
Conformal invariance and microscopic sensitivity in cosmic inflation
Aalst, T.A.F. van der

Citation
Aalst, T. A. F. van der. (2012, December 19). Conformal invariance and microscopic sensitivity
in cosmic inflation. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/20327
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20327
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20327


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20327 holds various files of this Leiden University 
dissertation. 
 
Author: Aalst, Ted Adrianus Franciscus van der 
Title: Conformal invariance and microscopic sensitivity in cosmic inflation 
Issue Date: 2012-12-19 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20327
https://openaccess.leidenuniv.nl/handle/1887/1�


4
Inflation embedded in supergravity

As we have emphasized earlier, inflation is a coarse phenomenon in classical general
relativity. In principle it should therefore not be too difficult to embed inflationary
models within a unifying theory of quantum gravity such as string theory or its su-
pergravity description at low energies. Nevertheless, inflation turns out to depend
sensitively on the microscopic description of the theory. Although this is a blessing
if we ever want to observationally verify our ideas about the microscopic structure
of our universe, it also means that we have to be very careful in neglecting any part
of the theory that we do not (yet) completely understand. By restricting ourselves to
the part of the model we have control over, we could be throwing away the baby with
the bath water. Although it is usual practice and often plain necessity to consider
inflation in a controlled environment, one makes implicit, and possibly unrealistic,
assumptions on the unknown parts of the theory in the way it (does not) contribute
to the inflationary dynamics. As a result, the predictive power of the theory and its
chance to be compared with observations from the early universe, are limited.

In this chapter we will see, in the context of supergravity, how hidden sectors
affect the carefully controlled physics of any model for inflation. This will be a useful
illustration of the sensitivity of inflation to unknown physics and of the importance to
compare inflation observationally with a complete description of nature. The chapter
is based on [151] and [152].

4.1 Introduction

The construction of realistic models of slow-roll inflation in supergravity is a long-
standing puzzle. Supersymmetry can alleviate the finetuning necessary to obtain
slow-roll inflation — if one assumes that the inflaton is a modulus of the supersym-
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4. Inflation embedded in supergravity

metric ground state — but cannot solve it completely. This is most clearly seen in
the supergravity η-problem: if the inflaton is a lifted modulus, then its mass in the
inflationary background is proportional to the supersymmetry breaking scale. There-
fore, the slow-roll parameter η ' V ′′/V generically equals unity rather than a small
number [153].

We will show here, however, that the η-problem is more serious than a simple
hierarchy problem. In the conventional mode of study, the inflaton sector is always a
subsector of the full supergravity theory presumed to describe our universe. When the
inflationary subsector of the supergravity is studied an sich, tuning a few parameters
of the Lagrangian to order 10−2 will generically solve the problem. We will clarify
that this split of the supergravity sector into an inflationary sector and other hidden
sectors implicitly makes the assumption that all the other sectors are in a “supersym-
metric” ground state: i.e. if the inflaton sector —which must break supersymmetry—
is decoupled, the ground state of the remaining sectors is supersymmetric. If this is
not the case, the effect on the η-parameter or on the inflationary dynamics in general
can be large, even if the sypersymmetry breaking scale in the hidden sector is small.
Blind truncation in supergravities to the inflaton sector alone, if one does not know
whether other sectors preserve supersymmetry, is therefore an inconsistent approach
towards slow-roll supergravity inflation. Coupling the truncated sector back in com-
pletely spoils the naïve solution found. This result, together with recent qualitatively
similar findings for sequestered supergravities (where only the potential has a two-
sector structure) [154], provides strong evidence that to find true slow-roll inflation in
supergravity one needs to know the global ground state of the system. The one obvi-
ous class of models where sector-mixing is not yet considered is the newly discovered
manifest embedding of single field inflationary models in supergravity [155, 156]. If
these models are also sensitive to hidden sectors, it would arguably certify the neces-
sity of a global analysis for cosmological solutions in supergravity and string theory.

We will obtain our results on two-sector supergravities by an explicit calculation.
The gravitational coupling between the hidden and the inflaton sectors is universal,
which can be described by a simple F-term scalar supergravity theory. As in most dis-
cussions on inflationary supergravity theories, we will ignore D-terms as one expects
its vacuum expectation value to be zero throughout the early universe [30]. Including
D-terms (which themselves always need to be accompanied by F-terms [88]) only
complicates the F-term analysis, which is where the η-problem resides. Furthermore,
although true inflationary dynamics ought to be described in a fully kinetic descrip-
tion [52], we can already make our point by simply considering the mass eigenmodes
of the system. In a strict slow-roll and slow-turn approximation the mass eigenmodes
of the system determine the dynamics of the full system.
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4.1 Introduction

Specifically we shall show the following for two-sector supergravities where the
sectors are distinguished by independent R-symmetry invariant Kähler functions:

• Given a naïve supergravity solution to the η-problem, this solution is only con-
sistent if the other sector is in its supersymmetric ground state.

• If it is not in its ground state, then the scalar fields of that sector cannot be static
but must evolve cosmologically as well.

• In order for the naïve solution to still control the cosmological evolution these
fields must move very slowly. This translates in the requirement that the con-
tribution to the first slow-roll parameter of the hidden sector must be much
smaller than the contribution from the naïve inflaton sector, εhidden � εnaïve.

• There are two ways to ensure that εhidden is small: Either the supersymmetry
breaking scale in the hidden sector is very small or a particular linear com-
bination of first and second derivatives of the generalized Kähler function is
small.

– In the latter case, one finds that the second slow-roll parameter ηnaïve re-
ceives a very large correction ηtrue − ηnaïve � ηnaïve, unless the supersym-
metry breaking scale in the hidden sector is small. This returns us to the
first case.

– In the first case, one finds that the hidden sector always contains a light
mode, because in a supersymmetry breaking (almost) stabilized super-
gravity sector there is always a mode that scales with the scale of super-
symmetry breaking. This light mode will overrule the naïve single field
inflationary dynamics.

Thus for any nonzero supersymmetry breaking scale in the hidden sector — even
when this scale is very small — the true mass eigenmodes of the system are linear
combinations of the hidden sector fields and the inflaton sector fields. We compute
these eigenmodes. By assumption, the true value of the slow-roll parameter η is
the smallest of these eigenmodes. Depending on the values of the supersymmetry
breaking scale and the naïve lowest mass eigenstate in the hidden sector, we find that

1. The new set of mass eigenmodes can have closely spaced eigenvalues, and thus
the initial assumption of single field inflation is incorrect. Then a full multi-
field re-analysis is required.
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4. Inflation embedded in supergravity

2. The relative change of the value of η from the naïve to the true solution can
be quantified and shows that for a supersymmetry breaking hidden sector, the
naïve model is only reliable if the naïve lowest mass eigenstate in the hidden
sector is much larger than the square of the scale of hidden sector supersymme-
try breaking divided by the inflaton mass. This effectively excludes all models
where the hidden sector has (nearly) massless modes.

3. The smallest eigenmode can be dominantly determined by the hidden sector,
and thus the initial assumption that the cosmological dynamics is constrained to
the inflaton sector is incorrect. Again a full multi-field re-analysis is required.

One concludes that in general one needs to know/assume the ground states and the
lowest mass eigenstates of all the hidden sectors to reliably find a slow-roll inflation-
ary supergravity.

The structure of this chapter is the following. Section 4.2 explains how sectors
are coupled in supergravity. To make contact with global supersymmetry models,
we consider the no-gravity limit of a multi-sector supergravity model. As we will
see, decoupling in this limit turns out to be more delicate than just taking the simple
Mpl → ∞ limit. We begin the discussion on the effects of having multiple sectors
in section 4.3 with the result that in a stabilized supergravity sector there always is
a mode that scales with the scale of supersymmetry breaking. In section 4.4 the η-
problem in a single sector theory is discussed and we consider the effect of a hidden
sector qualitatively and quantitatively. The quantitative result is analyzed in section
4.5 both in terms of effective parameters and direct supergravity parameters. As a no-
table example of our result, we show that if the hidden sector is the standard model,
where its supersymmetry breaking is not caused by the inflaton sector but otherwise,
spoils the naïve slow-roll solution in the putative inflaton sector. The chapter is sup-
plemented with two appendices in which some of the longer formulae are given.

4.2 Canonical coupling in supergravity

We shall start by arguing how two sectors are gravitationally coupled in supergravity.
We will seek for a minimal (universal) coupling between sectors. It has an interesting
interpretation in terms of the superpotentials, which multiply rather than add as in
globally supersymmetric minimally coupled systems. As a result, the zero-gravity
limit from multi-sector supergravities to decoupled multi-sector global supersymme-
try theories is more subtle than the usual Mpl → ∞ limit. To be able to embed the
supersymmetry objects into a multi-sector supergravity theory, we will consider a
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4.2 Canonical coupling in supergravity

possible decoupling limit with non-canonical scaling of the superpotential couplings.
This limit will later be used to apply our general results to a standard model-like
globally supersymmetric hidden sector in section 4.5.3

4.2.1 Maximal decoupling in supergravity

Multiple sectors are a common feature in supergravity cosmology and phenomenol-
ogy. These sectors are necessary to either incorporate inflation or supersymmetry
breaking or are a consequence of string model-building. In particular to study infla-
tion, it is desirable to separate the dynamics of all fields that do not contribute to the
exponential expansion of the universe from the inflaton fields that do. Since gravity
is the weakest possible interaction, the inflationary sector is assumed to only cou-
ple gravitationally to an unknown hidden sector that may also break supersymmetry
by itself. Whereas it is natural for a rigid supersymmetric theory to be separated
into several sectors, the restrictive structure of supergravity forces the different sec-
tors to couple not only non-locally through graviton exchange but also directly. For
this reason embedding supersymmetric theories as sectors into a supergravity can be
notoriously difficult, see e.g. [88, 89, 157–162].

Though multiple sector supergravities are a long studied subject, the context of
cosmology has seriously sharpened the question. In supergravity models of inflation,
it is commonly noted that one seeks a consistent truncation of the scalar sector. This is
necessary but not sufficient. Even with a consistent truncation one may have dominat-
ing instabilities towards the naïvely non-dynamical sectors, that can move them away
from their supersymmetric critical points. One needs either a symmetry constraint or
an energy barrier to constrain the dynamics to the putative inflaton sector.

During inflation, supersymmetry is broken and although it is frugal to consider
scenarios where the inflaton sector is also responsible for phenomenological super-
symmetry breaking (see e.g. [163–165]), this need not be so. For instance, in a
generic gauge-mediation scenario, the mechanism responsible for supersymmetry
breaking need not involve the fields that drive inflation. This example immediately
shows that the generic cosmological set-up must be able to account for a sector that
breaks supersymmetry independently of the inflationary dynamics.

This consideration is our starting point. We consider a multiple-sector supergrav-
ity that decouples in the strictest sense in the limit Mpl → ∞. In this limit the action
must then be the sum of two independent functions

S [φ, φ, q, q] = S [φ, φ] + S [q, q], (4.1)
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4. Inflation embedded in supergravity

such that the path integral factorizes.1 φ and q denote the fields in the two sectors
respectively. In the following, we will take the indices {i, } to run over the φ-fields,
while {a, b} denote the fields in the q-sector. Later, we will take the φ-fields to drive
inflation, while the q-fields reside in another sector which is naïvely assumed not to
take part in the inflationary dynamics and is hence called the hidden sector.

For a globally supersymmetric field theory with a standard kinetic term, a decou-
pled action can be achieved by demanding that the independent Kähler and superpo-
tentials sum as well,

Ksusy(φ, φ, q, q) = K(1)(φ, φ) + K(2)(q, q), Wsusy(φ, q) = W (1)(φ) + W (2)(q). (4.2)

By contrast, in supergravity complete decoupling in the sense of (4.1) appears to be
impossible, even in principle. Even with block diagonal kinetic terms from a sum of
Kähler potentials, the more complicated form of the supergravity potential (3.28) im-
plies that there are many direct couplings between the two sectors. It raises the imme-
diate question: if the low-energy Mpl → ∞ globally supersymmetric model must con-
sist of decoupled sectors, what is the relation between Ksugra,Wsugra and Ksusy,Wsusy,
or vice versa given a globally supersymmetric model described by Ksusy,Wsusy, what
is the best choice for Ksugra,Wsugra such that the original theory can be recovered in
the limit Mpl → ∞?

The conclusion of this section is that the scaling implied by the explicit factors
of Mpl in the supergravity potential (3.28) is an incomplete answer to this question.
The direct communication between the sectors, controlled by Mpl, has serious con-
sequences for both the ground state structure (solutions to the equation of motion,
i.e. the cosmological dynamics) and the interactions between the two sectors. To
be explicit, the first guess at how the rigid supersymmetry and supergravity Kähler
potentials and superpotentials are related

Ksugra(φ, φ, q, q) = K(1)
susy(φ, φ) + K(2)

susy(q, q) + . . . , (4.3a)

Wsugra(φ, q) = W (1)
susy(φ) + W (2)

susy(q) + . . . , (4.3b)

with . . . indicating Planck-suppressed terms and possibly a constant term, does not
define a sensible way of splitting up the action in multiple sectors. This definition is
not invariant under Kähler transformations in each sector separately and is valid only
in a specific Kähler frame or, say, gauge dependent [166]. Another way to understand

1As example we consider the simplest case, a model with uncharged scalar supermultiplets ξI = (φi, qa)
that are singlets under all symmetries. Gauge interactions and global symmetries will not change this gen-
eral argument provided the two sectors are not mixed by symmetries or coupled by gauge fields. Therefore,
we will also ignore D-terms in the supergravity potential below.
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4.2 Canonical coupling in supergravity

the problem is to realize that the definition (4.3) does not lead to a Kähler metric and
mass matrix that can be made block diagonal in the same basis [167], and thus there
is no sense of “independent” sectors. Moreover, (4.3) suffers from the drawback that
the ground states of the full theory are no longer the product of the ground states
of the individual sectors, except when both (rather than only one) ground states are
supersymmetric [168, 169] (see also [166, 167, 170]). This directly follows from
considering the extrema of the supergravity potential2

∇aV =
DaW

W
V + eK/M2

pl |W |2
∇a

(
DbW

W

)
DbW

W
+

1
M2

pl

DaW
W

+ ∇a

(
D jW

W

)
D jW

W

 ,
(4.4a)

∇a∇iV =
DiW
W
∇aV +

DaW
W
∇iV −

DaW
W

DiW
W

V + Da

(
DiW
W

) V +
2

M2
pl

eK/M2
pl |W |2


+ eK/M2

pl |W |2
∇a∇i

(
D jW

W

)
D jW

W
+ ∇i∇a

(
DbW

W

)
DbW

W

 . (4.4b)

Supersymmetric ground states, for which the covariant derivatives of W vanish on
the solution, DiW = 0 and DaW = 0, are still product solutions. But for Kähler and
superpotentials that sum (4.3), even if only one sector is in a non-supersymmetric
ground state, by which we mean DaW = 0, DiW , 0, we can neither conclude that
sector 2 is in a minimum, for which ∇aV would vanish, nor that the condition for
sector 1 to be in a local ground state is independent of the sector 2 fields qa, which
would mean that ∇a∇iV = 0. The former is only true when

∇a

(
D jW

W

)
D jW

W
= 0. (4.5)

The second requires, in addition,

∇a∇i

(
D jW

W

)
D jW

W
+ ∇i∇a

(
DbW

W

)
DbW

W
= 0, (4.6)

2To derive (4.4b) note that, since DW/W is Kähler invariant and since the Levi-Civita connection ∇ of
the field space manifold does not get cross-contributions in a product manifold,

∇a
DiW
W

= ∂a
DiW
W

= Da
DiW
W

.
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4. Inflation embedded in supergravity

and also sharpens the first condition (4.5) to3

Da
DiW
W

= 0. (4.7)

Equations (4.5–4.7) are conditions for decoupling which apply not only to the ground
state of the full system but also to other critical points of the potential, for instance
along an inflationary valley. Generically these conditions are not met on the solution
(the second derivative need not vanish at an extremum; recall that DaW does not
vanish identically but only on the solution). Hence, generically the ground states
of hidden sectors mix and this spoils many cosmological supergravity scenarios that
truncate the action to one or the other sector (see e.g. [171] and references therein). It
is this issue that is particularly relevant for inflationary model building, where a very
weak coupling between the inflaton sector and all other sectors has to persist over an
entire trajectory in field space where the expectation values of the fields are changing
with time (see e.g. [52, 172–174]). At the same time, one is interested in the generic
situation in which both sectors may contribute to supersymmetry breaking.4

3These conditions are merely sufficient not necessary. However, it is clear that the restrictive nature of
supergravity enforces conditions on the unknown sectors for the system to be separate.

4This situation has to be contrasted to phenomenological models appropriate for studying gravity me-
diated supersymmetry breaking, such as an ansatz [175]

K(φ, φ, q, q) = K(0)(φ, φ) + qaqbK(1,1)
ab

(φ, φ) + qaqbK(2,0)
ab (φ, φ) + qaqbK(0,2)

ab
(φ, φ) + . . . ,

W(φ, q) = W(0)(φ) + qaqbW(1)
ab (φ) + . . . ,

or equivalently, if W , 0,

G(φ, φ, q, q) = G(0)(φ, φ) + qaqbG(1,1)
ab

(φ, φ) + qaqbG(2,0)
ab (φ, φ) + qaqbG(0,2)

ab
(φ, φ) + . . . .

In models like these, it is understood that q̇ = 0 and the q-sector can remain in its supersymmetric critical
point throughout the evolution of the supersymmetry breaking fields. For inflation, such an expectation is
unrealistic, as the supersymmetry preserving sector can become unstable during the inflationary dynamics,
see e.g. a recent discussion of the case in which the inflaton field φ is solely responsible for supersymmetry
breaking during inflation ([165] and references therein). In this relatively simple case, and except for very
fine-tuned situations, the generic scenario appears to be that one or more of the q-fields are destabilized
somewhere along the inflationary trajectory and they trigger an exit from inflation (in other words, they
become “waterfall” fields, and inflation is of the hybrid kind [176]). This implies that the pattern of
supersymmetry breaking today is not related to the one during inflation, and also, since the waterfall fields
are forced away from their supersymmetric critical points, that supersymmetry is broken by both sectors
as the universe evolves towards the current vacuum.
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4.2 Canonical coupling in supergravity

4.2.2 Natural multi-sector supergravities

There is a natural way to construct supergravity potentials for which the ground states
(and critical points) do separate better. This obvious combination of superpotentials
automatically satisfies (4.5–4.7) and hence does ensure that if one of the ground states
is supersymmetric, the ground state of the other sector is a decoupled field theory
ground state whether it breaks supersymmetry or not. This is if we choose a product
of superpotentials, keeping the sum of Kähler potentials as before,

Ksugra(φ, φ, q, q) = K(1)
sugra(φ, φ) + K(2)

sugra(q, q), Wsugra(φ, q) =
1

M3
pl

W (1)
sugra(φ)W (2)

sugra(q).

(4.8)
This is well-known [177–179] and has recently been emphasized in the context of
cosmology [166, 167, 170, 171, 173, 174, 180, 181]. This ansatz conforms to the
more natural description of supergravities in terms of the Kähler invariant function
(3.29) that can be defined if W is non-zero in the region of interest.5 In turn, the Käh-
ler function underlies a better description of multiple sectors in supergravity, where
G is a simple sum of independent functions

G(φ, φ, q, q) = G(1)(φ, φ) + G(2)(q, q). (4.9)

It is invariant under Kähler transformations in each sector separately [166–169, 182]
and thus defines a sensible way of splitting up the action in multiple sectors. As
a result, this split guarantees that a BPS solution in one particular sector is a BPS
solution of the full theory. It is the simplest ansatz that still allows some degree of
calculational control when both sectors break supersymmetry —as well as optimizing
decoupling along the inflationary trajectory. One of the simplest models of hybrid
inflation in supergravity, F-term inflation [183, 184], is in this class.

The sum of Kähler functions (4.9) implies the conventional separation of the Käh-
ler potentials, but it constitutes a class of minimally coupled scenarios due to the
multiplicative nature of the superpotentials put forward above. Let us illustrate the
importance of this multiplicative superpotential in the situation in which the hidden
sector resides in a supersymmetric vacuum, i.e. ∂aV(q0) = 0 and ∂aG(2)(q0) = 0.
We write the superpotential of the hidden sector as W (2)(q) = W (2)

0 + W (2)
dyn(q − q0).

The second term in this expression is what determines the potential for fluctuations
around the minimum of the hidden sector, while the first constant term is just an over-
all contribution and hence not interesting for the internal hidden sector dynamics at

5We expect this condition to hold around a supersymmetry breaking vacuum with almost vanishing
cosmological constant. It also holds in many models of supergravity inflation, although a notable exception
is [155, 156].
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4. Inflation embedded in supergravity

energies much less than the Planck scale. However, for the gravitational dynamics
and the remaining φ-sector this “vacuum energy contribution” W (2)

0 = 〈W (2)〉 is of
crucial importance as it sets the scale of the potential

V = eK(2)/M2
pl |W (2)

0 |
2eG(1) (

G(1)
i G(1)i − 3M2

pl

)
M−4

pl , (4.10)

which is evaluated at q = q0 such that all terms depending on W (2)
dyn vanish. The

normal practice of setting W (2)
0 to zero as an overall contribution to the hidden sector

is neglecting the fact that gravity also feels the constant part of the potential energy, as
opposed to field theory. The inflationary sector feels the presence of the hidden sector
through this coupling and as such it may be more intuitive to regard W (2)

0 to contain
information about the inflationary sector rather than the hidden sector. Making a
similar split in W (1), the constant part W (1)

0 is the overall contribution to the hidden
sector due to the inflaton sector.

Using the minimal coupling scenario (4.9), the two-sector action (3.27) reads

S = M2
pl

∫
d4x
√

g
[
1
2

R − gµν(G(1)
i  ∂µφ

i∂νφ

+ G(2)

ab
∂µqa∂νq

b) − VM2
pl

]
, (4.11)

with

V(φ, φ, q, q) = eG(1)+G(2) (
G(1)

i G(1)i + G(2)
a G(2)a − 3

)
. (4.12)

We will often allow ourselves to drop the sector label from G in the remainder, since
G(1)
φ = Gφ and similarly for q. For a short overview of relevant conventions and

identities in supergravity, we refer the reader to appendix 4.A. For later calculational
convenience, we have given (4.11) and (4.12) in terms of the dimensionless scalar
fields ξI = (φi, qa) and functions V , G, K and W. However, before we start the explo-
ration of the inflationary consequences of a coupling such as (4.11), we will momen-
tarily keep the Mpl-dependence explicit (and quantities dimensionful) and study the
no-gravity limit Mpl → ∞ to see how the supergravity sectors decouple.

4.2.3 Zero-gravity decoupling limit

Given that we have just argued that a product of superpotentials is a more natural
framework to discuss hidden sector supergravities, the obvious question arises how
to recover a decoupled sum of potentials for a globally supersymmetric theory in the
limit where gravity decouples, i.e. in which

Vsugra = eK/M2
pl

|DW |2 −
3|W |2

M2
pl

 → Vsusy =
∑

n

|∂nW (n)|2.
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4.2 Canonical coupling in supergravity

For a two-sector supergravity defined by equations (4.8) one would not find this an-
swer, if one takes the standard decoupling limit Mpl → ∞ with both K = K(1) + K(2)

and W = M−3
pl W (1)W (2) fixed6. Instead, the product structure of the superpotential

introduces a cross-coupling between sectors,

Veff =
1

M3
pl

(
|W (2)|2|∂αW (1)|2 + |W (1)|2|∂iW (2)|2

)
, Vsusy,

whose behavior under the limit Mpl → ∞ is best examined at the level of the super-
potential.

Supergravity is sensitive to the expectation value W0 = 〈W〉 of W, which relates
the scale of supersymmetry breaking to the expectation value of the potential, i.e. the
cosmological constant

Λ2M2
pl = 〈V〉 ∼ 〈DW2〉 −

3
M2

pl

〈W2〉 = m4
susy − 3

W2
0

M2
pl

.

The vacuum expectation value cannot vanish in a supersymmetry breaking vacuum
with (nearly) zero cosmological constant, such as our universe. Therefore, in the
following we assume 〈W〉 , 0 in the region of interest. Instead of the usual way to
incorporate it, Wsugra = W0 + Wdyn with Wdyn = Wsusy + . . ., we include the vacuum
expectation value for a two-sector product superpotential by writing

W(φ, q) =
1

M3
pl

W (1)W (2) =
1

M3
pl

(
W (1)

0 + W (1)
dyn(φ)

) (
W (2)

0 + W (2)
dyn(q)

)
=

1
M3

pl

(
W (1)

0 W (2)
0 + W (2)

0 W (1)
dyn(φ) + W (1)

0 W (2)
dyn(q) + W (1)

dyn(φ)W (2)
dyn(q)

)
. (4.13)

This is physically equivalent to a sum of superpotentials except for the last term. Note
again that if one uses the standard scaling, φ

Mpl
→ 0, q

Mpl
→ 0 with all couplings in

6Strictly speaking the decoupling limit sends Mpl → ∞ while keeping the fields φ, q fixed with
W(n)/M3

pl a holomorphic function of φ/Mpl or q/Mpl and K(n)/M2
pl a real function of φ/Mpl, φ/Mpl or

q/Mpl, q/Mpl. The limit zooms in to the origin so K must be assumed to be non-singular there. Formally
the decoupling limit does not exist otherwise. Physically it means that one is taking the decoupling limit
with respect to an a priori determined ground state, around which K and W are expanded. If K is non-

singular at the origin, the overall factor eK/M2
pl yields an overall constant as Mpl → ∞, which may be set

to unity, i.e. the constant part of K vanishes. In the decoupling limit, both K and W may then be written
as polynomials. Letting the coefficients in W and K scale as their canonical scaling dimension such that W
has mass dimension three and K has mass dimension two, then gives the rule of thumb that both K and W
are held fixed as Mpl → ∞.
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W (total) having the canonical scaling dimensions, this last term contains renormaliz-
able couplings involving the scalar partner of the goldstino, and these are not Planck-
suppressed: if supersymmetry is broken by the φ sector, terms of the form φq2 are
renormalizable and would survive the Mpl → ∞ limit, leading to a direct coupling
between the two sectors.7 If both sectors break supersymmetry then mass-mixing
terms φq also survive. All such (relevant) terms are of course absent if none of the
two sectors break supersymmetry, but this is not the case we are interested in. One
would have expected that these cross-couplings naturally vanish in the decoupling
limit.

The point of this section is simply to remark that the realization that each of
the superpotentials W (n) = W (n)

0 + W (n)
dyn contains a constant term can resolve this

conundrum by assuming a non-standard scaling for the constituent parts W (n)
0 , W (n)

dyn.

To achieve a decoupling we need that the cross term W (1)
dynW (2)

dyn, which contains the
coupling between the two sectors, scales away in the limit Mpl → ∞. As a result
the first term in (4.13) has to diverge, because its product with the cross term should
remain finite. In particular we can choose an overall scaling

W =
1

M3
pl

(W (1)
0 W (2)

0︸    ︷︷    ︸
∼M3+r

pl

+ W (1)
0 W (2)

dyn︸    ︷︷    ︸
∼M3

pl

+ W (2)
0 W (1)

dyn︸    ︷︷    ︸
∼M3

pl

+ W (1)
dynW (2)

dyn︸     ︷︷     ︸
∼M3−r

pl

), (4.14)

with r > 0. Let us account for dimensions by introducing an extra scale mΛ such that

W (1)
0 = m

3−r
2 −A

Λ
M

3+r
2 +A

pl , W (1)
dyn = M3

pl

W (1)
susy

W (2)
0

,

W (2)
0 = m

3−r
2 +A

Λ
M

3+r
2 −A

pl , W (2)
dyn = M3

pl

W (2)
susy

W (1)
0

, (4.15)

with W (n)
susy fixed as Mpl → ∞. Formally one can choose an inhomogeneous scaling

with A , 0, but as we shall see it has no real consequences. For any A it is easily seen

7For a product of superpotentials we can always choose a Kähler gauge at every point with 〈K〉 =

〈∂φK〉 = 〈∂qK〉 = 0 without mixing the superpotentials. In that case F-term supersymmetry breaking is
given by the linear terms in the expansion of W(1) and W(2): 〈DφW〉 ∼ 〈∂φW(1)〉, 〈DqW〉 ∼ 〈∂qW(2)〉.
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that with this scaling,

DiW = ∂iW
(1)
susy +

mr−3
Λ

Mr
pl

W (2)
susy∂iW

(1)
susy

+
∂iK(1)

M2
pl

m3−r
Λ Mr

pl + W (1)
susy + W (2)

susy +
mr−3

Λ

Mr
pl

W (1)
susyW (2)

susy

→ ∂iW
(1)
susy,

in the limit Mpl → ∞ if and only if 0 < r < 2 and thus

Vsugra = eK/M2
pl

|DW |2 −
3|W |2

M2
pl

→∑
n

|∂nW (n)
susy|

2 − 3m2(3−r)
Λ

M2(r−1)
pl + O

(
1

Mpl

)
.

For r < 1 the manifestly constant term in the potential vanishes as well and we recover
the strict decoupled field theory result, with the gravitino mass going to zero as m3/2 =

〈W〉M−2
pl = m3−r

Λ
Mr−2

pl =
m2

susy
√

3Mpl
. We see that the gravitino mass is independent of r in

physical scales.
The parameter r should not be larger than unity for the new decoupling limit

to be well defined. For the special case r = 1 [177], the potential has an additional
overall “cosmological” constant. For a generic non-gravitational field theory in which
Mpl → ∞ this is just an overall shift of the potential, which we can arbitrarily remove
since it does not change the physics. Nevertheless from a formal point of view, we
know that absolute ground state energy of a globally supersymmetric theory equals
zero, as a result of the supersymmetry algebra {Q,Q} = H. For this reason it is more
natural to restrict the value of r to the range 0 < r < 1.

It may appear that we have changed the canonical renormalization group scal-
ing of the theory. This is not quite true. For the interacting terms in the potential,
it is the coefficients in the product W (2)

0 W (1)
dyn = W (1)

susy that ought to obey canonical

renormalization group scaling. This precisely corresponds to holding W (n)
susy fixed as

Mpl → ∞ (see footnote 6). On the other hand, the scaling of the constant term in
the potential has changed from its canonical value. However, this is very natural in a
supersymmetric theory. The constant term,

∏
n W (n)

0 , equals the ground state energy.
Precisely supersymmetric theories can “naturally” explain non-canonical scaling of
the cosmological constant (at the loop level; the scaling of the bare ground state en-
ergy can be different in every model). A non-integer power is strange but r = 1 is
certainly a viable option in a supersymmetry-breaking ground state: it is the natural
scaling in theories with higher supersymmetry [185] when combined with a sublead-
ing log(Mpl/msusy) breaking. Our engineering analysis only focuses on power-law
scaling and these can always have subleading logarithms. (r = 2 would correspond
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4. Inflation embedded in supergravity

to the cosmological constant for a spontaneously broken N = 1 theory due to mass
splitting).

The novel scaling in (4.15) can be readily generalized to an arbitrary number of
sectors. For s sectors, writing W (n) = W (n)

0 + W (n)
dyn for each sector, the superpotential

W = 1
M3(s−1)

pl

∏s
n=1 W (n) becomes

W =
1

M3(s−1)
pl

 s∏
n=1

W (n)
0 +

s∑
m=1

W (m)
dyn

s∏
n,m

W (n)
0

 +

s∑
l>m

W (m)
dynW (l)

dyn

s∏
n,l,m

W (n)
0

 + . . .

 .
In this expression, we want the last term before the . . . and all terms on the . . . to scale
away as M−r

pl or stronger under Mpl → ∞, where r > 0. The second term(s) should be
constant. As a consequence the first term will scale as Mr

pl. Assuming a scaling that
is homogeneous across sectors, this implies

W (n)
0 ∼ M

3(s−1)+r
s

pl , W (n)
dyn ∼ M

(3−r)(s−1)
s

pl ,

for each of the n ∈ {1, . . . , s}. With this scaling, a general term consisting of t dynam-
ical superpotentials and s − t constant parts, scales as

W t
dynW s−t

0

M3(s−1)
pl

∼ Mr(1−t)
pl ,

and as constructed any term containing dynamical interactions between sectors, t ≥ 2,
is Planck-suppressed. To ensure a vanishing constant term as in equation (4.2.3), r is
again limited to the range 0 < r < 1.

4.3 Zero mass mode for a stabilized sector

Anticipating the situation for an inflationary scenario we now analyze the mass spec-
trum of a stabilized q-sector in a de Sitter background. For Minkowski spaces it
is known that the lightest mass in a stabilized sector scales with the supersymmetry
breaking vacuum expectation value Ga [186]. Here we extend the analysis to de Sitter
vacua as the zeroth order approximation of slow-roll inflation. Already in this zeroth
order approach we will show that a similar light mode develops in the stabilized sec-
tor. Throughout this discussion we assume that the potential V is kept positive by the
presence of the “inflationary” sector. In the next section we show that this result can
be translated directly into an inflationary setting, where this light mode will affect the
slow-roll dynamics.
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4.3 Zero mass mode for a stabilized sector

Given that we insist the q-sector to be stabilized, we have ∂aV = 0. In terms of
the Kähler function G(φ, φ, q, q) this means

(∇aGb)Gb = −Ga(1 + e−GV).

If the q-ground state breaks supersymmetry, i.e. Ga , 0, we may rewrite it in terms
of the supersymmetry breaking direction fa = Ga/

√
GbGb,

(∇aGb) f b = − fa(1 + e−GV).

For simplicity we will assume that the q-sector consists of only a single complex
scalar field q, in which case we may write this equation as

∇qGq = −Gqq(1 + e−GV)Ĝ2
q. (4.16)

A hat ẑ on a complex number denotes the “phase”-part of the number, z = |z|̂z =

|z|ei arg(z). As such Ĝq =
√

Gqq fq. Note that in an arbitrary supersymmetric config-
uration Ga = 0 there are no restrictions on ∇aGb, but on a supersymmetry broken
configuration this is no longer true. Were one to turn on supersymmetry breaking,
one would first have to reach a surface in parameter space where this restriction can
be imposed at the onset of supersymmetry breaking.

We will now compute the mass spectrum for the two modes of the complex scalar
field q, at the hypersurface defined by (4.16). The mass modes are given by the
eigenvalues of the matrix

M2 =

Vq
q Vq

q

Vq
q Vq

q

 ,
which in our case means

m±q =
(
Vq

q ± |V
q
q|
)

= Gqq
(
Vqq ± |Vqq|

)
. (4.17)

Expanding the second derivatives of the potential (cf. appendix 4.B) to first order in
|Gq|, these eigenvalues are

m−q = eGGqqRe
{
(∇q∇qGq)Ĝq3}

|Gq| + O(|Gq|
2), (4.18a)

m+
q = eG

[
2(2 + e−GV)(1 + e−GV) −GqqRe

{
(∇q∇qGq)Ĝq3}

|Gq|

]
+ O(|Gq|

2). (4.18b)

We see from (4.18a) that in the limit of vanishing supersymmetry breaking the lightest
mass mode becomes massless, just as in the case of Minkowski space [186].8 It is

8The result can also be extended to hold for anti-de Sitter vacua. However, for −2 < e−GV < −1, also
a tachyonic mode develops.
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important to note that this result depends crucially on taking the limit Gq to zero in
the supersymmetry breaking direction. When supersymmetry is restored and both
Gq = 0 and Gq = 0, the phases of these vectors have no meaning. In fact, we see that
then a new degree of freedom arises: ∇qGq becomes unrestricted which allows one
to choose the masses freely.

The geometrical picture is that there is a whole plane of supersymmetric solutions
where arbitrary masses are allowed. However, when supersymmetry is broken, the
supersymmetry breaking direction has to align with its complex conjugate fixing one
point on this plane where supersymmetry can be broken. In this point, the lightest
mode becomes massless.

4.4 Two-sector inflation in supergravity

Generally, when inflation is described in supergravity, realistic matter resides in a
hidden sector.9 Supergravities descending from string theory often have additional
hidden sectors as well. These sectors are always gravitationally coupled. In the pre-
vious section we have seen that for de Sitter vacua the hidden sector develops a light
direction. In this section we will consider how this light mode of the hidden sector
can affect the naïve dynamics of the inflationary sector. We will show that despite the
weakness of gravity, these effects can be large. Realistic slow-roll inflation is charac-
terized by small numbers, the slow-roll parameters ε and η, and even small absolute
changes to these numbers can be of the order of 100% in relative terms.

We will first briefly review the η-problem in the context of single field inflation
in supergravity. Then we will explain what effects are to be expected when including
an additional (hidden) sector. The section ends with calculating the relevant objects
to determine the true dynamics of the full system.

4.4.1 Inflation and the η-problem in supergravity

In single scalar field models of inflation the spectrum of density perturbations is
characterized by the two slow-roll parameters ε and η. To ensure that this spectrum
matches the observed near scale invariance, both ε � 1 and η � 1. Inflationary su-
pergravity in its simplest form consists of a single complex scalar field, the inflaton,
whose potential is generated by F-terms (3.28). The definition of η may be phrased

9The supersymmetric partners of the standard model are not good inflaton candidates, as these partners
are charged under the standard model gauge group and gauge fields taking part in inflation would lead to
topological defects [eg. 187, 188]. The exception could be a gravitationally non-minimally coupled Higgs
field [eg. 189, 190].
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4.4 Two-sector inflation in supergravity

as the lightest direction of the mass matrix in units of the Hubble rate 3H2 = V , i.e. η
is the smallest eigenvalue of the matrix, cf. equation (2.7), [191]

Ñ =
1
V

(
∇i∇ jV ∇i∇ V
∇ı∇ jV ∇ı∇ V

)
,

where the tilde on Ñ indicates that this value of η is defined with respect to the inflaton
sector only.10 From the second φ-derivative of V ,

Vi  = Gi V + GiV  + G Vi −GiG V + eG
[
Ri klG

kGl + Gkl∇iGk∇ Gl + Gi 

]
,

we see that a natural value for η is V i
j/V ∼ ∇

iG j ∼ 1 is unity. Therefore, we must
tune Gi, ∇iG j and Ri kl so that V i

j = O(10−3)V . The necessity of this tuning is known
as the η-problem.

As shown in [194], successful inflation is achievable if one tunes the Kähler func-
tion G such that

Ri kl f i f  f k f l .
2
3

1
1 + γ

,

where γ = e−GV/3 is inversely proportional to an overall mass scale m3/2 = eG/2,
which is related to the gravitino mass and Ri kl is the Riemann tensor of the inflaton
sector. As f i fi = 1, the above equation defines the normalized sectional curvature
along the direction of supersymmetry breaking. The constraint becomes stronger as
γ � 1, thus as H � m3/2. When the bound is met, one can always tune η to be small
by tuning Gi, ∇iG j and Ri kl.

Finding a suitably tuned supergravity potential from a (UV-complete) string theo-
retical set-up has proven to be incredibly difficult [195, 196], but possible [197–199].
Currently, in models with correctly tuned slow-roll parameters it is typically assumed
that the “hidden sector” does not affect the finetuning of parameters. The subject of
this chapter is to examine whether such an assumption is justified and hence how
relevant tuned models are that only consider the inflationary sector.

4.4.2 Stability of the hidden sector during inflation

Having reviewed the η-problem in single sector supergravity theories, we will now
consider if and how the fields in the hidden sector can affect the inflationary evolution.
From the diagonalization of the kinetic terms in (4.11) the distinction between φ-fields

10A careful definition based on the kinetic behavior of the inflaton field is done in [192, 193]. In the
slow-roll, slow-turn limit, it reduces to the definition of η given here.
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4. Inflation embedded in supergravity

and q-fields is explicit, leading naturally to an inflationary and a hidden sector. We
will again assume these sectors to both consist of only one complex scalar field, φ
and q respectively. The argument we shall present can already be made in a two-
field system. It carries through to multi-field models because the field φ is viewed
as the inflaton in an effective single field inflationary model, while the field q can be
seen as the lightest mode in the hidden sector. Following the usual practice [1, 2,
and references therein], we assume that inflation is solved by tuning the inflationary
sector only, including obtaining satisfactory values for the slow-roll parameters from
a phenomenological viewpoint. As a result all data in the inflationary sector are fixed
and known. Contrarily, the hidden sector is left unspecified and the restrictions we
find on it are a function of model specific parameters of the inflaton sector only.

To ensure that the hidden sector does not take part in the inflationary dynamics,
one generally assumes that the fields in the hidden sector are stabilized in a ground
state at a constant field value q = q0 throughout inflation

∂qV
∣∣∣
q0

= 0 (4.19)

and, hence, are not dynamical. Clearly an extremum for the hidden sector is obtained
if Gq = 0, i.e. when the ground state of the hidden sector preserves supersymmetry.
As was shown in detail in [155, 156, 166–170, 174], when Gq = 0 the ground state
of the hidden sector decouples gravitationally from the inflationary sector and the in-
flationary sector truly determines the inflationary evolution without any contributions
from the hidden sector. The stability of the extremum of the hidden sector, however,
depends on the inflationary trajectory and a stable extremum might develop into an
instability, leading to a waterfall for the hidden sector fields and, as a result, to the
end of inflation, as discussed in [166, 170].

The case we examine here is when supersymmetry is broken in the hidden sector,
Gq , 0. The first thing to note is that the stability assumption (4.19) cannot be met
anymore. In supergravity the position q = q0 of the minimum of the potential is given
by

Vq = GqV(φ, φ, q, q) + eG(φ,φ,q,q)
(
(∇qGq)Gq + Gq

)
= 0,

which shows that for Gq , 0 the ground state q0 depends on the inflaton field φ,
through V(φ, φ, q, q) and G(φ, φ, q, q). In the situation of unbroken supersymmetry,
Gq = 0, all φ-dependence drops out, but for Gq , 0 we see that it is impossible to
keep the position of the minimum constant during inflation. As the inflaton φ rolls
down the inflaton direction, the “stabilized” hidden scalar q will change its value. It is
clear that the assumption of a vanishing Vq = 0 for all q is incompatible with Gq , 0
and we should therefore abandon it. This in turn means that the hidden sector field
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4.4 Two-sector inflation in supergravity

q must be dynamical, through its equation of motion. Since we still want to identify
the field φ as the inflaton in the sense that it drives the cosmological dynamics, we
have to assume that q moves very little. We must therefore also assume a slow-roll,
slow-turn approximation to the solution of the q equation of motion

q̇ =
GqqVq

3H
.

The statement that the cosmological dynamics is driven by the φ-sector means that

‖q̇‖ � ‖φ̇‖, where ‖q̇‖ ≡
√

Gqqq̇q̇, etc. Through both slow-roll equations of motion
this equates to ‖Vq‖ � ‖Vφ‖ or εq � εφ,

As the hidden sector has now become dynamical, we have to treat the system
as a multi-field inflationary model. Since it is impossible to diagonalize the Kähler
transformations and mass matrix simultaneously, the fields will mix in the case of a
hidden sector with broken supersymmetry [166]. In the next section we will study
the consequences of this mixing by explicitly diagonalizing the mass matrix of the
full two-field system. From the result we shall find three possible effects on the
inflationary dynamics.

First, the lightest masses of fields from the different sectors can be too close to-
gether. It is obvious that one cannot consider an effective single field model if this is
the case, since for the dynamics to be independent of initial conditions, the lightest
field needs to be much lighter than the other fields. When the masses of the two fields
are similar, both of them contribute to the dynamics, resulting into a multi-field rather
than a single field inflationary scenario. As is known from the literature, a multi-field
inflationary model will produce effects such as isocurvature modes [eg. 67, 200–213],
features in the power spectrum [eg. 52, 214–216] and non-Gaussianities [isocurvature
models and eg. 58, 59, 217–224], pointing to a qualitatively different model.

Second, a change of the true value of η can occur. We have assumed the inflaton
sector to be tuned in such a way that it agrees with observed values for the slow-
roll parameters. If the effects of the hidden sector on the total dynamics are such
that η will change significantly, the initial naïve tuning would be of no meaning and
one would have to start the tuning process all over again after the hidden sector has
been added. Again we note that there is no contribution in the case of unbroken
supersymmetry in the hidden sector, since we shall show that the contribution to η
from the hidden sector is mostly determined by the cross terms in the mass matrix,

Vφq = GφVq + GqVφ −GφGqV,

which vanish when Gq = 0.
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Third, a complete change of the sector that determines η is possible. It is possible
that the eventual η-parameter is still within the limits of its naïve tuned value, satis-
fying the second bound, but instead it is determined by the hidden sector rather than
the inflationary sector. Any initial control obtained by tuning the inflationary sector
is superseded by the sheer coincidental configuration of the hidden sector.

4.4.3 The mass matrix of a two-sector system

To investigate when effects from the hidden sector are to be expected, we need to
calculate the eigenvalues of the mass matrix of the full two-field system. Since we
assume the inflationary evolution to be in the slow-roll, slow-turn regime, the dynam-
ics is completely potential energy dominated. The mass matrix of the full two-field
system determines which directions are stable or steep, as characterized by the eigen-
values of this matrix. Normalizing by 1/V to obtain the value of η directly, the matrix
we want to diagonalize is the 4 × 4-matrix

N =
1
V

(
∇I∇JV ∇I∇JV
∇I∇JV ∇I∇JV

)
. (4.20)

Equation (4.20) is to be evaluated at a point near q0 = q0(φ0), where q0 is such that
∂qV(q0) = 0, with φ0 indicating the beginning of inflation. As is clear from the
discussion of section 4.4.2 we cannot truly expect the hidden sector to be stabilized
throughout the inflationary evolution. Nevertheless we may consider ∂qV(q0) = 0 at
a certain point q0 = q0(φ0), with ‖∂qV‖ � ‖∂φV‖ around q0 in accordance with the
restriction εq � εφ.

The mass matrix is Hermitian and, considering again a two-field system, can be
put in the form

N =
1
V


∇φVφ ∇φVφ ∇φVq ∇φVq

∇φVφ ∇φVφ ∇φVq ∇φVq

∇qVφ ∇qVφ ∇qVq ∇qVq

∇qVφ ∇qVφ ∇qVq ∇qVq

 ,
by a coordinate transformation. Diagonalizing the full matrix in general is involved.
Therefore, we adopt the strategy to diagonalize the two sectors separately and then
pick the lightest modes only. The first step yields

N =


1
V (Vφ

φ − |V
φ

φ
|) 0 A11 A12

0 1
V (Vφ

φ + |Vφ

φ
|) A21 A22

A11 A21
1
V (Vq

q − |V
q
q|) 0

A12 A22 0 1
V (Vq

q + |Vq
q|)

 ,
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with

A =
1

2V

(
−V̂φφ V̂φφ

1 1

)−1 Vφ
q Vφ

q

Vφ

q
Vφ

q

 (−V̂qq V̂qq

1 1

)
.

Here, the first matrix is the inverse of the similarity transformation of the φ-sector and
the last matrix diagonalizes the q-sector.

In general the eigenmodes in the individual sectors will be different, one always
being smaller than the other. Dynamically the most relevant direction is the lightest
mode of each sector, but by restricting to these light directions, one assumes a hierar-
chy already within the sectors. For the inflationary sector this is phenomenologically
justified if we assume that inflation is described by a single field, where we know
that Vφ

φ and Vφ

φ
combine such that a light mode appears with mass ηV , much lighter

than the other mass modes. For the hidden sector we will simply assume that a large
enough hierarchy between mass modes exists. This will simplify matters without
weakening our result. By including only the lightest mode of the hidden sector, we
can already show that the true dynamics is in many cases not correctly described by
the naïve inflaton sector. Our case would only be more strongly supported if we would
include the heavy mode of the hidden sector, but this is technically more involved.
Projecting on the light directions, we get a submatrix of light mass modes

Nlight =

(
λφ A11

A11 λq

)
,

with

λφ =
1
V

(
Vφ

φ − |V
φ

φ
|

)
=

Gφφ

V
(Vφφ − |Vφφ|), (4.21a)

λq =
1
V

(
Vq

q − |V
q
q|
)

=
Gqq

V
(Vqq − |Vqq|), (4.21b)

A11 =
Gφφ

2V

(
V̂qqV̂φφVφq − V̂qqVφq + Vφq − V̂φφVφq

)
. (4.21c)

The eigenvalues of this two-field system are given by

µ± =
1
2

(
λφ + λq

)
±

1
2

√(
λq − λφ

)2
+ 4|A11|

2. (4.22)

Since µ− < µ+ the second slow-roll parameter for the full system is given by η = µ−.
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4.5 Dynamics due to the hidden sector

In the slow-roll and slow-turn approximation, the mass modes µ± from (4.22) deter-
mine the dynamics of the full system. In general the true dynamics will deviate from
the naïve single sector evolution. As explained in section 4.4.2 it is necessary to put
constraints on the full system for the true dynamics to still (largely) agree with the
initial naïve dynamics. We will quantify these constraints in terms of the hidden sec-
tor light mode λq and the dynamical cross coupling |A11| between sectors. The results
are graphically summarized in figures 4.1 and 4.2. In section 4.5.2 and figure 4.3
we will discuss the result again but then interpreted from the viewpoint of supergrav-
ity. Finally we will explain that a simple application of these bounds implies that the
standard model cannot be ignored during cosmological inflation, if standard model
supersymmetry breaking is independent of the inflaton sector.

4.5.1 Conditions on the hidden sector data

From (4.22) we see that the light modes λφ, λq from the two separate sectors mix
through a cross coupling |A11| and combine to the true eigenvalues µ± of the full two-
sector system. As explained in 4.4.2, for the inflaton sector to still describe the cos-
mological evolution and the η-parameter reliably, the three constraints it must obey
are (1) the bound arising from demanding a hierarchy between µ± to prevent multi-
field effects, (2) the bound arising from demanding the second slow-roll parameter
µ− = η to not change its value too much and (3) the bound from demanding that η is
mostly determined by the φ-sector rather than the q-sector.

To prevent multi-field effects from setting in, we take as a minimum hierarchy
that µ+ is at least five times as heavy as µ− in units of the scale of the problem |µ−|,

µ+ − µ−
|µ−|

> 5. (4.23)

This bound is rather arbitrary, but clearly a hierarchy between µ+ and µ− must ex-
ist. Calculations in [215] show that for a mass hierarchy . 5 multi-field effects are
typically important.

The second bound is given by the A11-dependence of µ−. The value of the second
slow-roll parameter from the single field inflationary model only is ηnaïve = λφ. In the
full two-sector system, µ− takes over the role as the true second slow-roll parameter
ηtrue = µ−. The contribution to the actual η-parameter from the presence of the hidden
sector is therefore

∆η = µ− − λφ =
1
2

[
(λq − λφ) −

√
(λq − λφ)2 + 4|A11|

2
]
, (4.24)
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4.5 Dynamics due to the hidden sector

which is always negative. We argue that this difference should stay within |∆η/λφ| <
0.1, i.e. η should not change by more than 10%. This choice for the range of η
is given by current experimental accuracy. Current experiments can only determine
ns = 1 − 6ε + 2η. WMAP has a 1σ error of 6.53% [10], Planck will have an error of
0.70% [69]. For ns − 1, assuming 0.96, this gives a 17.5% error on the combination
of −6ε + 2η, which means an uncertainty of about 10% on the value of η.

We will examine λq, A11 in units of |λφ| and exclude regions in which the hidden
sector affects the tuned inflationary sector too much. The analysis is best done sep-
arately for the cases λφ = ηnaïve > 0 and λφ = ηnaïve < 0 because of the qualitative
differences between these cases.

The case ηnaïve > 0

We first examine the hierarchy bound as explained above and focus first on the situa-
tion where µ− > 0. In this case (4.23) means that we demand

µ+ − 6µ−
λφ

=
1
2

−5
(
λq

λφ
+ 1

)
+ 7

√(
λq

λφ
− 1

)2

+ 4
(
|A11|

λφ

)2
 > 0,

which allows us to solve λq/λφ as a function of |A11|/λφ,

(
12
35

)2 (
λq

λφ
−

37
12

)2

+

2
√

6
5

2 (
|A11|

λφ

)2

= 1.

This excludes everything inside the ellipse demarcating the green region in figure 4.1.
The case µ− < 0 is not relevant as it is already excluded by the second bound.

For this second bound, to be somewhat more general than the observationally
inspired constraint ∆η/λφ > −0.1, we give the bound ∆η/λφ > − f . Solving for λq

this gives
λq

λφ
> 1 − f +

1
f

(
|A11|

λφ

)2

,

as is indicated in blue in figure 4.1. Note that since the true value of η is always lower
than ηnaïve (see [225] for some specific examples), a change in η of 100% means that η
changes sign from its naïve value. This shows that we were justified to only consider
positive µ− in the hierarchy bound earlier.

The third bound is given by a λq-dominance in µ−. Since λφ and λq are treated on
equal footing in µ−, the true η is dominantly determined by the smallest eigenvalue,
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Figure 4.1: Bounds from a dynamical hidden sector for ηnaïve > 0. The multi-field
constraint excludes an ellipse near the λq-axis (shaded in green). The bound from having
too much effect on η excludes large |A11| (shaded with increasing intensities of blue for
larger deviations). Around λq = A11 = 0 the hidden sector mode λq rather than λφ
determines η, excluding that region as well (shaded in purple).

which is not necessarily λφ. When λφ � λq and λφ � |A11| we see immediately that
the true η = µ− is determined by λq and is independent of λφ,

µ− =
1
2

(λq + λφ) − λφ

1 − λq

λφ
+ O

λ2
q

λ2
φ

,
|A11|

2

λ2
φ

 .
It is clear that this arguments excludes the lower left corner of parameter space. We
will take the bound to be 1/

√
2 such that

(
λq/λφ

)2
,
(
|A11|/λφ

)2
< 1/2 � 1, the

radius of convergence of this Taylor expansion. Contrarily to the somewhat debatable
bounds imposed by ∆η/λφ, the points within this circle are truly excluded because
they violate one of the core assumptions in the approach, viz. that the φ-sector is
responsible for all cosmological dynamics including determining the value of η. The
circle (

λq

λφ

)2

+

(
|A11|

λφ

)2

=
1
2
,
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4.5 Dynamics due to the hidden sector

is indicated as the purple region in the figure.
In figure 4.1 we have indicated in which regions of λq/λφ- and |A11|/λφ-parameter

space the effects of a hidden sector can be rightfully ignored. We have shown that all
negative values of λq are excluded and only in the region with large λq/λφ and small
|A11|/λφ there are no large effects from the hidden sector. This result is qualitatively
easily understood, as the hidden sector with broken supersymmetry will still decouple
if the masses in the hidden sector are truly large. We argue that this possibility is too
easily assumed to be the case in the literature without considering the actual hidden
constraints it imposes on the hidden sector. These hidden assumptions should be
mentioned explicitly and one should show that they can be obtained.

The case ηnaïve < 0

In the case that λφ = ηnaïve is negative, the last bound of section 4.5.1 does not impose
any condition on λq/|λφ|, |A11|/|λφ|-parameter space. When λφ < 0, i.e. when λφ =

−|λφ|, the eigenvalues can be written as

µ± =
|λφ|

2


(
λq

|λφ|
− 1

)
±

√(
λq

|λφ|
+ 1

)2

+ 4

∣∣∣∣∣∣A11

λφ

∣∣∣∣∣∣2
 ,

which means that µ− is not determined by λq to first order in λq/|λφ| but by λφ as
should be,

µ− =
|λφ|

2

[(
λq

|λφ|
− 1

)
−

(
1 +

λq

|λφ|
+ . . .

)]
.

However, by the hierarchy bound the small λq/|λφ|-regime does get excluded. Since
µ− is always negative in this case,

µ− ≤
|λφ|

2

[(
λq

|λφ|
− 1

)
−

∣∣∣∣∣∣ λq

|λφ|
+ 1

∣∣∣∣∣∣
]

= −|λφ|,

equation (4.23) translates into

µ+ + 4µ−
|λφ|

=
1
2

5
(
λq

|λφ|
− 1

)
− 3

√(
λq

|λφ|
+ 1

)2

+ 4

∣∣∣∣∣∣A11

λφ

∣∣∣∣∣∣2
 > 0.

This excludes everything beneath the upper branch of the hyperbola given by the line

λq

|λφ|
>

17
8

+
1
8

√
152 + 28

∣∣∣∣∣∣A11

λφ

∣∣∣∣∣∣2,
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Figure 4.2: Bounds from a dynamical hidden sector for ηnaïve < 0. The multi-field bound
excludes a hyperbola starting at λq = 4|λφ| and, in particular, small λq (shaded in green).
The bound from having too much effect on η excludes the large |A11|-region (shaded with
increasing intensities of blue for larger deviations), but leaves open in particular the full
range of λq.

which is shaded green region in figure 4.2.
The final constraint on the parameter space comes from the bound on the change

in η, see the previous paragraph on the ηnaïve > 0-case for a discussion. In the blue
region in figure 4.2 we have indicated the bound |∆η/λφ| < f , which means

λq

|λφ|
> −1 − f +

1
f

∣∣∣∣∣∣A11

λφ

∣∣∣∣∣∣2 ,
for different fractions of f .

In figure 4.2 we have indicated in which regions of λq/|λφ|- and |A11|/|λφ|-
parameter space the effects of a hidden sector can be rightfully ignored after imposing
both constraints. As in the case for ηnaïve > 0, the only allowed region is for large
λq/|λφ| and small |A11|/|λφ|. Note that all values of λq < 4|λφ| are explicitly excluded
by the imposed bounds.
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Figure 4.3: Excluded regions for the supergravity parameter range for |Gq| and β, which
contains in particular ∇q∇qGq, in units of |ηnaïve| and |α|, which contains εφ and Gφ. The
indicated regions come from the multi-field bound (shaded in green), the correct identifi-
cation of sectors (shaded in purple) and allowing only for small deviations of η (shaded
in higher intensities of blue for larger deviations). The left (right) picture describes the
case ηnaïve > 0 (ηnaïve < 0).

4.5.2 Conditions on supergravity models

In principle, figures 4.1 and 4.2 provide all the information needed to verify whether
the hidden sector of a given model may be neglected while studying the inflationary
dynamics. Through equations (4.21) and the expressions for VIJ as summarized in
appendix 4.A, one can explicitly calculate the corresponding λq and A11 for a given
model and compare them with the figures. However, we would like to have some
direct intuition about the dependence of the excluded regions on the supergravity data.
In this section we will investigate how much we can say about this in general without
having to specify a model. The main question to answer is whether the fact that λq

and A11 are determined by a supergravity theory, provides any additional constraint
on which regions are obtainable to begin with. The answer to this question turns out
to be that a priori supergravity is not restrictive enough to exclude any of the regions
in λq, A11-parameter space.

The easiest way to translate figures 4.1 and 4.2 in terms of supergravity data
would be to simply map the regions into supergravity parameter space. Unfortunately
the expressions in (4.21) are highly nonlinear and depend on too many supergravity
variables to conveniently represent figures 4.1 and 4.2 in terms of supergravity data.
However, for small |Gq| this does turn out to be possible.
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4. Inflation embedded in supergravity

Applying the explicit expressions for VIJ as found in appendix 4.A to (4.21c),
yields

A11 = α(φ, φ, q, q)|Gq|, with (4.25)

α(φ, φ, q, q) =
Gφφ

2

(
Ĝq − V̂qqĜq

) ((Vφ

V
−Gφ

)
− V̂φφ

(Vφ

V
−Gφ

))
.

From this equation we learn that A11 vanishes in the limit Gq → 0, which makes
sense as we know that the two sectors should decouple in the limit of restored su-
persymmetry. It is difficult to retrieve more information from this explicit expression
of A11 in terms of supergravity data. In principle A11(|Gq|, . . .) may be inverted to
give some function |Gq|(A11, . . .), but this is trickier than (4.25) suggests. Although
we have managed to extract one factor of Gq, the function α(φ, φ, q, q) still depends
on Gq through the phases of V̂qq and V̂φφ, making it hard to perform the inversion
explicitly.

The expression for λq looks even worse,

λq =
Gqq

V

(
Vqq −

√
VqqVqq

)
. (4.26)

At this stage we have refrained from substituting in the expressions for Vqq, Vqq and
its complex conjugate. The square root clearly shows that the dependence of λq on
|Gq| and the other supergravity data is involved and difficult to invert. To get a useful
expression we revert to the result of section 4.3 and consider λq in the small |Gq|-
regime by performing a Taylor expansion. Copying from (4.18a), we find

λq = β(φ, φ, q, q)|Gq| + O(|Gq|
2), with (4.27)

β(φ, φ, q, q) =
Gqq

e−GV
Re

{
(∇q∇qGq)Ĝq3}

.

Having obtained the relations (4.25) and (4.27) we can now accommodate the
reader with a graph of the allowed and excluded regions directly in terms of the
supergravity data. For small Gq � 1 both λq and |A11| scale linearly with Gq, making
it relatively easy to rewrite the bounds we found λq/|λφ| = λq/|λφ|

(
|A11|/|λφ|

)
in terms

of Gq, α and β as β/|α| = β/|α|
(
|αGq|/|λφ|

)
. The resulting figure is depicted in 4.3.

Note that α and β are still underdetermined — depending on Rqqqq and ∇q∇qGq at
higher orders in |Gq|— and are naturally of order 1. It is these numbers that determine
where in figure 4.3 the model under investigation lies.
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4.5 Dynamics due to the hidden sector

Figure 4.4: The effects of the multi-field bound (shaded in green), the identification of
the correct inflaton sector (shaded in purple) and the small deviations of η (shaded in blue)
on a doubly logarithmic scale for ηnaïve > 0 (left) and ηnaïve < 0 (right). The approximate
location of the standard model supergravity data is indicated with a red bar, showing that
a large range of parameters is excluded. In this plot α = 1 and λφ = ηnaïve = 10−3.

4.5.3 Inflation and the standard model of particle physics

As a simple application of the previous section, we can consider to what extent the
standard model ought to be included in any reliable supergravity model for cosmolog-
ical inflation. Our current understanding of nature includes a present-day supersym-
metrically broken standard model after an inflationary evolution right after the big
bang. As such the combined model is exactly that of a two-sector supergravity theory
with an inflationary and a hidden sector whose ground state breaks supersymmetry in
which it resides throughout the inflationary era.

Supersymmetry in the standard model sector can either have been broken by grav-
ity mediation of the inflaton sector or by a mechanism in the standard model sector
itself. The first situation would be a consistent approach as far as our analysis goes:
as Gq = 0 the sector decouples from the inflationary dynamics, might be stabilized
and the slow-roll parameters are reliably determined from the inflaton sector alone.
Nevertheless, from the point of view of our understanding of the standard model it
would be unsatisfactory to not know the precise mechanism behind its supersymme-
try breaking and (complete) models describing such mechanisms would still have to
be analyzed to shed light on the situation.

In the second situation, Gq , 0, we should apply the results of the previous
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4. Inflation embedded in supergravity

sections. The field q may be seen as some light scalar degree of freedom in the
(supersymmetrically broken) standard model. We assume the standard lore, that su-
persymmetry is broken in the standard model at a scale of about 1 TeV. In the F-term
scalar potential, this scale enters via Gq. To determine the correct numerical value,
we relate our dimensionless definition of the Kähler function to the standard dimen-
sionful definition. Dimensionful quantities are denoted with a tilde in the following.11

We recall from section 4.2.3 that in order to have a non-vanishing vacuum energy, the
superpotential in both sectors must have a non-zero constant term W (1)

0 = m(1)
Λ
/Mpl,

W (2)
0 = m(2)

Λ
/Mpl, which accounts for the always present gravitational coupling be-

tween the sectors. Hence, the dimensionful constant term in the total superpotential
(4.13) has value W̃ tot

0 = W (1)
0 W (2)

0 M3
pl = m(1)

Λ
m(2)

Λ
Mpl. In contrast, the supergravity

quantities K̃(2) and W̃ (2)
susy = W̃ (1)

0 W̃ (2)
dyn/M

3
pl describing the standard model are natu-

rally of the order of the TeV-scale, [W̃ (2)
susy] = TeV3, [∂q̃K̃(2)] = TeV. We relate the

scale of supersymmetry breaking G̃q̃ to the superpotential via

G̃q̃ =
M2

pl

W̃

∂q̃W̃ +
∂q̃K̃(2)

M2
pl

W̃

 ,
which is naturally of order

[
G̃q̃

]
=

M2
pl

m(1)
Λ

m(2)
Λ

Mpl + . . .

TeV2 +
TeV
M2

pl

(m(1)
Λ

m(2)
Λ

Mpl + . . .)

 =
MplTeV2

m(1)
Λ

m(2)
Λ

+TeV+ . . . ,

where the . . . are of subleading order. We expect that m(1)
Λ

, the constant term of the
inflaton sector, is of order [H] = 10−5Mpl, while [m(2)

Λ
] = TeV. Hence, translating

back to dimensionless units, we find Gq ∼ 10−11.
Taking the kinetic gauge, i.e. a canonical Kähler metric Gφφ = 1, we can easily

find the natural value of α. From (4.25) we see that α depends on εφ and Gφ via

α ∝
√
εφ −Gφ,

modulo some unknown but negligible phase factors. Gφ is of order
√

3 in order to
have a potential V > 0. Since εφ is of order O(10−3), the value of |α| is of order unity.
For a rough estimate of ηnaïve ∼ 10−3, we can therefore pinpoint the standard model
as indicated in figure 4.4. In both cases, ηnaïve > 0 as well as ηnaïve < 0, the lightest

11E.g. in dimensionful units [G̃] = mass2 and [̃q] = mass, while our conventions are [G] = [q] = 0. To

relate Gq to G̃q̃ we can use the expression
[
Gq

]
=

[G̃q̃]
Mpl

.
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supersymmetric particle is too light for the single sector inflationary dynamics to truly
describe the full system. Any tuned and working inflationary supergravity model
in which the standard model is assumed to not take part in the cosmic evolution,
requires implicit assumptions on the standard model that either the inflaton sector is
responsible for standard model supersymmetry breaking through gravity mediation
or the masses of the standard model scalar multiplets are unnaturally large in terms
of the now independent standard model supersymmetry breaking scale.

4.6 Conclusions

We have studied the effect of hidden sectors on the finetuning of F-term inflation in
supergravity, identifying a number of issues in the current methodology. Finetuning
inflationary models is only valid when the neglected physics does not affect this fine-
tuning, in which case the inflationary physics can be studied independently. As shown
in figures 4.1 and 4.2 this assumption holds only under very special circumstances.
The reason is that the everpresent gravitational couplings will always lead to a mixing
of the hidden sectors with the inflationary sector, even in the case of the most mini-
mally coupled action (4.11). For a hidden sector vacuum that preserves supersymme-
try, the sectors decouple consistently [166–169, 182]. However, for a supersymmetry
breaking vacuum the inflationary dynamics is generically altered, where the nature
and the size of the change depends on the scale of supersymmetry breaking.

For a hidden sector with a low scale of supersymmetry breaking, like the standard
model, the cross coupling scales with the scale of supersymmetry breaking, and is
therefore typically small. Yet, as shown in section 4.3, the lightest mass of the hidden
sector depends as well on the scale of supersymmetry breaking within that sector.
This light mode is strongly affected by the inflationary physics and thus evolves dur-
ing inflation. Therefore, any single field analysis is completely spoiled as discussed
in section 4.5.3.

For massive hidden sectors, the problem is more traditional. For a small hidden
sector supersymmetry breaking scale, one has a conventional decoupling as long as
the lightest mass of the hidden sector is much larger than the inflaton mass. However,
for large hidden sector supersymmetry breaking, this intuition fails. Then, the off-
diagonal terms in the mass matrix (4.20) will lead to a large correction of the η-
parameter.

To conclude, any theory that is working by only tuning the inflaton sector has
made severe hidden assumptions about the hidden sector, which typically will not be
easily met. Methodologically the only sensible approach is to search for inflation in
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4. Inflation embedded in supergravity

a full theory, including knowledge of all hidden sectors.

4.A Some supergravity relations

For easy reference to the reader, we use this appendix to state the relevant derivatives
of the supergravity potential of a two-sector system coupled via

G(φi, φ
ı
, qa, qa) = G(1)(φi, φ

ı
) + G(2)(qa, qa). (4.28)

We use middle-alphabet indices {i, ı} to denote the fields in the inflationary sector,
beginning-alphabet indices {a, a} to denote the fields in the hidden sector and capital
middle-alphabet indices {I, I} to denote the full system. Derivatives with respect to
these fields are denoted by subscripts, e.g. ∂iG = Gi and ∂i∂ jG = Gi j. The Hessian
GIJ describes the metric of the (product-) manifold parameterized by the fields. This
is a Kähler manifold and hence ∇IGJ = GIJ .

The supergravity potential is

V = eG(GIGI − 3) = eG(GIG
I − 3) = eG(GaGa + GiGi − 3).

Its covariant derivatives are denoted with subscripts (note that this is a different con-
vention than the one used for the Kähler function G), e.g. ∇iV = ∂iV = Vi and
∇i∇ jV = Vi j. In terms of derivatives of G, the first derivatives of V are given by

Vi = GiV + eG
(
(∇iG j)G j + Gi

)
, (4.29a)

Vı = GıV + eG
(
(∇ıG )G  + Gı

)
, (4.29b)

and similar expressions for Va and Va. The Hessian of covariant derivatives is

Vi j = ∇iG jV + GiV j + G jVi −GiG jV + eG
[
(∇i∇ jGk)Gk + 2∇iG j

]
, (4.30a)

Vi  = Gi V + GiV  + G Vi −GiG V + eG
[
Ri klG

kGl + Gkl∇iGk∇ Gl + Gi 

]
, (4.30b)

Via = ∇aGiV + GiVa + GaVi −GiGaV + eG
[
(∇a∇iGI)GI + ∇iGa + ∇aGi

]
= GiVa + GaVi −GiGaV, (4.30c)

Via = GiaV + GiVa + GaVi −GiGaV + eG
[
RIJiaGIGJ + GIJ∇iGI∇aGJ + Gia

]
= GiVa + GaVi −GiGaV, (4.30d)

and similar expressions for the other VIJ . The equalities in (4.30c) and (4.30d) result
from the specific form of the Kähler function (4.28).
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4.B Mass eigenmodes in a stabilized sector

4.B Mass eigenmodes in a stabilized sector

In this appendix we provide some intermediate results in the calculation of (4.18).
Using the expressions as stated in appendix 4.A, to first order in |Gq|, the second
derivatives of the potential are given by

Vqq = eG
[
(2 + e−GV)∇qGq + (∇q∇qGq)Gq

]
+ O(|Gq|

2), (4.31a)

Vqq = eG
[
Gqq(1 + e−GV) + Gqq(∇qGq)(∇qGq)

]
+ O(|Gq|

2). (4.31b)

Using the supersymmetry breaking restriction (4.16) in (4.31), we find

Vqq = −eGGqq

[
(2 + e−GV)(1 + e−GV)Ĝq−2

−Gqq(∇q∇qGq)Gq
]

+ O(|Gq|
2), (4.32a)

Vqq = eG
[
Gqq(1 + e−GV) + (1 + e−GV)2GqqGqqGqq

]
+ O(|Gq|

2)

= eGGqq(2 + e−GV)(1 + e−GV) + O(|Gq|
2), (4.32b)

and hence

|Vqq| = eGGqq(2 + e−GV)(1 + e−GV)×√√
1 −

2GqqRe
{
(∇q∇qGq)GqĜq

−2}
(2 + e−GV)(1 + e−GV)

+

∣∣∣Gqq(∇q∇qGq)Gq
∣∣∣2

(2 + e−GV)2(1 + e−GV)2 + O(|Gq|
2)

= eGGqq

[
(2 + e−GV)(1 + e−GV) −GqqRe

{
(∇q∇qGq)Ĝq3}

|Gq|

]
+ O(|Gq|

2).

(4.33)

Then (4.17) is evaluated to be

m−q = eGGqqRe
{
(∇q∇qGq)Ĝq3}

|Gq| + O(|Gq|
2), (4.34a)

m+
q = eG

[
2(2 + e−GV)(1 + e−GV) −GqqRe

{
(∇q∇qGq)Ĝq3}

|Gq|

]
+ O(|Gq|

2). (4.34b)
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