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3
Describing nature at its tiniest

Phenomenologically, inflation is a very successful theory that is compatible with all
observations. However, its microscopic origin is not very clear and ideally one would
like to have an embedding of inflation into a more fundamental framework. Maintain-
ing the slow-roll condition, especially over 60 e-folds, turns out to be an extremely
delicate exercise that is easily disturbed by the very quantum effects that provide the
origin of density fluctuations. To understand inflation and the origin of our cosmos,
we need to have an accurate description of the workings of nature at the smallest
scales.

The quest to find out nature’s workings at an ever more precise level is the tale
of the history of physics, a progression that has happened in steps. Nature has been
so kind to us that in order to understand a certain macroscopic phenomenon, we do
not need to know the (full) details of the microscopic details within. An effective
description of the phenomenon, in which the microscopic degrees of freedom decou-
ple, is often sufficient to completely understand the relevant behavior. At a certain
stage however, the details do become important and one should refine the fundamen-
tal theory. By successively focussing on the details of a given theory, we have come
to understand more and more about nature. The current fundamental theory, which is
believed to unify all known particles and interactions, is string theory.

In this chapter we will discuss the effective field theory description alluded to
above, in particular the role played by conformally invariant theories. Furthermore
we will discuss the relation between string theory and conformal invariance and we
consider two additional aspects of string theory: supergravity and holography.1

1 The material presented in this chapter can also be found in many terrific books and reviews. The
information on renormalization and conformal field theory can be found in [72, 80–84]. String theory
books and lecture notes include [85–87]. Supersymmetry and supergravity is discussed by [88, 89] and an
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3. Describing nature at its tiniest

3.1 Conformal field theory

3.1.1 Nature at different energy scales

Renormalization and effective field theory

In technical terms, our stepwise progression into the details of nature’s workings is
understood through renormalization of the quantum field theory that is used to de-
scribe the world around us. Historically, renormalization was invented as a procedure
of mathematical tricks, in order to extract finite answers from the divergent expres-
sions [92], but Wilson’s interpretation of renormalization in terms of coarse graining
has played a key role in the conceptual understanding of renormalization and effec-
tive field theory [93–96]. The remarkable conclusion of renormalization is that the
renormalized, physical coupling constants, i.e. the strengths of the interactions be-
tween particles, depend on the energy scale t at which a given process happens. In the
Wilsonian context, this dependence is understood as the only remaining effect of the
unknown underlying microphysics. The power of the renormalization group, how-
ever, is that the way the couplings run does not depend on the microscopic physics.

The scale dependence of the couplings has immediate consequences for the ob-
servability of different interactions. In a d-dimensional theory, a coupling constant
u multiplying an operator of mass dimension ∆, has itself mass dimension d − ∆,
where the mass typically is of order of the cut-off scale Λ, used to regularize the the-
ory. Hence, using the momentum-scale t of a given process to make a dimensionless

quantity, the coupling scales as u ∼
(

t
Λ

)∆−d
. This simple argument based on dimen-

sional analysis shows that operators can be split into 3 categories: relevant operators
with ∆ < d, whose coupling constants become increasingly important at low energy
scales t � Λ, marginal operators with ∆ = d, whose coupling constants are scale
independent, and irrelevant operators with ∆ > d, whose coupling constants are ir-
relevant at low energies, but all the more important at high energies. Therefore at
low energies, an effective field theory in terms of only ∆ ≤ d operators is a sufficient
description of nature, as long as one probes the theory at energies below the funda-
mental cut-off scale Λ [93–96]. This argument explains why nature is insensitive to
microscopic details when it is only observed at a macroscopic level. All the details of
the microscopic theory can be captured in terms of just a finite number of (relevant
and marginal) coupling constants, which survive the small t-limit. It also implies that
we are hard pressed to deduce anything about the tiniest scales in nature with our
everyday, low energy experiments [97]. It is for this reason that we need to probe

introduction to holography is given in [90, 91].
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3.1 Conformal field theory

high energy scales t > Λ, such as in the opportunity given by (indirect) observations
from the inflationary epoch. By probing beyond the regime of validity of the effective
field theory, we hope to find out what kind of irrelevant operators reside within the
underlying, more fundamental theory.

Callan-Symanzik equation

The arguments using dimensional analysis give a first, qualitative indication of why
a physical process depends on the energy scale t at which it occurs. The quantitative
formalism to understand the precise energy dependence of a quantum field theory has
been worked out by Callan and Symanzik [98–101], which results into the Callan-
Symanzik equation, a differential equation that governs the energy dependence of n-
point correlation functions. To derive it, we consider an n-point correlation function
G(n)

0 (p j; u0) of an operator O, given in terms of its bare coupling u0 and depending on
the momenta p j of the operators. After regularization and renormalization, imposing
renormalization group conditions at a certain scale µ, the correlation functions can
also be expressed in terms of the renormalized coupling u(µ),

G(n)(p j; u(µ), µ) = Z−n/2G(n)
0 (p j; u0),

where Z is the field rescaling factor O → Z−1/2O. The Callan-Symanzik equation re-
sults from the observation that the original, bare correlation function G(n)

0 cannot de-
pend on the choice of renormalization scale µ. This imposes a consistency condition
on the renormalized n-point function G(n), which determines uniquely its dependence
on the energy scale µ,

0 = Z−n/2µ
d

dµ
G(n)

0 (p j; u0) =

(
µ
∂

∂µ
+ β(u)

∂

∂u
+ nγ(u)

)
G(n)(p j; u(µ), µ). (3.1)

The β function, β(u), and anomalous dimension γ(u) of the operator O are defined
through the use of the chain-rule,

β(u) = µ
∂u
∂µ
, γ(u) =

1
2
µ

Z
∂Z
∂µ
. (3.2)

β function and anomalous dimension

The dependence of the renormalized n-point function G(n) on the renormalization
scale µ, specified by β and γ through the Callan-Symanzik equation (3.1), automat-
ically dictates the dependence of the theory on the physical scale t [102]. The mass
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3. Describing nature at its tiniest

dimension of a correlation function G(n)(x j; u, µ) of n operators O(x j) with scaling
dimension ∆0 is n∆0 [72]. Extracting a momentum-conserving δ(d) (p1 + . . . + pn)
function, the corresponding Fourier transformed correlation function has mass di-
mension ∆

(p)
n = n(∆0 − d) + d, which can be written in terms of the renormalization

scale µ and some function of dimensionless ratios p j/µ,

G(n)(p j; u, µ) = µ∆
(p)
n f

(
p j

µ

)
.

We can rescale all momenta with a common factor of t. It sets the energy at which
the physical process is probed. Using the relation between t and µ,

t
∂

∂t
G(n)(tp j; u, µ) =

(
−µ

∂

∂µ
+ ∆

(p)
n

)
G(n)(tp j; u, µ),

the Callan-Symanzik equation is written completely in terms of the overall momen-
tum dependence t,(

t
∂

∂t
− β(u)

∂

∂u
− (∆(p)

n + nγ(u))
)

G(n)(tp j; u, µ) = 0. (3.3)

In this form, the Callan-Symanzik equation fixes the dependence of the correlation
function with physical rescalings. A general solution to this equation is [72],

G(n)(tp j; u, µ) = G(n)(p j; ũ(t; u), µ) exp
(∫ t′=t

t′=1
d log t′

[
∆

(p)
n + nγ(ũ(t′; u))

])
, (3.4)

in terms of the function ũ(t; u) defined through the differential equation (3.2),

t
∂

∂t
ũ(t; u) = β(ũ(t; u)), ũ(1; u) = u. (3.5)

Usually, once a solution for ũ(t; u) is found, it is denoted with u(t) and simply referred
to as the running coupling of the theory.

For a free field theory, with β = γ = 0, the solution (3.4) indeed reproduces
the correct scaling G(n)(tp j; u, µ) ∼ t∆

(p)
n . When β and γ are nonzero, the momentum

dependence changes. In a given theory, the β function can be calculated by computing
the counterterms in a renormalization procedure. The differential equation (3.5) then
determines the running of the coupling constant u = u(t) as a function of the energy
scale t at which the specific process is considered. As such, the renormalization group
equations can be seen as a flow on the space of coupling constants of the theory:
depending on the sign of β(u), coupling constants are increasingly dominant or less
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3.1 Conformal field theory

and less important along the renormalization group flow. As we will see shortly, close
to a free field theory, u ≈ 0, the β functions determine a flow that indeed approximates
the anticipated u ∼ t∆−d behavior. However, once u , 0, the β function might change
and as a result the precise scaling behavior of u(t) will also change. Whether operators
are truly relevant, marginal or irrelevant therefore depends on whether β < 0, β = 0
or β > 0.

A nonzero anomalous dimension γ changes the scaling behavior of the correlation
function and induces a change in the scaling dimension of the operators O inside the
correlation function. This is best seen around a non-trivial fixed point of the theory,
where β(u∗) = 0 and u(t) is constant u(t) = u∗ , 0. Then the solution (3.4) yields

G(n)(tp j; u∗, µ) = t∆
(p)
n +nγ(u∗)G(n)(p j; u∗, µ).

Again, the n-point function scales with a power law of t, but now the exponent is
different than the usual ∆

(p)
n . Tracing back to the scaling dimension of the operator

O(x j), it appears as if its scaling dimension ∆0 is changed to

∆ = ∆0 + γ, (3.6)

which explains why γ is called the anomalous dimension.

3.1.2 Field theory without a scale

Conformal transformations

It is clear that theories with vanishing β functions play a special role in the study of
renormalization group flow on the space of theories. Such a scale invariant theory
acts as a fixed point for the renormalization group flow: the coupling constants are
scale invariant and remain scale invariant. As such, they form an ideal starting point
to study the renormalization group flow perturbatively. Before explaining the pertur-
bative approach, let us consider the conformal field theories themselves [83, 84].

Conformal field theories are invariant under conformal transformations, i.e. trans-
formations x 7→ x′(x) such that the metric hαβ changes with an overall spacetime
dependent factor,

h′αβ(x′) = Λ(x)hαβ(x).

Together with the standard Lorentz transformations, they form a group, the confor-
mal group, whose transformations in dimensions d > 2 are translations, dilations,

27



3. Describing nature at its tiniest

rotations2 and special conformal transformations,

x′α = xα + aα, x′α = λxα, (3.7a)

x′α = Lαβxβ, x′α =
xα − bαx2

1 − 2bαxα + b2x2 , (3.7b)

respectively. The first three transformations together form the Poincaré group ex-
tended with dilations, i.e. the symmetry group of scale invariant theories. Hence,
conformal invariance, or local scale invariance, implies scale invariance, which is
why they form a good starting point to study renormalization group fixed points.

Rotations and special conformal transformations shall not play a large role in
this thesis and we shall focus on translations and dilations. On a field O, these two
transformations act as O′(x) = (1 − iGaωa(x))O(x), where ωa is the infinitesimal
parameter of the transformation and the generators Ga are given by

GT,α = −i∂α, GD = −i (xα∂α + ∆) ,

respectively. ∆ is the scaling dimension of the field O, O′(λx) = λ−∆O(x). The
conserved current associated with translational symmetry is the stress-energy tensor
jT,αβ = Tαβ. Canonically it can be expressed through a standard Noether procedure,
i.e. under translations x′α = xα + aα the action changes infinitesimally

δS =

∫
dd x
√

h T c
αβ∇

αaβ.

The disadvantage of this definition is that T c
αβ will not necessarily be symmetric.

Therefore, a new, improved stress-energy tensor can be defined [83, 98] which plays
the same role as T c

αβ and which is symmetric. Another way to define the stress-
energy tensor is by considering a dynamical metric hαβ for the theory. Under the
diffeomorphism x′α = xα + aα(x) the metric changes as a tensor, δhαβ = ∇αaβ +∇βaα.
Hence in an invariant theory, the metric itself must transform opposite to this,

δS = −
1
2

∫
dd x
√

h Tαβδhαβ. (3.8)

A manifestly symmetric stress-energy tensor can therefore also be obtained via

Tαβ = −
2
√

h

δS
δhαβ

, (3.9)

2 Although we will partly be interested in conformal field theories that are of Lorentzian signature, we
can always Wick-rotate to a Euclidian signature. For this reason, the inner products in this section are
always taken to be Euclidean. Moreover, when studying conformal field theory, the metric is fixed, which
for many purposes may assumed to be flat.
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3.1 Conformal field theory

where the normalization depends on convention. In particular the stress-energy tensor
in string theory often contains factors of π in its definition [85, 86].

Under an infinitesimal conformal transformation x′α = xα + εα(x), which can be
shown to satisfy the conformal Killing equation,

∇αεβ + ∇βεα =
2
d
∇γε

γhαβ, (3.10)

the action is invariant,

0 = δS = −
1
d

∫
dd x
√

h Tα
α∇βε

β, (3.11)

if the stress-energy tensor is traceless,

Θ = Tα
α = 0.

Hence, a theory with a traceless stress-energy tensor is conformally invariant. One
might be tempted to think that the reverse is also true, but since ε(x) has to satisfy
(3.10), it is not an arbitrary function. Nevertheless, for most conformal field theories,
the stress-energy tensor can indeed be made traceless by a procedure similar to the
one used to make it symmetric [83]. In those cases, the stress-energy tensor is related
to the dilational current,

jαD = Tα
βxβ,

and tracelessness follows from (translational and) scale invariance.

Correlation functions in a conformal field theory

The symmetries in a conformal field theory impose powerful constraints on the func-
tional dependence of n-point correlation functions, particularly the two- and three-
point functions. For example, translational and rotational invariance of the theory tell
us that the dependence on the arguments xa can only appear via |xa − xb|. Including
dilational invariance and special conformal transformations, the two- and three-point
functions of operators Oa with scaling dimension ∆a are fixed to have the form [83]

〈O1(x1)O2(x2)〉 =
Nδ∆1∆2

x2∆1
12

, (3.12a)

〈O1(x1)O2(x2)O3(x3)〉 =
C1

23

x∆1+∆2−∆3
12 x−∆1+∆2+∆3

23 x∆1−∆2+∆3
13

, (3.12b)

29



3. Describing nature at its tiniest

where xab = |xa− xb|. The overall coefficients N and C1
23 are not fixed by any symme-

try constraints. N determines the overall normalization of the field Oa. C1
23 is called

the OPE coefficient because it is the coefficient in the operator product expansion,
an expansion similar to a Taylor expansion that relates the product of two operators
Oa(x) and Ob(y) to the other operators in the theory in the limit x→ y,

Ob(x)Oc(y) =
∑

a

Ca
bc|x − y|∆a−∆b−∆cOa

( x + y
2

)
.

Higher order n-point functions are less constrained than the two- and three-point
correlation functions. For example, the four-point function can have an arbitrary
functional dependence on cross ratios,

〈O(x1)O(x2)O(x3)O(x4)〉 = F
[

x12x34

x13x24
,

x12x34

x23x14

] 4∏
a<b

x
∑

c ∆c/3−∆a−∆b
ab .

Conformal invariance in two dimensions

Conformal symmetry is particularly powerful in two dimensions. This is clear from
the condition (3.10) on the infinitesimal parameter εα(x), which on a flat metric, hαβ =

δαβ, reduces to the Cauchy-Riemann equations

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1.

This suggests we should actually express the transformation parameter ε(z) = ε1 + iε2

and ε(z) = ε1 − iε2 in terms of the complex coordinates z = x1 + ix2, z = x1 − ix2. The
functions ε(z) and ε(z) are otherwise unconstrained, giving an infinite set of symmetry
generators z′ = z+ε(z), z′ = z+ε(z), rather than the finite set given by (the infinitesimal
version of) (3.7).

By momentarily promoting x1 and x2 to elements in C, the transformation be-
tween xα and z, z is a coordinate transformation of independent coordinates. The
symmetry algebras for ε(z) and ε(z) are then independent copies of the same algebra.
Only at the end of a calculation is the reality condition z = z∗ imposed.

Mathematically the restrictive power of two-dimensional conformal symmetry
is equivalent to the conditions imposed on (anti)-holomorphic functions in complex
analysis. Since complex analysis is such a rich and well-developed branch of mathe-
matics, many of the techniques can be applied successfully to two-dimensional con-
formal field theory [83, 84]. Although part of this thesis deals with conformal invari-
ance in two dimensions, its remarkable structure is not heavily or actively built upon.
For this reason, we do not elaborate much further on the special two-dimensional
case.
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3.1 Conformal field theory

3.1.3 Conformal perturbation theory

Weyl anomaly coefficients

In the previous section we have mostly been interested in the classical behavior of
conformal field theories. When considering quantum field theories with conformal
invariance, the situation becomes more involved. To make sense out of a quantum
field theory, its expressions need to be regularized and renormalized, thereby auto-
matically introducing a scale into the classically scale invariant theory [83]. For this
reason, it might be that a classically conformally invariant theory loses its confor-
mality as a quantum field theory. The departure from conformal invariance, can be
expressed in terms of a violation of the hallmark of a conformal field theory, i.e. the
trace of the stress-energy tensor is no longer vanishing,

Θ = −β(u)
δL

δu
. (3.13)

The notation of the coefficients, β(u), is no accident, as they are closely related to
the renormalization group β functions (3.2) [103–106]. Conceptually this is easy to
understand. Only a quantum field theory with a vanishing β function will remain a
fixed point for the renormalization group flow, without the introduction of any new
scale into the theory. All relevant and irrelevant operators induce a renormalization
of their couplings and therefore a scale dependence.

Technically the relation may be seen by the effect of an explicit scale transforma-
tion x′α = eωxα on the coupling δu = ωβ(u), where β(u) now really is the renormal-
ization group β function [72]. As a result the action changes as

δS =

∫
dd x δL =

∫
dd xωβ(u)

δL

δu
.

Compared to the definition (3.8) of the stress-energy tensor in terms of a scale trans-
formation of the metric h′αβ(x′) = e−2ωhαβ(x),

δS = −
1
2

∫
dd x Tαβδhαβ = −

∫
dd x Θω, (3.14)

the renormalization group β functions appear as coefficients in∫
dd x Θ = −

∫
dd x β(u)

δL

δu
.

Hence, the renormalization group β functions and the Weyl anomaly coefficients β
appearing in (3.13) are related in the same way as global and local scale invariance
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3. Describing nature at its tiniest

are related. The requirements
∫

Θ = 0 and Θ = 0 for global and local scale invariant
theories respectively are directly transferred to the β functions. Although this relation
can and is used [107–109] to simplify the computation of Weyl anomaly coefficients,
we will not emphasize the distinction.

In this section we have specifically restricted ourselves to flat metrics only. As we
will see when we turn our attention to string theory, conformal symmetry on a curved
space introduces another source for Weyl anomaly, due to the curvature scale that is
introduced.

Computation of the β functions

A conformal field theory, with vanishing β functions and traceless stress-energy ten-
sor, is a fixed point for the renormalization group flow. To study the flow perturba-
tively, we consider a perturbation of the conformal field theory S 0 by operators Oa

with coupling ua and dimension ∆0,a,

S u = S 0 +

∫
dd x uaOa(x). (3.15)

The trace of the stress-energy tensor is

Θ = −βa(u)Oa. (3.16)

The coefficients βa(u) can be calculated perturbatively by considering the Callan-
Symanzik equation (3.1). The anomalous dimension γ appearing in the Callan-
Symanzik equation actually becomes a matrix of anomalous dimensions γa

b for the
multi-operator case under consideration. It can be related to the β functions [110]
via3

γa
b(u) =

∂βa

∂ub − (∆0,b − d)δa
b. (3.17)

Writing βa(u) = Aa + Ba
bub + . . . and remembering that ua has mass dimension µd−∆0,a ,

applying the Callan-Symanzik equation to the partition function of the perturbed the-
ory,

Z = 〈e−
∫

dd x uaOa〉0 = 〈1 −
∫

dd x uaOa + . . .〉0,

enables us to compute β(u) recursively as a perturbation series in u [86, 110–112].
To compute the higher order coefficients of β(u), an operator product expansion is
necessary, whose singularities have to be regularized. The regularization scheme

3 We note that different conventions compared to [110, 111] are used.
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3.2 String theory

dependence is carefully explained in [111]. In the limit where the operators are nearly
marginal, |∆0,a − d| � 1, the result in the Zamolodchikov scheme [110, 111] is

βa(u) = (∆0,a − d)ua + 2πCa
bcubuc + . . . (3.18)

to second order in u. In the first term, there is no summation over the a-index.
As we see, conformal perturbation theory enables us to study the renormalization

group flow around a conformal fixed point. The flow is determined by the β functions,
which can be expressed in terms of the scaling dimension ∆0,a of the operator Oa in
the unperturbed conformal field theory, as long as the deviation from the fixed point is
small, ua � 1 and the operators under consideration are nearly marginal |∆a−d| � 1.

3.2 String theory

3.2.1 Worldsheet physics

Strings in a flat background

The previous section mostly dealt with conformal field theories with a fixed flat met-
ric. In essence, string theory is the study of two-dimensional conformal field theory
with a dynamical, and hence curved, metric. The motivation to study such a theory
follows from a direct generalization of the first quantization description of a point
particle. Similar to a point particle, the classical trajectory of a string is determined
by minimizing its worldvolume, which is called a worldsheet for a one-dimensional
extended object. The string is described by embedding the worldsheet, with coor-
dinates σα = (σ0, σ1) into the d-dimensional target spacetime σ 7→ xµ(σ). In a
flat target spacetime, the worldsheet area is minimized by the minimization of the
Polyakov action

S [x, h] = −
1

4πα′

∫
d2σ
√

h hαβηµν∂αxµ∂βxν. (3.19)

α′ is a coupling constant for the two-dimensional field theory, which determines the
string’s tension. Both the fields xµ and the worldsheet metric hαβ are dynamical ob-
jects. As a two-dimensional field theory, the Polyakov action describes d scalar fields
xµ coupled to two-dimensional gravity. Varying the action with respect to the met-
ric hαβ tells us that the two-dimensional stress-energy tensor Tαβ should vanish. The
equations of motion from a variation with respect to the fields xµ yield a free wave
equation, determining the string’s propagation in target spacetime. The latter varia-
tion also specifies boundary conditions, allowing both open and closed string solu-
tions [85, 86].
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3. Describing nature at its tiniest

The Polyakov action is invariant under several symmetries. It is invariant under
d-dimensional Poincaré transformations,

x′µ(σ) = Λ
µ
νxν(σ) + aµ, h′αβ(σ) = hαβ(σ),

and under two-dimensional reparameterizations σ 7→ σ′(σ),

x′µ(σ′) = xµ(σ), h′αβ(σ
′) =

∂σγ

∂σ′α
∂σδ

∂σ′β
hγδ(σ).

Most importantly, and very specific to the two-dimensional nature of the worldsheet,
it is invariant under Weyl transformations,

x′µ(σ) = xµ(σ), h′αβ(σ) = e2ω(σ)hαβ(σ),

which are, again, local scale transformations of the theory. From (3.14) it is clear
that the stress-energy tensor is traceless if and only if a theory is invariant under Weyl
transformations, explaining the terminology for the coefficients in (3.13). In two
dimensions, the Weyl symmetry is special, as it ensures that all three metric modes
can be gauged away. This also shows why there are no gravitational dynamics in two
dimensions.

The Weyl invariance of the worldsheet action is reminiscent of conformal invari-
ance. The relation can best be seen by noting that the symmetries of the Polyakov
action are gauge symmetries. Gauge symmetries describe a redundancy in the theory,
introduced for mathematical convenience but at the same time introducing more de-
grees of freedom than just the physical ones. In the Polyakov action the redundancy
can be removed by fixing a gauge, hαβ = ηαβ. After gauge fixing, the (Wick)-rotated
action,

S [x] =
1

4πα′

∫
d2σδαβ∂αxµ∂βxνηµν, (3.20)

is conformally invariant. Conformal transformations describe a residual gauge sym-
metry, a particular combination of diffeomorphisms that can be undone by a Weyl
transformation [87].

Weyl invariance and background dynamics

Before and after gauge fixing, string theory can equivalently be described by a Weyl
invariant worldsheet action with dynamical metric or by a two-dimensional confor-
mal field theory with a fixed metric respectively. As these are gauge symmetries, it is
important that invariance is maintained both at the classical as well as at the quantum
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3.2 String theory

level. An anomalous gauge symmetry would introduce a dependence on the gauge
choice, promoting unphysical degrees of freedom. For a conformal field theory the
risk of a quantum anomaly is not improbable. We have already seen that, even if a the-
ory is classically locally scale invariant, renormalization effects can easily introduce
anomalous contributions to the stress-energy tensor at the quantum level. Therefore,
imposing conformal invariance on the worldsheet even at the quantum level, intro-
duces severe constraints on the possible worldsheet theory.

One of the quantum excitations of the solutions xµ of the Polyakov action (3.19) is
the spacetime graviton. This introduces a quantum deviation from the flat Minkowski
metric ηµν through which the strings propagate. Building a full coherent target space-
time metric gµν from such gravitons, the string’s trajectory is determined by the space-
time curvature determined from the two-dimensional worldsheet action. At the same
time, conformal invariance dictates what kind of conformal theory, including its quan-
tum excitations such as the graviton, is allowed. The subtle interplay between the
string’s propagation in the background metric and the background dynamics built
up from string excitations is a non-trivial consistency check on the two-dimensional
worldsheet. Weyl (or, equivalently, conformal) invariance is at the heart of this con-
sistency of string theory. The relation between background dynamics and Weyl in-
variance is one of the best understood and most studied features of string theory,
going back to the advent of the theory in the early 1980s [85–87, 113–117]. We will
now explain how Weyl invariance determines the dynamics of the background fields
and as a result how general relativity follows from string theory.

Strings in a curved background

Strings moving in a curved background target spacetime metric can be described by
the Euclidean action

S [x, h] =
1

4πα′

∫
d2σ
√

h
[
hαβgµν(x)∂αxµ∂βxν + α′Φ(x)R(2)

]
, (3.21)

where gµν(x) is the target spacetime metric and Φ(x) is the dilaton field. The action
(3.21) is a straightforward generalization of (3.19), promoting the flat spacetime met-
ric ηµν to the (dynamical) metric gµν(x) of the curved background spacetime. The
dilaton contribution gives rise to a weight factor in the path integral sum over all
geometries. When the dilaton Φ is constant, it multiplies the topologically invari-
ant Euler number of the worldsheet, that counts the genus of the two-dimensional
Riemann surface. The vacuum expectation value of the dilaton is therefore directly
related to the string coupling constant gs = eΦ0 which determines the likelihood of
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strings joining or splitting. Usually one also includes a contribution from the anti-
symmetric Kalb-Ramond field Bµν(x), which will be assumed to vanish throughout
this thesis.

Equation (3.21) can be obtained from an exponentiation of the massless quan-
tum excitations of the string. In a flat Minkowski target spacetime metric, the mass-
less excitations of the string decompose into three irreducible representations of the
Poincaré algebra: a traceless symmetric representation giving rise to the graviton, an
anti-symmetric representation leading to Bµν and a trace, i.e. singlet, representation
for the dilaton Φ. Each of the excitations is described by a corresponding vertex
operator, inserting the required excitation in the far past, via the state-operator cor-
respondence. The vertex operators may be combined into the fields gµν(x) and Φ(x),
which give rise to (3.21) after exponentiation of the vertex operators [85, 86, 118].

As expected after our plea for Weyl invariance of the worldsheet theory, the first
term in the action (3.21) is (classically) Weyl invariant. The generalization from
(3.19) by promoting the Minkowski metric ηµν to a general metric gµν(x) has no effect
on the Weyl invariance of the theory. As a two-dimensional theory, it is just a change
in the functional of couplings in front of the kinetic terms for the scalar fields. The
way in which this is done is known as a nonlinear σmodel. The second term of (3.21)
is all the more surprising, as it already breaks Weyl invariance at the classical level
for a non-constant dilaton profile Φ(x). However, it is necessary to include the dilaton
in order to take into account the full multiplet of massless quantum string excitations.
For this reason, the term appearing in the action was introduced by [119] and was
shown to behave consistently with the other massless degrees of freedom. As we will
see shortly, the tree level Weyl variation of the dilaton can be combined with the one-
loop Weyl anomalies arising from the other terms [120]. The additional factor of α′

helps ordering the different contributions to the breaking of Weyl invariance.
To preserve Weyl invariance at the quantum level, we again impose a vanishing

trace of the stress-energy tensor Θ of the two-dimensional worldsheet tensor. Ex-
panding Θ in terms of the operators appearing in (3.21),

Θ = −
1

2α′
β

g
µνhαβ∂αxµ∂βxν −

1
2
βΦR(2),

the stress-energy tensor is traceless if the β functions,

β
g
µν = α′Rµν + 2α′∇µ∇νΦ + O(α′2), (3.22a)

βΦ =
d − 26

6
−
α′

2
∇2Φ + α′∇µΦ∇

µΦ + O(α′2), (3.22b)

vanish. The β functions are given up to first order in α′. To compute them, one has to
combine several contributions, which we consider individually.
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The first term in βΦ is a pure quantum anomaly, first calculated in the context of
string theory by [116]. In general, a conformal field theory with a curved metric hαβ
has an anomaly proportional to the two-dimensional Ricci scalar

Θ = −
c

12
R(2). (3.23)

The constant of proportionality is called the central charge, as it appears as a cen-
tral charge in the quantum algebra of the generators of conformal transformations.
This anomaly tells us that, in the quantum theory, the trace of the stress-energy tensor
no longer vanishes and conformal invariance is broken, i.e. the theory has become
scale dependent. Since in string theory the conformal symmetry follows from the
local Weyl gauge symmetry, the metric is dynamical and the only way to ensure an
anomaly-free quantum theory is to consider conformal field theories which have cen-
tral charge c = 0. The value of c = d − 26 in βΦ can be understood by the study
of the path integral of the string worldsheet [116]. Due to the gauge redundancy in
the path integral measure, one has to be careful to not overcount the number of (in-
equivalent) physical configurations. This can be done by the use of a Faddeev-Popov
determinant, which can be written in terms of a ghost action. The ghost action for
Weyl transformations is a conformal field theory with central charge c = −26. This
is why any worldsheet action, with the ghost action left implicit, has to have central
charge c = 26. The curved Polyakov action (3.21) achieves this geometrically by
considering d scalar fields, which explains the much emphasized critical dimension
for string theory. However, the curved Polyakov action only serves as a motivational
starting point for string theory. In principle, any conformal field theory with central
charge c = 26 would describe some solution to string theory, emphasizing it is not
the dimension but the central charge that is critical.

The other terms in (3.22) are conceptually more straightforward to understand,
but technically still quite involved to compute [85, 86, 115, 117]. The metric profile
gµν(x) and dilaton profile Φ(x) act as coupling functionals to the operators in (3.21).
Renormalizing these coupling constants will lead to β functions much in the same
way as we explained previously. The Ricci tensor Rµν of the target spacetime and the
second term of βΦ arise due to these renormalization effects. The remaining terms are
due to classical breaking of Weyl invariance by the dilaton term, which appear at the
same order as the renormalization effects from the other terms as predicted.

It can be shown explicitly that the β functions (3.22) are proportional to the equa-
tions of motion for the background fields, gµν(x) and Φ(x), that one would compute in
string perturbation theory [105, 121]. The stringy degrees of freedom, i.e. excitations
with a mass proportional to α′, do not play a role, as the worldsheet perturbation is
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derived in the limit of small α′, or in other words for strings with a very large tension.
In this limit, stringy excitations cost a lot of energy, which justifies the name “low en-
ergy equations of motion” for (3.22). In fact, (3.22) can be integrated to a low energy
effective action,

S [g,Φ] =
1

2κ2
0

∫
dd x
√

g e−2Φ

[
−

2(d − 26)
3α′

+ R + 4 (∇Φ)2 + O(α′)
]
. (3.24)

By a field redefinition Φnew = Φold −Φ0 and gnew
µν = e−4Φnew/(d−2)gold

µν , the action can be
written in a more familiar form,

S [g,Φ] =
1

2κ2

∫
dd x
√

g
[
−

2(d − 26)
3α′

e4Φ/(d−2) + R −
4

d − 2
(∇Φ)2 + O(α′)

]
,

(3.25)
where κ = κ0eΦ0 =

√
8πGN is the gravitational coupling constant. Equation (3.25)

describes a scalar field Φ coupled to Einstein gravity in d dimensions, showing ex-
plicitly that string theory is a theory of spacetime quantum gravity.

The relation between the two-dimensional worldsheet action and how it describes
general relativity in the d-dimensional target spacetime is an intricate result. The
fact that we can express the equations of motion given by (3.22) in terms of a target
spacetime action guarantees that the equations are mutually consistent [120]. Crucial
for the inner consistency is the interdependence among the β functions. The dilaton β
function βΦ acts as the central charge of the full nonlinear σmodel. Although it looks
like an x-dependent quantity, it is really a c-number due to the vanishing of βg

µν (and
βB
µν if we would not have set Bµν to zero to begin with) [117, 120]. It is this central

charge, or rather the combination βΦ − gµνβg
µν, that effectively acts as the integrand

for the low energy effective action (3.24). For the first order equations (3.22) we can
verify these statements explicitly, but it can be proven to hold on general grounds for
all order α′-corrections [107, 108, 122]. The possibility to interpret the conditions set
by worldsheet Weyl invariance as a spacetime low energy effective action is one of
the most remarkable results from string theory.

3.2.2 Supergravity

A super symmetry in our universe

In the previous section we considered the bosonic string, i.e. a string whose world-
sheet theory is defined in terms of bosonic scalar fields xµ only. It is a very interesting
theory to study the relation between the worldsheet and spacetime theories, but it is
unsure to what extent this version of string theory can describe our universe. Apart
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from the massless quantum excitations we have just considered, the bosonic string
also contains a tachyonic mode, indicating that the theory suffers from an instability
[85]. To remove the tachyon from the spectrum, the worldsheet is extended to a su-
perstring theory, in which worldsheet bosons and fermions are related by a symmetry
called supersymmetry. Similar to the previous discussion, the superstring worldsheet
theory defines a low energy effective field theory for the background fields on the tar-
get spacetime. Because the value of the central charge c of a worldsheet theory with
superconformal symmetry is c = 3d

2 − 15, the spacetime theory is a ten-dimensional
theory.

In order to relate to our four-dimensional spacetime, the spacetime has to be com-
pactified on an internal six-dimensional manifold [123]. The internal manifold is a
compact manifold, which is too small for us to detect at low energies, giving rise to an
effective four-dimensional action for the spacetime theory after compactification. In
this thesis we will study superstring theory only through its four-dimensional low en-
ergy effective action, except for a short excursion in chapter 5 where we discuss how
to possibly generalize the result of that chapter to open strings, the D-branes that they
end on and the background RR fields sourced by the D-branes. At the level of the low
energy effective action, supersymmetry remains a fundamental aspect for the theory,
since the spacetime bosons and fermions are also invariant under the supersymmetry
transformations [86].

The low energy effective action of superstring theory is an example of a super-
gravity theory, but the framework of supergravity is more general than just the su-
pergravity theories arising from superstring theory. In the 1970s supersymmetry was
discovered as a way to regulate UV-divergences in phenomenological particle physics
models [124–127]. As gauge symmetries were particularly popular at the time for the
successful way in which they describe particle physics, it was only a natural step to
consider a theory which is invariant under local supersymmetry [128]. The surprising
result is that such a theory necessarily incorporates gravity [88], hence the name “su-
pergravity”. Initial hope that supergravity theory might be a “theory of everything”,
unifying particle physics theories with general relativity, soon proved incorrect, be-
cause supergravity is not renormalizable. Therefore, in the beginning of the 1980s
superstring theory started to replace supergravity as the new candidate theory for
quantum gravity [85]. Nevertheless, through the relation between worldsheet super-
string theory and its supergravity low energy effective theory, supergravity models
have never really left the stage, providing an interesting playground at the effective
field theory level for the study of quantum gravity.
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Super dynamics

As with any symmetry, supersymmetrically invariant theories are constrained. The
bosons and fermions of the theory have to reside in supermultiplets, which are irre-
ducible representations of the supersymmetry algebra. To ensure that the algebra is
closed off-shell as well, each supermultiplet also contains an auxiliary field. Conven-
tionally for the chiral supermultiplets, i.e. the simplest four-dimensional supermulti-
plet that contains a scalar, the auxiliary field is denoted by F I , where I is an index
running over the number of chiral supermultiplets. Similarly, gauge vector super-
multiplets have an auxiliary field denoted by DA, where A runs over the number of
vector supermultiplets. These auxiliary fields do not have a kinetic term in the ac-
tion and therefore contain no propagating (physical) degrees of freedom. It turns out
that potentials in supersymmetric field theories are precisely generated by integrating
out these non-dynamical fields [88, 89]. Supersymmetry and supergravity potentials
therefore naturally fall into two categories. The scalar potentials built from F are
called F-terms, those built from the D-fields are called D-terms. In this thesis we will
be concerned with the scalars ξI of the chiral multiplets. We will assume they are
neutral under the gauge group, allowing us to concentrate on the F-terms.

In global supersymmetry the action for the complex scalars ξI in the chiral super-
multiplets can be written as

S = −

∫
d4x
√

g
[
gµνKIJ(ξ, ξ)∇µξI∇νξ

J
+ V(ξ, ξ)

]
. (3.26)

Supersymmetry has restricted the kinetic term to be a nonlinear σ model describing
a Kähler manifold. The Kähler potential K(ξ, ξ) is a real function which completely
specifies the metric GIJ(ξ, ξ) of the target manifold,

GIJ = ∂I∂J K ≡ KIJ , GIJ = GIJ = 0.

The F-term potential V is determined by the holomorphic superpotential W(ξ) [127]
via

V = K IJWIW J ,

where we denote derivatives with respect to the fields ξI and ξ
J

with a subscript,
e.g. WI = ∂

∂ξI W. In supersymmetric theories, supersymmetry is broken precisely if
the vacuum expectation value for F I is non-vanishing, which via the equations of
motion for F in the original action

F I = K IJW J ,

40



3.2 String theory

implies that supersymmetry is broken if and only if WI = ∂IW = 0 [88, 127].
In supergravity, an important change happens to the potential. The action for the

complex scalars ξI in the chiral supermultiplets can now be written as

S =

∫
d4x
√

g

M2
pl

2
R − gµνKIJ(ξ, ξ)∇µξI∇νξ

J
− V(ξ, ξ)

 . (3.27)

Again the nonlinear σ model target manifold is restricted to be a Kähler manifold
with Kähler potential K(ξ, ξ), but the F-term potential is now given by

V = eK/M2
pl

K IJDIWDJW −
3

M2
pl

WW

 , (3.28)

where DIW denotes the Kähler covariant derivative

DIW = ∂IW −
∂I K
M2

pl

W.

The supergravity action is invariant under Kähler transformations

K(ξ, ξ)→ K(ξ, ξ) + f (ξ) + f (ξ), W(ξ)→ e− f (ξ)/M2
pl W(ξ),

by an arbitrary holomorphic function f (ξ), which suggests to rewrite the theory in
terms of one real, Kähler invariant function G(ξ, ξ) that is related to the Kähler poten-
tial and superpotential via

G(ξ, ξ) = K(ξ, ξ) + M2
pl log

W(ξ)
M3

pl

 + M2
pl log

W(ξ)
M3

pl

 . (3.29)

This definition is only valid for W , 0. A vanishing superpotential is a fixed point
under Kähler transformations and deserves special treatment. Throughout this thesis
we will therefore assume that W , 0. In terms of the Kähler function G(ξ, ξ), the
F-term potential reads

V = eG/M2
pl

(
GIJGIGJ − 3M2

pl

)
M2

pl. (3.30)

Since
F I = eG/2M2

plGIJGJ

in supergravity theories, supersymmetry is broken if and only if GI = DI W
W = 0 [88].
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The action (3.27) provides an interesting starting point for the purpose of infla-
tionary model building. Ideally, one would like to study inflation directly from the
superstring theory point of view, but since superstring theory is not yet fully known,
our investigations are restricted to its low energy effective limit. The supergravity
theories that appear as the low energy effective action of superstring theory are a
subset of all supergravity theories. However, in the literature this distinction is not
always made, because we first need to focus on the characteristic effects and possible
issues in supergravity in general. For example, from (3.30) we can already infer one
of these generalities, that a quasi-de Sitter phase with V > 0 requires supersymmetry
to be broken during inflation. Although string inspired work can be found throughout
the supergravity literature [1, 2], the construction of a model completely rooted in a
consistent superstring theory set-up is still to be found. Until such a model exist, the
rich but yet restricted character of supergravity make it an interesting framework for
the study of inflation in quantum gravity.

3.2.3 Holography

Gauge/gravity duality

A final ingredient we shall need for the studies following, is holography and the
AdS/CFT-correspondence. The discovery, about fifteen years ago, that string the-
ory realizes the holographic principle, is a major development in theoretical physics.
The holographic principle is a (crazy) hypothesis that the physics of a d-dimensional
gauge theory can also be described by a d +1-dimensional theory with gravity and
vice versa [129, 130]. The motivation for such a hypothesis derives from black hole
physics, in which all the information of the black hole can be encoded by way of its
event horizon.

Inspired by the work of others in this direction [131–135], a conjectured realiza-
tion of two dual theories was constructed by [136]. In this realization we consider a
system of D-branes4 in a flat background geometry. This configuration has two dis-
tinct limits, each with its own description. One description considers the supergravity
approximation around the branes, which is that of an anti-de Sitter AdS 5-geometry.
The other description decouples the interacting brane-bulk system, leaving only the

4The known examples of the holographic duality are all advanced constructs in superstring theory. As a
result, they contain elements not explained in this text elsewhere. The particular system in [136] is a set of
N parallel D3-branes in a ten-dimensional flat background, which one can view as the supergravity limit of
a type IIB superstring in an AdS 5 × S 5-background on the one hand or as a decoupled brane-bulk system
on the other hand, with the gauge theory on the brane being a four-dimensional N = 4 superconformal
S U(N) Yang-Mills theory.
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gauge theory on the brane, a specific four-dimensional conformal field theory. Since
both descriptions originate from the same system, they present a dual description of
the same physics [90, 91, 136]. We say that the theory in the bulk is dual to the
conformal field theory living on its boundary, because the brane resides at the bound-
ary of the anti-de Sitter space. The holographic duality in this construction is called
the AdS/CFT-correspondence as it is a duality between anti-de Sitter geometry and
conformal field theory.

Since a d-dimensional field theory has one dimension less than a d+1-dimensional
gravity theory, the natural question arises how holography manages to encode the
additional dimension of the bulk theory into the boundary theory. The example of
[136] provides a clear indication of how this happens. The (Euclidean) AdS d+1-metric
is given by

ds2 = dy2 + e−2y/Rdx2,

or

ds2 =
R2

z2

(
dx2 + dz2

)
,

in Poincaré coordinates, where R is the anti-de Sitter-radius and where the boundary
is located at z = 0. It is invariant under a scale transformation x → λx, z → λz.
The d coordinates x are naturally identified with the coordinates of the conformal
field theory, setting z = 0. The interpretation of the additional coordinate z becomes
clear when we consider a scale transformation x → λx in the field theory as well.
The theory is scale invariant when such a scale transformation is accompanied by a
rescaling of the energy scale µ→ λ−1µ [137]. Hence, the additional coordinate of the
gravity theory corresponds to the energy scale in the gauge theory,

z ∼
1
µ
,

and the direction towards the interior of the bulk corresponds to a renormalization
group flow from high energies to low energies. This immediately suggests that the
AdS/CFT correspondence could be generalized to a bulk theory that is asymptotically
anti-de Sitter with a dual gauge theory that approaches a conformal fixed point in the
ultraviolet [137, 138]. Renormalization of the ultraviolet divergences of the gauge
theory is completely understood in terms of regularizing and renormalizing the large
distance, i.e. near-boundary, behavior of the bulk theory [138–142].

An important aspect of AdS/CFT is that the two limits where either the field
theory or the gravitational description arises, correspond to opposite limits of the
intrinsic CFT coupling constant [136, 143]. This means that the strongly coupled
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physics of one theory is equivalently described by the weakly coupled dual theory.
On the one hand, the strong/weak-aspect of the duality makes it very difficult to verify
a conjectured holographic correspondence, since a perturbative approach can only
work for one of the two dual theories at a time. Making use of protecting symmetries
of the theory, it is possible to match some of the properties of each of the two systems,
indicating that the conjecture might hold. On the other hand, once a correspondence
between theories has been (reasonably) established, the strong/weak duality provides
a truly powerful approach to understand strongly coupled physics, by considering the
weakly coupled dual theory.

The holographic correspondence is conjectured to hold for more general gauge
and gravity theories than the AdS/CFT-correspondence of [136]. Finding other ex-
amples is difficult, but possible [90, 137]. As said, the hallmark strong/weak-duality
of dual theories gives ample motivation to search for holographic examples, for the
unique orthogonal approach the duality provides to the study of strongly coupled sys-
tems. Particularly relevant for cosmology would be if a correspondence between de
Sitter space and some gauge theory is found. In principle dS/CFT should be closely
related to AdS/CFT, as both gravity theories have a great resemblance [144–146].
This is immediate at the level of their symmetries, which in both cases is O(1, d) for
a d-dimensional spacetime. In practice it proves difficult to actually find an explicit
realization of the dS/CFT-correspondence. Nevertheless, the possibility of having
a holographic description of (quasi)-de Sitter geometry provides the motivation be-
hind chapter 6 of this thesis. In particular, in that chapter we will see to what extent
conformal invariance dictates the correlation functions of the gravity theory.

Correlation functions

The real power of the AdS/CFT-correspondence is the precise quantitative dictio-
nary, described in [147, 148], between the two perspectives. In these descriptions,
a Euclideanized version of the gravity theory is considered. A field φ(z, x) in the
bulk of the d + 1-dimensional gravity theory has an asymptotic value φ0(x) on the
d-dimensional boundary, which acts as a coupling constant for an operator O(x) of
the boundary field theory. The duality is then summarized by the statement that the
partition functions ZCFT and ZAdS are equal,

ZAdS [φ(φ0)] = ZCFT [φ0] =
〈
e−

∫
dd x φ0O

〉
CFT

. (3.31)

The partition function ZAdS [φ(φ0)] =
∫
φ0
Dφe−S AdS (φ) is evaluated in the semiclassical

limit, i.e. a classical solution for the field φ(z, x) is found subject to the boundary
condition φ0(x) around which the action is perturbed. n-point correlation functions
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of the operators in the conformal field theory can then be calculated in the usual way
through functional differentiation with respect to the boundary conditions,

〈O(x1) . . .O(xn)〉 =
δ

δφ0(x1)
. . .

δ

δφ0(xn)
ZAdS [φ(φ0)]

∣∣∣∣∣
φ0=0

, (3.32)

which act as sources to the operators.
To get finite answers in the matching of the asymptotic values for the bulk fields

φ with the boundary couplings φ0, the boundary fields are renormalized, which leads
to a relation between the scaling dimension of the operator O to which φ0 couples and
the mass m of the bulk field [137, 147, 148],

∆ =
d
2

+

√
d2

4
+ m2R2, (3.33)

where R is again the anti-de Sitter curvature radius. A massless field m corresponds
to a marginal operator ∆ = d. With the identification given above, the (physical de-
grees of freedom of the) metric field gµν(z, x) corresponds to the stress-energy tensor
operator Tαβ(x) of the conformal field theory. The stress-energy tensor is a marginal
operator that is always part of the conformal field theory, which is why the bulk theory
always has to include gravity [137].

As an illustrative example of how the correspondence works, we consider an in-
teracting massive scalar field φ in d+1-dimensional AdS, with action

S AdS =
1
2

∫
dd xdz

√
g

[
gµν∂µφ∂νφ + m2φ2 +

λ

3
φ3

]
. (3.34)

We have to solve the classical equation of motion subject to the boundary condition
φ0(x). This can be achieved conveniently by first finding the Green’s function for the
equation of motion of the quadratic part of the action [148, 149],

K∆(z, x, x′) =
Γ(∆)

π
d
2 Γ(∆ − d

2 )

(
z

z2 + (x − x′)2

)∆

,

where ∆ is related to the mass m via (3.33). The function K∆(z, x, x′) is called the
bulk-to-boundary propagator, which has to be normalized such that it is regular in the
interior and provides the required singular behavior for z → 0. The classical (ho-
mogeneous) solution is then automatically determined by the boundary value φ0(x)
via

φ(z, x) =

∫
dd x′ K∆(z, x, x′)φ0(x′).
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To find the three-point function of the dual operator O (3.32), we can substitute this
expression into (3.34) and find

〈O(x1)O(x2)O(x3)〉 =
δ

δφ0(x1)
δ

δφ0(x2)
δ

δφ0(x3)
ZAdS [φ(φ0)]

∣∣∣∣∣
φ0=0

(3.35)

= −λ

∫
dd xdz
zd+1 K∆(z, x, x1)K∆(z, x, x2)K∆(z, x, x3).

Since this is a three-point correlation function in a conformal field theory, it should
be of the form (3.12b). One can explicitly verify that this is so and determine the
coefficient from the explicit form of the bulk-to-boundary propagator [149, 150],

〈O(x1)O(x2)O(x3)〉 =
λa(∆)

(x12x23x13)∆
, (3.36a)

a(∆) = −
Γ
(

1
2 (3∆ − d)

)
Γ
(

∆
2

)3

2πdΓ
(
∆ − d

2

)3 . (3.36b)

The matching of (3.35) with (3.12b) is a necessary requirement for the correspon-
dence to hold. It is an explicit check that the anti-de Sitter space is constrained by
the same symmetries as the conformal field theory. In general, for a duality to hold,
the theories need to be invariant under the same symmetries. This is of course not a
sufficient condition. Nevertheless, it is interesting to see what one can already derive
based solely upon symmetry arguments. We will take the latter approach in our study
of a hypothesized dS/CFT-correspondence in chapter 6.
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