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2
Cosmic evolution of our universe

The understanding of the evolution of our universe is one of the unabashed successes
of modern physics. To a large extent, the evolution of our universe is understood
extremely well, from a few moments after its birth to very close to the present day. In
this chapter we will review standard big bang cosmology, both theoretically as well
as observationally. We will explain how inflation can solve some of the problems
associated to the big bang paradigm and, since it is the measurements of the infant
stage of the universe that provide the observational backbone for string cosmology, in
what way measurements of the infant universe can be related to microscopic models
of inflation.

2.1 A short history of big bang cosmology

2.1.1 Theoretical development of a dynamic universe

Modern cosmology is less than 100 years old. Before Einstein had developed his
theory of general relativity [3, 4], Newtonian mechanics did not invite to study the
universe as a whole. Surely, mankind probably always had an interest for the stars and
galaxies that appear on the night sky, but in Newtonian theory this merely results in
the study of these objects within a fixed arena, not of the black sky itself. The universe
itself only features as the stage in which extraterrestrial physical phenomena occur.
With the advent of general relativity this all changes, as spacetime itself inevitably
becomes dynamic.

To describe the universe as a whole, we rely on the cosmological principle, the
assumption that no place in the universe is special and that it is the same from any
vantage point. This is an extrapolated version of the Copernican principle, that our
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2. Cosmic evolution of our universe

planet nor our solar system nor our galaxy is the center of the universe. Rather,
the laws of physics are the same throughout the universe and no observer can dis-
tinguish a preferred location. Consequently, the universe should be homogeneous
and isotropic on large scales, a fundamental assumption which enabled Friedmann-
Lemaître-Robertson-Walker [5–8] to propose a model for cosmic evolution within
general relativity. Homogeneity and isotropy of the cosmological principle translate
into the mathematical statement that the metric of spacetime is maximally symmetric
in its spatial part,

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2 + r2dΩ2
)
,

where the scale factor a(t) describes the overall (spatial) scale of the universe and k
corresponds to positively curved, negatively curved or flat spatial slices for k=1,−1, 0
respectively.1 The matter content must be taken homogeneous and isotropic too,
specified by a perfect fluid energy-momentum tensor that only depends on the energy
density ρ and pressure p of the fluid,

T µ
ν =


−ρ

p
p

p

 .
With these expressions for the metric and energy-momentum tensor, Einstein’s equa-
tions, including the cosmological constant as a matter contribution, reduce to the
Friedmann equations

H2 =
κ2

3
ρ −

k
a2 , (2.1a)

ä
a

= −
κ2

6
(ρ + 3p), (2.1b)

where the Hubble parameter, H = ȧ
a , determines the rate of expansion. The reduced

Planck mass M−2
pl = κ2 = 8πGN acts as the gravitational coupling constant; we will

often use natural units, where κ2 = 1.
One can combine these equations into the continuity equation

ρ̇ = −3H(ρ + p),

1The universe is spatially flat to a very high precision. For this reason, we will be mainly concerned
with the metric in case of a flat spatial slicing.
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2.1 A short history of big bang cosmology

which also follows from energy conservation, ∇µT µ
ν = 0. If one specifies the equa-

tion of state between energy density and pressure by writing p = wρ, the continuity
equation can be integrated to express the evolution of the energy density as a function
of the evolution of the scale factor a,

ρ ∝ a−3(1+w).

In general the evolution will be a mixture of different non-interacting fluids, which
are traditionally distinguished as being (pressureless) non-relativistic matter (w = 0),
relativistic matter and radiation (w = 1

3 ) or a contribution from the cosmological
constant (w = −1). To denote the matter content of the universe, one often uses the
dimensionless quantity Ω(t) = 1

3H2 ρ. In terms of Ω, the first Friedmann equation,
(2.1a), can be written as Ω − 1 = k/(aH)2.

2.1.2 Observational confirmation and new challenges

Equation (2.1a) clearly implies that a static universe, ȧ = 0, only occurs for very
specific values of the energy density and spatial curvature. Hence, the cosmological
principle in combination with general relativity, seems to tell us that we live in a dy-
namic universe. Historically, at first a non-static universe was merely a theoretically
predicted possibility within general relativity, based on the assumption that the uni-
verse is homogeneous and isotropic. By now both the expansion of the universe as
well as its homogeneity and isotropy are well established by observations.

Already at the end of the 1920s, very soon after the theory of general relativ-
ity and the proposed FLRW solution, first evidence of an expanding universe was
obtained by Hubble [9]. He famously discovered that the spectrum of stars is red-
shifted proportionally to their distance to us. Subsequent experiments have refined
his findings to a rate of expansion given by H0 = 70.2 ± 1.4 (km/s)/Mpc for the
present era [10]. A second confirmation of the FLRW model was developed during
the following years, when physicists realized that an expanding universe must have
had a very hot and very dense early beginning, emerging from an initial singularity
called the big bang. Such a beginning implies that the universe was so hot that nuclei
could not have existed and must have formed as the universe cooled. This epoch is
called big bang nucleosynthesis, which ended when the universe cooled down further.
The estimated relative production of light elements from protons and neutrons dur-
ing the epoch of big bang nucleosynthesis accounts for the observed abundances to a
very great precision [11] and is therefore also a clear confirmation of the expanding
universe model.
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2. Cosmic evolution of our universe

The most important confirmation, particularly useful for present-day observa-
tions, is the existence of the cosmic microwave background (CMB) radiation. In
the epoch after big bang nucleosynthesis, electrons were still energetic enough to es-
cape from the pull of ionized nuclei. Only when the universe expanded further and
consequently cooled down further, did neutral hydrogen become stable. At this mo-
ment of recombination, photons no longer encountered (charged) free electrons and
nuclei from which they would scatter. Ever since, they have therefore been traveling
(mostly) freely through a neutral universe. As the universe kept expanding, these pho-
tons cooled down, redshifting towards microwave radiation, at which frequencies we
observe them now. The first observation of the microwave photons was in 1965, when
Penzias and Wilson observed an excess microwave background noise in their radio
antenna [12], which was quickly realized [13] to be the predicted cosmic microwave
background radiation [14, 15].

With following improved observations, the CMB is now the most-precisely mea-
sured black body spectrum in nature [16], having a temperature of 2.73 K isotropi-
cally across the sky, implying recombination happened approximately 380 000 years
after the big bang. The fact that for each local patch across the sky, the variation in
the temperature of the CMB is only a remarkable 1 in 105 means we have now ob-
servationally justified the earlier made assumption of the homogeneity and isotropy
of the universe. Each photon on the surface of last scattering has the same temper-
ature to an astonishing precision, confirming that recombination and the subsequent
expansion happened homogeneously throughout the universe.

Combining different cosmological observations, such as CMB observations [10],
the formation of large-scale structures [17, 18], the recessions of type Ia supernovae
[19, 20], observed mass distributions through gravitational lensing [21] and the study
of peculiar motion of galaxies and clusters [22, 23], we now have an increasingly
precise understanding of the content and dynamics of our universe and its evolution
after the first fraction of a second. Observationally a huge improvement has been
obtained in the last 10–20 years, mainly because of improved measurements of the
CMB, which made it possible to estimate the parameters of the FLRW model with
ever greater accuracy and firmly established cosmology as a “precision science”. We
now know we live in a spatially flat universe Ω0 = 1.002 ± 0.011, which expands at
an accelerated rate [10, 19, 20, 24]. However, this success-story has brought with it a
number of new puzzles directly emergent from the data.

One is the discovery of the current accelerated expansion of our universe. It
earned its discoverers [19, 20] the 2011 Nobel Prize, which is a recognition of the
enormous advances that observational cosmology has seen in the last two decades.
However, theoretically the reason for this accelerated expansion is far from clear. At
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2.2 Cosmic inflation

the moment the expansion is accounted for by a dominant energy contribution com-
ing from dark energy, such as the cosmological constant Λ or some other energy
component which has an equation of state w < − 1

3 . Except for its name, dark en-
ergy remains a largely unknown form of “stuff”. We do not know its origin nor its
precise characteristics. From the observations it is clear that the universe is currently
dominated by dark energy. It constitutes 74% of today’s total energy budget. The
remaining 26% of the energy decomposition consists of matter, w = 0, although only
about 4% (of the total budget) is ordinary visible matter. This means another 22% of
the total energy budget is yet unaccounted for. All observations [10, 17, 18, 21–23]
indicate the presence of some sort of (invisible) matter, dubbed (cold) dark matter, a
second puzzle.

The ΛCDM-model derives its name from the dominant contributions in our uni-
verse, the cosmological constant Λ and cold dark matter. Although we have good
indications that these contributions are really there, for the moment their precise na-
ture eludes understanding. For this reason a large branch of present day cosmology
focusses on the nature and characteristics of the dominant contributions to the en-
ergy decomposition of our universe. However, in this thesis we will focus on yet
another mystery of the current cosmological model. This mystery does not focus on
the content of our present day universe, but rather on how it has all come to be.

2.2 Cosmic inflation

2.2.1 Initial conditions

Our universe seems to be very special in the way it is very sensitive to its precise initial
conditions. In principle the need for such precise initial conditions is not a problem,
since cosmology is not claiming to provide a full explanation for the cosmic evolution
including its starting point. We only need to be able to evolve the universe from a set
of given initial conditions to the present day. However, the level of precision for
the initial conditions is so high, that one starts wondering why we happen to live
in this universe. If the initial conditions were only slightly different, standard big
bang evolution would lead to a significantly different universe. For this reason it is
unsatisfactory to simply take the required initial conditions as a given, without the
slightest wondering why it had to be these initial conditions. The strong dependence
on the actual initial conditions weakens any claim done by cosmologists, as one can
seemingly evolve to any universe by simply starting from marginally different initial
conditions. For most cosmologists such a sensitive and unstable situation begs for an
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2. Cosmic evolution of our universe

explanation. Such an explanation exists, it is provided by the inflationary paradigm
[25–27].2

The problem with the initial conditions consists of two separate problems, called
the horizon problem and the flatness problem. In short, the horizon problem is the ob-
servation that the CMB is far more homogeneous than one should naïvely expect. In
general, any inhomogeneity will grow bigger and bigger, through gravitational inter-
action. Indeed, the amount of inhomogeneities today is larger than that in the CMB,
but similarly we also expect that the amount of inhomogeneities was even smaller at
any time before the CMB. Since the CMB has inhomogeneities of the order of 10−5,
one wonders how smooth exactly the initial conditions must have been to provide the
smoothness of the CMB. Most importantly, in the standard big bang cosmology, the
CMB is homogeneous even across regions which could have never been in causal
contact at the time of last scattering. Decoupling occurred 380 000 years after the
big bang and so the present-day full-sky observation of the CMB consists of multi-
ple patches, each only 380 000 light years across, in which photons were in causal
contact.

Let us explain how this compares with the current causally connected patch.
Mathematically we define the particle horizon as the (comoving) size of a causally
connected region. From (2.1b), it is given by

1
aH
∝ a

1
2 (1+3w). (2.2)

The expression takes into account that the universe expands while the light is propa-
gating through space. If the universe would expand too quickly, such that the photons
can not “keep up”, the particle horizon decreases. However, for an evolution domi-
nated by ordinary matter, w ≥ 0, the particle horizon grows with time. This means
that, for example those CMB photons that enter the particle horizon now, were not
causally connected before. Specifically, they were not causally connected at the time
the CMB was produced. Yet, the CMB spectrum is consistent over all length scales
with a uniform black body spectrum having a homogeneous temperature to 1 part in
105. How can the CMB be so homogeneous even across all causally disconnected
regions?

The other problem with initial conditions, the flatness problem, is the observation
that the universe is incredibly close to being spatially flat, Ω0 = 1.002±0.011 [10, 24].
From Ω − 1 = k/(aH)2 and (2.2) it follows that for ordinary matter, w ≥ 0, any devi-
ation away from flatness, Ω = 1, can only be growing. In fact, by taking a derivative
of the first Friedmann equation and using (2.1b), we can derive a differential equation

2Several excellent books and lecture notes provide a detailed introduction to inflation, cf. [28–31].
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2.2 Cosmic inflation

for Ω,

a
dΩ

da
= (1 + 3w)Ω(Ω − 1),

which tells us that the critical value Ω = 1 is an unstable fixed point for w > − 1
3 . This

means that in order to find Ω0 = 1.002 today, the initial conditions must have been
exponentially closer to Ω = 1. How can the universe be so spatially flat if all matter
is desperately trying to push it away from flatness?

The horizon problem and the flatness problem have a common origin; in both
cases the inconsistency arises because of the growing nature of the particle horizon
(aH)−1 for ordinary matter or equivalently,

d
dt

(aH)−1 = −
ä

(aH)2 =
ρ

6aH2 (1 + 3w) > 0,

because ordinary cosmology is dominated by matter, w = 0, or radiation, w = 1
3 . As

the intermediate result shows, this is equivalent with an expanding but decelerating
universe. Therefore an obvious solution would be to look for a period of accelerated
expansion, ä > 0, dominated by some form of matter with w < − 1

3 . Although the cur-
rent vacuum energy dominated era, with w = −1, meets the requirements and seems
to make the problem less urgent, the universe has only recently entered the vacuum
energy dominated epoch. Radiation and matter dominated for most of its history. To
solve the problems with initial conditions, we should consider an accelerating phase
before the current big bang paradigm, which should at least last for about 60 e-folds
to solve the flatness and horizon problems [32, 33]. This phase is called cosmic in-
flation. It is specified by the need to explain the initial conditions, but only in a very
coarse manner. Any epoch which is dominated by some matter-component having
w < − 1

3 will be capable of solving the big bang problems. However, the requirement
w < − 1

3 is difficult to meet with ordinary matter and radiation, because it requires
a negative pressure. This makes the search for the true microscopic nature of the
inflationary epoch a worthwhile and interesting endeavor.

2.2.2 Accelerated expansion

No ordinary matter has negative pressure, but it was the insight of [25] that “order
parameter” physics can easily account for this, by considering a (single) scalar field
(the order parameter) coupled to gravity,

S =
1
2

∫
d4x
√

g
[
R − gµν∂µφ∂νφ − 2V(φ)

]
. (2.3)
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2. Cosmic evolution of our universe

The scalar field is a matter source to the gravitational field, appearing on the right
hand side of Einstein’s equation, with

ρ =
1
2
φ̇2 − V, p =

1
2
φ̇2 + V,

under the assumption that φ(t, x) = φ(t) is spatially homogeneous. In a regime in
which the potential dominates over the kinetic energy of the field, the equation of
state can indeed be negative. The limiting case w = −1 is reached by assuming a
stationary scalar field. In that situation, the field equations for the field φ and for the
scale factor a of a (flat) FLRW ansatz for the metric,

0 = φ̈ + 3Hφ̇ + V ′(φ), (2.4a)

H2 =
1
3

(
1
2
φ̇2 + V(φ)

)
, (2.4b)

tell us that V(φ) should be constant and equal to 3H2 and the scale factor is exponen-
tially growing, a(t) = eHt. The resulting accelerated expansion is that of a de Sitter
universe,

ds2 = −dt2 + e2Htdx2,

corresponding to a maximally symmetric universe with positive cosmological con-
stant Λ > 0, just as in the current epoch.

An inflationary epoch being driven by a constant (positive) potential V = Λ > 0
is too simplistic, in that there is no dynamical way for inflation to end. This can be
resolved by allowing the field φ(t) to be dynamical [25–27]. To still maintain a handle
on the equations of motion, it is useful to consider a dynamical situation which is still
very close to de Sitter, i.e. to study a nearly constant Hubble parameter or equivalently
a slowly varying field φ(t) that is potential energy dominated, φ̇2 � V . In order to
quantify the slowness of the variation, we define the slow-roll parameters

ε = −
Ḣ
H2 = 2

(
H′

H

)2

=
1
2

(
φ̇

H

)2

, η = 2
H′′

H
= −

φ̈

Hφ̇
, (2.5)

where ′ indicates a derivative of H(φ) with respect to the field φ. The equalities
in these expressions are a consequence of (2.4), which imply that 2H′ = −φ̇. Via
ä = aH2(1 − ε), it is clear that the universe undergoes accelerated expansion if and
only if ε is smaller than unity,

ä > 0⇔ ε < 1. (2.6)
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2.3 Seeds of structure

ε = η = 0 corresponds to the pure de Sitter phase. When both slow-roll parameters
are taken to be small but non-vanishing, the field equations (2.4) resemble a quasi-de
Sitter phase,

H2(t) ≈
1
3

V(φ) ≈ constant, a ≈ eH(t)t, φ̇ ≈
−V ′

3H(t)
≈ 0.

The approximation ε, |η| � 1 is called the slow-roll approximation. This name
arises in the context of a single scalar field driving the acceleration. The definition
of ε and η makes clear, however, that the existence of acceleration or quasi-de Sitter
evolution is not tied to the existence of a scalar field. Nevertheless, almost all models
use a scalar field description and often use a different set of potential slow-roll pa-
rameters εV , ηV . These are related to the previous ones in the slow-roll approximation
by

εV =
1
2

(
V ′

V

)2

≈ ε, ηV =
V ′′

V2 ≈ ε + η. (2.7)

The potential slow-roll parameters express inflation as a slowly rolling field on a flat
potential and have as an advantage over ε and η that they provide a direct connection
between the potential and the dynamics of the system. However, this connection only
holds when the slow-roll approximation is assumed, whereas the field equations can
be expressed in terms of ε and η exactly. The latter set of parameters is therefore
better suited to set up a consistent approximation scheme [34] and are, in this respect,
preferred over εV and ηV . In the slow-roll approximation, ε, |η| � 1, the use of
the potential slow-roll parameters may be more convenient. Since there are clear
indications that the slow-roll approximation is indeed satisfied during inflation, both
sets of slow-roll parameters can be used almost interchangeably.

In summary, inflation is a coarse phenomenon that happens if and only if ε <

1. Realistic inflation has as additional requirement that ε, |η| � 1 or equivalently
εV , |ηV | � 1 [10, 35] and describes a quasi-de Sitter evolution.

2.3 Seeds of structure

2.3.1 Primordial perturbations

In the description of inflation above, we have assumed the inflaton field φ(t, x) to be
spatially homogeneous φ(t, x) = φ(t). This assumption is justified by the observed
homogeneity in the universe, but we know it cannot be the end of the story, since we
have also observed small anisotropies in the CMB [35, 36]. The inflationary paradigm
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2. Cosmic evolution of our universe

provides a satisfying explanation for the origin of these anisotropies [37–43]. Like we
expect around any classical field, the inflaton is subject to small quantum fluctuations

φ(t, x) = φ(t) + δφ(t, x),

which in this case parameterize small deviations from spatial homogeneity in the
inflaton field. Qualitatively the consequences are easily understood. Through Ein-
stein’s equations, small variations in the inflaton field φ generate perturbations in the
geometry of spacetime, which lead to gravitional wells and voids in which slight rel-
ative overdensities and underdensities of the matter distribution start to form. As a
result, CMB photons experience slightly different redshifts and this we observe in our
measurements of the CMB.

Quantitatively we also understand the transition from one type of perturbation
to the other, providing a powerful bridge between observation and theory. Several
excellent books and review papers have been written about this rich topic [28, 29, 44–
46]. Here, we only present the very basics in order to provide a flavor of why the
theoretical calculations in this thesis are relevant for observations. From observations,
we have direct access to the relative temperature anisotropies δT (n̂) in each direction
n̂ in the sky. Traditionally the information is encoded in terms of multipole moments
alm, that result from expanding δT (n̂) on the orthonormal set of spherical harmonic
functions Ylm(n̂),

δT (n̂) =
∑
lm

almYlm(n̂).

From these coefficients we can then build an angular n-point function

〈al1m1 . . . alnmn〉.

In principle, the average is an ensemble average over multiple universes, but since we
have only access to one universe, the statistical uncertainty is instead controlled by a
(weighted) angular average over the m j-modes [28, 45]. The multipole modes alm of
the temperature (differences) δT (n̂) in the CMB are sourced by the primordial scalar
curvature perturbations ζ. They are related via a transfer function ∆l(k),

alm = 4π(−i)l
∫

d3 k
(2π)3 ∆l(k)ζkYlm( k̂). (2.8)

The transfer function is the solution to a set of coupled differential equations, resulting
from Einstein’s equations and Boltzmann’s equations for the interactions among dif-
ferent types of fluids [28]. It can be computed numerically [47], once the background
cosmology and the initial spectrum for ζ are specified. Conversely, by scanning over
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2.3 Seeds of structure

4

Figure 1. The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the onset of the Silk damping tail
are now well measured by WMAP. The curve is the ΛCDM model best fit to the 7-year WMAP data: Ωbh

2= 0.02270, Ωch2= 0.1107,
ΩΛ= 0.738, τ= 0.086, ns= 0.969, ∆2

R= 2.38 × 10−9, and ASZ= 0.52. The plotted errors include instrument noise, but not the small,
correlated contribution due to beam and point source subtraction uncertainty. The gray band represents cosmic variance. A complete error
treatment is incorporated in the WMAP likelihood code. The points are binned in progressively larger multipole bins with increasing l;
the bin ranges are included in the 7-year data release.

Figure 2. The high-l TT spectrum measured by WMAP, showing
the improvement with 7 years of data. The points with errors use
the full data set while the boxes show the 5-year results with the
same binning. The TT measurement is improved by >30% in the
vicinity of the third acoustic peak (at l ≈ 800), while the 2 bins
from l = 1000–1200 are new with the 7-year data analysis.

WW spectra for the purposes of removing the residual
point source amplitude. The unresolved point source
contribution to the sky continues to be treated as a
power law in thermodynamic temperature, falling as
ν−2.09 (Nolta et al. 2009), but see Colombo & Pierpaoli
(2010) for an alternative approach to the spectral de-
pendence. Using the same fitting methodology as in the
5-year analysis, we find its amplitude to be 103Aps =
9.0±0.7µK2 sr, when fit to the 7-year Q, V, and W band

weighting in the computation of the pseudo-alm. We are currently
developing such code for use in cross-power spectra with the inten-
tion of applying it to the final 9-year data.

spectra evaluated with the KQ85y7 mask. (Most of the
cosmological parameters reported in this paper were fit
using a preliminary version of the likelihood that had a
small masking error that produced a slightly biased TT
spectrum at high-l and a correspondingly higher resid-
ual source amplitude, which mostly compensated for the
bias. We have checked that substituting the correct TT
spectrum has a negligible effect on the parameter fits.)
After this source model is subtracted from each band,
the spectra are combined to form our best estimate of
the CMB signal, shown in Figure 1.
The 7-year power spectrum is cosmic variance limited,

i.e., cosmic variance exceeds the instrument noise, up to
l = 548. (This limit is slightly model dependent and can
vary by a few multipoles.) The spectrum has a signal-
to-noise ratio greater than one per l-mode up to l = 919,
and in band-powers of width ∆l = 10, the signal-to-noise
ratio exceeds unity up to l = 1060. The largest improve-
ment in the 7-year spectrum occurs at multipoles l > 600
where the uncertainty is still dominated by instrument
noise. The instrument noise level in the 7-year spectrum
is 39% smaller than with the 5-year data, which makes it
worthwhile to extend the WMAP spectrum estimate up
to l = 1200 for the first time. See Figure 2 for a compari-
son of the 7-year error bars to the 5-year error bars. The
third acoustic peak is now well measured and the onset
of the Silk damping tail is also clearly seen by WMAP.
As we show in §4, this leads to a better measurement
of Ωmh2 and the epoch of matter-radiation equality, zeq,
which, in turn, leads to better constraints on the effective
number of relativistic species, Neff , and on the primor-
dial helium abundance, YHe. The improved sensitivity

Figure 2.1: The power spectrum of the temperature anisotropies, expressed in terms of
the multipole coefficients Cl = 1

2l+1

∑
m〈a∗lmalm〉. The curve represents a ΛCDM best fit

to the 7-year WMAP data with a nearly scale invariant power spectrum Pζ ∼ kns−1 with
ns ≈ 0.96 [35].

many results, we can fit the parameters of the background cosmology as well as the
primordial spectrum of perturbations to the CMB data.

The upshot of the preceding paragraph is clear: the n-point function of primor-
dial perturbations 〈ζk1 . . . ζkn〉 is directly related to the correlations of observationally
accessible temperature fluctuations, 〈δT (n̂1) . . . δT (n̂n)〉. Via (2.8), the temperature
two-point function, given in terms of the multipole coefficients Cl = 1

2l+1
∑

m〈a∗lmalm〉,
is related to the primordial two-point function

Cl = 4π
∫

dk
k

Pζ(k)∆l(k)2. (2.9)

Here, the relation is given in terms of the power spectrum Pζ(k) of the primordial
curvature perturbations. For any quantum operator f̂ , the power spectrum P f (k) is
defined via

〈 f̂k f̂k′〉 = δ(k + k′)
16π5

k3 P f (k).

In recent years, the two-point function of temperature anisotropies Cl has been
observed to very high precision by the WMAP collaboration [35], cf. figure 2.1. In
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2. Cosmic evolution of our universe

order to produce the temperature spectrum as shown in figure 2.1, the primordial
power spectrum Pζ(k) should be almost constant over all scales. On phenomenologi-
cal grounds, such a scale invariant primordial power spectrum was already proposed
by Harrison and Zel’dovich [48, 49]. As we will calculate shortly, one of the great
successes of inflation, in addition to solving the flatness and horizon problem, is that
it provides a very natural explanation for such a nearly scale invariant spectrum. The
precision with which theory matches observation in the CMB temperature two-point
function and the way inflation provides us with an explanation for its peaks and val-
leys [50] and for the underlying scale invariance, lends incredible credence to the
existence of a primordial inflationary epoch. With new investigations that focus on
subleading effects in the power spectrum, such as small oscillations on top of the near
scale invariance [51, 52], more and more details about the inflationary epoch will
hopefully soon be revealed.

Another way to probe deeper into the nature of inflation is by studying higher
order n-point functions. Similar to the two-point function, the three-point function of
temperature anisotropies can be expressed in terms of the three-point functions of the
primordial curvature perturbations [44], called the primordial bispectrum,

〈ζk1ζk2ζk3〉 = (2π)3δ(k1 + k2 + k3)Bζ(k1, k2, k3).

The bispectrum is the leading contribution to non-Gaussian effects in the spectrum of
the CMB, which would be a pure Gaussian distribution if only the two-point functions
were non-vanishing [53]. From momentum conservation, its dependence on the three
momenta defines a triangular shape. Because different inflationary models predict a
peak for different triangular shapes, the shape of non-Gaussianities is an interesting
tool to distinguish between models [45, 46, 54].

The simplest inflationary scenario, single field slow-roll inflation with canoni-
cal kinetic energy in a Bunch-Davies vacuum, predicts only non-Gaussianities that
are too small to be observable [55–57], cf. (2.21). Therefore, current literature is
focussed on any possible observation of non-Gaussianities, as it may indicate a va-
riety of violations of the assumptions, favoring e.g. multi-field inflation [58, 59],
non-canonical kinetic terms [60–62], non-standard initial states [62–66] or a different
scenario for inflation altogether [67, 68]. Developments into this direction are very
exciting, especially with the preliminary indication that such non-Gaussianities may
be present in the upcoming release of data by the Planck mission [10, 69], but are
beyond the scope of this work. We will limit ourselves to the three-point function
of primordial curvature perturbations in single field slow-roll inflation with canon-
ical kinetic terms. Even though these non-Gaussianities are beyond the observable
level in any near future experiment, from the structure of the correlation functions of
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even this simplest inflationary model, we can learn a lot about the nature of the early
universe.

2.3.2 The power spectrum

Let us now explain the origin of the primordial spectrum of density perturbations
from inflation. As in other places in physics, we can calculate the small fluctuations
to the inflationary evolution using perturbation theory,

φ(t, x) = φ(t) + δφ(t, x), gµν(t, x) = gµν(t) + δgµν(t, x).

In cosmological perturbation theory, such a split is not well-defined, since a coor-
dinate transformation may redefine the background fields φ and gµν. Therefore one
has to be careful to consider only true perturbations and to distinguish these from in-
duced perturbations caused by coordinate redefinitions. Before, in the FLRW ansatz
with a homogeneous field φ(t), this dependence on the coordinate choice did not pose
a problem, since we had a clear preferred choice in which the metric looks homo-
geneous and isotropic. Once perturbations are allowed, such a preferred choice no
longer exists, leaving only gauge-invariant statements meaningful. From the scalar
perturbations δφ and the curvature perturbation Ψ, defined by R(3) = 4

a2∇
2Ψ with R(3)

the curvature of the spatial slices, we can construct the gauge-invariant object

ζ = Ψ +
H

φ̇
δφ. (2.10)

Not surprisingly, two popular gauge choices exist in which to calculate the scalar
curvature perturbations produced during inflation: the spatially flat gauge Ψ = 0 and
the comoving gauge δφ = 0 [28, 37–43].

In the spatially flat gauge, Ψ = 0, one can first simply consider the perturbations
of a scalar field in a (flat) de Sitter background. The gauge invariant perturbations ζ
are directly obtained from the fluctuations in the field, via ζ = (H/φ̇)δφ. At the end of
the calculation, the generalization to quasi-de Sitter backgrounds is straightforward.
To compute the power spectrum of δφ, the two field expectation value, we need to
solve its equations of motion, quantize the system and compute the expectation value.
Let us choose a massless field for simplicity. With some rewriting, vk = aδφk, of the
Fourier modes of the fluctuations δφ(t, x) = (2π)−3/2

∫
d3 k eik · xδφk(t), the scalar field

equation for the fluctuations,

δφ̈ −
1
a2∇

2δφ + 3Hδφ̇ = 0,
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reduces to

v′′k +

(
k2 −

2
τ2

)
vk = 0 (2.11)

in Fourier-space, where a prime ′ denotes differentiation with respect to conformal
time τ = −1/(aH) and where k = |k|. A solution to this equation is

vk(τ) =
e−ikτ

√
2k

(
1 −

i
kτ

)
. (2.12)

On subhorizon scales, k � aH or equivalently k|τ| � 1, the modes oscillate, while
on superhorizon scales, k � aH or k|τ| � 1, the fluctuations δφk = vk/a are frozen
out at a constant value |δφk | = H/

√
2k3. The conservation on superhorizon scales is

very convenient. It enables one to calculate the fluctuations at horizon exit, knowing
that they will not change until the modes re-enter the horizon. After horizon re-entry,
the transfer function ∆l(k) relates the primordial fluctuations with the temperature
anisotropies.

The classical dynamics can be quantized by promoting the solution (2.12) to a
quantum operator

v̂k = vk(τ)âk + v∗−k(τ)â†
−k, (2.13)

where âk and â†
−k are the usual creation and annihilation operators of the set of har-

monic oscillators described by (2.11), with commutation relation [âk, â
†

k′ ] =

(2π)3δ(k − k′). The commutation relation imposes a normalization of the modes
vk. Together with the choice for a Bunch-Davies vacuum, âk|0〉, —defined by the
requirement that it is equal to the Minkowski vacuum in the far past [70]— this im-
poses sufficient boundary conditions to uniquely determine (2.12) as the solution of
the second order differential equation (2.11). Using (2.12) we can compute the power
spectrum of the δφk perturbations in the superhorizon limit, Pδφ(k) =

(
H
2π

)2
, which is

equal to the value at horizon crossing, k ≈ aH. As a result, we can easily general-
ize the de Sitter calculation to the slow-roll situation in which the Hubble parameter
varies slightly or when the field is massive. In that case, different modes exit the
horizon at slightly different times k = a(t)H(t). Using the relation between δφ and ζ,
the power spectrum of the gauge invariant curvature perturbations generated during
slow-roll inflation is, in units Mpl = 1,

Pζ(k) =
1

8π2

H2

ε

∣∣∣∣∣∣
k=aH

, (2.14)

which has to be evaluated at horizon crossing. In the slow-roll regime, this is com-
pletely controlled by the effective value of H at horizon crossing. The power spec-
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trum is scale invariant in the de Sitter limit. Departure from scale invariance is de-
fined in terms of the spectral index ns − 1 = d log P/d log k. Using the relations
d log H/dt = −Hε and d log ε/dt = 2H(ε − η) and the relation between k = a(t)H(t)
and t at horizon exit, d log k/dt = H − Hε, the spectral index ns is given by

ns − 1 = 2η − 4ε (2.15)

to first order in slow-roll.
The same result can be obtained by a calculation in the comoving gauge, δφ = 0,

as is explained in [57]. It is convenient to work in the ADM formalism, in which the
metric is parameterized via a lapse function N and shift vector N i [71],

ds2 = −N2dt2 + hi j(dxi + N idt)(dx j + N jdt).

The slow-roll action (2.3) is then given by

S =
1
2

∫
d4x
√

h
[
NR(3)−2NV+N−1(Ei jEi j−E2+(φ̇−N i∂iφ)2)−Nhi j∂iφ∂ jφ

]
, (2.16)

where Ei j = 1
2 (ḣi j − ∇iN j − ∇ jNi) and E = Ei

i. Spatial indices can be raised and
lowered by hi j and∇i is the covariant derivative of this spatial metric. In the comoving
gauge, the scalar perturbations to the metric are given by writing

hi j = a2e2ζδi j ≈ a2(1 + 2ζ)δi j (2.17)

to first order in ζ. The field fluctuations δφ are zero, which means that all spatial
derivatives on φ(t, x) vanish. The power of the ADM formalism is that the equations
of motion for the Lagrange multipliers N and N i are simply constraint equations, the
hamiltonian and momentum constraints. Solving these constraints perturbatively in
terms of ζ,

N = 1 +
ζ̇

H
+ . . . , Ni = ∂i

(
−
ζ

H
+ ε

a2

H
∂−2ζ̇

)
+ . . . , (2.18)

and substituting the result back into the action, then gives the action solely in terms
of ζ. In order to find the quadratic action for ζ, it is sufficient to solve N and N i

only to first order in ζ, as the quadratic piece of N and N i multiplies the zeroth order
constraint equation which vanishes for a background solution satisfying the equations
of motion [57]. Performing this procedure up to quadratic order gives

S (2) =

∫
dtd3x a3ε

[
ζ̇2 − a−2(∂iζ)2

]
=

1
2

∫
dτd3x

[
w′2 +

z′′

z
w2 − (∂iw)2

]
,
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where w = zζ and z = a
√

2ε, which has as equation of motion in Fourier-space,

w′′k +

(
k2 −

z′′

z

)
wk = 0.

To lowest order in slow-roll z′′
z ≈

a′′
a ≈

2
τ2 and we find exactly the same differ-

ential equation as (2.11). Hence, from (2.12) we read off that the power spectrum
of wk in the superhorizon limit is Pw(k) = a2H2/4π2 and again we find Pζ(k) =

1
z2 Pw(k)

∣∣∣
k=aH

= 1
8π2

H2

ε

∣∣∣∣
k=aH

. Although the calculation is technically more involved in
the comoving gauge, the advantage is that one directly uses the variable of interest ζ.
It is this gauge invariant object that is conserved on superhorizon scales [40, 57].

2.3.3 Non-Gaussianities

The procedure to find the bispectrum Bζ of primordial curvature perturbations in
slow-roll inflation was laid down in [57]. In the comoving gauge, it is a direct gen-
eralization of the calculation of the two-point function, expanding (2.16) up to third
order in ζ. Again it suffices to solve the hamiltonian and momentum constraints up to
first order in ζ, cf. (2.18). The third order terms again multiply the constraint equa-
tions at zeroth order, while the second order terms multiply the constraint equations
to first order, which vanish by the first order solution (2.18) [57, 62]. Substituting
(2.18) into (2.16) and keeping cubic contributions, gives

S (3) =

∫
dtd3x

(
a3ε2

[
ζ̇2ζ + a−2(∂iζ)2ζ − 2ζ̇∂iζ∂i∂

−2ζ̇
]

+ f (ζ)
δL
δζ

∣∣∣∣∣
(1)

+ . . .

)
.

(2.19)
The ellipsis contain terms that are of higher order in the slow-roll approximation.
They are omitted to keep the calculation simple, with the justification that only —if
any— the leading order contributions are likely to be observable [61]. The term prior
to the ellipsis is proportional to the first order equations of motion and can therefore
be removed by field redefinitions.

Once the third order action is known, the three-point function can be calculated.
As was emphasized in [57, 61], the three-point function is an expectation value, de-
fined with respect to the vacuum |in〉 of the interacting theory at a given time,

〈in|ζk1ζk2ζk3 |in〉.

As in ordinary quantum field theory [72], the vacuum of the interacting theory can be
obtained from an evolution of the free vacuum |0〉 using the interaction hamiltonian
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S (3) = −
∫

dτHint(ζ(2)). The interaction hamiltonian depends on the quantum operator
ζ(2) corresponding to the solution of the free theory (2.12). In a cosmological context,
this procedure is summarized in the “in-in”-formalism [57, 61, 73–75], which results
into

〈ζk1 (τ)ζk2 (τ)ζk3 (τ)〉 = −i
∫

dτ′〈0|
[
ζ(2)

k1
(τ)ζ(2)

k2
(τ)ζ(2)

k3
(τ),Hint(τ′)

]
|0〉. (2.20)

With the interaction hamiltonian defined by S (3) and the free field solution ζ(2) given
by (2.12), the above prescription yields the bispectrum of primordial curvature per-
turbations produced during slow-roll inflation. To leading order in the slow-roll ex-
pansion, it is given by [57]

Bζ(k1, k2, k3) = (2π)4
(
Pζ

)2 1
k3

1k3
2k3

3

(
Aε + Aη

)
+ . . . , (2.21)

Aε = ε

1
8

3∑
j=1

k3
j +

1
8

∑
j,l

k jk2
l +

1
kt

∑
j<l

k2
j k

2
l

 ,
Aη = η

−1
4

3∑
j=1

k3
j

 ,
where kt = k1 +k2 +k3 and where Pζ is the power spectrum evaluated when the modes
cross the horizon, under the assumption that this happens almost simultaneously for
all modes.

Equation (2.21) depends only on the two leading order slow-roll parameters ε,
η. It can be generalized to other inflationary scenarios with more parameters. For
example, multi-field slow-roll inflation has a set of multi-dimensional slow-roll pa-
rameters [59] and the bispectrum of the most general single field scenario depends on
a set of five parameters [62]. Equation (2.21) can also be calculated directly from the
field equations, as was done in [76]. In that case, one directly solves the second order
equation for δφ, rather than using the “in-in”-formalism to calculate the three-point
function in the interacting theory from the solutions of the free theory. The result can
be written as

Bζ(k1, k2, k3) = (2π)4
(
Pζ

)2 1
k3

1k3
2k3

3

(
Aε + Aη + Aξ

)
+ . . . , (2.22)

Aξ = ξ2
V

1
4

(−1 + γ + log[−ktτ∗]
) 3∑

j=1

k3
j + k1k2k3 −

∑
j,l

k jk2
l

 ,
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where γ is Euler’s constant and τ∗ is the (conformal) time of horizon crossing. Com-
pared to (2.21), this result includes a contribution proportional to the higher order
(potential) slow-roll parameter

ξ2
V =

V ′V ′′′

V2 . (2.23)

It is the contribution coming from an interaction term V ′′′δφ3 in the action, as calcu-
lated by [77, 78].

The calculation of [77, 78] is actually a much simpler calculation, because the
field under consideration acts as a (massless) spectator field in an expanding de Sitter
background, i.e. the field is not responsible for driving the accelerated expansion. The
specific form Aξ of (2.22) corresponds to this bispectrum of a massless scalar specta-
tor field, as the gauge invariant density perturbation can in many aspects be thought
of as a massless scalar field (i.e. its solution to the equation of motion, cf. (2.20) and
(2.11)). However, the perturbations of the inflaton field are also coupled to gravity
and the gauge invariant curvature perturbations obtain contributions both from the
fluctuations of the inflaton field as well as from metric perturbations. As argued in
[57] the V ′′′δφ3-contribution to the bispectrum resides within the . . . of (2.19), indi-
cating higher order slow-roll contributions, and is neglected in that calculation. The
result (2.22) confirms this expectation and explicitly shows that the contribution from
a direct interaction between the scalar fields is second order in slow-roll.

Strictly speaking, by including the ξ2
V -contribution, one should also include the

other contributions that are second order in slow-roll, i.e. those proportional to ε2,
η2 and εη. Since these effects will be beyond the observable threshold, the effort of
correctly combining all higher order slow-roll contributions is not a relevant exercise
at this time, although first results into this direction are known [79]. For our pur-
poses, the appearance of the ξ2

V -proportional term and in particular of the momentum
structure given by log[−ktτ∗] in (2.22) is interesting from a more fundamental point
of view, as will be further discussed in chapter 6.
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