not enough variation (low standard deviation)

to apply the Mann-Whitney test meaningfully.

• Choose the compiler setting which has the best execution time in the last exper-

iment.

Figure 4.1: Iterative Search Algorithm Using the Mann-Whitney Test

should be turned on or off. The compiler options whose settings are determined are removed

from the factor list, and the reduced factor list is used to design the next experiment in which

a smaller Orthogonal Array can be used. The algorithm starts to explore a large search space

in which there is much variation, and it cuts down the search space every iteration, obtaining

new search spaces with less variation.

4.2 The experimental environment

We use the gcc compiler version 3.3.1, and we use 45 options for our factor list [13]. inline

is not used since this option disables the inline directive in the applications and we do not

intend to change the contexts of the applications. keep-static-consts and function-cse are not

included since these options are for the sake of keeping the assembler code readable. branch-

count-reg is left out since this option disables the use of instructions regarding the branch

count registers when it is negated. prefetch-loop-arrays is not used since this option disables

the use of prefetch instructions. float-store and single-precision-constant are also left out to

4.3. Results 49

avoid generating invalid executables. We do not use rename-registers because, according to

the manual, it contains bugs in the present version of the compiler. The option delayed-branch

is also not present since our target architecture Pentium 4 does not support delayed branching.

As discussed in Section 2.3.2, we want to use 23 factors in order to achieve a minimum power

of 60%. Hence, we arranged these 45 options into the 23 factors shown in Table 4.1(a). In

several cases, we have heuristically assigned different but similar options to one factor, based

on the description in the manual of the compiler [13]. For instance, we group all 6 options

that enable some form of common subexpression elimination together in factor O7. We found

that some options do produce (almost) no changes to the compiled code and we grouped

them together in O21. Note, however, that in some cases interfering options are assigned to

different factors. For example, option unroll-loops automatically turns on options strength-

reduce and rerun-cse-after-loop [13]. Nevertheless, we use separate factors for these options.

As the results below show, our method can handle this situation.

We use 10 benchmarks from the SPEC2000 benchmark suite. The list of programs is

shown in Table 4.1(b). We used the train data set as the input for the benchmarks in order to

reduce profiling time.

We use a Pentium 4 at 2.8GHz as the target architecture for our experiments. We use

VTune, a tool to analyze performance of applications, to measure execution times [37]. Clock

ticks obtained from hardware counters are used as the execution time.

When we measure the execution time of an application several times with the same com-

piler configuration, we may obtain different results. In order to cope with this error in mea-

surement, we measure the execution times for an executable ten times, and compute the mean

and standard deviation. For about one in 20 cases, measured execution time is an order of

magnitude larger or smaller than average execution time. We could not discover what causes

this phenomenon but it is necessary to omit these values. We remove data points to obtain

a standard deviation that is less than 0.5% of the average of the data. We have defined this

threshold value heuristically. This procedure has been automated.

If we have K settings given by the rows of an Orthogonal Array, we also compute the

standard deviation and mean for these K settings. If this standard deviation is less than a

certain percentage of their mean value, there is not enough variation in the data to try to

apply the Mann-Whitney test. This threshold is called the variability threshold. We have

experimented with threshold values of 0.5%, 0.7%, 1%, and 2%. This is the last stop criterion

in our algorithm in Section 4.1.

4.3 Results

In this section, we show the results obtained by our method. We show the final improvement

and compiler setting for all benchmarks, for three sizes of Orthogonal Arrays, comparing

them to the standard settings -O1, -O2 and -O3. All improvements are relative to -O0. We

discuss which options are selected per iteration. Finally, we discuss the influence of the vari-

ability threshold defined in Section 4.2 on the number of iterations executed.

50 4. Using the Mann-Whitney test to optimize the execution time of a single application

Factor Option Names Factor Option Names

O1 force-mem schedule-insns

force-addr schedule-insns2

O2 omit-frame-pointer O14 sched-interblock

O3 optimize-sibling-calls sched-spec

inline-functions sched-spec-load

O4 merge-constants sched-spec-load-dangerous

O5 strength-reduce O15 move-all-movables

O6 thread-jumps O16 reduce-all-givs

cse-follow-jumps O17 peephole

cse-skip-blocks peephole2

O7 rerun-cse-after-loop O18 reorder-blocks

gcse reorder-functions

gcse-lm O19 strict-aliasing

gcse-sm align-functions

O8 loop-optimize O20 align-labels

rerun-loop-opt align-loops

O9 crossjumping align-jumps

O10 if-conversion cprop-registers

if-conversion2 O21 caller-saves

O11 delete-null-pointer-checks defer-pop

O12 expensive-optimizations O22 function-sections

O13 optimize-register-move data-sections

O23 unroll-loop

(a) Compiler options

Integer

Name (#Lines) Description

164.gzip gzip (GNU zip) is a data compression program.

(4333) gzip uses Lempel-Ziv coding (LZ77) as its compression algorithm.

175.vpr VPR is a placement and routing program for technology-mapped circuit.

(8899)

181.mcf The program is designed for the solution of single-depot vehicle

(1120) scheduling problems occurring in the planning process of public

transportation companies.

197.parser The Link Grammar Parser is a syntactic parser of English.

(6839)

254.gap It implements a language and library designed mostly for

(27523) computing in groups (GAP is an acronym for Groups, Algorithms and

Programming).

255.vortex Vortex is a single-user object-oriented database transaction benchmark.

(31128)

256.bzip2 256.bzip2 is a data compression program.

(2955)

Floating point

Name (#Lines) Description

168.wupwise ”wupwise” is an acronym for ”Wuppertal Wilson Fermion Solver”,

(1382) a program in the area of lattice gauge theory.

171.swim Benchmark weather prediction program for comparing the performance

(326) of current supercomputers.

179.art The Adaptive Resonance Theory 2 (ART 2) neural network is used to

(776) recognize objects in a thermal image.

(b) Benchmarks

Table 4.1: Experimental Framework: Option List and Benchmark Programs

4.3. Results 51

(a) Improvements for 24 Settings

(b) P values for 23 Factors

Figure 4.2: 1st Iteration of mcf

52 4. Using the Mann-Whitney test to optimize the execution time of a single application

(a) Improvements for 24 Settings

(b) P values for the Remaining Factors

Figure 4.3: 2nd Iterations of mcf

4.3. Results 53

Figure 4.4: Improvements for 24 settings at 3rd Iteration of mcf

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12

1st 1

2nd 1 1

3rd 0 0 1 1 1 0 1 0 1 1 0 1

O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23

1st

2nd 0

3rd 0 0 1 1 1 1 1 0 0 0 0

Table 4.2: Resulting setting

54 4. Using the Mann-Whitney test to optimize the execution time of a single application

4.3.1 Example: the iterations for mcf

We illustrate the performance of our procedure with the results per iteration for mcf. We use

the factor list given in Table 4.1(a), and an orthogonal array which consists of 24 rows with

23 columns is used for the experimental design. We compile the application according to the

rows of the orthogonal array, and measure the execution time.

Constructing a compiler setting for mcf took three iterations. Figures 4.2(a), 4.3(a), and

4.4 show the resulting execution times together with the uncertainty in the measurement. The

solid line in these figures shows the overall mean of the 23 settings. Figures 4.2(b) and 4.3(b)

show the P values from Equation (2.9) for each factor for the first two iterations. Black points

are used when the effect is positive and white points are used to show a negative effect. In

Figure 4.2(b) we can see that O3 has a P value which is below 5%. The effect is positive and

the algorithm selects O3 in this stage. From Figure 4.3(b) it follows that O7 must be selected

since it has positive effect, and O14 is explicitly turned off since it has negative effect. The

third iteration is the last iteration, since the variation in the experimental data is too small

to apply the Mann-Whitney test: all values converge around 8.26e+ 10. According to the

algorithm shown in Section 4.1, the compiler setting with the best result in this iteration is

chosen. Table 4.2 shows the compiler options which are determined in each iteration where 1

and 0 represent ‘on’ and ‘off’, respectively.

4.3.2 Settings for SPEC2000

In Figure 4.5, we show how our methodology performs after each iteration for the bench-

marks vortex and vpr. We observe that larger Orthogonal Arrays require fewer iterations for

vortex, but the reverse holds for vpr. Therefore, we cannot in general say that larger arrays

require fewer iterations although for most benchmarks this is the case. Note however that less

iterations for a large array does not necessarily imply less program runs. We measure perfor-

mance after an iteration by setting the options that are already determined accordingly, and

switching off the other options. Observe that the performance we report after some iterations

is the same as earlier. In this case, an option is explicitly turned off in this iteration. This does

not mean that we did not do relevant work in this iteration: the variability of the resulting

reduced space is reduced.

In Figure 4.6(a) and (b) we show the results for the SPEC2000 benchmarks using gcc 3.3.1

on the P4 platform. We see that in all cases, we outperform standard -Ox settings, for all three

sizes of the Orthogonal Array used to profile the different compiler settings. In some cases

(gzip, gap, vortex) we are significantly better than standard switches. Note in particular art

where -O2 and -O3 give degradations of more than 80%. This clearly shows that relying on

standard switches is not always profitable.

In Table 4.3 we show the options that are set by the Mann-Whitney test for each itera-

tion. Note that the row OA 48 for art is empty, indicating that already in the first iteration so

little variation is seen that the Mann-Whitney test is not used at all. In this table, the options

that are set by -Ox switches are shown for comparison. Note that -O2 and -O3 seem to set

the same options. This, however, is caused by our grouping of options into factors. We now

give some observations that we have made. The first is that many options are not yet decided

at the last iteration but one, as can be seen from Table 4.3. This means that these options

have a very small impact on program performance. Options that are not switched on for most

4.3. Results 55

(a) vortex

(b) vpr

Figure 4.5: Execution times after each iteration

56 4. Using the Mann-Whitney test to optimize the execution time of a single application

(a) SPECint

(b) SPECfp

Figure 4.6: Results for (a) SPECint2000 and (b) SPECfp2000

4.3. Results 57

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
1

0
O

1
1

O
1

2
O

1
3

O
1

4
O

1
5

O
1

6
O

1
7

O
1

8
O

1
9

O
2

0
O

2
1

O
2

2
O

2
3

ar
t

O
A

2
4

0

O
A

4
8

O
A

1
0
0

0

b
zi

p
2

O
A

2
4

0 0
1

0

0
1

1
0

1

0
1

1
0

0
1

0
1

0
1

0
0

1

0
1

1
0

1
0

0
1

0

O
A

4
8

0
1

0
1

1
0

0
1

1
0

1

0
1

1
0

1
1

0
1

1
0

1
1

0

0
1

1
1

0
1

1
0

O
A

1
0
0

0
1

1
1

0
1

1
0

1
0

0
1

1
1

1
0

1
1

0

g
ap

O
A

2
4

0
1

0
1

1

0
1

1
1

O
A

4
8

0
1

1
1

0
1

1
0

1
0

0

0
1

1
0

0
0

1
0

0

0
1

1
1

0
0

1
0

1
0

0

0
1

1
1

1
0

0
0

1
0

1
0

0

0
1

1
1

1
1

0
0

0
1

0
1

0
0

1

O
A

1
0
0

0
1

1
1

0
1

1
0

0
1

0
1

0
0

0
1

1
1

0
0

0
1

0
1

0
0

0
1

1
1

0
0

0
0

0
1

0
1

0
0

Table 4.3: Final selection of options by Mann-Whitney test

58 4. Using the Mann-Whitney test to optimize the execution time of a single application

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
1

0
O

1
1

O
1

2
O

1
3

O
1

4
O

1
5

O
1

6
O

1
7

O
1

8
O

1
9

O
2

0
O

2
1

O
2

2
O

2
3

g
zi

p
O

A
2
4

1 1
0

1
0

0
1

0
1

0

0
1

1
0

1
0

O
A

4
8

0
1

0
1

0
1

0

0
1

1
1

0
1

0
1

0

O
A

1
0
0

1

0
1

0
1

0

m
cf

O
A

2
4

1 1
1

0

O
A

4
8

1 1
1

0

O
A

1
0
0

1
1

1
0

1
1

1
0

0
0

0

p
ar

se
r

O
A

2
4

1

1
1

0
1

1
1

0

O
A

4
8

1
1

0
1

1
1

0
1

1
1

0

0
1

1
1

1
0

0
1

0
1

1
1

1
1

0
0

1

0
1

1
1

1
1

0
0

1
0

0
0

O
A

1
0
0

0
1

1

0
1

1
1

1
0

1

0
1

1
1

1
0

1
0

1

0
1

1
1

1
1

1
0

0
1

0
1

0

Table 4.4: Final selection of options by Mann-Whitney test(cont’d)

4.3. Results 59

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
1

0
O

1
1

O
1

2
O

1
3

O
1

4
O

1
5

O
1

6
O

1
7

O
1

8
O

1
9

O
2

0
O

2
1

O
2

2
O

2
3

sw
im

O
A

2
4

1
0

1
0

1

1
1

0
0

1

1
1

0
0

1
1

1
1

1
0

0
1

1

1
1

1
0

1
0

1
1

1
1

1
0

0
1

0
1

1

O
A

4
8

1
0

1
0

1

0
1

0
1

0
1

0
1

1

0
1

0
1

1
1

0
1

1
0

1
1

1

O
A

1
0
0

1
0

1
1

0
1

0
0

1

1
1

0
1

0
0

1
1

v
o
rt

ex
O

A
2
4

1 1
1

1
1

1
0

1
1

1
1

0

1
1

1
1

1
0

1
1

1
1

1
1

0

O
A

4
8

0
1

0
1

1
1

0
1

1
1

0
1

0

0
1

1
1

1
0

0
1

0
0

O
A

1
0
0

0
1

1

0
1

1
1

1
1

0
1

1
1

1
1

0
1

0

v
p
r

O
A

2
4

0
1

0
1

0

O
A

4
8

0 0
1

0

0
1

0
0

0

O
A

1
0
0

0
1

0
1

0
0

0
0

0
1

0
1

1
0

0
0

0
1

0
1

1
1

1
0

0
0

0

0
1

0
1

1
1

1
0

1
0

0
0

0
0

0
1

0
1

1
1

1
0

1
0

0
0

0
0

0

Table 4.5: Final selection of options by Mann-Whitney test (cont’d)

60 4. Using the Mann-Whitney test to optimize the execution time of a single application

O
1

O
2

O
3

O
4

O
5

O
6

O
7

O
8

O
9

O
1

0
O

1
1

O
1

2
O

1
3

O
1

4
O

1
5

O
1

6
O

1
7

O
1

8
O

1
9

O
2

0
O

2
1

O
2

2
O

2
3

w
u
p
w

is
e

O
A

2
4

1

1
1

1
1

0
0

1
1

1
1

0
0

O
A

4
8

1

1
1

1
1

1
0

1
0

1
1

1
1

1
0

1
0

1
1

1
1

1
1

0
1

1
0

1
1

1
1

1
1

0
1

1
1

0

1
1

1
1

1
1

0
0

1
1

1
0

1
1

1
1

1
0

0
1

0
0

1
1

1
0

1
1

1
1

1
0

0
1

0
0

1
1

1
1

0
0

0

1
1

1
1

1
0

0
1

0
0

1
1

1
1

0
0

0

O
A

1
0
0

1

0
1

1
1

1
0

1
1

1
0

1
0

1
0

1
1

1
1

1
0

1
0

1
1

0
1

1
1

1
1

0
1

1
0

1
1

1
0

1
1

1
1

1
0

1
1

0

1
1

1
0

1
1

1
0

1
1

0
1

1
1

0
0

1
1

1
0

1
1

1
0

1
1

0
1

1
1

0
1

1
0

Table 4.6: Final selection of options by Mann-Whitney test (cont’d)

4.3. Results 61

benchmarks are O4, O10, O11, O13, O15, O20, O21, and O22. This fact clearly shows that it

can pay off to be critical about which optimizations to implement in a compiler. Second, for

almost all benchmarks, the most important options that are switched on or off using a small

OA are the same as the options switched on or off using a large OA. This means that our

method is quite robust. Next, several optimizations are explicitly turned off already early in

the search procedure. This means that they have a statistically significant negative impact on

performance. For instance, O16 is turned off for many benchmarks. Also, option O1 is ex-

plicitly turned off for several benchmarks and only turned on for swim and wupwise. This

observation may be more serious since this option is turned on in -O2 and -O3. Next, it is

remarkable that the options O14 (scheduling) and O23 (loop unrolling) are mostly turned off

explicitly. These options are generally considered to be instrumental for superscalar proces-

sors. The probable reason to turn them off in our experiments is that in our target architecture,

very few registers are available, implying that loop unrolling can increase register pressure

to unacceptable levels and that there are too few registers to perform meaningful scheduling.

This probably means that the performance that could be obtained using the actual pipeline in

the P4 is not realized due to limitations of the ISA supported. Next, the improvement found

for an OA with 48 rows (a power of 85%) is equally good as the improvement found for an

OA with 100 rows (a power of 99.5%). Finally, we see that for all benchmarks, except for

the fp programs art and swim, the option omit-frame-pointer is turned on. This option is not

present in the standard -Ox switches, presumably because it prevents symbolic debugging of

the resulting code. Since our approach clearly is intended for debugged production codes, we

have included this option. Experiments with -Ox with omit-frame-pointer have shown that

this option increases the performance of the standard switches by a few percent and -O3 then

comes close to our results in several cases. However, also in these cases we still obtain higher

improvements.

4.3.3 Number of iterations

In this section, we discuss the number of iterations required. Obviously, the variability thresh-

old defined in Section 4.2 has a strong influence on this number. In Table 4.7 we show the

number of iterations for different values of this threshold for each benchmark and size of

the Orthogonal Array. The resulting improvements of the benchmarks decrease slightly with

higher threshold values and for values larger than 2% this decrease becomes quite notice-

able. However, in several cases, the resulting improvement is the same as for a threshold of

0.5%. These results suggest that the variability threshold provides a natural trade-off between

optimization time and improvement. If the variability in improvement between the different

settings is low, we can simply generate 48 settings using an Orthogonal Array and pick the

best one from this set. If, on the other hand, this variability is high, we use our method to set

a number of important switches which can cause the remaining space to have low variability.

If the variability of this remaining space is low enough, we again pick the best setting from

it. This approach is consistent with results reported in [40] where it has been shown that a

random search strategy produces good results using few profiles.

62 4. Using the Mann-Whitney test to optimize the execution time of a single application

OA 24 OA 48 OA 100

0.5% 0.7% 1% 2% 0.5% 0.7% 1% 2% 0.5% 0.7% 1% 2%

art 2 2 2 2 1 1 1 1 2 2 2 2

bzip2 7 5 3 1 7 4 4 2 4 3 3 1

gap 4 4 4 4 7 6 6 6 5 5 5 5

gzip 5 5 5 4 4 4 4 2 3 3 3 3

mcf 3 3 2 2 3 3 2 1 3 2 2 2

parser 4 4 4 2 7 5 3 2 5 4 2 2

swim 8 8 3 2 7 7 4 2 4 4 4 2

vortex 7 7 7 4 5 5 5 5 4 4 4 4

vpr 3 3 3 3 4 4 4 4 7 7 6 3

wupwise 5 5 5 4 11 11 7 4 9 9 6 4

Average 4.9 4.7 3.9 2.8 5.6 5 3.6 2.8 4.6 4.3 3.7 2.8

Table 4.7: Influence of variability threshold on number of iterations

4.4 The robustness of the methodology

A possible drawback of the profile guided search for an appropriate compiler setting is that

applications are optimized using a single or a limited set of data inputs. It is well known that

programs can exhibit vastly differing behaviors for different inputs. Therefore, it is not clear

whether the performance numbers reported are still valid for other input than the input used to

optimize the program. In this section, we address this problem for a specific statistical com-

piler tuning method. We use three different platforms and several SPECint2000 benchmarks.

We show that when we tune the compiler using train data, we obtain a compiler setting that

still performs well for reference data. These results suggest that profile guided optimization

may be more stable than is sometimes believed and that a limited number of train data sets is

sufficient to obtain a well optimized program for all inputs.

In this section, we use the same experimental environment in Section 3.2. We employ

the set of 42 optimizations for this experiment. Additionally, we use two more target archi-

tectures for our experiments: a SPARC Sun Fire V25 server dual 1.28 GHz processor and a

IA64 dual Itanium2 1.296 GHz processor. Firstly, we show the results we obtained using our

methodology on three different platforms when we select compiler options using train data.

Next, we show the improvements we obtain when we run the resulting optimized program on

reference data.

In Figures 4.7 through 4.9 we show the improvements for -O3 and the setting obtained

from the Mann-Whitney test, denoted by Onew42, for three different platforms. We have used

7 SPEC2000 benchmarks for the P4 and 5 for the IA64 and SPARC since the two other

benchmarks did not compile correctly on these platforms. We have used the train data to run

our methodology and we show improvements when using train data again. The numbers in

brackets after the benchmark name denote the number of iterations required to fully run the

selection method.

We immediately observe that for the P4 and the SPARC, significantly better improve-

ments are obtained than -O3. The situation is different for the IA64 where our method actu-

ally reduces the improvements for bzip2. For the other benchmarks, the improvements that

4.4. The robustness of the methodology 63

Figure 4.7: Improvements of -O3 and Onew42 for P4 using train data

Figure 4.8: Improvements of -O3 and Onew42 for IA64 using train data

64 4. Using the Mann-Whitney test to optimize the execution time of a single application

Figure 4.9: Improvements of -O3 and Onew42 for SPARC using train data

Figure 4.10: Improvements of -O3 and Onew42 for P4 using reference data

4.4. The robustness of the methodology 65

Figure 4.11: Improvements of -O3 and Onew42 for IA64 using reference data

Figure 4.12: Improvements of -O3 and Onew42 for SPARC using reference data

66 4. Using the Mann-Whitney test to optimize the execution time of a single application

we found are almost equal to the improvements obtained by -O3. A possible explanation for

this last observation is that almost all improvement comes from correct instruction scheduling

for this EPIC architecture and that little extra improvement can be found using other options.

These results show that our methodology can be effective for other platforms.

In Figures 4.10 through 4.12 we show the improvements when we run our optimized

program on the reference data. Since the benchmarks have several distinct reference data sets,

that should be used together, we show the results when running the optimized programs on all

reference data sets. We observe that for the P4 and the SPARC, generally better performance

is obtained using our new setting. For the IA64, the improvements we obtain are more or less

equal to the improvements of -O3, much in line with the previous results. Comparing these

figures with the previous ones, we immediately observe that the performance improvements

are much in par. In fact, for the P4, the improvements for mcf and parser are actually

better than for the train data. However, for vortex, the situation is reverse. For the IA64, the

improvements for bzip2 for the train data are also less than for the reference data. Finally,

on the SPARC, bzip2 improvements are slightly better for train data than for reference data.

However, for the vast majority of our benchmarks, performance improvements for the train

data (which is used to select the compiler options) is more or less the same as for the reference

data.

4.5 Conclusion

In this chapter, we have introduced an approach to the problem of selecting a compiler opti-

mization setting using inferential non-parametric statistics, in particular, the Mann-Whitney

test. The statistical analysis reveals which compiler options have a significant effect. We use

the options with significant positive effect and we explicitly turn off the options with signif-

icant negative effect. Our algorithm uses an iterative approach to the detection of compiler

options with large positive effect. It can be used for any compiler to determine a setting. Our

results suggest that a power of the Mann-Whitney test of 85%, corresponding to a size of the

search space of 48, is sufficient to obtain the best results. Using a threshold on the variability

of the search space of 2% entails that we need less than 3 iterations on average.

We have shown effectiveness of our approach in other plat forms, SPARC and IA64.

Besides one benchmark for the IA64, the resulting settings have better or equal performance

compared to standard switches which in some cases may cause a degradation in performance.

We can also conclude that the dependence of the SPECint2000 benchmarks on data input is

not as strong as is sometimes believed. Profile guided compiler tuning using one (representa-

tive) data input set produces compiler settings that work well for other data input sets. This

result is of importance to other approaches that use profile guided search to optimize programs

or library routines. However, a more thorough investigation of this dependence is in place, in

particular for high level loop transformations that may exhibit a stronger dependence. Nev-

ertheless, the results in this section show that we may be optimistic and that profile guided

compiler searches may need only a limited set of representative inputs to produce good results

for many or even all inputs.

Chapter 5

Using the Mann-Whitney test to

optimize the code size of a single

application

Memory is a main cost factor for many high volume electronic devices and constitutes an in-

creasing portion of the total product cost. Code size reduction therefore may reduce the direct

cost of a product by reducing the size of required memory. On the other hand, a reduction

in code size can also be used to fit more features into the same ROM which may enhance

the value of a product. Many approaches have been proposed to reduce the code size of an

application, ranging from code compression by means of, e.g., Huffman coding, to specific

compiler based techniques like code factoring [7].

In this chapter, we approach the problem from a different perspective. Instead of propos-

ing yet another technique that may reduce code size, we want to explore the possibilities

standard compiler optimizations can offer to decrease the number of generated assembly in-

structions. This approach is orthogonal to the approaches mentioned above and can be used

in conjunction with them, possibly leading to smaller compressed codes. Modern compilers

implement many optimizations that often can explicitly be turned on or off using compiler

flags or switches. For example, gcc 3.4.3 has over 50 switches. Obviously, some optimiza-

tions, like loop unrolling or procedure inlining, can increase code size. Others, like dead code

removal or strength reduction, can decrease code size. While these statements seem obvi-

ous, some care needs to be taken since it has been shown [14] that procedure inlining can

actually decrease code size in some cases. This trivially holds when functions with only one

call site are inlined or when the body of a function is smaller than the code needed to call

and return from that function. For example, in many cases, registers need to be saved before

and restored after a function call which may require two instructions per register. Moreover,

function inlining may enable other optimizations that reduce the number of instructions, like

common subexpression elimination, that can now be applied across the old function bound-

aries. Therefore, it is clear that sweeping remarks on the effect of optimizations need not be

generally true.

67

68 5. Using the Mann-Whitney test to optimize the code size of a single application

1 defer-pop

2 force-mem

3 force-addr

4 omit-frame-pointer

5 optimize-sibling-calls

6 inline-functions

7 merge-constants

8 strength-reduce

9 thread-jumps

10 cse-follow-jumps

11 cse-skip-blocks

12 rerun-cse-after-loop

13 rerun-loop-opt

14 gcse

gcse-lm

gcse-sm

gcse-las

15 loop-optimize

16 crossjumping

17 if-conversion

18 if-conversion2

19 delete-null-pointer-checks

20 expensive-optimizations

21 optimize-register-move

22 schedule-insns

23 sched-interblock

24 sched-spec

25 schedule-insns2

26 sched-spec-load

27 sched-spec-load-dangerous

28 caller-saves

29 move-all-movables

30 reduce-all-givs

31 peephole

peephole2

32 reorder-blocks

33 reorder-functions

34 strict-aliasing

35 align-functions

36 align-labels

37 align-loops

38 align-jumps

39 rename-registers

40 web

41 cprop-registers

42 tracer

43 unit-at-a-time

44 function-sections

45 data-sections

46 unroll-loops

47 peel-loops

48 unswitch-loops

49 old-unroll-loops

50 branch-target-load-optimize

51 branch-target-load-optimize2

52 delayed-branch

53 prefetch-loop-arrays

Table 5.1: Options from gcc 3.4.3 used

However, it is clear that all options in a compiler may change the generated assembly

code and thus may have an effect on code size. Whether they increase or decrease code size

is largely unknown as is their effect on code size if we take into consideration the interaction

of options. To the best of our knowledge, besides our work, there exists no approach, which

systematically investigates how an existing production compiler that has 53 options can be

tuned in order to reduce code size. We show that we can obtain a reduction in the number of

assembly instructions in the generated code that can be as high as 30% over the standard -Os

option of gcc in which the optimizations are coordinated to achieve small code size.

Our method is based on statistical analysis of many versions of the code obtained by using

different compiler settings. In Chapter 4, we propose an algorithm using the Mann-Whitney

test to optimize for execution time. We apply the same algorithm to optimize for code size in

this chapter.

In this chapter, we only optimize for code size. We do not take into consideration the

speed of the resulting code. Therefore, we may end up with a code that is short but too slow

to be useful. In future work, we plan to integrate our approaches to code size and speed

optimization. A possible solution is to optimize for size under speed constraints. In this case,

possible candidate settings need to be profiled in order to check that they do not run too slow.

Conversely, we can optimize for speed under code size constraints. Finally, a third possibility

is to optimize for both at the same time by using a suitable function of both speed and size

improvement.

This chapter is structured as follows. In Section 5.1, we discuss our experimental envi-

ronment. In Section 5.2, we present our results. Section 5.3 summarize this chapter.

5.1 The experimental environment

We have used gcc version 3.4.3 as our compiler. It contains more than 60 options and we

chose a subset of 57 options that are not described as experimental in the manual nor are

5.2. Results 69

options that may violate IEEE floating point standards, like fast-math. The resulting list of

options is given in Table 5.1. inline is not used since this option disables the inline direc-

tive in the application and we do not want to change the contexts of original applications.

keep-static-consts and function-cse are not included since these options are for the sake of

keeping the assembler code readable. branch-count-reg is left out since this option disables

the use of instructions regarding the branch count registers when it is negated. float-store and

single-precision-constant are also left out to avoid generating invalid executables. Note that

in some cases, we have grouped a few options into one factor since the gcc manual explicitly

states that these options should be turned on together [13]. For example, in factor 14, we

have grouped all global common subexpression elimination options since they are enabled

by default when gcse is enabled. Note also, that in factors 26 and 27, we turn on instruction

scheduling together with a speculative scheduling option because the gcc manual states that

this speculative scheduling option needs instruction scheduling, but we also have instruction

scheduling as a separate option (22).

We have configured gcc as a cross-compiler for the following platforms. We have used

mips and arm which are two well known embedded RISC processors. We use the Motorola

m68k which is a CISC processor that 25 years after its introduction still is a popular embed-

ded processor. Current implementations are known as 68HC000. We have also used two pro-

cessors that are more specifically geared toward the embedded domain: the Vitesse IQ2000

network processor and the Renesas M32R processor.

We use the MediaBench benchmark suite for our test programs. However, the benchmarks

pgp and gostscript only compiled on the mips and arm platforms. Hence, we do not show

results for these benchmarks for the other platforms.

5.2 Results

In this section, we show the results obtained from our iterative selection algorithm using the

gcc 3.4.3 compiler and the MediaBench suite for five different platforms.

5.2.1 The optimization time requirements

We let the algorithm run until completion when no more options are selected. The number

of iterations required is between 5 and 12, with an average of 8. This means that on average

we require 432 program compilations. Concerning the time it took to complete our iterative

method, we performed our experiments on a P4 at 2.8 GHz platform. Depending on the size

of the source code for the benchmark, it took between 30 minutes and 2 hours to complete

the iterative procedure. Hence, when developing embedded applications, this time is certainly

affordable. Please, note also that our approach is essentially ‘for free’: all that is required to

implement it is a small driver on top of the compiler that generates different settings, compiles

the source code using these settings, and counts the number of instructions in the assembly

code. No complex new transformations or other adaptations of the compiler are needed.

70 5. Using the Mann-Whitney test to optimize the code size of a single application

Figure 5.1: Code size reduction with respect to –Os for mips

Figure 5.2: Code size reduction with respect to –Os for m68k

5.2. Results 71

Figure 5.3: Code size reduction with respect to –Os for M32R

Figure 5.4: Code size reduction with respect to –Os for IQ2000

72 5. Using the Mann-Whitney test to optimize the code size of a single application

Figure 5.5: Code size reduction with respect to –Os for arm

5.2.2 Code size reduction

In Figures 5.1 through 5.5 we show the code size reduction with respect to the standard option

-Os which is specifically geared toward code size reduction [13]. This reduction is computed

as follows. For an application A, let S s(A) be the size obtained by using -Os given by the

number of instructions in the resulting assembly code, and let S n(A) be the size obtained

from our new method. Then the code size reduction R(A) is computed as

R(A) =
S s(A)−S n(A)

S s(A)
·100%

This definition implies that when the code size obtained from our new method is larger than

the size obtained from -Os, the reduction has a negative value. We immediately observe that

in almost all cases, on all platforms, our method produced code sizes that are shorter than the

code sizes produced by -Os, up to 30% shorter. The amount of reduction is highly dependent

on the platform used. For the mips, Figure 5.1 shows that high reductions are obtained for all

benchmarks, with an average of 18%. For one benchmark, a reduction of 30% is obtained.

For the m68k and M32R, almost every benchmark is reduced in size with respect to -Os and

in some cases reductions of 10 to 15% are achieved. In the three cases we produce code that

is larger than -Os, this degradation is very small. However, for the IQ2000, the improvements

are modest and in many cases the difference between the code size we produce and that

produced by -Os is 2 to 3%. In some cases we produce a code that is slightly larger than -Os.

We perform worst on the arm. The reason for this is that most options in gcc have little effect

on code size for this architecture. We have observed that after a few iterations, the variance

(standard deviation) in the 54 different settings tested becomes less than 0.5%. This means

5.3. Conclusion 73

that there exist several hundreds of different settings that give rise to almost the same code

size. In fact, there are more than one hundred settings that give rise to exactly the shortest

code size found. We have also observed that -O1, -O2, -Os and our method give rise to almost

the same code sizes. Only -O3 produces code sizes that are significantly larger, mainly due

to inlining. Nevertheless, also for the arm there exist two applications that are significantly

reduced in size.

For each platform, there exist at least a few benchmarks that obtain a significant reduction

in code size. On the other hand, there are no benchmarks that suffer a significant degradation

in size, except jpeg-wrjpgcom on the arm. As mentioned before, these code size reductions

are obtained by carefully exploiting the existing code generator in gcc and are essentially ‘for

free’. This means that our method can be applied, the resulting code size can be compared to

-Os, and the shortest code can be selected.

5.2.3 The compiler settings

In Figures 5.6 through 5.10, we have shown the final selection of compiler options in the last

but one iteration of our iterative method. In these table, ‘1’ denotes that the option has been

turned on, ‘0’ that it has been turned off, and a blank space that it has not yet been decided.

In the setting that is finally produced, these blanks are filled with values that give rise to the

shortest code in the final iteration. However, the variance in this last iteration is very low,

sometimes as low as 0.002%. This means that the effect of these options on code size is very

low and it is not important which value they receive. For comparison purposes, we have also

shown the setting -Os.

From these tables, we observe that many options do not have much effect on code size

for any benchmarks or platform. Also, we observe that there are a few options (14, 15, and

43) that in our method are explicitly turned off whereas they are turned on in -Os. This means

that we measure a degradation in size. From these tables, we see that inline-functions (6)

is turned off in almost all cases, as is loop-optimize (15) and tracer (42). This last option

performs tail duplication to enlarge superblock sizes. In many cases, instruction scheduling

(22-27) and reorder-blocks (32) are turned off also. The option omit-frame-pointer (4) is

turned on in almost all cases since it drops the instruction required to create this frame pointer.

Remarkably, the loop unrolling option (46) is turned on in several cases. These observations

are valid across benchmarks and platforms.

Several options are switched on or off depending on the application and platform, showing

that compiler tuning for a particular application and platform can be worthwhile. Finally, we

observe that many options have very little effect on code size and are neither switched on nor

off by our procedure.

5.3 Conclusion

In this chapter, we have proposed an iterative approach to setting compiler options in order

to generate as few instructions in the assembly code as possible. We use a technique that is

based on non-parametric inferential statistics, in particular, the Mann-Whitney test, to decide

which options should be switched on or off. We have shown that our technique performs

74 5. Using the Mann-Whitney test to optimize the code size of a single application

better in almost all cases considered than the standard -Os switch that is designed to optimize

for size. However, this improvement is highly dependent on the target platform. For the mips

platform, we obtain high reductions in code size of 18% on average over -Os. In some cases,

we produce code that is 30% smaller than -Os. For the m68k and M32R we reduce code size

by 4 to 5% on average, and 10 to 15% in some cases. Finally, for the arm gains are less and in

one case we are even 5% larger than -Os. However, our technique is easy to implement and

requires no adaptation of the compiler. Therefore, it can be worthwhile to try to optimize for

size using our method and switching to -Os in the few cases it should fail.

5.3. Conclusion 75

Figure 5.6: Generated settings for mips

76 5. Using the Mann-Whitney test to optimize the code size of a single application

Figure 5.7: Generated settings for m68k

5.3. Conclusion 77

Figure 5.8: Generated settings for M32R

78 5. Using the Mann-Whitney test to optimize the code size of a single application

Figure 5.9: Generated settings for IQ2000

5.3. Conclusion 79

Figure 5.10: Generated settings for arm

Chapter 6

The determination of compiler

settings for multiple applications

taking into account interaction

between optimizations

Modern compilers implement a host of back end optimizations, however, very little is known

about what all these options exactly do, how they interact, whether or not they enable or

disable one another, etc. In order to deal with all these options, compiler writers usually

define standard settings that can be used by programmers as -Ox switches. These switches

contain those options that the compiler writer thinks are beneficial for many programs based

on his experience. It is well known that for a single application better compiler settings can

be found than those standard settings as we have shown in Chapter 3 and 4 of this thesis.

However, it is not clear whether better settings can be found for a collection of applications.

In this chapter, we show that this indeed is the case. We construct one single compiler setting

that produces better optimized programs for a collection of widely differing applications than

standard -Ox settings do, with up to 20% improvement. The collection of programs we use in

this study is the SPECint95 benchmark suite which is meant to be representative for a large

collection of integer programs and hence has widely differing properties.

In this chapter, we focus on an extension of the problem of optimizing one single pro-

gram, namely, how to find a compiler setting that optimizes many programs simultaneously.

This setting should perform better than standard -Ox settings for most programs in the col-

lection and equally well for the remaining programs. By this we mean that each program is

optimized as well as the best performing -Ox switch and most programs even significantly

better. This problem is relevant for example for supercomputing centers where a fixed col-

lection of applications is used extensively and a single compiler optimization setting must

be used for maintainability purposes. There are two main obstacles in finding these settings.

First, since the number of different combinations of optimizations is exponentially large, the

space, which has to be searched in order to find the optimal one, is huge. Second, the best

81

82

6. The determination of compiler settings for multiple applications taking into account interaction

between optimizations

sequence depends both on the application being compiled and on the target architecture.

The aim of our research is to develop a methodology which yields a feasible and near

optimal solution for this problem. Our methodology is based on the simple idea that some

compiler optimizations can positively influence each other and, therefore, should be turned

on together. The fact that optimizations can interact is well known and expert compiler writers

choose settings based on empirical experience of positive interaction. In this chapter, we in-

troduce a formal definition of the interaction between optimizations and present a quantitative

model which allows us to measure these interactions.

The heuristic we propose in this chapter is based on an experimental analysis of the effect

of compiler options. We proceed by a three step approach. In the first step, we determine the

set of options that have a large effect of their own and the set of pairs of options that pos-

itively interact. We then iteratively add single optimizations to the sets already obtained to

get maximal sets of positively interacting options. In the second step, we try to combine the

sets found in the previous step under the condition that these sets do not negatively influence

each other. This weaker condition allows us to find compiler settings which have as many

optimizations turned on as possible. Finally, in the third step, we test a small number of set-

tings found in step two, selecting the setting with the best average improvement. All analysis

has been performed using a small but representative subset of the entire optimization space.

This entails that the effects we measure are only approximations but it allows us to construct

a small fragment of the entire search space beforehand and use the measured execution times

freely during the subsequent analysis phases. Since our heuristic is intended to be used by

compiler tuners in order to define a general setting usable for many programs in a given set,

we can afford some profiling time in order to set up this initial search space. The ultimate goal

of this research that we hope to address in future work is to find a strategy to find a compiler

setting that is applicable to a specific application domain and that produces highly optimized

code for that domain by incorporating domain specific knowledge.

The rest of this chapter is organized as follows. Section 6.1 discusses our methodology to

find a setting that is optimized for a collection of programs. Section 6.2 discusses the strategy

to obtain such an optimized setting. Section 6.3 gives the results of our method on gcc 3.3.1

and Section 6.4 gives an analysis of our methodology. In section 6.5, we summarize this

chapter and discuss directions for future work.

6.1 A methodology to define a compiler setting

In this section, we introduce a systematic method to generate a compiler setting that is opti-

mized for a collection of programs. We focus on the interaction between optimizations since

this is an important issue in the determination of an optimal compiler setting. We believe that

a nearly optimal compiler setting can be derived by combining optimizations which positively

interact. Since there is no clear definition of the interaction between optimizations, we give

a definition of interaction based on the performance improvement of a collection of different

optimization settings on a set of applications. We describe how execution times can be used

to define the interaction between optimizations.

6.1. A methodology to define a compiler setting 83

6.1.1 The detection of interaction between optimizations

In this section, we give the definition of interaction between compiler optimizations and we

describe the procedure to construct subsets of optimizations that positively interact. We define

the effect of compiler optimizations as the improvement expressed in terms of the real execu-

tion time of applications. The effect is dependent on the compiler setting used and therefore

the effect is used to define interaction between these different compiler settings. In order to

define the notion of interaction properly, we first need some notation.

We use a sequence of binary digits to describe a compiler setting s. The set of all possible

sequences is the complete search space.

Definition 6.1.1 Let n ≥ 1. Ωn is the set of all sequences of n binary digits.

Ωn = {(a1, . . . ,an) : ai ∈ {0,1},1 ≤ i ≤ n}

The sequences in Ωn express whether compiler options are on or off. If we denote the set

of all available compiler options by W = {wi : 1 ≤ i ≤ n}, then ai = 1 in a sequence s means

that optimization wi is turned on and ai = 0 means that optimization wi is turned off.

Let sbase be the compiler setting without any optimization:

sbase = (0, . . . ,0) (6.1)

Let P be a set of benchmark programs and let T (s, p) be the execution time for compiler

setting s ∈ Ωn and program p ∈ P. The effect of compiler setting s ∈ Ωn on a program p ∈ P

is defined as a normalized function e(s, p).

Definition 6.1.2 Let s ∈ Ωn and let p ∈ P. We define the effect of compiler setting s on pro-

gram p, denoted by e(s, p), as follows.

e(s, p) =
T (sbase, p)−T (s, p)

T (sbase, p)

The value e(s, p) describes how much the optimizations in s change the execution time

of a non-optimized program p. The effect of a compiler setting s, denoted by E(s), is defined

as the average effect over all programs in P. We can simply take the average because e(s, p)

is normalized. In fact, E(s) is the average of the improvements in performance of all the

benchmark programs. Note that it can very well happen that a compiler setting generates

substantial improvement on certain benchmark programs which are nullified by slow downs

on other benchmark programs. In this case, the overall improvement is considered minimal.

Also, E(s) can have a negative value.

Definition 6.1.3 We define the effect of a compiler setting s ∈ Ωn on a set of programs P,

denoted by E(s), as follows.

E(s) =

∑

p∈P e(s, p)

|P|

Using these definitions, we define the interaction between two optimizations wi and w j as

follows.

84

6. The determination of compiler settings for multiple applications taking into account interaction

between optimizations

Definition 6.1.4 For each 1 ≤ i, j ≤ n, i , j, we define

si = (a1, . . . ,an) where ak =

{

1 : k = i

0 : otherwise

si j = (a1, . . . ,an) where ak =

{

1 : k = i or k = j

0 : otherwise

Given this notation, we define for each wi,w j ∈W the following interaction predicate I1.

I1(wi,w j) =

true : E(si j)−E(si) > threshold, and

E(si j)−E(s j) > threshold

false : otherwise

In other words, si is the compiler setting which turns on optimization wi, s j is the compiler

setting which turns on optimization w j, and si j is the compiler setting which turns on both wi

and w j. The first inequality guarantees enough performance improvement if optimization w j

is added to wi, and the second inequality checks if there is enough performance improvement

if wi is added to w j. If I1(wi,w j) = true, then we conclude that wi and w j positively interact.

The problem with the above definition of interaction is that in practice the effect of one

single optimization turned on can be minimal and the true effect of an optimization can only

be estimated in the presence of other optimizations that are turned on. Therefore, we need a

definition of interaction which allows several optimizations to be turned on simultaneously.

Definition 6.1.5 For K ⊆W, wk ∈W, and wk < K, we define

sK = (a1, . . . ,an) where ai =

{

1 : wi ∈ K

0 : otherwise

sKk = (a1, . . . ,an) where ai =

{

1 : wi ∈ K or i = k

0 : otherwise

We define the following interaction predicate I2

I2(K,wk) =

{

true : E(sKk)−E(sK) > threshold

false : otherwise

As we can see from this definition, the threshold in the inequality does not need to hold

for E(sKk)−E(sk), making this definition of interaction different from the previous one. The

reason for this is that this definition is used in an iterative algorithm which looks for successful

grouping of optimizations by incrementally extending already successful groupings. Hence,

the definition assumes that the effect of sK is already significant and only for the addition of

one optimization sk it is investigated whether this leads to improved performance.

Although this definition of interaction is useful when searching for an optimal setting

of compiler optimizations, the sheer number of possible optimization settings makes it im-

possible to apply this definition arbitrarily. For instance, in our experiments below we want

to investigate the optimal setting for the GNU C-compiler gcc 3.3.1 in which more than

6.1. A methodology to define a compiler setting 85

60 compiler optimizations can be turned on or off. This yields more than 260 ≈ 1018 differ-

ent possible settings. Hence using this definition arbitrarily would mean that 1018 different

experiments would have to be conducted to find an optimal setting. Therefore, we want to

trim down the possible number of different compiler settings to be investigated considerably.

This is achieved in two ways: first, the proposed iterative search algorithm tries to use al-

ready successful settings which are incrementally extended. The second measure consists of

trimming down the search space of possible settings. This is achieved by constructing a rep-

resentative subset of these different possible settings using an orthogonal array, as explained

in Section 2.1.

6.1.2 Defining interaction using a representative subset of the search

space

Having defined a representative subset S of the complete search space by means of an Or-

thogonal Array, our algorithm is based on using the measured performance results of the

compiler settings which are represented by S . This means that initially all the compiler set-

tings represented by S are executed on a specific platform for all the benchmarks considered.

The execution times are stored in a database to be used by our methodology and no other ex-

ecution times are used. This means that the experimental results needed to verify previously

given definitions of interaction might not be available. For instance, in Definition 6.1.5, the

compiler settings sK , or sk, or sKk might not be part of the subset S . Therefore, we need to

adopt the previously given definitions so that only experimental results derived from S are

necessary to establish interaction or not.

Definition 6.1.6 Let S ⊆Ωn and let A,B ⊆W with A∩B =∅. We define

S (A=1)(B=0) = {s : s ∈ S

with ai = 1 for wi ∈ A, and

with ai = 0 for wi ∈ B}

S (A=1)(B=0) is a (possibly empty) subset of S , in which the optimizations in A are turned

on and the optimizations in B are turned off. Below we write S (A=1) in case B = ∅. Note

that A∪ B is not necessarily equal to the complete set W. Optimizations that do not appear

in either A or B may be turned on or off arbitrarily. The approximate effect of S (A=1)(B=0) is

described as follows.

Definition 6.1.7 Let S ⊆ Ωn and let A,B ⊆ W with A∩ B = ∅. The approximate effect of

S (A=1)(B=0) is defined as

E(S (A=1)(B=0)) =

∑

s∈S (A=1)(B=0) E(s)

|S (A=1)(B=0) | : S (A=1)(B=0)
,∅

0 : otherwise

The approximate effect is applied to Definition 6.1.5 to obtain a new definition of inter-

action.

86

6. The determination of compiler settings for multiple applications taking into account interaction

between optimizations

Definition 6.1.8 Let be K ⊆ W and let wk ∈ W such that wk < K. We define the interaction

between K and wk as follows.

I(K,wk) =

true : E
(

S (K∪{wk}=1)
)

− E
(

S (K=1)({wk}=0)
)

> threshold

false : otherwise

The set S (K=1) is split into two parts, S (K∪{wk}=1) and S (K=1)({wk}=0) depending on the state

of wk. The first part S (K∪{wk}=1) consists of the compiler settings that turn on the optimizations

in K as well as wk. The second part S (K=1)({wk}=0) consists of compiler settings that turn on

the optimizations in K and turn off optimization wk.

6.2 The algorithm to find a compiler setting

In this section we discuss the three steps of our algorithm to find a compiler setting that is

highly optimized for a set of applications simultaneously.

6.2.1 Step 1: Finding maximal subsets of positively interacting options

Using Definition 6.1.8, we construct an algorithm to produce subsets of optimizations that

positively interact in two phases. This is done iteratively by taking an initial choice of single

optimizations which have a relatively large effect in the first phase. Then, in each iteration, the

subsets of positively interacting optimizations are being extended with optimizations which

enforce the previous subsets in the second phase. At each step of the algorithm, the set C

consists of subsets of optimizations that positively interact.

In the first phase, the initial set C1 is selected as the collection of single optimizations

that have a relatively large effect. We calculate the effect of each individual optimizations

with Definition 6.1.7 as follows. For each i, A = {wi} and Definition 6.1.7 is applied with

B =∅. So we compute the average improvement of all optimization settings in S in which wi

is turned on. Then we rank all optimizations wi according to their largest average effect. C1

is then constructed by taking the top M optimizations of this list. In our implementation we

have heuristically chosen M to be 10, so the algorithm starts with a subset C1 which consists

of 10 individual optimizations.

After this first phase in which a collection of individual optimizations are selected which

have a significant effect, in the second phase of Step 1 we select from the remaining optimiza-

tion those optimizations which are successful if they are combined with another optimization.

The reason for this is that certain optimizations are only successful if they are enabled by an-

other optimization. If the start set of successful optimizations would only consist of individual

optimizations, the optimizations which are successful only when combined with an (enabling)

optimization would be left out. For defining the second phase of Step 1 of the algorithm we

need the notion of ‘left out’ optimizations Wk.

Definition 6.2.1 Wk is the set of optimizations that do not appear in the elements of

C1, . . . ,Ck−1.

Wk = {w ∈W : ∀1 ≤ i ≤ k−1 . ∀c ∈Ci . w < c}

6.2. The algorithm to find a compiler setting 87

Therefore, W2 is the set of those optimizations that are left over from the construction of

C1. After the construction of C1, each optimization in W is combined with all the optimiza-

tions in W2. Each combination is examined with Definition 6.1.8 to form potential subsets

of C2. The combination of two optimizations in C1 is not investigated because we want to

find two optimizations that enable each other while they have little effect when used on their

own. If one of the optimizations which is used in the combinations in C2 appears in C1, the

optimization is removed from C1 since the optimization is considered to work better when

combined with another combination.

After C2 has been found, Ci is inductively constructed by adding one optimization from

the set of optimizations W i to one of the elements in Ci−1 when it satisfies the predicate I

given in Definition 6.1.8. The formal algorithm is given in Algorithm 1. For each iteration

to construct Ci, Algorithm 1 removes elements from Ci−1. This procedure is based on the

concept that the extended combination may have better improvement than the original one

according to Definition 6.1.8. The algorithm produces C which consists of all Ci, that is,

C =
⋃

i Ci. Each Ci consists of sets of i positively interacting optimizations. The algorithm

stops if no set can be extended anymore. Hence we construct sets of maximal sequences of

options.

6.2.2 Step 2: Combining subsets

Up till now we described how successful subsets of optimizations can be identified. Because

the goal of this study is to define a compiler setting which works well for a set of different

applications, in this phase of the algorithm we identify combinations of these subsets which

do not negatively interfere with each other. So instead of looking for optimizations which

enforce each other, we now look at sets of optimizations which do not have a negative impact

on each other.

The algorithm for constructing these compiler settings uses an evaluation predicate again.

This predicate decides whether two subsets must be combined.

Definition 6.2.2 Let K1,K2 ⊂W and K1 , K2. We define the approximate interaction between

K1 and K2 as follows.

I′(K1,K2) =

true : E
(

S (K1∪K2=1)
)

−E
(

S (K1=1)
)

≥ 0

and

E
(

S (K1∪K2=1)
)

−E
(

S (K2=1)
)

≥ 0

false : otherwise

The first equation compares the effect of the optimizations in K1 and K2 with the effect

of the optimizations in K1. The second equation compares the effect of the optimizations in

K1 and K2 with the effect of the optimizations in K2. As can be seen from this definition,

no threshold value is used in the inequality indicating that turning on the optimization repre-

sented by K2 in addition to the optimizations represented by K1 does not lead to a performance

degradation and visa versa.

The algorithm now investigates which combinations of subsets in C can be combined. It

starts with all the elements in C and tries to combine them. K2 in the algorithm is always

88

6. The determination of compiler settings for multiple applications taking into account interaction

between optimizations

Algorithm 1

C←∅

Create C1

C←C∪C1

Create W2

C2←∅

for all k ∈W do

for all w ∈W2 do

if I({k},w) is true then

C2←C2∪{{w,k}}
if k ∈C1 then

C1←C1−{k}
end if

end if

end for

end for

C←C∪C2

i← 2

repeat

i← i+1

Ci←∅

Create W i

V ←Ci−1

for all K ∈ V do

for all w ∈W i do

if I(K, {w}) is true then

Ci←Ci∪{K∪{w}}
end if

end for

if there exists c ∈Ci with K ⊂ c then

Ci−1←Ci−1−{K}
end if

end for

C←C∪Ci

until Ci =∅ or W i =∅

6.2. The algorithm to find a compiler setting 89

Algorithm 2

C′
1
←C

i← 1

repeat

i← i+1

V ←C′
i−1

C′
i
←∅

for all K1 ∈ V do

for all K2 ∈C do

if K1 , K2 then

if I′(K1,K2) is true then

C′
i
←C′

i
∪{K1∪K2}

C′
i−1
←C′

i−1
−{K1}

end if

end if

end for

end for

until C′
i
=∅

one of the elements of C, and the algorithm stops when a set C′
i

is empty, that is, when

there are no sets left that can be combined and yield a higher improvement. This algorithm

produces C′
1
,C′

2
, . . . that contain subsets of optimizations having various numbers of opti-

mizations turned on. For convenience sake, we classify them according to the number of op-

timizations turned on and store them in S i, where i denotes the number of optimizations. The

algorithm is given in Algorithm 2. Again, the algorithm stops when sets cannot be extended

anymore.

6.2.3 Step 3: Selecting the best setting

We have generated candidate compiler settings in S = ⋃

i S i in the previous two steps gen-

erated based on an analysis of the reduced search space. Since there is no exact information

about the compiler settings we generated, we examine them again in this step and identify

one setting from them as our compiler setting. Since it is not feasible to execute all settings in

S to select the overall best one, we restrict our search space again. Because we are looking for

a most versatile compiler setting which performs well on a number of different applications,

a setting is selected from those settings which have most optimizations turned on. Starting

from the set S i with the largest settings (i largest in the collection of settings found in the

Step 2), only a limited number of sets S k with k < i are considered. We use 50 optimizations

out of more than 60 optimizations. We did not employ a number of options that optimize

floating point operations, like fast-math or unsafe-math-optimizations since these options vi-

olate IEEE and ISO specifications for mathematical functions. Therefore, in our case study, at

most 50 of the largest compiler settings are considered. After execution, we calculate E(s) for

each setting s chosen. We choose the compiler setting s as our setting when E(s) is maximal.

90

6. The determination of compiler settings for multiple applications taking into account interaction

between optimizations

1 defer-pop

2 force-mem

3 force-addr

4 omit-frame-pointer

5 optimize-sibling-calls

6 inline

7 inline-functions

8 keep-static-consts

9 merge-constants

10 branch-count-reg

11 function-cse

12 strength-reduce

13 thread-jumps

14 cse-follow-jumps

15 cse-skip-blocks

16 rerun-cse-after-loop

17 rerun-loop-opt

18 gcse

19 gcse-lm

20 gcse-sm

21 loop-optimize

22 crossjumping

23 if-conversion

24 if-conversion2

25 delete-null-pointer-checks

26 expensive-optimizations

27 optimize-register-move

28 schedule-insns

29 schedule-insns2

30 sched-interblock

31 sched-spec

32 sched-spec-load

33 sched-spec-load-dangerous

34 caller-saves

35 move-all-movables

36 reduce-all-givs

37 peephole

peephole2

38 reorder-blocks

39 reorder-functions

40 strict-aliasing

41 align-functions

42 align-labels

43 align-loops

44 align-jumps

45 rename-registers

46 cprop-registers

47 float-store

48 single-precision-constant

Table 6.1: Options of gcc 3.3.1 used.

6.3 Results

We have evaluated our methodology on the gcc 3.3.1 compiler that has more than 60 compiler

optimizations implemented, and we use 49 optimizations arranged into 48 factors. These

options are given in Table 6.1. In this chapter, prefetch-loop-arrays is not used since this

option disables the use of prefetch instructions. The option delayed-branch is also not present

since our target architecture Pentium 4 does not support delayed branching.

An orthogonal array with 48 columns and 400 rows is used as the search space S . The

compiler settings in S are executed with the seven benchmark programs from the SPECint95

suite. We did not use m88ksim because it did not compile correctly for all settings on our

platform. We have used a Pentium 4 at 2.8GHz as the architecture in this experiment.

We use 10 optimizations out of 48 optimizations for the initial set C1. The 10 optimiza-

tions are selected as those optimizations that have a large effect according to Definition 6.1.7.

The optimizations are shown in Table 6.2.

Table 6.3 shows the number of elements of the set Ci generated by Algorithm 1. We have

6.3. Results 91

force-mem

omit-frame-pointer

optimize-sibling-calls

inline

inline-functions

keep-static-consts

function-cse

thread-jumps

gcse

align-labels

Table 6.2: Initial Optimizations in C1

Threshold C1 C2 C3 C4 C5 C6

0.004 3 72 - - - -

0.005 6 14 12 3 2 -

0.006 7 5 2 1 12 6

0.007 10 3 - - - -

Table 6.3: Number of partial sets in C

applied several threshold values to see which value is most adequate: the values 0.004, 0.005,

0.006, and 0.007 have been used for this experiment. A threshold value of 0.006 tends to

construct a large number of subsets. This is because a small threshold leads to many com-

binations in the early steps in the algorithm. For instance, a threshold value of 0.004 has 72

elements in C2. When there are many elements in Ck, there are few candidates in Wk+1 since

Wk+1 consists of the optimizations that do not appear in Ck This prevents us to construct

many subsets of optimizations. Hence, we choose 0.006 as the threshold value in this case

study.

Next, we apply Algorithm 2 to the results for a threshold value of 0.006 in Table 6.3. The

number of compiler settings generated by this algorithm is shown in Table 6.4.

There are sets S i for 6≤ i≤ 19 inS and we choose the settings in S 18 and S 19 to execute in

step 3 of our algorithm. Since the total number of elements in S 18 and S 19 is 45, it is feasible

S 6 S 7 S 8 S 9 S 10 S 11 S 12

1 6 25 62 142 233 320

S 13 S 14 S 15 S 16 S 17 S 18 S 19

342 259 162 141 100 41 4

Table 6.4: Number of Compiler Settings in S

92

6. The determination of compiler settings for multiple applications taking into account interaction

between optimizations

omit-frame-pointer

inline

keep-static-consts

merge-constants

branch-count-reg

strength-reduce

cse-follow-jumps

rerun-cse-after-loop

gcse-lm

if-conversion2

sched-interblock

sched-spec-load-dangerous

reduce-all-givs

peephole

peephole2

reorder-blocks

reorder-functions

align-labels

Table 6.5: Setting found by our methodology

to execute all compiler settings in these sets. The setting which has the best improvement

is chosen as our setting, denoted by snew. In this case study, a setting in S 18 has the best

improvement. The setting turns on the 18 optimizations given in Table 6.5 and turns off the

others. For comparison, option -O1 defined by gcc uses 10 optimizations, option -O2 uses 36

optimizations, and option -O3 uses 38 optimizations.

Figure 6.1 shows the performance improvement of the setting generated by using our

methodology, and the performance improvement of the option -O1, -O2, and -O3. The im-

provement of the generated optimization setting snew is calculated as E(snew). A first obser-

vation we make is that in several cases, -O1 performs better than -O2. For ijpeg, it is even the

case that -O1 performs better than both -O2 and -O3.

The generated compiler setting, denoted by new in Figure 6.1, performs better than the -

O1, -O2 and -O3 switches for all benchmark programs we used, except for li when optimized

with -O3 which performs slightly better than our setting snew (39.2% vs. 38.4%). In particular,

new delivers the best performance for perl, giving almost twice as much improvement as -O2

(18.4% vs. 10.5%). This shows that our methodology is capable of finding a compiler setting

for a collection of programs that behave quite differently and would require different compiler

settings when tuned individually.

6.4 Observations

In section 6.1, we have proposed our methodology to define a compiler setting. In that section,

Algorithm 1 and Algorithm 2 have been given. Algorithm 1 uses a threshold value in the

6.4. Observations 93

Figure 6.1: Improvements of New Setting and -Ox Options

evaluation predicate given in Definition 6.1.8. Several threshold values, 0.004, 0.005, 0.006,

and 0.007, have been studied in the case study in Section 6.3. We have chosen a threshold

value which produces the most subsets. If there are several threshold values that produce

subsets that have the same maximum number of optimizations turned on, the threshold value

that produces the largest number of subsets must been chosen.

In Table 6.3, we can also see that the results are different for each threshold value. A

value of 0.006 has the most subsets that positively interact, but there are few subsets produced

with a value of 0.007. This means that the algorithm is very sensitive to the threshold value.

Therefore, it is necessary to choose this value carefully. Since the search space is already

fixed beforehand, it is possible to have some trials of the algorithm to choose the most suitable

threshold value which produces the most subsets.

The algorithm incrementally adds one optimization to an already derived set and checks

whether this addition is significant. Note that it could be possible to find another set of, say,

2 (or more) optimizations which, combined with the previous set, makes all optimizations

significant. This means that it can be the case that, for instance,

I({w1,w4,w5},w2) = 0 and

I({w1,w4,w5},w6) = 0

which means that neither {w1,w2,w4,w5} nor {w1,w4,w5,w6} is in S 4. However, it could be

the case that

I({w1,w4,w5,w6},w2) = 1 or

I({w1,w2,w4,w5},w6) = 1 or

I({w2,w4,w5,w6},w1) = 1 or

I({w1,w2,w5,w6},w4) = 1 or

I({w1,w2,w4,w6},w5) = 1

94

6. The determination of compiler settings for multiple applications taking into account interaction

between optimizations

By construction, however, {w1,w2,w4,w5,w6} will not be in S 5 while it is a significant set.

However, the likelihood of the previously sketched situation to occur is low and therefore we

do not consider these cases in our methodology. In a certain sense, the fact that the combi-

nation w2 and w6 interacts with {w1,w4,w5} is a higher order effect that we do not consider

in this chapter. The other reason is that the proposed algorithm would grow exponentially in

compute time.

In Algorithm 1 and Algorithm 2, the approximate effect of compiler optimizations de-

fined in Definition 6.1.7 is used. The approximate effect is calculated by using execution

times using an Orthogonal Array. From the definition of the effect, at least one execution

result satisfying Definition 6.1.7 is necessary to calculate the effect. It is possible that there

is no execution result which satisfies Definition 6.1.7 due to the reduced search space. When

the algorithms encounter this situation, they regard the optimizations as non-interacting opti-

mizations, and do not use them.

6.5 Conclusion

This chapter introduced a systematic method to generate a compiler setting that is optimized

for a collection of applications. First, we detect several subsets of compiler optimizations that

positively interact. Next, we combine these sets to yield complete compiler settings. Since

the method can generate several compiler settings, we choose one of them by profiling them

and selecting the one with best average improvement.

We have applied our method to gcc 3.3.1, which has a large number of compiler op-

tions, to examine the efficiency of our method. By using 400 compiler settings generated by

an orthogonal array as a reduced search space, we have obtained real execution times for the

SPECint95 benchmark suite which is a collection of programs with widely differing behavior.

This reduced search space has been used to make all decisions in the algorithm. Our method-

ology produced a compiler setting that gives better performance than the standard -O1, -O2,

and -O3 options provided by gcc.

Our methodology enables us to define an optimized compiler setting without any knowl-

edge of the available compiler options. Therefore, our methodology can be useful to deter-

mine a compiler setting for an arbitrary architecture, or for an arbitrary set of applications.

Chapter 7

Using random search to determine

a compiler setting

In this chapter, we tackle the problem of the increasing number of potential optimizations

which causes an exponentially growing complexity of interaction between these optimiza-

tions, see previous chapters. We try to achieve this by investigating other potential general

optimization settings which perform equally well but utilize far fewer optimizations than the

default settings. In order to find these general settings, we rely on iterative compilation tech-

niques as described in the previous chapters.

This chapter consists of four sections. Section 7.1 discusses our experimental setup. Sec-

tion 7.2 describes the effectiveness of the proposed methodology on single target applications.

After this, we target multiple applications in Section 7.3. Finally, in Section 7.4, the results

are summarized and a case is made for future research in this area.

7.1 The experimental environment

We use the gcc 3.3.1 compiler which implements more than 60 optimizations [13]. Of these

optimizations, we only potentially enable 47 optimizations, as shown in Table 7.1. The op-

tions which are left out are may violate IEEE floating point standards, like fast-math. We

do not consider omit-frame-pointer that disables debugging on x86 architectures. Standard

-Ox switches also do not turn on this optimization, although we have observed that it is one

of the most important flags of gcc for this architecture. inline is not used since this option

disables the inline directive in the application and we do not want to change the contexts of

original applications. prefetch-loop-arrays is not also used since this option disables the use

of prefetch instructions. float-store and single-precision-constant are left out to avoid gen-

erating invalid executables. The option delayed-branch is also not present since our target

architecture Pentium 4 does not support delayed branching.

Therefore, 244 ≈ 1013 different settings are possible. In gcc 3.3.1 for x86 that we used,

option -O0 already turns on certain loop optimizations. All improvements discussed below

are with respect to this optimization level.

95

96 7. Using random search to determine a compiler setting

1 defer-pop 23 delete-null-pointer-checks

2 force-mem 24 expensive-optimizations

3 force-addr 25 optimize-register-move

4 optimize-sibling-calls 26 schedule-insns

5 inline-functions 27 schedule-insns2

6 keep-static-consts 28 sched-interblock

7 merge-constants 29 sched-spec

8 branch-count-reg 30 sched-spec-load

9 function-cse 31 sched-spec-load-dangerous

10 strength-reduce 32 caller-saves

11 thread-jumps 33 move-all-movables

12 cse-follow-jumps 34 reduce-all-givs

13 cse-skip-blocks 35 peephole peephole2

14 rerun-cse-after-loop 36 reorder-blocks

15 rerun-loop-opt 37 reorder-functions

16 gcse 38 strict-aliasing

17 gcse-lm 39 align-functions

18 gcse-sm 40 align-labels

19 loop-optimize 41 align-loops

20 crossjumping 42 align-jumps

21 if-conversion 43 rename-registers

22 if-conversion2 44 cprop-register

Table 7.1: Optimizations in gcc 3.3.1

We use the SPECint95 benchmark suite with the reference input data. We did not use

m88ksim since this application did not compile correctly for every compiler setting. We mea-

sured the execution time using the Unix time command. We ran each application 6 times,

removed the slowest and the fastest execution time and took the average of the remaining 4

times. A Pentium 4 at 2.8GHz is chosen as our target architecture.

7.2 The random generation of compiler settings for a single

program

In this section, we investigate how the random generation of settings works in the presence

of a large number of possible settings. Figure 7.1 shows the variation of improvement for a

single program, namely, 147.vortex, when we applied 5000 different compiler optimization

settings. The vertical axis expresses the improvement in execution time, and the horizontal

axis corresponds to the evaluated settings. We define the improvement of compiler setting s

on application p as follows.

Is(p) =

(

ts0
(p)− ts(p)

ts0
(p)

)

·100%, (7.1)

where ts0
(p) stands for the execution time of compiler setting s0 which is the setting without

any optimization turned on, and ts(p) is the execution time using compiler setting s. The

7.2. The random generation of compiler settings for a single program 97

Figure 7.1: Improvement of 5000 Different Optimization Settings for 147.vortex

improvement in execution time varies between −15% and 17.5%. This shows the importance

of choosing an appropriate optimization setting of the compiler.

According to Figure 7.1, the maximum improvement which can be obtained for 147.vor-

tex, is approximately 17.5%. During the time that the iterative compilation system investigates

the search space, the function f0(n, p) keeps the current maximum value:

f0(n, p) = max{Ist (p) : 1 ≤ t ≤ n}, (7.2)

where n is the iteration number and st represents the compiler setting of the t-th iteration.

Figure 7.2 plots Equation 7.2 and this graph represents how fast the randomly generated

settings get close to the maximum improvement.

Figure 7.2 also shows that the value of f0 increases by less than 1% after the 26th iteration.

It seems appropriate to say that the random generation of settings identified one of the nearly

optimal settings at the 26th iteration. Of course, that this number is so low does not guarantee

that we will always succeed with so few iterations. Even worse, in general, the maximally

achievable performance is not known in advance, therefore the stopping criterion should be

carefully handled.

The criterion used in [40] stops the iterative compilation system in 400 iterations. Using

the same criterion to the search space of two factors and the search space of far more factors,

for instance, 46 factors, may not adequate. In order to maximize the opportunity to gain

more improvement, we use a more strict stop criterion in this chapter. Our criterion stops the

system when the current maximum f0(n, p) has not been changed by more than 1% after 100

iterations. This criterion is expressed as the function F0, defined as

F0(n, p) = f0(n, p)− f0(n−100, p) (7.3)

98 7. Using random search to determine a compiler setting

Figure 7.2: Improvement of 147.vortex

for n > 100. Using this stop criterion, the iterative compilation system for finding a nearly

optimal setting for a single application is described in Figure 7.3.

We apply this iterative compilation system to seven integer programs in SPEC95. Fig-

ure 7.4 plots the value of f0 in Equation 7.2 for each program. The graph shows that the

highest number of iterations which is necessary to determine a compiler setting is 127 for

these seven programs. We can indeed see that for each program at least 100 iterations are

required.

Table 7.2 shows the setting found for each program in case that we do not include omit-

frame-pointer. Options that are switched on are denoted by the symbol ‘1’. In Figure 7.5,

New1 shows the improvement obtained. In the same figure, New2 shows the improvement

obtained if we admit the option omit-frame-pointer. Clearly, better performance improvement

is obtained in this case. This is to be expected, since this option leaves out instructions to set

up the frame pointer and moreover can free a register that would be used to hold this pointer.

Since the x86 architecture has few visible registers, instruction scheduling can be greatly

improved and less spill code needs to be inserted. The improvements obtained by -O1, -O2,

and -O3 are shown for comparison.

As can be seen, the setting derived by our technique performs better than -O1, -O2, and

-O3 for each benchmark program. Of course, -O1, -O2, and -O3 are general compiler settings

and as such not difficult to defeat if gcc is specifically tuned for one program. Therefore, in

the next section, we will investigate whether our method can also be used to derive just one

setting for multiple programs.

7.2. The random generation of compiler settings for a single program 99

Let p be an application.

n is the iteration number.

• Repeat:

– Measure the execution time of p compiled with

a randomly generated optimization setting sn.

– If n > 100

∗ Compute F0(n, p).

• until F0(n, p) ≤ 1%

• Ismax (p) = Isn(p)

Figure 7.3: The Iterative Compilation System

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

099.go 1 1 1 1 1 1 1 1 1 1

126.gcc 1 1 1 1 1 1 1 1 1 1 1 1

129.compress 1 1 1 1 1 1 1 1 1 1

130.li 1 1 1 1 1 1 1 1 1 1 1 1 1

132.ijpeg 1 1 1 1 1 1 1 1 1 1

134.perl 1 1 1 1 1 1 1 1 1 1 1

147.vortex 1 1 1 1 1 1

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

099.go 1 1 1 1 1 1 1 1

126.gcc 1 1 1 1 1 1 1 1 1 1 1

129.compress 1 1 1 1 1 1 1 1 1 1 1 1 1 1

130.li 1 1 1 1 1 1 1 1 1

132.ijpeg 1 1 1 1 1 1 1 1

134.perl 1 1 1 1 1 1 1 1 1 1 1

147.vortex 1 1 1 1 1 1 1 1

39 40 41 42 43 44

099.go 1 1

126.gcc 1 1 1

129.compress 1 1 1 1

130.li 1 1 1

132.ijpeg 1 1 1 1 1

134.perl 1 1 1 1

147.vortex 1 1 1 1 1 1

Table 7.2: Optimization Settings Per Program

100 7. Using random search to determine a compiler setting

Figure 7.4: Improvement of Programs

Figure 7.5: Improvement of the Generated Optimization Settings

7.3. Multiple program optimization 101

Let P be a set of target programs.

n is the iteration number.

• Estimate Imax(p) with the procedure in Figure 7.3

for each program in P.

• Repeat:

– Randomly generate optimization setting s.

– Measure the execution time of each p ∈ P compiled with this setting s.

– If n > 100

∗ Compute F(n,P).

• Until F(n,P) ≤ 1%

Figure 7.6: The Iterative Compilation System for Multiple Programs

7.3 Multiple program optimization

In this section, we extend our algorithm to find a compiler setting for many programs at

the same time. Randomly generated settings are evaluated by using execution times for sev-

eral programs. Since it is impossible to compare the improvement in execution time between

different programs, we normalize the effect of the compiler settings. The improvement in ex-

ecution time is normalized as the accomplished rate of the maximum improvement for each

application. For instance, when the improvement of setting A is 3% and the maximum im-

provement, which can be gained for the application, is 30%, the normalized value of setting A

becomes 3
30
·100% = 10%. We denote the normalized effect of a setting s on a program p as

es(p), and it is defined as follows.

es(p) =
Is(p)

Ismax (p)
·100% (7.4)

where Ismax (p) represents the maximum improvement of application p.

Since we do not know the maximum improvement of an application in advance, we need

to estimate it. In this chapter, we use the nearly maximum improvement identified in Sec-

tion 7.2. After the normalization, it is possible to evaluate an optimization setting over multi-

ple programs. We take the minimum improvement over all applications for each setting as its

effect. For a set P of programs, the effect of a setting s over the programs in P is expressed

by Es(P).

Es(P) =min{es(p) : p ∈ P} (7.5)

The function f (n,P) is defined to record the current maximum improvement thus far obtained,

while the iterative compilation system carries on.

f (n,P) =max{Est (P) : 1 ≤ t ≤ n} (7.6)

102 7. Using random search to determine a compiler setting

Number of Programs Program Name

P2 099.go 126.gcc

P3 099.go 126.gcc 129.compress

P4 099.go 126.gcc 129.compress

130.li

P5 099.go 126.gcc 129.compress

130.li 132.ijpeg

P6 099.go 126.gcc 129.compress

130.li 132.ijpeg 134.perl

P7 099.go 126.gcc 129.compress

130.li 132.ijpeg 134.perl

147.vortex

Table 7.3: Combinations of Programs

where n is the iteration number and st expresses the compiler setting used in the t-th iteration.

We define the stop criterion of the iterative compilation system to find the estimated nearly

optimal setting for multiple target programs, as follows.

F(n,P) = f (n,P)− f (n−100,P) (7.7)

for n > 100.

In Figure 7.6, the iterative compilation system to search for an optimal compiler setting

for multiple programs is shown using this stop criterion. We applied this procedure to the

gcc 3.3.1 compiler and the seven integer programs in Spec95. To see the effect of the number

of programs used on the magnitude of the value Esmax (Pk) and on the number of iterations

required to reach the stop criterion, we grouped the benchmark programs into six sets P2,

. . . , P7, where each Pk contains k programs. The programs included in each Pk are shown in

Table 7.3. In Figure 7.7, f (n,Pk) is plotted for each k. We observe that the performance of the

final setting becomes lower as the number of programs in P increases. The graph also shows

that the iteration always stops in at most 114 iterations for the different Pk. We can see that P2

requires the most iterations to reach the stop criterion. It seems that the number of programs

does not affect the required number of iterations. Figure 7.8 shows Esmax (Pk) for each k. We

also show EOx (Pk) for -O1, -O2, and -O3 for comparison. The graph shows that the nearly

optimal settings obtained with the procedure in Figure 7.6 reach better values than the -Ox

options.

Figure 7.9 shows the improvement of the generated setting for P7 (shown as New1) on

each program in P7 together with the improvements from the -Ox options. The generated

setting does not have low performance for any program, although it cannot optimize ijpeg

as much as -O1 does. Nevertheless, it reaches the same performance as -O2 and -O3. For

completeness sake, we have also included omit-frame-pointer in the iterative compilation

process and the resulting performance improvements of this setting, denoted by New2, are

shown in the same figure. Not surprisingly, we can see in this figure that the obtained setting

performs better than the default -Ox settings. These results show that iterative compilation

also finds a nearly optimal setting for multiple programs.

7.3. Multiple program optimization 103

Figure 7.7: Improvement of the Programs in Pk

Figure 7.8: Transition of Esmax

104 7. Using random search to determine a compiler setting

Figure 7.9: Improvement of Identified Setting for P7

7.3.1 The effectiveness of the new setting

In order to show the effectiveness of the new setting, we apply this setting for other programs

than the seven programs in SPEC95 also. The results are shown in Figure 7.10. The list of

programs used in the graph and a short description of them is shown in Table 7.4.

As can be seen from Figure 7.10, the newly generated compiler setting (without omit-

frame-pointer) is definitely comparable to the standard -Ox settings, even if we compile pro-

grams which were not part of the training set used to derive this setting.

More importantly, in Table 7.5 the optimizations can be found which are enabled by

the new settings and by -Ox. From this table, we can see that although -O1 utilizes just 10

optimizations, -O2 and -O3 require 36 and 38 optimizations, respectively, to be turned on.

The general compiler setting derived from the iterative process only uses 25 optimizations.

Hence, we can clearly see that about 40% of the optimizations used by -O2 and -O3 do not

contribute to better overall performance, leading to the question whether the common practice

of turning on more and more optimizations in modern compilers really contributes to better

performing compilers.

7.4 Conclusion

From the results in this chapter, two major conclusions can be drawn. First we have shown

that iterative compilation can also be employed to obtain general optimization settings for

multiple programs. For this, we applied this process to a set of integer programs form the

7.4. Conclusion 105

Figure 7.10: Improvement of the Generated Optimization Setting for Other Programs

bzip2-1.0.2 Compresses files using the Burrows-

Wheeler block sorting text compression

algorithm, and Huffman coding.

chgrep-1.2.4 Search the input files for old string and

changes them to new string.

gzip-1.2.4 Reduce the size of the named files

using Lempel-Ziv coding (LZ77).

lame-3.89 A program which can be used to create

compressed audio files.

mpeg2decode Takes one or more ISO/IEC DIS

13818-2 [1] MPEG-2 video bit streams

and converts them to uncompressed video.

normalize-0.7.6 Adjust the volume of wav audio files to

a standard volume level.

potrace-1.4 A utility for tracing a bitmap,

which means, transforming a bitmap into

a smooth, scalable image.

sox-12.17.4 Convert audio files to other audio file

formats.

Table 7.4: List of Programs

106 7. Using random search to determine a compiler setting

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

New1 1 1 1 1 1 1 1 1 1 1 1

New2 1 1 1 1 1 1 1 1 1

O1 1 1 1 1 1 1

O2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

New1 1 1 1 1 1 1 1 1 1 1

New2 1 1 1 1 1 1

O1 1 1 1

O2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

39 40 41 42 43 44

New1 1 1 1 1

New2 1

O1 1

O2 1 1 1 1 1

O3 1 1 1 1 1 1

Table 7.5: Optimization Settings

SPECint95 benchmark suite. Our results show that the new compiler setting thus derived

shows comparable performance to the default -Ox settings and even better performance if

omit-frame-pointer is included as a possible optimization choice. We verified these results

by running on other programs found on the internet. These experiments also confirmed our

conclusion that a generic compiler setting can be obtained using a rather simple (black box)

approach.

As a second and major conclusion, we found that the number of optimizations required to

obtain a good performing general compiler setting is far less than the number of optimizations

used in the standard -O2 and -O3 settings. Moreover, preliminary experimentation suggests

that turning off many switches in these default settings do not affect their performance. This

raises the question whether the common practice of adding more and more optimization op-

tions to modern compilers is the right way forward. This practice makes development and

maintenance of compilers more difficult. Future research will have to be focused more and

more on the interaction of optimization settings rather than on constructing new and more

advanced optimization choices.

Chapter 8

Conclusion

In this thesis, we have first introduced an approach to the problem of selecting a compiler

optimization setting for a single application or sets of applications. Our approach is based on

generating many compiler settings using an Orthogonal Array, and an analysis of the resulting

execution times. Firstly, we applied statistical analysis, namely, the main effect and the Mann-

Whitney test, to collected execution times to determine effective compiler options. The main

effect and the Mann-Whitney test only identify few optimizations which have a sufficiently

large effect. To detect the optimizations which have a large effect among all optimizations,

we proposed a methodology which applies statistical analysis iteratively to find a complete

compiler setting. The methodology using the Mann-Whitney test is also applied to reduce

code size, which is an important optimization target for embedded systems.

Secondly, we studied another approach which takes into account interaction between

compiler options. It is well known that compiler optimizations positively or negatively in-

teract with each other. However, there exists no clear definition of interaction so that this

study introduced a formal definition of this interaction, used to select compiler optimizations.

Finally, we applied iterative compilation using a random search algorithm to identify the

optimal compiler setting for a single application. This study shows that we can find a nearly

optimal compiler setting with a reasonable number of executions. This approach enables us to

know the potential effect of the compiler optimizations we are investigating. We also showed

that this methodology can identify a compiler setting which is effective for several/many

applications. The results can be useful to evaluate the standard compiler settings (e.g., -Ox).

These three approaches generate compiler optimization settings which outperform the

standard setting -O3 from the gcc compiler on compiling applications in SPECint2000. These

results show the adequacy of our approaches for the problem of finding a good compiler

settings. Our approaches are completely separated from the implementation of the compiler

as well optimization target, which can be execution time, code size, energy consumption, and

so on. Therefore, our proposed methodologies can be applied on the top of any compiler for

any target architecture for any optimization purpose.

Currently, we are only taking into account the sequence of optimizations although the

problem of optimization strategy can be affected by other factors, application order, parameter

setting for certain optimizations like loop unrolling. Future work will address the extension

107

108 8. Conclusion

of our approach to include these other factors.

Appendix A

Compiler Options

Table A.1 shows the list of all optimization options implemented in gcc 3.3.1. ‘1’ shows

which option is turned on explicitly for each of the Ox settings. ‘*’ shows the options which

are implicitly turned on when gcc does the Ox optimization. Table A.2 shows the gcc 3.4.3

options which are not in Table A.1. We employed part of them for our experiments. The list

of optimizations which we used for our experiments are different between chapters. In each

chapter, we describe which of the options are used and for what reasons.

The options after the 55th in Table A.1 are not used throughout this thesis. The reasons

are as follows. We did not use the 55th option no-default-inline since it is the option for

applications written in C++ which we did not use in our experiments. The 56th option is not

included since this option intends to keep the inlined functions in the executable code, and it

does not do any optimization. The 57th option, guess-branch-probability uses a randomized

model to guess branch probability which means the produced code may be different for each

compile time. Since we need static results for our experiments, we did not use this option. We

did not use options 58 through 63 since they are experimental options in this version of gcc.

We also did not use the 64th option, fast-math, since it may not produce correct results all

the time. Also, the options 65 through 69 were not used since they are used when fast-math

is enabled.

109

110 A. Compiler Options

Option O1 O2 O3 Os

1 defer-pop 1 1 1 1

2 force-mem 1 1 1

3 force-addr

4 omit-frame-pointer

5 optimize-sibling-calls 1 1 1

6 inline * * * *

7 inline-functions 1

8 merge-constants 1 1 1 1

9 strength-reduce 1 1 1

10 thread-jumps 1 1 1 1

11 cse-follow-jumps 1 1 1

12 cse-skip-blocks 1 1 1

13 rerun-cse-after-loop 1 1 1

14 rerun-loop-opt 1 1 1

15 gcse 1 1 1

16 gcse-lm 1 1 1

17 gcse-sm 1 1 1

18 loop-optimize 1 1 1 1

19 crossjumping 1 1 1 1

20 if-conversion 1 1 1 1

21 if-conversion2 1 1 1 1

22 delete-null-pointer-checks 1 1 1

23 expensive-optimizations 1 1 1

24 optimize-register-move 1 1 1

25 schedule-insns 1 1 1

26 schedule-insns2 1 1 1

27 sched-interblock 1 1 1

28 sched-spec 1 1 1

29 sched-spec-load

30 sched-spec-load-dangerous

31 caller-saves 1 1 1

32 move-all-movables

33 reduce-all-givs

34 peephole 1 1 1 1

Option O1 O2 O3 Os

35 peephole2 1 1 1 1

36 reorder-blocks 1 1

37 reorder-functions 1 1 1

38 strict-aliasing 1 1 1

39 align-functions 1 1

40 align-labels 1 1

41 align-loops 1 1

42 align-jumps 1 1

43 rename-registers 1

44 cprop-registers 1 1 1 1

45 unroll-loops

46 prefetch-loop-arrays

47 function-sections

48 data-sections

49 float-store

50 single-precision-constant

51 delayed-branch 1 1 1 1

52 keep-static-consts

53 function-cse * * * *

54 branch-count-reg * * * *

55 no-default-inline

56 keep-inline-functions

57 guess-branch-probability 1 1 1 1

58 branch-probabilities

59 new-ra

60 tracer

61 ssa

62 ssa-ccp

63 ssa-dce

64 fast-math

65 math-errno

66 unsafe-math-optimizations

67 finite-math-only

68 trapping-math

69 signaling-nans

Table A.1: All Options in gcc 3.3.1

Option O1 O2 O3 Os

1 web

2 unit-at-a-time

3 peel-loops

4 unswitch-loops

5 old-unroll-loops

6 branch-target-load-optimize

7 branch-target-load-optimize2

8 gcse-las

Table A.2: Additional Options in gcc 3.4.3

Appendix B

Benchmark Suites

In this thesis, three benchmark suites are used: Mediabench, SPEC95 and SPEC2000.

Chapter 5 employs Mediabench. We used all applications in this benchmark suite, how-

ever two of them are dropped at some platforms due to the compile errors.

Chapter 6 and Chapter 7 use SPEC95. From this benchmark suite, we used specially the

integer programs. All these programs in SPEC CINT95 are written in C. We used them except

for 124.m88ksim, since this application had some problems to compile.

SPEC CINT2000 is used in the remainder of the chapters. This benchmark suite contains

12 benchmarks, and we used 7 of them in our experiments. We have chosen again the applica-

tions written in C and dropped 4 applications, 176.gcc, 186.crafty, 252.eon, and 253.perlbmk,

due to compile errors. Three applications, 168.wupwise, 171.swim, and 179.art, in the SPEC

CFP2000 benchmark suite are used in Chapter 4. The rest of applications are left out due to

compile errors.

Mediabench

• adpcm (C)

ADPCM stands for Adaptive Differential Pulse Code Modulation. It is a family of

speech compression and decompression algorithms. A common implementation takes

16-bit linear PCM samples and converts them to 4-bit samples, yielding a compression

rate of 4:1. The ADPCM code used is the Intel/DVI ADPCM code which is being

recommended by the IMA Digital Audio Technical Working Group.

• epic (C)

EPIC (Efficient Pyramid Image Coder) is an experimental image data compression

utility written in the C programming language. The compression algorithms are based

on a biorthogonal critically-sampled dyadic wavelet decomposition and a combined

run-length/Huffman entropy coder. The filters have been designed to allow extremely

fast decoding on conventional (i.e., non-floating point) hardware, at the expense of

slower encoding and a slight degradation in compression quality (as compared to a

good orthogonal wavelet decomposition).

• g721 (C)

The files in this package comprise ANSI-C language reference implementations of the

111

112 B. Benchmark Suites

CCITT (International Telegraph and Telephone Consultative Committee) G.711, G.721

and G.723 voice compressions. This source code is released by Sun Microsystems, Inc.

to the public domain.

• ghostscript (C)

Ghostscript is the name of a set of software that provides: (1) An interpreter for the

PostScript (TM) language, and (2) A set of C procedures (the Ghostscript library) that

implement the graphics capabilities that appear as primitive operations in the PostScript

language, and (3) An interpreter for Portable Document Format (PDF) files.

• gsm (C)

GSM 06.10 compresses frames of 160 13-bit samples (8 kHz sampling rate, i.e. a frame

rate of 50 Hz) into 260 bits; for compatibility with typical UNIX applications, our

implementation turns frames of 160 16-bit linear samples into 33-byte frames (1650

Bytes/s). The quality of the algorithm is good enough for reliable speaker recognition;

even music often survives transcoding in recognizable form (given the bandwidth lim-

itations of 8 kHz sampling rate).

• jpeg (C)

This package contains C software to implement JPEG image compression and decom-

pression. JPEG is a standardized compression method for full-color and gray-scale im-

ages. JPEG is intended for compressing “real-world” scenes; line drawings, cartoons

and other non-realistic images are not its strong suite. JPEG is lossy, meaning that the

output image is not exactly identical to the input image.

• mesa (C)

Mesa is a 3-D graphics library with an API which is very similar to that of OpenGL.

• mpeg2 (C)

mpeg2play is a player for MPEG-1 and MPEG-2 video bitstreams. It is based on

mpeg2decode by the MPEG Software Simulation Group. In mpeg2decode the em-

phasis is on correct implementation of the MPEG standard and comprehensive code

structure. The latter is not always easy to combine with high execution speed. There-

fore a version has been derived which is optimized for higher decoding and display

speed at the cost of a less straightforward implementation and slightly non-compliant

decoding. In addition all conformance checks and some fault recovery procedures have

been omitted from mpeg2play.

• pegwit (C)

Pegwit is a program for performing public key encryption and authentication. It uses

an elliptic curve over GF(2255), SHA1 for hashing, and the symmetric block cipher

square.

• pgp (C)

PGP uses “message digests” to form signatures. A message digest is a 128-bit cryp-

tographically strong one-way hash function of the message (MD5). To encrypt data,

113

it uses a block-cipher IDEA, RSA for key management and digital signatures. A ses-

sion key is generated for an individual message and the message is encrypted by IDEA

using the session key and the session key is encrypted using RSA.

• rasta (C)

RASTA is a program for the rasta-plp processing and it supports the following front-

end techniques: PLP, RASTA, and Jah-RASTA with fixed Jah-value. The Jah-Rasta

technique handles two different types of harmful effects for speech recognition systems,

namely additive noise and spectral distortion, simultaneously, by bandpass filtering the

temporal trajectories of a non-linearly transformed critical band spectrum.

SPEC CINT95

• 099.go (C)

Go plays the game of go against itself. The benchmark is stripped down version of a

successful go-playing computer program. The benchmark is implemented in ANSI C

(with function prototypes). There is a great deal of pattern matching and look-ahead

logic. As is common in this type of program, up to a third of the run-time can be spent

in the data-management routines.

• 124.m88ksim (C)

M88ksim is a simulator written in C. It can measure the number of clocks which an

88100 microprocessor would take to execute a program. It is essentially an integer

program, although the exact instruction mix of the simulator depends on the program

being simulated. The simulator can pass system call requests from the simulated pro-

gram through to the host system running the simulator.

• 126.gcc (C)

gcc is based on the GNU C compiler version 2.5.3 distributed by the Free Software

Foundation. The benchmark measures the time it takes for the GNU C compiler to

convert a number of its pre-processed source files into optimized Sparc assembly lan-

guage (.s files) output.

• 129.compress (C)

Compress reduces the size of the named files using adaptive Lempel-Ziv coding. When-

ever possible, each files is replaced by one with the extension .Z. If no files are speci-

fied, standard input is compressed to standard output. Compressed files can be restored

to their original form using Un- compress. The amount of compression obtained de-

pends upon the size of the input, the number of bits per character, and the distri- bution

of common substrings. Typically, text such as source code or English is reduced by

50-60%. Compression is gen- erally better than pack (Huffman coding) or compact

(adaptive Huffman) and takes less time to compute.

• 130.li (C)

Li is a Lisp interpreter written in C. The workload used is a translation of the Gabriel

benchmarks by John Shakshober of DEC. These are boyer, browse, ctak, dderiv, deriv,

destru-mod, destru, div2, fft, puzzle, tak, takl, takr, triang. These are from the public

114 B. Benchmark Suites

domain and are described in the “Performance Evaluation of Lisp Systems” by Richard

Gabriel.

• 132.ijpeg (C)

Image compression and decompression on in-memory JPEG images. The benchmark

application performs a series of compressions at differing quality levels over a vari-

ety of images. The workload is taken from the behavior of someone seeking the best

tradeoff between space and time for a variety of images.

• 134.perl (C)

This is an interpreter for the Perl language. The inputs are the scripts that performing

some basic math calculations and word lookups in associative arrays. As much as 10%

of the time can be spent in routines commonly found in libc.a: malloc, free, memcpy,

etc.

• 147.vortex (C)

The benchmark 147.vortex is a subset of a full object oriented database program called

VORTEx. VORTEx stands for “Virtual Object Runtime EXpository”. Transactions to

and from the database are translated through a schema. A schema provides the neces-

sary information to generate the mapping of the internally stored data block to a model

viewable in the context of the application. The schema as provided with the benchmark

is pre-configured to manipulate three different databases: mailing list, parts list, and

geometric data. Both litle-endian and big-endian binaries for the schema are provided.

The benchmark builds and manipulates three separate, but inter-related databases based

on the schema. The size of the database is scalable, and for CINT95 guidelines has

been restricted to about 40 Mbytes. VORTEx been modified to not commit transac-

tions to memory in order to remove input-output activity from this CINT95 (compo-

nent) benchmark. The workload of VORTEx has been modeled after common object-

oriented database benchmarks with modifications to vary the mix of transactions.

SPEC CINT2000

• 164.gzip (C)

gzip (GNU zip) is a popular data compression program written by Jean-Loup Gailly for

the GNU project. ‘gzip’ uses Lempel-Ziv coding (LZ77) as its compression algorithm.

SPEC’s version of gzip performs no file I/O other than reading the input. All compres-

sion and decompression happens entirely in memory. This is to help isolate the work

done to just the CPU and the memory subsystem.

• 175.vpr (C)

VPR is a placement and routing program; it automatically implements a technology-

mapped circuit (i.e. a netlist, or hypergraph, composed of FPGA logic blocks and I/O

pads and their required connections) in a Field-Programmable Gate Array (FPGA)

chip. VPR is an example of an integrated circuit computer-aided design program, and

algorithmically it belongs to the combinatorial optimization class of programs.

115

• 176.gcc (C)

176.gcc is based on gcc Version 2.7.2.2. It generates code for a Motorola 88100 pro-

cessor. The benchmark runs as a compiler with many of its optimization flags enabled.

176.gcc has had its inlining heuristics altered slightly, so as to inline more code than

would be typical on a Unix system in 1997. It is expected that this effect will be

more typical of compiler usage in 2002. This was done so that 176.gcc would spend

more time analyzing its source code inputs, and use more memory. Without this effect,

176.gcc would have done less analysis, and needed more input workloads to achieve

the run times required for SPECint2000.

• 181.mcf (C)

A benchmark derived from a program used for single-depot vehicle scheduling in pub-

lic mass transportation. The program is written in C, the benchmark version uses almost

exclusively integer arithmetic.

The program is designed for the solution of single-depot vehicle scheduling (sub-

)problems occurring in the planning process of public transportation companies. It

considers one single depot and a homogeneous vehicle fleet. Based on a line plan and

service frequenciesd, so-called timetabled trips with fixed departure/arrival locations

and times are derived. Each of this timetabled trip has to be serviced by exactly one

vehicle. The links between these trips are so-called dead-head trips. In addition, there

are pull-out and pull-in trips for leaving and entering the depot.

• 186.crafty (C)

Crafty is a high-performance Computer Chess program that is designed around a 64-

bit word. It runs on 32 bit machines using the “long long” (or similar, as int64 in

Microsoft C) data type. It is primarily an integer code, with a significant number of

logical operations such as and, or, exclusive or and shift. It can be configured to run a

reproducible set of searches to compare the integer/branch prediction/pipe-lining facil-

ities of a processor.

• 197.parser (C)

The Link Grammar Parser is a syntactic parser of English, based on link grammar, an

original theory of English syntax. Given a sentence, the system assigns to it a syntactic

structure, which consists of set of labeled links connecting pairs of words.

The parser has a dictionary of about 60000 word forms. It has coverage of a wide

variety of syntactic constructions, including many rare and idiomatic ones. The parser

is robust; it is able to skip over portions of the sentence that it cannot understand,

and assign some structure to the rest of the sentence. It is able to handle unknown

vocabulary, and make intelligent guesses from context about the syntactic categories of

unknown words.

• 252.eon (C++)

Eon is a probabilistic ray tracer. It sends a number of 3D lines (rays) into a 3D polyg-

onal model. Intersections between the lines and the polygons are computed, and new

lines are generated to compute light incident at these intersection points. The final re-

sult of the computation is an image as seen by camera. The computational demands of

116 B. Benchmark Suites

the program are much like a traditional deterministic ray tracer as described in basic

computer graphics texts, but it has less memory coherence because many of the random

rays generated in the same part of the code traverse very different parts of 3D space.

• 253.perlbmk (C)

253.perlbmk is a cut-down version of Perl v5.005-03, the popular scripting language.

SPEC’s version of Perl has had most of OS-specific features removed. In addition to

the core Perl interpreter, several third-party modules are used: MD5 v1.7, MHonArc

v2.3.3, IO-stringy v1.205, MailTools v1.11, TimeDate v1.08.

• 254.gap (C)

This program implements a language and library designed mostly for computing in

groups (GAP is an acronym for Groups, Algorithms and Programming).

• 255.vortex (C)

VORTEx is a single-user object-oriented database transaction benchmark which which

exercises a system kernel coded in integer C. The VORTEx benchmark is a derivative

of a full OODBMS that has been customized to conform to SPEC CINT2000 (compo-

nent measurement) guidelines. The benchmark 255.vortex is a subset of a full object

oriented database program called VORTEx. Transactions to and from the database are

translated through a schema. A schema provides the necessary information to generate

the mapping of the internally stored data block to a model viewable in the context of

the application.

• 256.bzip2 (C)

256.bzip2 is based on Julian Seward’s bzip2 version 0.1. The only difference between

bzip2 0.1 and 256.bzip2 is that SPEC’s version of bzip2 performs no file I/O other than

reading the input. All compression and decompression happens entirely in memory.

This is to help isolate the work done to only the CPU and memory subsystem.

• 300.twolf (C)

The TimberWolfSC placement and global routing package is used in the process of

creating the lithography artwork needed for the production of microchips. Specifically,

it determines the placement and global connections for groups of transistors (known

as standard cells) which constitute the microchip. The placement problem is a permu-

tation. Therefore, a simple or brute force exploration of the state space would take an

execution time proportional to the factorial of the input size. For problems as small

as 70 cells, a brute force algorithm would take longer than the age of the universe on

the world’s fastest computer. Instead, the TimberWolfSC program uses simulated an-

nealing as a heuristic to find very good solutions for the row-based standard cell design

style. In this design style, transistors are grouped together to form standard cells. These

standard cells are placed in rows so that all cells of a row may share power and ground

connections by abutment. The simulated annealing algorithm has found the best known

solutions to a large group of placement problems. The global router which follows the

placement step interconnects the microchip design. It utilizes a constructive algorithm

followed by iterative improvement.

117

SPEC FP2000

• 168.wupwise (Fortran 77)

“wupwise” is an acronym for “Wuppertal Wilson Fermion Solver”, a program in the

area of lattice gauge theory (quantum chromodynamics).

Lattice gauge theory is a discretization of quantum chromodynamics which is generally

accepted to be the fundamental physical theory of strong interactions among the quarks

as constituents of matter. The most time-consuming part of a numerical simulation in

lattice gauge theory with Wilson fermions on the lattice is the computation of quark

propagators within a chromodynamic background gauge field. These computations use

up a major part of the world’s high performance computing power.

• 171.swim (Fortran 77)

Benchmark weather prediction program for comparing the performance of current su-

percomputers. The model is based on the paper, “The Dynamics of Finite-Difference

Models of the Shallow-Water Equations”, by Robert Sadourny, J. ATM. SCIENCES,

VOL 32, NO 4, APRIL 1975.

Adapted by SPEC for use in the SPEC CPU suites as an example of a compute intensive

floating point program that was once relegated only to “supercomputers” but can now

be done on current computer systems.

• 172.mgrid (Fortran 77)

172.mgrid demonstrates the capabilities of a very simple multigrid solver in computing

a three dimensional potential field.

Adapted by SPEC from the NAS Parallel Benchmarks with modifications for portabil-

ity and a different workload.

• 173.applu (Fortran 77)

Solution of five coupled nonlinear PDE’s, on a 3-dimensional logically structured

grid, using an implicit psuedo-time marching scheme, based on two-factor approxi-

mate factorization of the sparse Jacobian matrix. This scheme is functionally equiva-

lent to a nonlinear block SSOR iterative scheme with lexicographic ordering. Spatial

discretization of the differential operators are based on second-order accurate finite

volume scheme. As a result, the degree of exploitable parallelism during this phase

is limited to O(N2) as opposed to O(N3) in other phases and its spatial distribution is

non-homogenous.

• 177.mesa (C)

Mesa is a free OpenGL work-alike library, since it supports a generic frame buffer.

It can be configured to have no OS or window system dependencies. Any number of

client programs can be written to stress FP, scalar or memory performance (or a mix).

Output can be written to image files for verification.

118 B. Benchmark Suites

• 178.galgel (Fortran 90)

This problem is a particular case of the GAMM (Gesellschaft fuer Angewandte Math-

ematik und Mechanik) benchmark devoted to numerical analysis of oscillatory insta-

bility of convection in low-Prandtl-number fluids.

• 179.art (C)

The Adaptive Resonance Theory 2 (ART 2) neural network is used to recognize objects

in a thermal image. The objects are a helicopter and an airplane. The neural network

is first trained on the objects. After training is complete, the learned images are found

in the scanfield image. A window corresponding to the size of the learned objects is

scanned across the scanfield image and serves as input for the neural network. The

neural network attempts to match the windowed image with one of the images it has

learned.

• 183.equake (C)

The program simulates the propagation of elastic waves in large, highly heterogeneous

valleys, such as California’s San Fernando Valley, or the Greater Los Angeles Basin.

The goal is to recover the time history of the ground motion everywhere within the

valley due to a specific seismic event. Computations are performed on an unstructured

mesh that locally resolves wavelengths, using a finite element method.

• 187.facerec (Fortran 90)

This is an implementation of the face recognition system described in [41].

• 188.ammp (C)

The benchmark runs molecular dynamics (i.e. solves the ODE defined by Newton’s

equations for the motions of the atoms in the system) on a protein-inhibitor complex

which is embedded in water. The energy is approximated by a classical potential or

“force field”. The protein is HIV protease complexed with the inhibitor indinavir. There

are 9582 atoms in the water and protein making this representative of a typical large

simulation. This benchmark is derived from published work on understanding drug

resistance in HIV.

• 189.lucas (Fortran 90)

Performs the Lucas-Lehmer test to check primality of Mersenne numbers 2p−1, using

arbitrary-precision (array-integer) arithmetic. This is accomplished by the Mersenne-

mod squaring via the discrete weighted transform technique of Crandall and Fagin. A

data-local, cache-friendly FFT is used to efficiently perform the large-integer squaring

of the Lucas-Lehmer iterations.

• 191.fma3d (Fortran 90)

FMA-3D is a finite element method computer program designed to simulate the inelas-

tic, transient dynamic response of three-dimensional solids and structures subjected to

impulsively or suddenly applied loads. As an explicit code, the program is appropriate

for problems where high rate dynamics or stress wave propagation effects are impor-

tant. In contrast to programs using implicit time integration algorithms, the program

uses a large number of relatively small time steps, with the solution for the next con-

figuration of the body being explicit (and inexpensive) at each step. To further reduce

119

the computational effort, the program has a complete implementation of Courant sub-

cycling in which each element is integrated with the maximum time step permitted

by local stability criteria. For simulations that have large differences in element criti-

cal time steps over the mesh, very significant savings in execution time are achieved.

There are no inherent limits on the size of an analysis model, and storage allocation is

dynamic within the code.

• 200.sixtrack (Fortran 77)

The function of this program is to track a variable number of particles for a variable

number of turns round a model of a particle accelerator such as the Large Hadron

Collider (LHC) to check the Dynamic Aperture (DA), i.e. the long term stability of the

beam.

• 301.apsi (Fortran 77)

This program solves for the mesoscale and synoptic variations of potential tempera-

ture, U AND V wind components, and the mesoscale vertical velocity W pressure and

distribution of pollutants C having sources Q. The synoptic scale components are in

quassi-steady state balance, while the mesoscale pressure and velocity W are found

diagnostically.

Bibliography

[1] EmbeddedC++. http://www.caravan.net/ec2plus/.

[2] EmbeddedJAVA. http://java.sun.com/j2se/embedded/.

[3] Open research compiler for itanium processor family.

http://ipf-orc.sourceforge.net.

[4] Standard C. http://www.open-std.org/jtc1/sc22/wg14/.

[5] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[6] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,

Norwell, 1988.

[7] A. Beszédes, R. Ferenc, T. Gyimóthy, A. Dolenc, and K. Karsisto. Survey of code-size

reduction methods. ACM Comput. Surv., 35(3):223–267, 2003.

[8] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and E. Rohou. Iterative com-

pilation in a non-linear optimisation space. In Proc. Workshop on Profile and Feedback

Directed Compilation, 1998.

[9] G.E.P. Box, W.G. Hunter, and J.S. Hunter. Statistics for Eperimenters. An Introduction

to Design, Data Analysis, and Model Building. Wiley and Sons, 1978.

[10] M.J. Breternitz and R. Smith. Enhanced compression techniques to simplify program

decompression and execution. In Proc. International Conference on Computer Design

(ICCD), page 170, 1997.

[11] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and K. De Bosschere. Link-time

optimization of arm binaries. In Proc. Languages, Compilers, and Tools for Embedded

Systems (LCTES), pages 211–220, 2004.

[12] K. Chow and Y. Wu. Feedback-directed selection and characterization of compiler

optimizations. In Proc. 2nd Workshop on Feedback Directed Optimization, 1999.

[13] GNU Consortium. GCC online documentation.

http://gcc.gnu.org/onlinedocs/.

121

122 BIBLIOGRAPHY

[14] K.D. Cooper, M.W. Hall, and L. Torczon. Unexpected side effects of inline substitu-

tion: A case study. ACM Letters on Programming Languages and Systems, 1(1):22–32,

March 1992.

[15] K.D. Cooper and N. McIntosh. Enhanced code compression for embedded risc pro-

cessors. In Proc. Programming Language Design and Implementation (PLDI), pages

139–149, 1999.

[16] K.D. Cooper, P.J. Schielke, and D. Subramanian. Optimizing for reduced code space

using genetic algorithms. In Proc. Languages, Compilers, and Tools for Embedded

Systems (LCTES), pages 1–9, 1999.

[17] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control depen-

dence graph. ACM Trans. Programming Languages and Systems, 13(4):451–490, 1991.

[18] S.K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for code

compaction. ACM Trans. Programming Languages and Systems, 22(2):378–415, 2000.

[19] W.J. Dixon and F.J. Massey. Introduction to Statistical Analysis. McGraw-Hill, 1957.

[20] J. Ernst, W. Evans, C.W. Fraser, T.A. Proebsting, and S. Lucco. Code compression.

In Proc. Programming Language Design and Implementation (PLDI), pages 358–365,

1997.

[21] Joseph A. Fisher, Paolo Faraboschi, and Clifford Young. Embedded computing: a VLIW

approach to architecture, compilers and tools. Morgan-Kaufmann, 2005.

[22] M. Franz and T. Kistler. Slim binaries. Commun. ACM, 40(12):87–94, 1997.

[23] C.W. Fraser, E.W. Myers, and A.L. Wendt. Analyzing and compressing assembly code.

In Proc. SIGPLAN symposium on Compiler Construction, pages 117–121, 1984.

[24] G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg. Evaluating iterative compila-

tion. In Proc. Languages and Compilers for Parallel Computers (LCPC), pages 305–

315, 2002.

[25] S.V. Gheorghita, H. Corporaal, and T. Basten. Iterative compilation for energy reduc-

tion. Journal of Embedded Computing, 1(4):509–520, 2005.

[26] E. Granston and A. Holler. Automatic recommendation of compiler options. In Proc.

4th Workshop on Feedback-Directed and Dynamic Optimization, 2001.

[27] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Automatic selection of com-

piler options using non-parametric inferential statistics. In Proc. Parallel Architectures

and Compilation Techniques (PACT), pages 123–132, 2005.

[28] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Generating new general

compiler optimization settings. In Proc. International Conference on Supercomputing

(ICS), pages 161–168, 2005.

BIBLIOGRAPHY 123

[29] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Optimizing general purpose

compiler optimization. In Proc. Computing Frontiers, pages 180–188, 2005.

[30] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Code size reduction by

compiler tuning. In Proc. Workshop on Embedded Computer Systems: Architectures,

Modeling, and Simulation (SAMOS), pages 186–195, 2006.

[31] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. On the impact of data input

sets on statistical compiler tuning. In Proc. Workshop on Performance Optimization for

High-Level Languages and Libraries (POHLL), 2006.

[32] A.S Hedayat, N.J.A Sloane, and John Stufken. Orthogonal Arrays: Theory and Appli-

cations. Springer Series in Statistics, 1999.

[33] J.L. Hennessy and D.A. Patterson. Computer Architecture, A Quantitative Approach.

Morgan Kaufmann Publishers, 1990.

[34] K. Heydeman, F. Bodin, P.M.W. Knijnenburg, and L. Morin. A global trade-off strategy

for loop unrolling for VLIW architectures. In Proc. Workshop on Compilers for Parallel

Computers (CPC), pages 59–70, 2003.

[35] Myles Hollander and Douglas A. Wolfe. Nonparametric Statistical Methods. Wiley

Series in Probability and Statistics, 1999.

[36] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. van de Wiel. A code compression sys-

tem based on pipelined interpreters. Software: Practice and Experience, 29(11):1005–

1023, 1999.

[37] Intel. Vtune performance analyzers. http://www.intel.com/software/products/vtune/.

[38] Mark S. Johnson and Terrence C. Miller. Effectiveness of a machine-level, global opti-

mizer. In Proc. SIGPLAN symposium on Compiler construction, pages 99–108. ACM

Press, 1986.

[39] Ken Kennedy and John R. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers, 2002.

[40] T. Kisuki, P.M.W. Knijnenburg, and M.F.P. O’Boyle. Combined selection of tile sizes

and unroll factors using iterative compilation. In Proc. Parallel Architectures and Com-

pilation Techniques (PACT), pages 237–246, 2000.

[41] Martin Lades, Jan C. Vorbrüggen, Joachim Buhmann, J. Lange, Christoph von der Mals-

burg, Rolf P. Würtz, and Wolfgang Konen. Distortion invariant object recognition in the

dynamic link architecture. IEEE Transactions on Computers, 42:300–311, 1993.

[42] Monica S. Lam. Software pipelining: An effective scheduling technique for vliw ma-

chines. In Proc. Programming Language Design and Implementation (PLDI), pages

318–328, 1988.

124 BIBLIOGRAPHY

[43] C. Lefurgy, P. Bird, I. Chen, and T. Mudge. Improving code density using compression

techniques. In Proc. International Symposium on Microarchitecture (MICRO 30), pages

194–203, 1997.

[44] H. Lekatsas and W. Wolf. Code compression for embedded systems. In Proc. Design

Automation Conference, pages 516–521, 1998.

[45] Robert L Mason, Richard F. Gunst, and James L. Hess. Statistical Design and Analysis

of Experiments. Willey Interscience, 2003.

[46] K.E. Mathias, L.J. Eshelman, J.D. Schaffer, L. Augusteijn, P.F. Hoogendijk, and

R. van de Wiel. Code compaction using genetic algorithms. In Proc. Genetic and

Evolutionary Computation Conference (GECCO), pages 710–717, 2000.

[47] The MathWorks. MATLAB and Simulink. http://www.mathworks.com/.

[48] Jason Merrill. GENERIC and GIMPLE: A new tree representation for entire functions.

In Proc. GCC Developers Summit, pages 171–180, 2003.

[49] A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to automatic pro-

duction of compiler heuristics. In Proc. Artificial Intelligence: Methodology, Systems,

and Applications (AIMSA), LNCS 2443, pages 41–50, 2002.

[50] S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,

1997.

[51] M. Naik and J. Palsberg. Compiling with code-size constraints. Trans. on Embedded

Computing Sys., 3(1):163–181, 2004.

[52] A. Nisbet. GAPS: Genetic algorithm optimised parallelization. In Proc. Workshop on

Profile and Feedback Directed Compilation, 1998.

[53] R. P. J. Pinkers, P. M. W. Knijnenburg, M. Haneda, and H. A. G. Wijshoff. Statistical

selection of compiler options. In Proc. Workshop on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems (MASCOTS), pages 494–501, 2004.

[54] William Pugh. The omega test: a fast and practical integer programming algorithm for

dependence analysis. In Supercomputing, pages 4–13, 1991.

[55] N.J.A. Sloane. A library of orthogonal arrays.

http://www.research.att.com/˜njas/.

[56] M. Stephenson, M. Martin, and U.M. O’Reilly. Meta optimization: Improving com-

piler heuristics with machine learning. In Proc. Programming Language Design and

Implementation (PLDI), pages 77–90, 2003.

[57] B. De Sutter, H. Vandierendonck, B. De Bus, and K. De Bosschere. On the side-effects

of code abstraction. In Proc. Language, Compiler, and Tool for Emebedded Systems

(LCTES), pages 244–253, 2003.

BIBLIOGRAPHY 125

[58] J.P. Tremblay and P.G Sorenson. The Theory and Practice of Compiler Writing.

McGraw-Hill, 1985.

[59] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D.I. August. Compiler

optimization-space exploration. In Proc. International Symposium on Code Genera-

tion and Optimization, pages 204–215, 2003.

[60] W.M. Waite and G. Goos. Compiler Construction. Springer Verlag, 1984.

[61] D.L. Whitfield and M.L. Soffa. An approach for exploring code improving transforma-

tions. ACM Trans. on Programming Languages and Systems, 19(6):1053–1084, 1997.

[62] A. Wolfe and A. Chanin. Executing compressed programs on an embedded risc archi-

tecture. In Proc. International Symposium on Microarchitecture (MICRO 25), pages

81–91, 1992.

[63] M. Wolfe and C.-W. Tseng. The Powertest for data dependence. Technical Report CS/E

90-015, Oregon Graduate Institute of Science and Technology, 1990.

[64] M. Zhao, B. Childers, and M.L. Soffa. Predicting the impact of optimizations for em-

bedded systems. In Proc. Languages, Compilers, and Tools for Embedded Systems

(LCTES), pages 1–11, 2003.

[65] W. Zhao, B. Cai, D. Whalley, M.W. Bailey, R. van Engelen, X. Yuan, J.D. Hiser, J.W.

Davidson, and K. Gallivan. VISTA: A system for interactive code improvement. In

Proc. Joint Conference on Languages, Compilers, and Tools for Embedded Systems

& Software and Compilers for Embedded Systems (LCTES-SCOPES), pages 155–164,

2002.

Samenvatting

Sinds de uitvinding van de eerste compiler zijn vele technieken ontwikkeld om de code op

het moment van compileren te optimaliseren. Het is bekend dat zulke compiler optimalisaties

elkaar kunnen beı̈nvloeden: sommige combinaties van optimalisaties kunnen elkaars effect

versterken, terwijl andere combinaties elkaars effect kunnen verkleinen. Daarom is het cruci-

aal om, bij een toename van het aantal mogelijke compiler optimalisaties, uit te zoeken hoe je

ze zo goed mogelijk kunt benutten. Hier is al veel onderzoek naar verricht, maar er is tot nu

toe geen doorbraak bereikt. In dit proefschrift stellen wij methodes voor om op automatische

wijze een instelling van compiler optimalisaties te bepalen, en wij analyseren de effectiviteit

van deze methodes.

De eerste benadering valt binnen het kader van Design of Experiments (DoE) [9]. DoE

wordt gebruikt om op effectieve wijze gegevens te verzamelen en te analyseren. Bij DoE

worden de verzamelde gegevens met statistische methodes geanalyseerd. In dit proefschrift

passen wij twee soorten statistische analyse toe, namelijk het main effect [32] en de Mann-

Whitney test [35]. We maken gebruik van orthogonale arrays (OAs) [32] om onze exper-

imenten te ontwerpen. OAs staan bekend als geschikte hulpmiddelen bij het plannen van

experimenten waarmee je het effect van verschillende factoren op een bepaalde uitkomst wilt

bepalen. In onze benadering correspondeert een kolom van een OA met een compiler optie.

Derhalve legt een rij van een OA een complete instelling van compiler optimalisaties vast.

Het main effect en de Mann-Whitney test worden toegepast op de resulterende profiling data,

en zij identificeren compiler opties met een groot effect. De analyses met het main effect en

de Mann-Whitney test zijn echter conservatief, zodat ze maar een klein aantal optimalisaties

met een groot effect vinden. Daarom stellen wij een iteratief algorithme voor. Hierin wordt in

eerste instantie een gedeeltelijke instelling van compiler opties bepaald. Vervolgens wordt het

experiment herhaald met deze gedeeltelijke instelling. Dit levert weer nieuwe compiler opties

op die vastgesteld kunnen worden. Op deze manier krijgen we stap voor stap een complete

instelling van compiler opties.

Bij de eerste benadering meten we het effect van iedere compiler optie apart. Bij de

tweede benadering, daarentegen, kijken we meer naar de interactie tussen verschillende com-

piler opties, de invloed die de compiler opties op elkaar kunnen hebben. Bij deze aanpak

meten we het effect van combinaties van compiler opties. We gebruiken een vast aantal com-

piler instellingen, die zijn ontworpen met een orthogonaal array. Nadat we het begrip interac-

tie hebben gedefinieerd, berekenen we met de gekozen compiler instellingen het effect van de

interactie van bepaalde combinaties van compiler opties. Deze benadering identificeert een

optimale compiler instelling, die geschikt is voor meerdere toepassingen.

127

128 Samenvatting

Onze derde benadering maakt gebruik van iteratieve compilatie [8, 40] met random

search om een optimale instelling van de compiler te vinden. Deze aanpak laat zien dat we

al na een beperkt aantal iteraties een optimale compiler instelling kunnen identificeren. Het

belangrijkste verschil tussen deze benadering en de twee eerdere is dat de twee eerdere be-

naderingen alleen optimalisaties selecteren die significant effectief zijn. Bij iteratieve com-

pilatie, daarentegen, bevat de gekozen compiler instelling, als gevolg van de willekeurige

generatie van testinstellingen, meerdere optimalisaties zonder effect. Deze benadering maakt

het mogelijk om te schatten hoeveel verbetering we maximaal nog kunnen bereiken met de

compiler optimalisaties. Daarom kunnen de resultaten van deze benadering gebruikt wor-

den voor de evaluatie van compiler instellingen. Bijvoorbeeld de evaluatie van de standaard

instellingen van de compiler (zoals -Ox) of de instelling die we met de vorige benadering

hadden geı̈dentificeerd. We hebben de iteratieve compilatie ook toegepast om één compiler

instelling te vinden die zo goed mogelijk is voor meerdere toepassingen. We vergelijken de

resulterende instelling vervolgens met de geschatte optimale compiler instelling voor iedere

toepassing afzonderlijk.

De compiler instellingen die we met onze drie benaderingen vinden, werken beter dan de

-O3 instelling van de gcc-compiler. Uit de resultaten in dit proefschrift concluderen we dat

het inderdaad mogelijk en zinvol is om de compiler optimalisaties met statistische methodes

in te stellen.

Met onze methodes kunnen gebruikers hun eigen optimalisatiedoel kiezen. Ze kunnen

zich bijvoorbeeld richten op de execution time, de lengte van de code, of het energieverbruik.

Onze methodes zijn derhalve breed toe te passen.

Bovendien zijn alle benaderingen in dit proefschrift onafhankelijk van de feitelijke im-

plementatie van compilers en toepassingsprogramma’s. Daarom is het gemakkelijk om onze

methodes toe te passen op een willekeurige combinatie van een compiler en een toepassing.

Deze veelzijdigheid is uniek. Hiermee onderscheiden onze resultaten zich van die van ander

onderzoek in dit vakgebied.

Acknowledgement

I would like to thank my parents and my sisters for their support during my study in Leiden. I

am also grateful to my uncle and his family living in the Netherlands for their concern about

me. I felt reassured because of them. I would like to thank my roommate Rudy for making

tea at end of the day, it was refreshing after a tiring study day. My friends helped me all the

time, and it was impossible to finish writing my thesis without them. I hope that I can help

them in some way in the future.

129

Curriculum Vitae

Masayo Haneda was born in Hyogo, Japan on January 21st in 1978. She received her BS and

MS degrees of Science from Nara Women’s University in 2000 and 2002, respectively. Since

May 2002, she has been a Ph.D. student at Leiden Institute of Advanced Computer Science

under the supervision of Professor Harry A.G. Wijshoff and Dr. Peter M.W. Knijnenburg. She

has worked on the FAME project from the Nederlandse Organisatie voor Wetenschappelijk

Onderzoek (NWO). The results of her research are presented in this thesis.

131

