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5
Worldsheet cosmology

In the previous chapter we have discussed the difficulties one faces when studying
inflation in a separated but controlled environment in any supergravity theory. We
have seen that there is a substantial worry that other parts of the theory will contribute
to inflation in a non-negligible fashion. In this chapter we will capitalize on precisely
this, employing the opportunity inflation provides to constrain unknown physics. To
incorporate a complete system, we have to go back to the roots of string theory.
Therefore, our approach starts from the worldsheet description of string theory, using
conformal invariance to investigate the (coarse) constraints that inflation imposes on
the theory. The chapter is based on [226].

5.1 Introduction

The last ten years many attempts have been made to understand inflation from a more
fundamental level within string theory [1, 197, 227–230]. Cosmological observations
strongly suggest an era of inflation in the early universe, and string theory, being a
quantum theory of gravity with a unique UV-completion, should be able to describe
this. In addition, inflation generically probes energy scales that are unobtainable
in accelerator experiments, and there is a chance that string scale effects may be
detectable in future cosmological observations [51, 231–236].

One of the essential characteristics of inflation is that it solves the flatness and
horizon problem within classical general relativity [25–27]. Moreover, inflation is a
very coarse phenomenon that only depends on the energy density and pressure in the
universe without a need to specify any details of the matter content. In string theory
the equations of motion of classical general relativity are the conditions of conformal
invariance of the worldsheet string theory. As such, a string theoretic description of
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5. Worldsheet cosmology

inflation should only depend on very generic scaling properties of the conformal field
theory on the worldsheet.

Extending worldsheet descriptions of tachyon condensation scenarios [111, 237,
238], we will attempt to describe inflation with a worldsheet theory that is a com-
bination of a spacetime and matter-part, which mix via spacetime dependent cou-
plings ua(x) for operators Oa of an abstract internal conformal field theory. From the
viewpoint of the internal conformal field theory alone such a deformation induces
an internal renormalization group flow. Total conformal invariance of the combined
theory can only be kept if the background fields adjust themselves in such a way
that the running induced by the scaling behavior of the operators Oa of the internal
conformal field theory is canceled. The renormalization group flow can therefore be
seen to define the possible dependence of ua(x) on the spacetime coordinates xµ, or in
other words the β functions of the full theory determine the equations of motion for
the background fields ua(x). These equations can be compared to slow-roll inflation
to find conditions on the internal conformal field theory. We shall indeed find that,
from the worldsheet perspective, the inflationary slow-roll parameters are completely
characterized by the central charge and the scaling behavior of the couplings of the
conformal field theory, in line with our expectation that inflation is a phenomenon
that only depends on generic properties of the matter sector.

This is not to say that we have solved inflation in string theory. Describing strings
in a time-dependent background is notoriously difficult. In a large part this is due to
our lack of a background independent description of the theory. At low energies we
can resort to a supergravity description, but inflation fits awkwardly in the low en-
ergy supergravity framework (η-problem, Lyth-bound, absence of de Sitter solutions
[239]). As recently emphasized [240], one almost certainly needs stringy ingredients
to describe accelerating backgrounds. The worldsheet approach is conceptually dif-
ferent from supergravity calculations, but it has its own drawbacks when trying to
describe a string in a de Sitter-like background. At tree-level (in gs), we are only
able to describe small deviations from Minkowski spacetime rather than de Sitter
spacetime, as is well known [241–245]. Inflationary solutions are a larger class of ac-
celerating spacetimes than pure de Sitter, so one could optimistically hope for a better
fit into string theory. Nevertheless, they are closely related to pure de Sitter and we
may already anticipate problems to describe them for the same reason. Substituting
the solutions to the β functions into the formal expressions, we indeed find a simi-
lar divergence due to the fact that the dilaton cannot be stabilized in tree-level string
theory and with a dynamical dilaton inflation does not occur. This is of course the
Fischler-Susskind phenomenon [241, 242]. This, however, is not the main point. We
wish to show that, inflation being a coarse phenomenon, it only depends on coarse
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5.2 Background dynamics for a generic worldsheet theory

details of the internal conformal field theory. That we do, formally, while at the same
time we recover the known Fischler-Susskind result that any tree-level string theory
model is ruled out as a theory for inflation.

This chapter is structured as follows: first we describe the worldsheet set-up suit-
able for inflation and derive the equations of motion. We review multi-field slow-roll
inflation in section 5.3, so that in section 5.4 we can state our main result. We shortly
discuss the possibility to generalize the results to higher loop order. We conclude
discussing the relation between our results with results known from the literature
[244, 245].

5.2 Background dynamics for a generic worldsheet
theory

5.2.1 Conformal perturbation of a coupled gravity and matter
system

We wish to describe a realistic model of inflation in string theory, i.e. there is a
3+1-dimensional homogeneous and isotropic cosmological spacetime which expe-
riences accelerated expansion. Similar to phenomenological model building, we are
naturally led to consider a worldsheet conformal field theory consisting of two parts:
a nonlinear σ model accounting for four-dimensional gravity in combination with a
matter/internal theory [111, 237]. The nonlinear sigma model is a curved bosonic
string in four dimensions, µ, ν ∈ {0, 1, 2, 3},

S NLσM = S g(x) + S Φ(x), (5.1a)

S g(x) =
1

2πα′

∫
d2z g(S )

µν (x)∂xµ∂xν, (5.1b)

S Φ(x) =
1

4π

∫
d2z
√

h Φ(x)R(2), (5.1c)

with g(S )
µν the four-dimensional string frame metric and hαβ the Euclidean worldsheet

metric. To keep the discussion simple we will set the Neveu-Schwarz form to zero,
Bµν = 0, but we do consider the effect of the dilaton. The dilaton is a (light) scalar
and is naturally a part of cosmological dynamics or any time-dependent scenario, e.g.
tachyon condensation [111]. More importantly, the dilaton is closely related to the
scale factor of the Einstein frame metric and as such could be driving part of the
cosmological expansion.
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5. Worldsheet cosmology

The internal theory will be some two-dimensional conformal field theory S 0 with
central charge c and (primary and descendant) operators Oa with scaling dimensions
∆a. We purposely leave the theory unspecified. The goal of this study is to deduce
what type of internal conformal field theory, i.e. which constraints on the central
charge and operator dimensions and couplings, could give rise to a realistic model for
inflation. Since FLRW cosmological dynamics only cares about coarse characteris-
tics of the matter, viz. pressure and energy, we expect that only coarse information
about the internal conformal field theory should be needed to deduce cosmologi-
cal dynamics. Because time-dependent backgrounds must break supersymmetry, we
can incorporate all the fermionic partners to xµ and the worldsheet diff×Weyl- and
supersymmetry ghosts into the internal conformal field theory.1 The internal confor-
mal field theory will exhibit characteristic scaling behavior under a deformation by
nonzero couplings ua to the primary operators,

S = S 0 + S Φ + S u, (5.2a)

S Φ =
1

4π

∫
d2z
√

h ΦR(2), (5.2b)

S u =

∫
d2z uaOa. (5.2c)

This behavior is intrinsic to the internal theory and fully captured by the β functions
β

a
(u) of the couplings ua, whose lowest order (classical) contribution is given by

(∆a − 2)ua. We have again included the (constant part of the) dilaton Φ here as a (non
x-dependent) coupling to the worldsheet curvature R(2) in order to easily incorporate
the Weyl anomaly contribution of the internal theory. At a renormalization group
fixed point of this perturbed conformal field theory, β

Φ
(u) will just be proportional to

the central charge of the internal conformal field theory, cf. (3.23),

β
Φ

(u) =
c
6

+ O(u).

Due to the conformal perturbations of the internal theory, higher order effects in u
will result in a “running” of β

Φ
[110, 246].

To obtain spacetime dynamics driven by the matter sector, we couple the internal
theory plus dilaton to the Polyakov nonlinear σ model into a full worldsheet theory

1One could keep supersymmetry manifest in principle but it is technically far more involved: with the
worldsheet supersymmetric string one needs to track the GSO projection carefully whereas the superspace
Green-Schwarz string does not lend itself easily to non-supersymmetric backgrounds. Essentially all these
technicalities reside in the internal sector and it is not clear what one would gain by tracking them closely.
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5.2 Background dynamics for a generic worldsheet theory

with a cross-coupling ua(x)Oa between the two sectors,2

S tot = S g(x) + S 0 + S Φ(x) + S u(x), (5.3a)

S u(x) =

∫
d2z ua(x)Oa. (5.3b)

The couplings ua(x) to the internal conformal field theory operators Oa depend on the
spacetime coordinates xµ. Since a consistent string theory is described by a confor-
mal worldsheet theory, the full operators ua(x)Oa are assumed to be exactly marginal
deformations of the theory. That is, the total theory must remain conformally invari-
ant and the spacetime equations of motion are given by the requirement that the β
functions of the full theory vanish [103, 105, 117].

The β functions of the coupling functionals gµν(x), ua(x) and Φ(x) are readily
computed using worldsheet techniques and conformal perturbation theory [111]. We
give a brief summary in appendix 5.A. Here we simply state the result,

0 =
1
α′
β

g
µν = Rµν − Mab(u)∇µua∇νub + 2∇µ∇νΦ, (5.4a)

0 =
1
α′
βa =

1
α′
β

a
(u) −

1
2

D∇ua + ∇ρΦ∇ρua, (5.4b)

0 =
1
α′
βΦ = U(u) −

1
2
∇2Φ + (∇Φ)2 , (5.4c)

where Mab(u) is the positive definite Zamolodchikov metric on the space of coupling
constants [110, 111],

Mab(u) = 4π2〈Oa(ε)Ob(0)〉u.

We denote its connection by Ka
bc and we have defined a covariant derivative [193]

2As in [111] we do not include cross couplings in the dilatonic sector,
∫

d2z Φa(x)OaR(2), nor do
we consider a further dependence of the spacetime metric on the internal degrees of freedom through a
“warped geometry” cross coupling

∫
d2z ga

µν(x)∂xµ∂xνOa. Conformal perturbation theory is only valid
when all operators are marginal or nearly marginal, in which case the corresponding couplings describe
nearly massless string excitations and the deviation away from the conformal product structure is small.
When we assume the operators Oa to be nearly marginal, i.e. |∆a − 2| � 1, the couplings Φa and ga

µν

are highly irrelevant and describe very massive string excitations. As such they will fall outside the range
of validity. In order to describe these more general cross couplings, a different set of operators Aα with
dimension nearly zero would have to be introduced to combine with the Φα(x)R(2)- and gαµν(x)∂xµ∂xν-
operators. Considering the ubiquity of warped solutions in string inflation, it would be interesting to
extend the computation below to such solutions. One should bear in mind however that almost all warped
solutions other than a non-trivial dilaton involve contributions from different worldsheet topologies [102],
cf. the discussion in section 5.4.2.

85



5. Worldsheet cosmology

D∇ua and scalar function U(u) respectively by3

D∇ua = ∇ρ∇ρua + Ka
bc∇

ρub∇ρuc, (5.5a)

U(u) =
cx

6α′
+

1
α′
β

Φ
(u). (5.5b)

The scalar function U(u) accounts for the different quantum Weyl anomalous effects.
There are contributions from the central charges of the two components of the theory,
cx = 4 and c ≡ 6β

Φ
(0), and in addition there are higher order effects in u, which are

collected in the non-constant parts of β
Φ

(u).
The actual computation of the β functions combines two methods with distinct

perturbative expansions: conformal perturbation theory where ua and ∆a−2 are small
and β

a
(u) = (∆a − 2)ua + . . . is known exactly, and separately the background field

method where ua can be large but β
a
(u) and ∇ua are required to be small. By allowing

for arbitrary β
a
(u) and β

Φ
(u) these methods can be combined in a mixed α′-expansion:

it can be made “exact” to all orders in ua, but only to second order in ∇ua by capturing
all u-dependence in the arbitrary unknown functions Mab(u), β

a
(u) and β

Φ
(u). Note

that βg
µν(u) only depends on ∇ua as the two sectors of the total theory decouple when

ua is x-independent. Limiting ourselves to two derivatives is not an impediment,
since inflation should be captured by a two derivative description, especially slow-
roll inflation.

5.2.2 String dynamics from an action

The condition for Weyl invariance βg
µν = βa = βΦ = 0 determines the equations of

motion for the background fields Φ(x), gµν(x) and ua(x). A crucial ingredient for the
consistency of this interpretation is the coupling between the dilaton field Φ(x) and
the other matter fields ua(x). The potential terms, β

a
(u) and β

Φ
(u) in (5.4), are not

independent but related via

Mab(u)β
b
(u) = ∂aβ

Φ
(u), (5.6)

to all orders in ua. This result may be derived from the fact that the conformal
anomaly βΦ is a c-number rather than an operator by the Wess-Zumino consistency

3For later convenience we have rescaled the metric by a factor of 4π2 compared to more conventional
definitions. Furthermore, as can be read in the appendix, the Mab and U used in the main text differ from
the corresponding objects in conformal perturbation theory by ua-corrections that are beyond the order of
perturbation of interest to us.
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5.2 Background dynamics for a generic worldsheet theory

condition [105, 108, 111, 117, 120] and cf. section 3.2.1. In particular βΦ is x-
independent and hence ∇µβΦ vanishes. Since βg

µν = βa = 0, we can verify

0 = ∇νβ
Φ = ∇ν

(
βΦ −

1
4
β

gµ
µ

)
=

(
∂aβ

Φ
− Mabβ

b
)
∇νua.

The last step follows from the explicit formulae for the β functions (5.4). Recall
that the β functions are derived up to second order in ∇ua but are exact in powers of
zeroth derivatives of u due to the incorporation of all zeroth derivatives of u in the po-
tential functions β

a
(u) and β

Φ
(u). Whereas our result is only an effective description

for the connection between the spacetime and matter sector, the matter sector itself is
described exactly.

As a result of the relation (5.6) between β
Φ

(u) and β
a
(u) the equations of motion

can be integrated to an action

S SF =
1

2κ2
0

∫
d4x
√

ge−2Φ
[
R + 4(∇Φ)2 − Mab∇µua∇µub − 4U(u)

]
. (5.7)

Transforming to the Einstein frame g̃(E)
µν = eΦ0−Φg(S )

µν = e−Φ̃g(S )
µν , we obtain an action

that can be directly compared to standard cosmological models,

S EF =
1

2κ2

∫
d4x

√
g̃
[
R̃ − 2∇̃µΦ̃∇̃µΦ̃ − Mab∇̃µua∇̃µub − 4e2Φ̃U(u)

]
. (5.8)

Again, κ = κ0eΦ0 =
√

8πGN is the gravitational coupling. The action (5.8) is simply
that of a multi-scalar field model coupled to gravity,

S inflation =
1
κ2

∫
d4x
√

g
[
1
2

R −
1
2

Gi j∂
µφi∂µφ

j − V(φ)
]
, (5.9)

with the potential
V(φ) = 2e−2Φ0 e2ΦU(u), (5.10)

where we have defined a multi-scalar field φi = (Φ, ua)t and a metric on the space of
fields Gi j =

(
2 0
0 Mab

)
. Since we will be working in the Einstein frame from here on,

we have dropped the tilde on the spacetime metric gµν(x). The question we wish to
investigate is whether the potential (5.10) is flat enough to provide realistic slow-roll
inflation. Since V(φ) is proportional to the β function β

Φ
(u) of the internal sector and

the central charge ctot of the total theory, demanding slow-roll inflation is equivalent to
a set of phenomenological constraints on the internal conformal field theory. Before
we turn to this question, we quickly review slow-roll inflation in multi-field models.
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5. Worldsheet cosmology

5.3 Multi-field slow-roll inflation

The rapid acceleration of the universe that characterizes inflation arises when the sys-
tem is potential energy dominated. Current observations favor an adiabatic slow-roll
inflationary model of early universe cosmology, whose phenomenology can be de-
scribed by gravity coupled to a single scalar field. The single field inflationary case
was formalized in [34] and shortly explained in section 2.2. Fundamentally there is
no reason to have only one scalar field. Indeed in string theory or supergravity one
generically has multiple scalar fields, although its characteristic signature, isocurva-
ture fluctuations, is at most 10% of the primordial power spectrum and is at this time
not a better fit to the data [10]. The connection to the power spectrum for multi-field
slow-roll inflation [26, 27, 247, 248] was formalized in [193, 212, 213]. We shall
follow [193].

Minimally coupled multi-field inflation is described by the action (5.9), where
V(φ) is the scalar potential and Gi j is the positive definite metric on the space of
scalar fields. For a flat, homogeneous and isotropic FLRW universe, the independent
equations of motion for the generic multi-field action (5.9) are4

H2 =
1
3

(
1
2

Gi jφ̇
iφ̇ j + V

)
, (5.11a)

0 = Dφ̇i + 3Hφ̇i + gi j∂ jV, (5.11b)

where Γi
jk are the connection coefficients for the metric Gi j and where we define

Dφ̇i = φ̈i + Γi
jkφ̇

jφ̇k,

similar to (5.5a). The field equations (5.11) completely determine the dynamics of the
model, but are difficult to solve exactly. Therefore, we again consider the slow-roll
approximation using the slow-roll parameters [193],

ε = −
Ḣ
H2 , ηi =

Dφ̇i

H|φ̇|
. (5.12)

The vector η can be decomposed in components parallel η‖ and perpendicular η⊥ to
the field velocity φ̇. Define

ei
1 =

φ̇i

|φ̇|
, ei

2 =
Dφ̇i −

Dφ̇ · φ̇
|φ̇|2

φ̇i∣∣∣∣Dφ̇ − Dφ̇ · φ̇
|φ̇|2

φ̇
∣∣∣∣ ,

4There is another equation of motion, Ḣ = −|φ̇|2/2, from the spatial part of the variation with respect
to the metric, but this also follows from (5.11).
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5.3 Multi-field slow-roll inflation

then

η‖ = e1 · η =
Dφ̇ · φ̇
H|φ̇|2

, η⊥ = e2 · η =

∣∣∣∣Dφ̇ − Dφ̇ · φ̇
|φ̇|2

φ̇
∣∣∣∣

H|φ̇|
, (5.13)

and
ηi = η‖ei

1 + η⊥ei
2.

Recall that the parameter ε is a direct measure for inflation [34],

ä > 0 ⇔ ε < 1.

ε and η together quantify the relative energy contributions of kinetic and potential
energy. One can reexpress (5.11) in terms of the slow-roll parameters,

H2 =
V
3

(1 −
1
3
ε)−1, (5.14a)

φ̇i +
1
√

3V
gi j∂ jV = −

1
3

√
2
3

√
εV

1 − 1
3 ε

ηi +
ε φ̇

i

|φ̇|

1 +

√
1 − 1

3 ε

 . (5.14b)

As it is given here, equation (5.14) is exact. It shows precisely which approximation
is made by assuming that “potential energy strictly dominates over kinetic energy”,
which is often the explanation behind slow-roll inflation. Using (5.14) one could
obtain results at any order in slow-roll [34, 193]. Limiting ourselves to first order in
the approximation, in which ε,

√
εη‖,
√
εη⊥ � 1, equation (5.14) reduces to

H2 =
1
3

V,

φ̇i = −
1
√

3V
gi j∂ jV.

The second equation tells us that slow-roll approximation implies gradient flow. Us-
ing these equations we see that in the slow-roll approximation

Ḣ =
1

6
√

V
3

∂iVφ̇i = −

√
3

6
√

V

1
√

3V
gi j∂iV∂ jV = −

1
6V
|∇V |2, (5.15a)

Dφ̇i = ∂t

(
−

1
√

3V
gi j∂ jV

)
+ Γi

jk
1

3V
g jlgkm∂lV∂mV =

1
6
∇i |∇V |2

V
, (5.15b)
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5. Worldsheet cosmology

and hence in the slow-roll regime,

ε = −
Ḣ
H2 =

1
2
|∇V |2

V2 , (5.16a)

ηi =
Dφ̇i

H|φ̇|
=

1
2 |∇V |

∇i |∇V |2

V
, (5.16b)

η‖ =
Dφ̇ · φ̇
H|φ̇|2

=
−1

2|∇V |2
∇V · ∇

|∇V |2

V
= ε −

∇iV∇ jV∇i∇ jV
V |∇V |2

, (5.16c)

η⊥ =

∣∣∣∣Dφ̇ − Dφ̇ · φ̇
|φ̇|2

φ̇
∣∣∣∣

H|φ̇|
=

1
2|∇V |

√√√∣∣∣∣∣∣∇|∇V |2

V

∣∣∣∣∣∣2 −
(
∇V · ∇ |∇V |2

V

)2

|∇V |2

=

√
1

4|∇V |2

∣∣∣∣∣∣∇|∇V |2

V

∣∣∣∣∣∣2 − (η‖)2. (5.16d)

5.4 Inflation from the worldsheet

5.4.1 Slow-roll parameters for tree-level worldsheet string the-
ory

We are now in a position to address our question: how do we describe slow-roll
inflation in terms of worldsheet dynamics? That is, we need to verify that the po-
tential V(Φ, u) = 2

(
κ0
κ

)2
e2ΦU(u) is capable of driving a slowly rolling inflaton field.

We shall assume the spacetime part of the worldsheet theory to describe an accel-
erating (i.e. inflationary) flat, homogeneous and isotropic FLRW universe, g(E) =

diag(−1, a2(t), a2(t), a2(t)), which is driven by a homogeneous dilaton Φ(t, x) = Φ(t)
and homogeneous internal fields u(t, x) = u(t). The demand that the slow-roll param-
eters are small then provides restrictions on V(Φ, u) and hence, as conjectured, on the
coarse characteristics of the internal conformal field theory, c, β

Φ
(u) and β

a
(u). Direct

calculation of (5.16) for V(φ) = 2
(
κ0
κ

)2
e2ΦU(u) reveals

ε = 1 +
1
2
γ2, (5.17a)

η‖ = −ε −
D

2 + γ2 , (5.17b)

η⊥ =

√√
1
4

(2 + γ2)2 + D +

γbγc∇aβb∇
aβc

α′2U2 − 2γ2D − 2γ6 + γ4

2 + γ2 − (η‖)2, (5.17c)
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5.4 Inflation from the worldsheet

where we have defined the combinations,

γa(u) =
Mabβ

b

α′U
= ∂a log U = ∂a log

[
cx

6α′
+

1
α′
β

Φ
]
, (5.18a)

D(u) =
γaγb∇a∇bU

U
− γ4. (5.18b)

From (5.17a) we immediately see that V(Φ, u) = 2
(
κ0
κ

)2
e2ΦU(u) is incapable of

driving inflation: ε is always larger than unity. Regardless of the specific form of

γa = ∂a log
[

cx
6α′ + 1

α′
β

Φ
]
, the positive definiteness of the Zamolodchikov metric Mab

ensures that γ2 ≥ 0.
Tracing back we see that the coefficient 1 in ε, characteristic of an exponential

potential, is due to the dynamics of the dilaton. One could wonder whether taking
Φ constant, i.e. excluding it from the cosmological dynamics, would modify the
model into one which does allow for inflation. Because the field space metric Gi j is
block diagonal, equation (5.11) implies that for a constant Φ, Φ must be stabilized at
∂ΦV = 4

(
κ0
κ

)2
e2ΦU = 0. However, excluding Φ = −∞, the relation (5.6) precludes a

constant dilaton, as U is not allowed to vanish. In our set-up, fields ua(x) that undergo
a time evolution in four-dimensional spacetime are described by a renormalization
group flow of the couplings, i.e. β

a
, 0. Equation (5.6) then implies that U cannot

vanish, which forces the dilaton to be non-constant by the requirement (5.4c) of a
vanishing βΦ. Turning the argument around, suppose one magically stabilizes the
dilaton at tree-level. Then ε = U−2β

a
βa but U ∼ ∂ΦV which must vanish by the

assumption that the dilaton is stabilized.
Within tree-level worldsheet string theory, the dilaton is therefore always part

of the cosmological dynamics and its tree-level exponential potential rules out an
inflationary universe.

5.4.2 Inflation from the Ramond sector, string loop correc-
tions and inflation from open strings

Clearly to describe inflation in string theory we must have a more complicated po-
tential for the dilaton. One guess could be to supersymmetrize the worldsheet and
include RR fields, i.e. the background fields corresponding to string states with fermi-
onic boundary conditions. Technically this is a far from trivial task, as it is not yet
known how to compute β functions for RR vertex operators. However at the end of
the day, even including fermionic dynamics, the resulting worldsheet theory must be
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5. Worldsheet cosmology

of the form (5.3). On the worldsheet, the dilaton/vertex operator interactions are such
that they always lead to an effective action S =

∫
e−2ΦL in the string frame [86]. Thus

one always deduces equation (5.7) and the remainder of the analysis is the same.
Let us be more specific in light of the known examples of string-inspired super-

gravity inflation built on RR- and NS-flux compactifications [199, 249, 250]. In all
global compactifications one needs O-planes to ensure tadpole cancelation. O-planes
correspond to non-oriented worldsheets, which occur at higher order in the string loop
expansion and are therefore not considered here. Secondly, a persistent issue in all
these constructions is the stabilization of the volume modulus of the compact space.
In essence this is the same absence of a potential as we exhibit for the dilaton. In cur-
rent models the stabilization is thought to happen through non-perturbative D-brane
effects [198, 251]. D-branes, i.e. open strings, are similarly higher order in the loop
expansion.

Thus one is naturally led to consider string loop corrections or non-perturbative
effects, i.e. open strings. From the worldsheet point of view these two additions
roughly boil down to the same thing. Both are obtained by including more general
worldsheet topologies than just the spherical worldsheet of tree-level string theory.
The corrections from including closed string loops could convert ε into a more sen-
sible expression. We can expect this based on the well-known dilaton tadpoles of
Fischler-Susskind [241, 242]. Our results are an extension of the Fischler-Susskind
result that to obtain a worldsheet description of strings in a de Sitter space, there
must be a one loop (in gs) contribution to the dilaton to have vanishing β functions,
i.e. to satisfy the equations of motion. Slow-roll inflation is in essence an adiabatic
continuation of de Sitter space to a slowly varying vacuum energy.

It is interesting to see what happens if we suppose that the higher loop contribu-
tions allow us to consistently stabilize the dilaton at weak coupling independent of
the value of ua. Then one finds the slow-roll parameters

ε =
β

a
βa

2(β
Φ

+ cx
6 )2

, (5.19a)

η‖ = ε −
β

a
β

b
∇aβb

(β
Φ

+ cx
6 )β

c
βc

, (5.19b)

η⊥ =

√√√√√
1

4β
c
βc

∣∣∣∣∣∣∣∣∇a
β

b
βb

(β
Φ

+ cx
6 )

∣∣∣∣∣∣∣∣
2

− (η‖)2. (5.19c)

The dilaton stabilization needs to be such that α′U = β
Φ

+ cx
6 is no longer proportional
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to ∂ΦV and hence the above expressions make sense. Of course dilaton stabilization
at weak coupling has its own problems [244, 245].

The inclusion of open strings, in addition to the closed strings considered here,
may yield more promising results for describing worldsheet theories on inflationary
backgrounds. In the supergravity literature the usefulness/necessity of open string
corrections has already been recognized [1, 197, 198, 227–230, 251].5 Open strings
have been extensively investigated from a low energy effective field theory point of
view, e.g. DBI inflation, and all known viable supergravity inflationary models have
an open string component.

5.5 Conclusions

Inflation does not care about anything but very coarse features of the matter sector,
only its pressure and energy. This suggests that in string theory inflation is deter-
mined by coarse features of the internal conformal field theory on the worldsheet.
Qualitatively this is what we find. At the same time our result shows that it is not pos-
sible to have an inflationary cosmology described by a tree-level string worldsheet.
The exponential potential for the dilaton ensures that ε is strictly larger than unity,
completely independent of the internal conformal field theory. At first sight this con-
clusion may be puzzling, as inflation is a classical phenomenon and one therefore may
expect tree-level string theory to be sufficient for a consistent description. Neverthe-
less the result simply recovers that de Sitter backgrounds arise only at one-loop level
in worldsheet string theory through the Fischler-Susskind mechanism [241–243]. For
inflation to occur, the dilaton must be stabilized through such higher loop effects. If
this stabilization happens at weak coupling, then inflation is possible with slow-roll
parameters that only depend on the β functions of the internal conformal field theory.

In a way Fischler-Susskind and the result here are special cases of Dine-Seiberg
runaway [244, 245]: within string theory one cannot probe a nearby vacuum from
the original vacuum because in string perturbation theory, as currently understood,
all higher order corrections are larger than the first order — string theory is either
free or strongly coupled. Whereas the result in [244, 245] is obtained by general rea-
soning, Fischler-Susskind specifically attempt to describe a de Sitter cosmology from
a Minkowski worldsheet, and we attempt to obtain inflation. We can be even more
explicit: in our tree-level analysis the time-dependent process of inflation requires on
the one hand a non-constant dilaton to satisfy the equations of motion, while on the

5In supergravity language open strings add D-terms in addition to F-term potentials. The closed string
worldsheet only captures a dilaton type F-term inflation.
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other hand only a constant dilaton makes sense observationally. In the tree-level limit
we therefore have found a clear inconsistency of the approach. A strong coupling
analysis is necessary to realize inflation within string theory. The reader should be
aware that we have not ruled out a non-constant dilaton scenario at all, we simply
have found out that a zeroth order weak coupling approach is insufficient to describe
inflation. In the strong coupling regime the dilaton may turn out to be non-constant
after all.

It is interesting to note that our result confirms a conjecture in [245], that a cos-
mological solution in which the world is slowly sliding to its free Minkowski vacuum
cannot be studied from this final state. From the reasoning in [244, 245] this ap-
pears to be a perfectly fine solution, if unlikely. Our result confirms their expectation
that such a slow-roll inflationary scenario is not possible within tree-level worldsheet
string theory.

To conclude: we have provided a proof of principle that the coarse characteristics
of the internal conformal field theory determine whether and how inflation occurs, by
expressing the slow-roll parameters in terms of the β functions of the internal con-
formal field theory. As de Sitter-like solutions only arise at one-loop in a Minkowski
string worldsheet, a necessary requirement for real and realistic worldsheet models of
string inflation is to include higher order string loop corrections to the analysis. This
remains subject to further investigation.

5.A Calculating the β functions

In this appendix we will review the calculation of the β functions (5.4) of the total
theory (5.3). For more details concerning this calculation we refer to [111].

5.A.1 Conformal perturbation theory

For a general conformal field theory that is perturbed by adding operators to the ac-
tion,

S = S 0 +

∫
d2z uIOI ,

the β functions βI for the couplings uI can be defined as the coefficients of the trace
of the stress-energy tensor

Θ = −πβIOI , (5.20)

where the factor of π is convenient within a string theory context. In the Zamolod-
chikov renormalization group scheme these can be computed in an expansion in uI
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with ∆I − 2 small [86, 111, 252],

βI = (∆I − 2)uI + 2πCI
JKuJuK + O(u3), (5.21)

where CI
JK are the OPE coefficients defined via

OJ(y)OK(z) =
∑

I

CI
JK |y − z|∆I−∆J−∆KOI

(y + z
2

)
.

In the coupled system CFTx ⊗CFTO that is deformed by the term S u(x) =
∫

ua(x)Oa

as described in the main text, the operators in (5.20) are the three (types of) operators,

O
µν
g =

1
2πα′

∂xµ∂xν, Oa, OΦ =
1

8π
R(2),

which couple to the coupling functionals gµν(x), ua(x) and Φ(x) respectively. By a
Fourier transform these coupling functionals may be seen as an infinite set of cou-
pling constants gµν(p), ua(k) and Φ(q) that couple to the dressed operators Oµνp =

1
2πα′ ∂xµ∂xνeip · x1, O(k,a) = Oaeik · x and OΦ

q = 1
8πR(2)eiq · x with dimensions

∆
g
p = 2 +

α′

2
p2, ∆(k,a) = ∆a +

α′

2
k2, ∆Φ

q = 2 +
α′

2
q2. (5.22)

We are not constraining the graviton momentum or dilaton momentum to be lightlike.
p2 = 0 and q2 = 0 would be the on-shell condition for a free graviton and free dilaton,
whereas we wish to consider the coupled gravity-matter system. The OPE coefficients
can be readily computed to be

C(p,1)
(k1,a)(k2,b) = −

α′

8π
(k1 − k2)µ(k1 − k2)νδ (p − k1 − k2) Mab, (5.23a)

C(k1,a)
(k2,b)(k3,c) = δ (k1 − k2 − k3) Ca

bc, (5.23b)

where Ca
bc are the OPE coefficients of the internal conformal field theory and we have

denoted the Zamolodchikov metric by Mab = 4π2C1
ab. Applying (5.22) and (5.23) to

(5.21) and Fourier-transforming back to position-space, yields

1
α′
β

g
µν = −

1
2
∂ρ∂ρgµν +

1
2

Mab

(
ua∂µ∂νub − ∂µua∂νub

)
, (5.24a)

1
α′
βa =

1
α′

(
(∆a − 2)ua + 2πCa

bcubuc
)
−

1
2
∂ρ∂ρua

=
1
α′
β

a
(u) −

1
2
∂ρ∂ρua, (5.24b)

1
α′
βΦ = −

1
2
∂ρ∂ρΦ, (5.24c)

where we use (5.21) in reverse to express βa in terms of β
a
.
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5.A.2 Weyl anomaly and classical dilatonic contribution

In addition to the operator effects from (5.24c), the β function for Φ receives a further
contribution from the well-known Weyl anomaly, a worldsheet contribution propor-
tional to the worldsheet curvature. Its contribution is determined by the central charge
of the spacetime nonlinear σ model as well as by that from the (perturbed) internal
theory as explained in the main text,

Θ1−loop = −
cx

48
R(2) −

1
8
β

Φ
R(2) = −π

(cx

6
+ β

Φ
(u)

) 1
8π

R(2). (5.25)

Comparing this expression with the definition of the β functions as coefficients in the
stress-energy tensor (5.20), we find a contribution βΦ

1−loop = cx
6 + β

Φ
(u) = α′U(u) to

the β function of the dilaton.
The final contribution to all of the β functions comes from the dilaton term (5.1c)

in the worldsheet action, which breaks Weyl invariance already at the classical level.
Due to an additional overall α′-factor compared to the other terms in the worldsheet,
this classical contribution to the β functions is of the same order as loop effects from
the classically Weyl invariant terms. On a curved worldsheet the easiest way to deter-
mine deviation from Weyl invariance is by calculating the trace of the stress-energy
tensor via

Θ =
−π
√

h

δS
δhαβ

hαβ.

This definition for Θ in terms of a variation of the worldsheet metric differs by a
factor from more common definitions, which is necessary to relate the result properly
with our earlier definition (5.20). One can check that this leads to the right result by
looking at the metric and dilaton field, whose contributions are well-known [86, 117].
Making use of the equations of motion for xµ,

∂∂xρ = −Γ
ρ
µν∂xµ∂xν + πα′∂ρuaOa +

α′

8
∂ρΦR(2),

the classical violation of Weyl invariance by the dilaton term (5.1c) is

Θclassical =
−π
√

h

δS Φ(x)

δhαβ
hαβ

∣∣∣∣∣∣
hzz=1/2

= −∂∂Φ(x) = −
(
∂µ∂νΦ∂xµ∂xν + ∂ρΦ∂∂xρ

)
= −π

(
2α′∇µ∇νΦO

µν
g + α′∇ρΦ∇ρuaOa + α′(∇Φ)2OΦ

)
. (5.26)
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Again comparing with (5.26), we find contributions

β
g
classical = 2α′∇µ∇νΦ, (5.27a)

βa
classical = α′∂ρΦ∂ρua, (5.27b)

βΦ
classical = α′∂ρΦ∂ρΦ. (5.27c)

Therefore the full β functions read

1
α′
β

g
µν = −

1
2
∂ρ∂ρgµν +

1
2

Mab

(
ua∂µ∂νub − ∂µua∂νub

)
+ 2∇µ∇νΦ, (5.28a)

1
α′
βa =

1
α′
β

a
(u) −

1
2
∂ρ∂ρua + ∂ρΦ∂ρua, (5.28b)

1
α′
βΦ = U(u) −

1
2
∂ρ∂ρΦ + ∂ρΦ∂ρΦ. (5.28c)

5.A.3 Covariantization

The β functions (5.28) are (partially) non-covariant. For example, βa is not covariant
on the space of couplings ua(x). The right expression for βa should be

1
α′
βa =

1
α′
β

a
(u) −

1
2
∂2ua −

1
2

Ka
bc(u)∂ρub∂ρuc + ∂ρΦ∂ρua, (5.29)

where Ka
bc is the connection coefficient associated to the Zamolodchikov metric Mab

[252]. In a general renormalization scheme it arises from contact terms in the OPE.
It has not appeared explicitly in the Zamolodchikov scheme because in that scheme
Ka

bc is already of first order in u [111], as a result of which Ka
bc(u)∂ρub(x)∂ρuc(x) is

beyond leading order in the calculation of the β functions. In the Zamolodchikov
scheme (5.29) is correct to leading order and by general covariance it holds in any
renormalization scheme.

Furthermore, the terms obtained using conformal perturbation methods are not
spacetime covariant at first. This is inherent to the conformal perturbation method,
which uses correlation functions defined with respect to flat spacetime. Conformal
perturbation is an expansion in δgµν = gµν − ηµν which is only sensitive to the trans-
verse traceless part of the graviton. The longitudinal and trace part of the graviton
are not encoded in (nearly) marginal operators and thus fall outside conformal per-
turbation theory. If one corrects for this by evaluating the Weyl transformation of
all terms of the coherent state of gravitons gµν(x), the expressions will become co-
variant. Covariantization is necessary because the true β functions are gravitationally
only consistent when all orders and all polarizations in δgµν are taken into account.
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Using background field methods one can obtain these spacetime covariant expres-
sions [86, 111].

We propose a different method to see how the covariant expressions (5.4) may
follow from the β functions derived using conformal perturbation theory methods
(5.28), by relating them at the level of their action functionals.6 We will do this only
up to second order in ua in the integrand, i.e. to first order in the equations of motion,
βa = 0, for the fields ua. The necessity of this approximation can directly be inferred
from the appearance of the non-tensorial object ua in the integrand.

Objects from the appendix are denoted with a tilde, while quantities without a
tilde refer to the fields and couplings in the main text. If we restrict ourselves to
transverse traceless variations in the metric, the covariant action7

S =

∫ √
g̃e−2Φ̃

[
R̃ + 4(∇̃Φ)2 +

1
2

M̃ab

(
uaD̃∇̃ub − ∇̃ua∇̃ub

)
− 4Ũ

]
, (5.30)

generates the equations of motion given by the vanishing of (5.28), to leading order
in ua, provided

1
α′

M̃abβ̃
b

= ∂aŨ +
1
2

M̃abubŨ.

The latter expression should be equivalent to the consistency condition (5.6), although
it is probably rather involved to derive this for the non-covariant (5.28).

Being a covariantly consistent expression, we expect the action (5.30) to provide
the true (spacetime and field space) covariant expressions for the β functions as we
would have found by background field methods [86, 111]. The double derivative of
ua is non-standard. However, we can now consider the field redefinition

Φ̃ = Φ +
1
8

M̃abuaub, g̃µν = e
1
4 M̃abuaub

gµν.

Together with the identifications

Mab = M̃ab, U = e
1
4 M̃abuaub

Ũ,

the action (5.30) transforms to the conventional covariant action

S =

∫
√

ge−2Φ
[
R + 4(∇Φ)2 − Mab∇ua∇ub − 4U

]
, (5.31)

6In [111] this is done by way of a diffeomorphism that is not entirely clear to the authors.
7Note that this restriction means that the contraction of the variation of the connection in MabuaD̃∇̃ub

does not contribute to the equations of motion. It is orthogonal to the transverse traceless fluctuations

g̃µνδΓ̃ρµν = −
1
2

(
2∇µδgρµ − gµν∇ρδgµν

)
= 0.
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up to second order in ua.
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