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1
Motivation

1.1 On being a string cosmologist

Our universe had a beginning —or at least, so it seems. With the technological ad-
vances of previous decades and the incredible achievements in the theoretical un-
derstanding of nature’s workings, we are tantalizingly close to answering existential
questions that are as old as mankind itself. “Where do we come from?”, “What are
we made of?” These questions, that have always been of a philosophical nature, are
now almost in reach of observational verification. Science is painting us a picture of
our universe, which we can understand from as early as 10−10 seconds after the sup-
posed beginning, the big bang. Since its beginning the universe has been expanding,
which led to a cooling down of the initial hot, dense state. This allowed atoms to
combine to molecules and stars to be born, finally leading to the universe we observe
today. Our current knowledge of the cosmic evolution of our universe is an aston-
ishing feat, but there is always the quest to learn more. Driven by curiosity, we are
trying to push our knowledge to within the first 10−10 seconds. This tour de force re-
quires a perfect orchestrated collaboration between observational achievements and
theoretical advances.

To understand observations, we need a theoretical foundation. For observations
from the early universe, we need to acquire knowledge about nature’s working from
the smallest to the largest energy scales or equivalently on all distance scales. In the
early beginning of the universe, the typical energy of particles was beyond imagi-
nation, as the whole universe was tightly packed into a hot, energetic plasma. Such
energies probe microscopic particle interactions that happen at the tiniest of scales.
Without an accurate understanding of the processes happening at the highest energies,
it is impossible to correctly interpret any observation from the primordial epoch and
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1. Motivation

to truly understand how our universe came to be.
Vice versa, to verify theoretical predictions, we need an observational foundation.

This is a rather obvious statement. The backbone of physics is its solid foundation
in the form of verifiable and falsifiable claims, following from a consistent, coherent
and ideally complete theoretical framework. However, given the progression of our
theoretical understanding into ever more energetic realms of physics, achieving the
required regime observationally is easier said than done. For example, the physics
of particle interactions is uniformly described in one all-coordinating theory, called
the standard model. It correctly describes processes of typical energies up to about
103 GeV and is currently under scrutiny precisely around this threshold energy at
CERN’s state-of-the-art Large Hadron Collider. However, the standard model misses
one vital piece in its description of nature, as it does not contain the gravitational the-
ory of general relativity. A unified theory of both gravity and particle physics would
be an enormous achievement of our fundamental understanding of nature. However,
since it is not expected that a unified theory of both gravity and particle physics in-
teractions will appear below 1019 GeV —the scale where quantum effects are compa-
rable to classical gravity—, testing such a theory will not happen in the foreseeable
future with current terrestrial technology. Our only hope is to observationally explore
the realm where such high energies occur naturally: astrophysics and cosmology.
Without a way of probing processes at such high energies, we risk to bring any theo-
retical advance in this direction to a stop.

The lack of observations has not stopped us from formulating a candidate theory
of quantum gravity, string theory. In this theory, fundamental interactions happen
between strings rather than point particles. It is possibly a unifying theory for general
relativity and the standard model, although its very nature, i.e. characteristic energy
scales of 1019 GeV, currently prevents the theory from making testable predictions.
Nevertheless a consistent combined theory of quantum mechanics and gravity must
exist and at the moment string theory is the only real candidate.

This is where cosmology may help, especially since we now have good reasons to
believe that the earliest evolution of the universe is described by a period of acceler-
ated expansion, called inflation. Inflation is capable of solving many of the issues of
a standard expanding universe. However, inflation, which is a generic phase of accel-
erated expansion, turns out to be surprisingly sensitive to its microscopic description,
which is largely unknown. With a fundamental theory of everything without obser-
vational means to test it and with an observationally satisfying mechanism in need of
a microscopic description, string inflation seems to provide a unique opportunity to
address two problems at once. A string theory description of inflation would provide
a means to probe microscopic physics by cosmological observations, while simul-
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1.2 This thesis

taneously providing a means to microscopically gain insight in the structure of the
dawn of time.

1.2 This thesis

In this thesis we present multiple, complementary approaches to the understanding
of string inflation. As explained, the sensitivity of inflation to the microscopic details
of the theory from which it originates, provides a great opportunity to probe this
microscopics observationally. However, it also means that describing a consistent
microscopic theory in which inflation can be embedded, is very hard. In this thesis
we will study to what extent this sensitivity might hinder theoretical model building
and what are possible approaches to circumvent these issues.

A fundamental ingredient in the approaches we present is conformal invariance,
or (local) scale invariance. A theory that is scale invariant describes a system which
looks the same on all length scales. This might be a surprising starting point to
describe our universe, which certainly does not seem to be scale invariant, but in the
mathematical description of inflation, conformal invariance plays an exceptionally
important role. In this thesis we consider two (different) ways in which conformal
invariance might prove crucial in our understanding of the primordial inflationary
epoch.

A review of relevant aspects of conformal field theory is presented in chapter
3, explaining its relevance to string theory. There, we also present the three differ-
ent guises in which string theory will be employed throughout the different chapters.
Its worldsheet description; the low energy effective supergravity description derived
from it; as well as the holographic conformal field theory description of an accel-
erating universe that arises from string theoretical considerations, are all addressed.
These form the background material to chapters 5, 4 and 6 respectively, where we will
explore the consequences for string inflation within each of the different approaches.

In chapter 4 we consider supergravity descriptions of inflation. Supergravity ap-
pears as the low energy limit of (super)string theory. Since string theory itself is not
a fully understood theory and it is generally very hard to use it for explicit calcula-
tions, supergravity has become an interesting framework to reconcile inflation within
stringlike physics [1, 2]. Due to the sensitive nature of inflation, it has proven to be
very difficult to find models that are stable under quantum corrections. We study the
sensitivity of inflation to possible additional physics such as the standard model, in a
general supergravity set-up.

In chapter 5 we consider a new approach to string inflation, based on the (defining)

3



1. Motivation

worldsheet description of string theory. The worldsheet theory is described by a con-
formal field theory. In general, both the inflationary dynamics of a four-dimensional
spacetime as well as other internal/matter sectors are encoded in the total worldsheet
conformal field theory. We probe the interaction between the two sectors by enforc-
ing a nearly marginal perturbation of the internal sector theory. Assuming worldsheet
conformal invariance to be maintained for the total theory throughout the inflationary
evolution, the deformation of the internal sector induces a response in the form of a
deformation of the inflationary sector, which can be understood as a time evolution
in the four-dimensional spacetime. Insisting on a slow-roll inflationary phase, this
imposes constraints on the allowed deformations of the internal sector. In this way,
observations from the inflationary era might be used to constrain the underlying string
theory.

The final approach to obtain a fundamental understanding of the inflationary
epoch is presented in chapter 6, in which we study the two- and three-point corre-
lation functions of density perturbations generated during inflation. Since inflation
is described by a quasi-de Sitter evolution, these correlation functions are expected
to be constrained by the (broken) conformal isometry group of de Sitter spacetime at
asymptotically late times. The approach is truly orthogonal to all other approaches, as
it uses the symmetries of de Sitter space in a way that, tantalizingly, borrows heavily
from a revolutionary insight from string theory: holographic duality. The origin of
this holographic duality is rooted in string theory and it is one of the theory’s most sur-
prising predictions, maximizing the power that underlies the string theory surface. A
true understanding of the duality and the microscopic origin behind it would provide
an incredible improvement in the understanding of the origin of our universe. The
investigations in chapter 6 of the symmetry constraints on the two- and three-point
functions provide a first step in the investigation to what extent this duality might
apply to the inflationary era.

Given the emphasis earlier in this motivation on the necessity of an amalgamation
of observations and theory, this work admittedly contains only theoretical studies of
a possible stringy origin of inflation. However, in all cases there is a clear observa-
tional component behind the initial motivation of the study, which permeates each
approach. Therefore, to put our results into the required cosmological context, we
present an introduction to inflationary cosmology in chapter 2. With this background,
we hope to have made clear how this work can provide new and interesting insights
in the development of a string theoretical description that underlies the inflationary,
primordial stages of our universe.

4



2
Cosmic evolution of our universe

The understanding of the evolution of our universe is one of the unabashed successes
of modern physics. To a large extent, the evolution of our universe is understood
extremely well, from a few moments after its birth to very close to the present day. In
this chapter we will review standard big bang cosmology, both theoretically as well
as observationally. We will explain how inflation can solve some of the problems
associated to the big bang paradigm and, since it is the measurements of the infant
stage of the universe that provide the observational backbone for string cosmology, in
what way measurements of the infant universe can be related to microscopic models
of inflation.

2.1 A short history of big bang cosmology

2.1.1 Theoretical development of a dynamic universe

Modern cosmology is less than 100 years old. Before Einstein had developed his
theory of general relativity [3, 4], Newtonian mechanics did not invite to study the
universe as a whole. Surely, mankind probably always had an interest for the stars and
galaxies that appear on the night sky, but in Newtonian theory this merely results in
the study of these objects within a fixed arena, not of the black sky itself. The universe
itself only features as the stage in which extraterrestrial physical phenomena occur.
With the advent of general relativity this all changes, as spacetime itself inevitably
becomes dynamic.

To describe the universe as a whole, we rely on the cosmological principle, the
assumption that no place in the universe is special and that it is the same from any
vantage point. This is an extrapolated version of the Copernican principle, that our
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2. Cosmic evolution of our universe

planet nor our solar system nor our galaxy is the center of the universe. Rather,
the laws of physics are the same throughout the universe and no observer can dis-
tinguish a preferred location. Consequently, the universe should be homogeneous
and isotropic on large scales, a fundamental assumption which enabled Friedmann-
Lemaître-Robertson-Walker [5–8] to propose a model for cosmic evolution within
general relativity. Homogeneity and isotropy of the cosmological principle translate
into the mathematical statement that the metric of spacetime is maximally symmetric
in its spatial part,

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2 + r2dΩ2
)
,

where the scale factor a(t) describes the overall (spatial) scale of the universe and k
corresponds to positively curved, negatively curved or flat spatial slices for k=1,−1, 0
respectively.1 The matter content must be taken homogeneous and isotropic too,
specified by a perfect fluid energy-momentum tensor that only depends on the energy
density ρ and pressure p of the fluid,

T µ
ν =


−ρ

p
p

p

 .
With these expressions for the metric and energy-momentum tensor, Einstein’s equa-
tions, including the cosmological constant as a matter contribution, reduce to the
Friedmann equations

H2 =
κ2

3
ρ −

k
a2 , (2.1a)

ä
a

= −
κ2

6
(ρ + 3p), (2.1b)

where the Hubble parameter, H = ȧ
a , determines the rate of expansion. The reduced

Planck mass M−2
pl = κ2 = 8πGN acts as the gravitational coupling constant; we will

often use natural units, where κ2 = 1.
One can combine these equations into the continuity equation

ρ̇ = −3H(ρ + p),

1The universe is spatially flat to a very high precision. For this reason, we will be mainly concerned
with the metric in case of a flat spatial slicing.
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2.1 A short history of big bang cosmology

which also follows from energy conservation, ∇µT µ
ν = 0. If one specifies the equa-

tion of state between energy density and pressure by writing p = wρ, the continuity
equation can be integrated to express the evolution of the energy density as a function
of the evolution of the scale factor a,

ρ ∝ a−3(1+w).

In general the evolution will be a mixture of different non-interacting fluids, which
are traditionally distinguished as being (pressureless) non-relativistic matter (w = 0),
relativistic matter and radiation (w = 1

3 ) or a contribution from the cosmological
constant (w = −1). To denote the matter content of the universe, one often uses the
dimensionless quantity Ω(t) = 1

3H2 ρ. In terms of Ω, the first Friedmann equation,
(2.1a), can be written as Ω − 1 = k/(aH)2.

2.1.2 Observational confirmation and new challenges

Equation (2.1a) clearly implies that a static universe, ȧ = 0, only occurs for very
specific values of the energy density and spatial curvature. Hence, the cosmological
principle in combination with general relativity, seems to tell us that we live in a dy-
namic universe. Historically, at first a non-static universe was merely a theoretically
predicted possibility within general relativity, based on the assumption that the uni-
verse is homogeneous and isotropic. By now both the expansion of the universe as
well as its homogeneity and isotropy are well established by observations.

Already at the end of the 1920s, very soon after the theory of general relativ-
ity and the proposed FLRW solution, first evidence of an expanding universe was
obtained by Hubble [9]. He famously discovered that the spectrum of stars is red-
shifted proportionally to their distance to us. Subsequent experiments have refined
his findings to a rate of expansion given by H0 = 70.2 ± 1.4 (km/s)/Mpc for the
present era [10]. A second confirmation of the FLRW model was developed during
the following years, when physicists realized that an expanding universe must have
had a very hot and very dense early beginning, emerging from an initial singularity
called the big bang. Such a beginning implies that the universe was so hot that nuclei
could not have existed and must have formed as the universe cooled. This epoch is
called big bang nucleosynthesis, which ended when the universe cooled down further.
The estimated relative production of light elements from protons and neutrons dur-
ing the epoch of big bang nucleosynthesis accounts for the observed abundances to a
very great precision [11] and is therefore also a clear confirmation of the expanding
universe model.

7



2. Cosmic evolution of our universe

The most important confirmation, particularly useful for present-day observa-
tions, is the existence of the cosmic microwave background (CMB) radiation. In
the epoch after big bang nucleosynthesis, electrons were still energetic enough to es-
cape from the pull of ionized nuclei. Only when the universe expanded further and
consequently cooled down further, did neutral hydrogen become stable. At this mo-
ment of recombination, photons no longer encountered (charged) free electrons and
nuclei from which they would scatter. Ever since, they have therefore been traveling
(mostly) freely through a neutral universe. As the universe kept expanding, these pho-
tons cooled down, redshifting towards microwave radiation, at which frequencies we
observe them now. The first observation of the microwave photons was in 1965, when
Penzias and Wilson observed an excess microwave background noise in their radio
antenna [12], which was quickly realized [13] to be the predicted cosmic microwave
background radiation [14, 15].

With following improved observations, the CMB is now the most-precisely mea-
sured black body spectrum in nature [16], having a temperature of 2.73 K isotropi-
cally across the sky, implying recombination happened approximately 380 000 years
after the big bang. The fact that for each local patch across the sky, the variation in
the temperature of the CMB is only a remarkable 1 in 105 means we have now ob-
servationally justified the earlier made assumption of the homogeneity and isotropy
of the universe. Each photon on the surface of last scattering has the same temper-
ature to an astonishing precision, confirming that recombination and the subsequent
expansion happened homogeneously throughout the universe.

Combining different cosmological observations, such as CMB observations [10],
the formation of large-scale structures [17, 18], the recessions of type Ia supernovae
[19, 20], observed mass distributions through gravitational lensing [21] and the study
of peculiar motion of galaxies and clusters [22, 23], we now have an increasingly
precise understanding of the content and dynamics of our universe and its evolution
after the first fraction of a second. Observationally a huge improvement has been
obtained in the last 10–20 years, mainly because of improved measurements of the
CMB, which made it possible to estimate the parameters of the FLRW model with
ever greater accuracy and firmly established cosmology as a “precision science”. We
now know we live in a spatially flat universe Ω0 = 1.002 ± 0.011, which expands at
an accelerated rate [10, 19, 20, 24]. However, this success-story has brought with it a
number of new puzzles directly emergent from the data.

One is the discovery of the current accelerated expansion of our universe. It
earned its discoverers [19, 20] the 2011 Nobel Prize, which is a recognition of the
enormous advances that observational cosmology has seen in the last two decades.
However, theoretically the reason for this accelerated expansion is far from clear. At
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2.2 Cosmic inflation

the moment the expansion is accounted for by a dominant energy contribution com-
ing from dark energy, such as the cosmological constant Λ or some other energy
component which has an equation of state w < − 1

3 . Except for its name, dark en-
ergy remains a largely unknown form of “stuff”. We do not know its origin nor its
precise characteristics. From the observations it is clear that the universe is currently
dominated by dark energy. It constitutes 74% of today’s total energy budget. The
remaining 26% of the energy decomposition consists of matter, w = 0, although only
about 4% (of the total budget) is ordinary visible matter. This means another 22% of
the total energy budget is yet unaccounted for. All observations [10, 17, 18, 21–23]
indicate the presence of some sort of (invisible) matter, dubbed (cold) dark matter, a
second puzzle.

The ΛCDM-model derives its name from the dominant contributions in our uni-
verse, the cosmological constant Λ and cold dark matter. Although we have good
indications that these contributions are really there, for the moment their precise na-
ture eludes understanding. For this reason a large branch of present day cosmology
focusses on the nature and characteristics of the dominant contributions to the en-
ergy decomposition of our universe. However, in this thesis we will focus on yet
another mystery of the current cosmological model. This mystery does not focus on
the content of our present day universe, but rather on how it has all come to be.

2.2 Cosmic inflation

2.2.1 Initial conditions

Our universe seems to be very special in the way it is very sensitive to its precise initial
conditions. In principle the need for such precise initial conditions is not a problem,
since cosmology is not claiming to provide a full explanation for the cosmic evolution
including its starting point. We only need to be able to evolve the universe from a set
of given initial conditions to the present day. However, the level of precision for
the initial conditions is so high, that one starts wondering why we happen to live
in this universe. If the initial conditions were only slightly different, standard big
bang evolution would lead to a significantly different universe. For this reason it is
unsatisfactory to simply take the required initial conditions as a given, without the
slightest wondering why it had to be these initial conditions. The strong dependence
on the actual initial conditions weakens any claim done by cosmologists, as one can
seemingly evolve to any universe by simply starting from marginally different initial
conditions. For most cosmologists such a sensitive and unstable situation begs for an
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2. Cosmic evolution of our universe

explanation. Such an explanation exists, it is provided by the inflationary paradigm
[25–27].2

The problem with the initial conditions consists of two separate problems, called
the horizon problem and the flatness problem. In short, the horizon problem is the ob-
servation that the CMB is far more homogeneous than one should naïvely expect. In
general, any inhomogeneity will grow bigger and bigger, through gravitational inter-
action. Indeed, the amount of inhomogeneities today is larger than that in the CMB,
but similarly we also expect that the amount of inhomogeneities was even smaller at
any time before the CMB. Since the CMB has inhomogeneities of the order of 10−5,
one wonders how smooth exactly the initial conditions must have been to provide the
smoothness of the CMB. Most importantly, in the standard big bang cosmology, the
CMB is homogeneous even across regions which could have never been in causal
contact at the time of last scattering. Decoupling occurred 380 000 years after the
big bang and so the present-day full-sky observation of the CMB consists of multi-
ple patches, each only 380 000 light years across, in which photons were in causal
contact.

Let us explain how this compares with the current causally connected patch.
Mathematically we define the particle horizon as the (comoving) size of a causally
connected region. From (2.1b), it is given by

1
aH
∝ a

1
2 (1+3w). (2.2)

The expression takes into account that the universe expands while the light is propa-
gating through space. If the universe would expand too quickly, such that the photons
can not “keep up”, the particle horizon decreases. However, for an evolution domi-
nated by ordinary matter, w ≥ 0, the particle horizon grows with time. This means
that, for example those CMB photons that enter the particle horizon now, were not
causally connected before. Specifically, they were not causally connected at the time
the CMB was produced. Yet, the CMB spectrum is consistent over all length scales
with a uniform black body spectrum having a homogeneous temperature to 1 part in
105. How can the CMB be so homogeneous even across all causally disconnected
regions?

The other problem with initial conditions, the flatness problem, is the observation
that the universe is incredibly close to being spatially flat, Ω0 = 1.002±0.011 [10, 24].
From Ω − 1 = k/(aH)2 and (2.2) it follows that for ordinary matter, w ≥ 0, any devi-
ation away from flatness, Ω = 1, can only be growing. In fact, by taking a derivative
of the first Friedmann equation and using (2.1b), we can derive a differential equation

2Several excellent books and lecture notes provide a detailed introduction to inflation, cf. [28–31].
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2.2 Cosmic inflation

for Ω,

a
dΩ

da
= (1 + 3w)Ω(Ω − 1),

which tells us that the critical value Ω = 1 is an unstable fixed point for w > − 1
3 . This

means that in order to find Ω0 = 1.002 today, the initial conditions must have been
exponentially closer to Ω = 1. How can the universe be so spatially flat if all matter
is desperately trying to push it away from flatness?

The horizon problem and the flatness problem have a common origin; in both
cases the inconsistency arises because of the growing nature of the particle horizon
(aH)−1 for ordinary matter or equivalently,

d
dt

(aH)−1 = −
ä

(aH)2 =
ρ

6aH2 (1 + 3w) > 0,

because ordinary cosmology is dominated by matter, w = 0, or radiation, w = 1
3 . As

the intermediate result shows, this is equivalent with an expanding but decelerating
universe. Therefore an obvious solution would be to look for a period of accelerated
expansion, ä > 0, dominated by some form of matter with w < − 1

3 . Although the cur-
rent vacuum energy dominated era, with w = −1, meets the requirements and seems
to make the problem less urgent, the universe has only recently entered the vacuum
energy dominated epoch. Radiation and matter dominated for most of its history. To
solve the problems with initial conditions, we should consider an accelerating phase
before the current big bang paradigm, which should at least last for about 60 e-folds
to solve the flatness and horizon problems [32, 33]. This phase is called cosmic in-
flation. It is specified by the need to explain the initial conditions, but only in a very
coarse manner. Any epoch which is dominated by some matter-component having
w < − 1

3 will be capable of solving the big bang problems. However, the requirement
w < − 1

3 is difficult to meet with ordinary matter and radiation, because it requires
a negative pressure. This makes the search for the true microscopic nature of the
inflationary epoch a worthwhile and interesting endeavor.

2.2.2 Accelerated expansion

No ordinary matter has negative pressure, but it was the insight of [25] that “order
parameter” physics can easily account for this, by considering a (single) scalar field
(the order parameter) coupled to gravity,

S =
1
2

∫
d4x
√

g
[
R − gµν∂µφ∂νφ − 2V(φ)

]
. (2.3)
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2. Cosmic evolution of our universe

The scalar field is a matter source to the gravitational field, appearing on the right
hand side of Einstein’s equation, with

ρ =
1
2
φ̇2 − V, p =

1
2
φ̇2 + V,

under the assumption that φ(t, x) = φ(t) is spatially homogeneous. In a regime in
which the potential dominates over the kinetic energy of the field, the equation of
state can indeed be negative. The limiting case w = −1 is reached by assuming a
stationary scalar field. In that situation, the field equations for the field φ and for the
scale factor a of a (flat) FLRW ansatz for the metric,

0 = φ̈ + 3Hφ̇ + V ′(φ), (2.4a)

H2 =
1
3

(
1
2
φ̇2 + V(φ)

)
, (2.4b)

tell us that V(φ) should be constant and equal to 3H2 and the scale factor is exponen-
tially growing, a(t) = eHt. The resulting accelerated expansion is that of a de Sitter
universe,

ds2 = −dt2 + e2Htdx2,

corresponding to a maximally symmetric universe with positive cosmological con-
stant Λ > 0, just as in the current epoch.

An inflationary epoch being driven by a constant (positive) potential V = Λ > 0
is too simplistic, in that there is no dynamical way for inflation to end. This can be
resolved by allowing the field φ(t) to be dynamical [25–27]. To still maintain a handle
on the equations of motion, it is useful to consider a dynamical situation which is still
very close to de Sitter, i.e. to study a nearly constant Hubble parameter or equivalently
a slowly varying field φ(t) that is potential energy dominated, φ̇2 � V . In order to
quantify the slowness of the variation, we define the slow-roll parameters

ε = −
Ḣ
H2 = 2

(
H′

H

)2

=
1
2

(
φ̇

H

)2

, η = 2
H′′

H
= −

φ̈

Hφ̇
, (2.5)

where ′ indicates a derivative of H(φ) with respect to the field φ. The equalities
in these expressions are a consequence of (2.4), which imply that 2H′ = −φ̇. Via
ä = aH2(1 − ε), it is clear that the universe undergoes accelerated expansion if and
only if ε is smaller than unity,

ä > 0⇔ ε < 1. (2.6)
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2.3 Seeds of structure

ε = η = 0 corresponds to the pure de Sitter phase. When both slow-roll parameters
are taken to be small but non-vanishing, the field equations (2.4) resemble a quasi-de
Sitter phase,

H2(t) ≈
1
3

V(φ) ≈ constant, a ≈ eH(t)t, φ̇ ≈
−V ′

3H(t)
≈ 0.

The approximation ε, |η| � 1 is called the slow-roll approximation. This name
arises in the context of a single scalar field driving the acceleration. The definition
of ε and η makes clear, however, that the existence of acceleration or quasi-de Sitter
evolution is not tied to the existence of a scalar field. Nevertheless, almost all models
use a scalar field description and often use a different set of potential slow-roll pa-
rameters εV , ηV . These are related to the previous ones in the slow-roll approximation
by

εV =
1
2

(
V ′

V

)2

≈ ε, ηV =
V ′′

V2 ≈ ε + η. (2.7)

The potential slow-roll parameters express inflation as a slowly rolling field on a flat
potential and have as an advantage over ε and η that they provide a direct connection
between the potential and the dynamics of the system. However, this connection only
holds when the slow-roll approximation is assumed, whereas the field equations can
be expressed in terms of ε and η exactly. The latter set of parameters is therefore
better suited to set up a consistent approximation scheme [34] and are, in this respect,
preferred over εV and ηV . In the slow-roll approximation, ε, |η| � 1, the use of
the potential slow-roll parameters may be more convenient. Since there are clear
indications that the slow-roll approximation is indeed satisfied during inflation, both
sets of slow-roll parameters can be used almost interchangeably.

In summary, inflation is a coarse phenomenon that happens if and only if ε <

1. Realistic inflation has as additional requirement that ε, |η| � 1 or equivalently
εV , |ηV | � 1 [10, 35] and describes a quasi-de Sitter evolution.

2.3 Seeds of structure

2.3.1 Primordial perturbations

In the description of inflation above, we have assumed the inflaton field φ(t, x) to be
spatially homogeneous φ(t, x) = φ(t). This assumption is justified by the observed
homogeneity in the universe, but we know it cannot be the end of the story, since we
have also observed small anisotropies in the CMB [35, 36]. The inflationary paradigm
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2. Cosmic evolution of our universe

provides a satisfying explanation for the origin of these anisotropies [37–43]. Like we
expect around any classical field, the inflaton is subject to small quantum fluctuations

φ(t, x) = φ(t) + δφ(t, x),

which in this case parameterize small deviations from spatial homogeneity in the
inflaton field. Qualitatively the consequences are easily understood. Through Ein-
stein’s equations, small variations in the inflaton field φ generate perturbations in the
geometry of spacetime, which lead to gravitional wells and voids in which slight rel-
ative overdensities and underdensities of the matter distribution start to form. As a
result, CMB photons experience slightly different redshifts and this we observe in our
measurements of the CMB.

Quantitatively we also understand the transition from one type of perturbation
to the other, providing a powerful bridge between observation and theory. Several
excellent books and review papers have been written about this rich topic [28, 29, 44–
46]. Here, we only present the very basics in order to provide a flavor of why the
theoretical calculations in this thesis are relevant for observations. From observations,
we have direct access to the relative temperature anisotropies δT (n̂) in each direction
n̂ in the sky. Traditionally the information is encoded in terms of multipole moments
alm, that result from expanding δT (n̂) on the orthonormal set of spherical harmonic
functions Ylm(n̂),

δT (n̂) =
∑
lm

almYlm(n̂).

From these coefficients we can then build an angular n-point function

〈al1m1 . . . alnmn〉.

In principle, the average is an ensemble average over multiple universes, but since we
have only access to one universe, the statistical uncertainty is instead controlled by a
(weighted) angular average over the m j-modes [28, 45]. The multipole modes alm of
the temperature (differences) δT (n̂) in the CMB are sourced by the primordial scalar
curvature perturbations ζ. They are related via a transfer function ∆l(k),

alm = 4π(−i)l
∫

d3 k
(2π)3 ∆l(k)ζkYlm( k̂). (2.8)

The transfer function is the solution to a set of coupled differential equations, resulting
from Einstein’s equations and Boltzmann’s equations for the interactions among dif-
ferent types of fluids [28]. It can be computed numerically [47], once the background
cosmology and the initial spectrum for ζ are specified. Conversely, by scanning over
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2.3 Seeds of structure

4

Figure 1. The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the onset of the Silk damping tail
are now well measured by WMAP. The curve is the ΛCDM model best fit to the 7-year WMAP data: Ωbh

2= 0.02270, Ωch2= 0.1107,
ΩΛ= 0.738, τ= 0.086, ns= 0.969, ∆2

R= 2.38 × 10−9, and ASZ= 0.52. The plotted errors include instrument noise, but not the small,
correlated contribution due to beam and point source subtraction uncertainty. The gray band represents cosmic variance. A complete error
treatment is incorporated in the WMAP likelihood code. The points are binned in progressively larger multipole bins with increasing l;
the bin ranges are included in the 7-year data release.

Figure 2. The high-l TT spectrum measured by WMAP, showing
the improvement with 7 years of data. The points with errors use
the full data set while the boxes show the 5-year results with the
same binning. The TT measurement is improved by >30% in the
vicinity of the third acoustic peak (at l ≈ 800), while the 2 bins
from l = 1000–1200 are new with the 7-year data analysis.

WW spectra for the purposes of removing the residual
point source amplitude. The unresolved point source
contribution to the sky continues to be treated as a
power law in thermodynamic temperature, falling as
ν−2.09 (Nolta et al. 2009), but see Colombo & Pierpaoli
(2010) for an alternative approach to the spectral de-
pendence. Using the same fitting methodology as in the
5-year analysis, we find its amplitude to be 103Aps =
9.0±0.7µK2 sr, when fit to the 7-year Q, V, and W band

weighting in the computation of the pseudo-alm. We are currently
developing such code for use in cross-power spectra with the inten-
tion of applying it to the final 9-year data.

spectra evaluated with the KQ85y7 mask. (Most of the
cosmological parameters reported in this paper were fit
using a preliminary version of the likelihood that had a
small masking error that produced a slightly biased TT
spectrum at high-l and a correspondingly higher resid-
ual source amplitude, which mostly compensated for the
bias. We have checked that substituting the correct TT
spectrum has a negligible effect on the parameter fits.)
After this source model is subtracted from each band,
the spectra are combined to form our best estimate of
the CMB signal, shown in Figure 1.
The 7-year power spectrum is cosmic variance limited,

i.e., cosmic variance exceeds the instrument noise, up to
l = 548. (This limit is slightly model dependent and can
vary by a few multipoles.) The spectrum has a signal-
to-noise ratio greater than one per l-mode up to l = 919,
and in band-powers of width ∆l = 10, the signal-to-noise
ratio exceeds unity up to l = 1060. The largest improve-
ment in the 7-year spectrum occurs at multipoles l > 600
where the uncertainty is still dominated by instrument
noise. The instrument noise level in the 7-year spectrum
is 39% smaller than with the 5-year data, which makes it
worthwhile to extend the WMAP spectrum estimate up
to l = 1200 for the first time. See Figure 2 for a compari-
son of the 7-year error bars to the 5-year error bars. The
third acoustic peak is now well measured and the onset
of the Silk damping tail is also clearly seen by WMAP.
As we show in §4, this leads to a better measurement
of Ωmh2 and the epoch of matter-radiation equality, zeq,
which, in turn, leads to better constraints on the effective
number of relativistic species, Neff , and on the primor-
dial helium abundance, YHe. The improved sensitivity

Figure 2.1: The power spectrum of the temperature anisotropies, expressed in terms of
the multipole coefficients Cl = 1

2l+1

∑
m〈a∗lmalm〉. The curve represents a ΛCDM best fit

to the 7-year WMAP data with a nearly scale invariant power spectrum Pζ ∼ kns−1 with
ns ≈ 0.96 [35].

many results, we can fit the parameters of the background cosmology as well as the
primordial spectrum of perturbations to the CMB data.

The upshot of the preceding paragraph is clear: the n-point function of primor-
dial perturbations 〈ζk1 . . . ζkn〉 is directly related to the correlations of observationally
accessible temperature fluctuations, 〈δT (n̂1) . . . δT (n̂n)〉. Via (2.8), the temperature
two-point function, given in terms of the multipole coefficients Cl = 1

2l+1
∑

m〈a∗lmalm〉,
is related to the primordial two-point function

Cl = 4π
∫

dk
k

Pζ(k)∆l(k)2. (2.9)

Here, the relation is given in terms of the power spectrum Pζ(k) of the primordial
curvature perturbations. For any quantum operator f̂ , the power spectrum P f (k) is
defined via

〈 f̂k f̂k′〉 = δ(k + k′)
16π5

k3 P f (k).

In recent years, the two-point function of temperature anisotropies Cl has been
observed to very high precision by the WMAP collaboration [35], cf. figure 2.1. In
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2. Cosmic evolution of our universe

order to produce the temperature spectrum as shown in figure 2.1, the primordial
power spectrum Pζ(k) should be almost constant over all scales. On phenomenologi-
cal grounds, such a scale invariant primordial power spectrum was already proposed
by Harrison and Zel’dovich [48, 49]. As we will calculate shortly, one of the great
successes of inflation, in addition to solving the flatness and horizon problem, is that
it provides a very natural explanation for such a nearly scale invariant spectrum. The
precision with which theory matches observation in the CMB temperature two-point
function and the way inflation provides us with an explanation for its peaks and val-
leys [50] and for the underlying scale invariance, lends incredible credence to the
existence of a primordial inflationary epoch. With new investigations that focus on
subleading effects in the power spectrum, such as small oscillations on top of the near
scale invariance [51, 52], more and more details about the inflationary epoch will
hopefully soon be revealed.

Another way to probe deeper into the nature of inflation is by studying higher
order n-point functions. Similar to the two-point function, the three-point function of
temperature anisotropies can be expressed in terms of the three-point functions of the
primordial curvature perturbations [44], called the primordial bispectrum,

〈ζk1ζk2ζk3〉 = (2π)3δ(k1 + k2 + k3)Bζ(k1, k2, k3).

The bispectrum is the leading contribution to non-Gaussian effects in the spectrum of
the CMB, which would be a pure Gaussian distribution if only the two-point functions
were non-vanishing [53]. From momentum conservation, its dependence on the three
momenta defines a triangular shape. Because different inflationary models predict a
peak for different triangular shapes, the shape of non-Gaussianities is an interesting
tool to distinguish between models [45, 46, 54].

The simplest inflationary scenario, single field slow-roll inflation with canoni-
cal kinetic energy in a Bunch-Davies vacuum, predicts only non-Gaussianities that
are too small to be observable [55–57], cf. (2.21). Therefore, current literature is
focussed on any possible observation of non-Gaussianities, as it may indicate a va-
riety of violations of the assumptions, favoring e.g. multi-field inflation [58, 59],
non-canonical kinetic terms [60–62], non-standard initial states [62–66] or a different
scenario for inflation altogether [67, 68]. Developments into this direction are very
exciting, especially with the preliminary indication that such non-Gaussianities may
be present in the upcoming release of data by the Planck mission [10, 69], but are
beyond the scope of this work. We will limit ourselves to the three-point function
of primordial curvature perturbations in single field slow-roll inflation with canon-
ical kinetic terms. Even though these non-Gaussianities are beyond the observable
level in any near future experiment, from the structure of the correlation functions of
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2.3 Seeds of structure

even this simplest inflationary model, we can learn a lot about the nature of the early
universe.

2.3.2 The power spectrum

Let us now explain the origin of the primordial spectrum of density perturbations
from inflation. As in other places in physics, we can calculate the small fluctuations
to the inflationary evolution using perturbation theory,

φ(t, x) = φ(t) + δφ(t, x), gµν(t, x) = gµν(t) + δgµν(t, x).

In cosmological perturbation theory, such a split is not well-defined, since a coor-
dinate transformation may redefine the background fields φ and gµν. Therefore one
has to be careful to consider only true perturbations and to distinguish these from in-
duced perturbations caused by coordinate redefinitions. Before, in the FLRW ansatz
with a homogeneous field φ(t), this dependence on the coordinate choice did not pose
a problem, since we had a clear preferred choice in which the metric looks homo-
geneous and isotropic. Once perturbations are allowed, such a preferred choice no
longer exists, leaving only gauge-invariant statements meaningful. From the scalar
perturbations δφ and the curvature perturbation Ψ, defined by R(3) = 4

a2∇
2Ψ with R(3)

the curvature of the spatial slices, we can construct the gauge-invariant object

ζ = Ψ +
H

φ̇
δφ. (2.10)

Not surprisingly, two popular gauge choices exist in which to calculate the scalar
curvature perturbations produced during inflation: the spatially flat gauge Ψ = 0 and
the comoving gauge δφ = 0 [28, 37–43].

In the spatially flat gauge, Ψ = 0, one can first simply consider the perturbations
of a scalar field in a (flat) de Sitter background. The gauge invariant perturbations ζ
are directly obtained from the fluctuations in the field, via ζ = (H/φ̇)δφ. At the end of
the calculation, the generalization to quasi-de Sitter backgrounds is straightforward.
To compute the power spectrum of δφ, the two field expectation value, we need to
solve its equations of motion, quantize the system and compute the expectation value.
Let us choose a massless field for simplicity. With some rewriting, vk = aδφk, of the
Fourier modes of the fluctuations δφ(t, x) = (2π)−3/2

∫
d3 k eik · xδφk(t), the scalar field

equation for the fluctuations,

δφ̈ −
1
a2∇

2δφ + 3Hδφ̇ = 0,
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reduces to

v′′k +

(
k2 −

2
τ2

)
vk = 0 (2.11)

in Fourier-space, where a prime ′ denotes differentiation with respect to conformal
time τ = −1/(aH) and where k = |k|. A solution to this equation is

vk(τ) =
e−ikτ

√
2k

(
1 −

i
kτ

)
. (2.12)

On subhorizon scales, k � aH or equivalently k|τ| � 1, the modes oscillate, while
on superhorizon scales, k � aH or k|τ| � 1, the fluctuations δφk = vk/a are frozen
out at a constant value |δφk | = H/

√
2k3. The conservation on superhorizon scales is

very convenient. It enables one to calculate the fluctuations at horizon exit, knowing
that they will not change until the modes re-enter the horizon. After horizon re-entry,
the transfer function ∆l(k) relates the primordial fluctuations with the temperature
anisotropies.

The classical dynamics can be quantized by promoting the solution (2.12) to a
quantum operator

v̂k = vk(τ)âk + v∗−k(τ)â†
−k, (2.13)

where âk and â†
−k are the usual creation and annihilation operators of the set of har-

monic oscillators described by (2.11), with commutation relation [âk, â
†

k′ ] =

(2π)3δ(k − k′). The commutation relation imposes a normalization of the modes
vk. Together with the choice for a Bunch-Davies vacuum, âk|0〉, —defined by the
requirement that it is equal to the Minkowski vacuum in the far past [70]— this im-
poses sufficient boundary conditions to uniquely determine (2.12) as the solution of
the second order differential equation (2.11). Using (2.12) we can compute the power
spectrum of the δφk perturbations in the superhorizon limit, Pδφ(k) =

(
H
2π

)2
, which is

equal to the value at horizon crossing, k ≈ aH. As a result, we can easily general-
ize the de Sitter calculation to the slow-roll situation in which the Hubble parameter
varies slightly or when the field is massive. In that case, different modes exit the
horizon at slightly different times k = a(t)H(t). Using the relation between δφ and ζ,
the power spectrum of the gauge invariant curvature perturbations generated during
slow-roll inflation is, in units Mpl = 1,

Pζ(k) =
1

8π2

H2

ε

∣∣∣∣∣∣
k=aH

, (2.14)

which has to be evaluated at horizon crossing. In the slow-roll regime, this is com-
pletely controlled by the effective value of H at horizon crossing. The power spec-
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trum is scale invariant in the de Sitter limit. Departure from scale invariance is de-
fined in terms of the spectral index ns − 1 = d log P/d log k. Using the relations
d log H/dt = −Hε and d log ε/dt = 2H(ε − η) and the relation between k = a(t)H(t)
and t at horizon exit, d log k/dt = H − Hε, the spectral index ns is given by

ns − 1 = 2η − 4ε (2.15)

to first order in slow-roll.
The same result can be obtained by a calculation in the comoving gauge, δφ = 0,

as is explained in [57]. It is convenient to work in the ADM formalism, in which the
metric is parameterized via a lapse function N and shift vector N i [71],

ds2 = −N2dt2 + hi j(dxi + N idt)(dx j + N jdt).

The slow-roll action (2.3) is then given by

S =
1
2

∫
d4x
√

h
[
NR(3)−2NV+N−1(Ei jEi j−E2+(φ̇−N i∂iφ)2)−Nhi j∂iφ∂ jφ

]
, (2.16)

where Ei j = 1
2 (ḣi j − ∇iN j − ∇ jNi) and E = Ei

i. Spatial indices can be raised and
lowered by hi j and∇i is the covariant derivative of this spatial metric. In the comoving
gauge, the scalar perturbations to the metric are given by writing

hi j = a2e2ζδi j ≈ a2(1 + 2ζ)δi j (2.17)

to first order in ζ. The field fluctuations δφ are zero, which means that all spatial
derivatives on φ(t, x) vanish. The power of the ADM formalism is that the equations
of motion for the Lagrange multipliers N and N i are simply constraint equations, the
hamiltonian and momentum constraints. Solving these constraints perturbatively in
terms of ζ,

N = 1 +
ζ̇

H
+ . . . , Ni = ∂i

(
−
ζ

H
+ ε

a2

H
∂−2ζ̇

)
+ . . . , (2.18)

and substituting the result back into the action, then gives the action solely in terms
of ζ. In order to find the quadratic action for ζ, it is sufficient to solve N and N i

only to first order in ζ, as the quadratic piece of N and N i multiplies the zeroth order
constraint equation which vanishes for a background solution satisfying the equations
of motion [57]. Performing this procedure up to quadratic order gives

S (2) =

∫
dtd3x a3ε

[
ζ̇2 − a−2(∂iζ)2

]
=

1
2

∫
dτd3x

[
w′2 +

z′′

z
w2 − (∂iw)2

]
,
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where w = zζ and z = a
√

2ε, which has as equation of motion in Fourier-space,

w′′k +

(
k2 −

z′′

z

)
wk = 0.

To lowest order in slow-roll z′′
z ≈

a′′
a ≈

2
τ2 and we find exactly the same differ-

ential equation as (2.11). Hence, from (2.12) we read off that the power spectrum
of wk in the superhorizon limit is Pw(k) = a2H2/4π2 and again we find Pζ(k) =

1
z2 Pw(k)

∣∣∣
k=aH

= 1
8π2

H2

ε

∣∣∣∣
k=aH

. Although the calculation is technically more involved in
the comoving gauge, the advantage is that one directly uses the variable of interest ζ.
It is this gauge invariant object that is conserved on superhorizon scales [40, 57].

2.3.3 Non-Gaussianities

The procedure to find the bispectrum Bζ of primordial curvature perturbations in
slow-roll inflation was laid down in [57]. In the comoving gauge, it is a direct gen-
eralization of the calculation of the two-point function, expanding (2.16) up to third
order in ζ. Again it suffices to solve the hamiltonian and momentum constraints up to
first order in ζ, cf. (2.18). The third order terms again multiply the constraint equa-
tions at zeroth order, while the second order terms multiply the constraint equations
to first order, which vanish by the first order solution (2.18) [57, 62]. Substituting
(2.18) into (2.16) and keeping cubic contributions, gives

S (3) =

∫
dtd3x

(
a3ε2

[
ζ̇2ζ + a−2(∂iζ)2ζ − 2ζ̇∂iζ∂i∂

−2ζ̇
]

+ f (ζ)
δL
δζ

∣∣∣∣∣
(1)

+ . . .

)
.

(2.19)
The ellipsis contain terms that are of higher order in the slow-roll approximation.
They are omitted to keep the calculation simple, with the justification that only —if
any— the leading order contributions are likely to be observable [61]. The term prior
to the ellipsis is proportional to the first order equations of motion and can therefore
be removed by field redefinitions.

Once the third order action is known, the three-point function can be calculated.
As was emphasized in [57, 61], the three-point function is an expectation value, de-
fined with respect to the vacuum |in〉 of the interacting theory at a given time,

〈in|ζk1ζk2ζk3 |in〉.

As in ordinary quantum field theory [72], the vacuum of the interacting theory can be
obtained from an evolution of the free vacuum |0〉 using the interaction hamiltonian
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2.3 Seeds of structure

S (3) = −
∫

dτHint(ζ(2)). The interaction hamiltonian depends on the quantum operator
ζ(2) corresponding to the solution of the free theory (2.12). In a cosmological context,
this procedure is summarized in the “in-in”-formalism [57, 61, 73–75], which results
into

〈ζk1 (τ)ζk2 (τ)ζk3 (τ)〉 = −i
∫

dτ′〈0|
[
ζ(2)

k1
(τ)ζ(2)

k2
(τ)ζ(2)

k3
(τ),Hint(τ′)

]
|0〉. (2.20)

With the interaction hamiltonian defined by S (3) and the free field solution ζ(2) given
by (2.12), the above prescription yields the bispectrum of primordial curvature per-
turbations produced during slow-roll inflation. To leading order in the slow-roll ex-
pansion, it is given by [57]

Bζ(k1, k2, k3) = (2π)4
(
Pζ

)2 1
k3

1k3
2k3

3

(
Aε + Aη

)
+ . . . , (2.21)

Aε = ε

1
8

3∑
j=1

k3
j +

1
8

∑
j,l

k jk2
l +

1
kt

∑
j<l

k2
j k

2
l

 ,
Aη = η

−1
4

3∑
j=1

k3
j

 ,
where kt = k1 +k2 +k3 and where Pζ is the power spectrum evaluated when the modes
cross the horizon, under the assumption that this happens almost simultaneously for
all modes.

Equation (2.21) depends only on the two leading order slow-roll parameters ε,
η. It can be generalized to other inflationary scenarios with more parameters. For
example, multi-field slow-roll inflation has a set of multi-dimensional slow-roll pa-
rameters [59] and the bispectrum of the most general single field scenario depends on
a set of five parameters [62]. Equation (2.21) can also be calculated directly from the
field equations, as was done in [76]. In that case, one directly solves the second order
equation for δφ, rather than using the “in-in”-formalism to calculate the three-point
function in the interacting theory from the solutions of the free theory. The result can
be written as

Bζ(k1, k2, k3) = (2π)4
(
Pζ

)2 1
k3

1k3
2k3

3

(
Aε + Aη + Aξ

)
+ . . . , (2.22)

Aξ = ξ2
V

1
4

(−1 + γ + log[−ktτ∗]
) 3∑

j=1

k3
j + k1k2k3 −

∑
j,l

k jk2
l

 ,
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2. Cosmic evolution of our universe

where γ is Euler’s constant and τ∗ is the (conformal) time of horizon crossing. Com-
pared to (2.21), this result includes a contribution proportional to the higher order
(potential) slow-roll parameter

ξ2
V =

V ′V ′′′

V2 . (2.23)

It is the contribution coming from an interaction term V ′′′δφ3 in the action, as calcu-
lated by [77, 78].

The calculation of [77, 78] is actually a much simpler calculation, because the
field under consideration acts as a (massless) spectator field in an expanding de Sitter
background, i.e. the field is not responsible for driving the accelerated expansion. The
specific form Aξ of (2.22) corresponds to this bispectrum of a massless scalar specta-
tor field, as the gauge invariant density perturbation can in many aspects be thought
of as a massless scalar field (i.e. its solution to the equation of motion, cf. (2.20) and
(2.11)). However, the perturbations of the inflaton field are also coupled to gravity
and the gauge invariant curvature perturbations obtain contributions both from the
fluctuations of the inflaton field as well as from metric perturbations. As argued in
[57] the V ′′′δφ3-contribution to the bispectrum resides within the . . . of (2.19), indi-
cating higher order slow-roll contributions, and is neglected in that calculation. The
result (2.22) confirms this expectation and explicitly shows that the contribution from
a direct interaction between the scalar fields is second order in slow-roll.

Strictly speaking, by including the ξ2
V -contribution, one should also include the

other contributions that are second order in slow-roll, i.e. those proportional to ε2,
η2 and εη. Since these effects will be beyond the observable threshold, the effort of
correctly combining all higher order slow-roll contributions is not a relevant exercise
at this time, although first results into this direction are known [79]. For our pur-
poses, the appearance of the ξ2

V -proportional term and in particular of the momentum
structure given by log[−ktτ∗] in (2.22) is interesting from a more fundamental point
of view, as will be further discussed in chapter 6.
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3
Describing nature at its tiniest

Phenomenologically, inflation is a very successful theory that is compatible with all
observations. However, its microscopic origin is not very clear and ideally one would
like to have an embedding of inflation into a more fundamental framework. Maintain-
ing the slow-roll condition, especially over 60 e-folds, turns out to be an extremely
delicate exercise that is easily disturbed by the very quantum effects that provide the
origin of density fluctuations. To understand inflation and the origin of our cosmos,
we need to have an accurate description of the workings of nature at the smallest
scales.

The quest to find out nature’s workings at an ever more precise level is the tale
of the history of physics, a progression that has happened in steps. Nature has been
so kind to us that in order to understand a certain macroscopic phenomenon, we do
not need to know the (full) details of the microscopic details within. An effective
description of the phenomenon, in which the microscopic degrees of freedom decou-
ple, is often sufficient to completely understand the relevant behavior. At a certain
stage however, the details do become important and one should refine the fundamen-
tal theory. By successively focussing on the details of a given theory, we have come
to understand more and more about nature. The current fundamental theory, which is
believed to unify all known particles and interactions, is string theory.

In this chapter we will discuss the effective field theory description alluded to
above, in particular the role played by conformally invariant theories. Furthermore
we will discuss the relation between string theory and conformal invariance and we
consider two additional aspects of string theory: supergravity and holography.1

1 The material presented in this chapter can also be found in many terrific books and reviews. The
information on renormalization and conformal field theory can be found in [72, 80–84]. String theory
books and lecture notes include [85–87]. Supersymmetry and supergravity is discussed by [88, 89] and an
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3. Describing nature at its tiniest

3.1 Conformal field theory

3.1.1 Nature at different energy scales

Renormalization and effective field theory

In technical terms, our stepwise progression into the details of nature’s workings is
understood through renormalization of the quantum field theory that is used to de-
scribe the world around us. Historically, renormalization was invented as a procedure
of mathematical tricks, in order to extract finite answers from the divergent expres-
sions [92], but Wilson’s interpretation of renormalization in terms of coarse graining
has played a key role in the conceptual understanding of renormalization and effec-
tive field theory [93–96]. The remarkable conclusion of renormalization is that the
renormalized, physical coupling constants, i.e. the strengths of the interactions be-
tween particles, depend on the energy scale t at which a given process happens. In the
Wilsonian context, this dependence is understood as the only remaining effect of the
unknown underlying microphysics. The power of the renormalization group, how-
ever, is that the way the couplings run does not depend on the microscopic physics.

The scale dependence of the couplings has immediate consequences for the ob-
servability of different interactions. In a d-dimensional theory, a coupling constant
u multiplying an operator of mass dimension ∆, has itself mass dimension d − ∆,
where the mass typically is of order of the cut-off scale Λ, used to regularize the the-
ory. Hence, using the momentum-scale t of a given process to make a dimensionless

quantity, the coupling scales as u ∼
(

t
Λ

)∆−d
. This simple argument based on dimen-

sional analysis shows that operators can be split into 3 categories: relevant operators
with ∆ < d, whose coupling constants become increasingly important at low energy
scales t � Λ, marginal operators with ∆ = d, whose coupling constants are scale
independent, and irrelevant operators with ∆ > d, whose coupling constants are ir-
relevant at low energies, but all the more important at high energies. Therefore at
low energies, an effective field theory in terms of only ∆ ≤ d operators is a sufficient
description of nature, as long as one probes the theory at energies below the funda-
mental cut-off scale Λ [93–96]. This argument explains why nature is insensitive to
microscopic details when it is only observed at a macroscopic level. All the details of
the microscopic theory can be captured in terms of just a finite number of (relevant
and marginal) coupling constants, which survive the small t-limit. It also implies that
we are hard pressed to deduce anything about the tiniest scales in nature with our
everyday, low energy experiments [97]. It is for this reason that we need to probe

introduction to holography is given in [90, 91].
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3.1 Conformal field theory

high energy scales t > Λ, such as in the opportunity given by (indirect) observations
from the inflationary epoch. By probing beyond the regime of validity of the effective
field theory, we hope to find out what kind of irrelevant operators reside within the
underlying, more fundamental theory.

Callan-Symanzik equation

The arguments using dimensional analysis give a first, qualitative indication of why
a physical process depends on the energy scale t at which it occurs. The quantitative
formalism to understand the precise energy dependence of a quantum field theory has
been worked out by Callan and Symanzik [98–101], which results into the Callan-
Symanzik equation, a differential equation that governs the energy dependence of n-
point correlation functions. To derive it, we consider an n-point correlation function
G(n)

0 (p j; u0) of an operator O, given in terms of its bare coupling u0 and depending on
the momenta p j of the operators. After regularization and renormalization, imposing
renormalization group conditions at a certain scale µ, the correlation functions can
also be expressed in terms of the renormalized coupling u(µ),

G(n)(p j; u(µ), µ) = Z−n/2G(n)
0 (p j; u0),

where Z is the field rescaling factor O → Z−1/2O. The Callan-Symanzik equation re-
sults from the observation that the original, bare correlation function G(n)

0 cannot de-
pend on the choice of renormalization scale µ. This imposes a consistency condition
on the renormalized n-point function G(n), which determines uniquely its dependence
on the energy scale µ,

0 = Z−n/2µ
d

dµ
G(n)

0 (p j; u0) =

(
µ
∂

∂µ
+ β(u)

∂

∂u
+ nγ(u)

)
G(n)(p j; u(µ), µ). (3.1)

The β function, β(u), and anomalous dimension γ(u) of the operator O are defined
through the use of the chain-rule,

β(u) = µ
∂u
∂µ
, γ(u) =

1
2
µ

Z
∂Z
∂µ
. (3.2)

β function and anomalous dimension

The dependence of the renormalized n-point function G(n) on the renormalization
scale µ, specified by β and γ through the Callan-Symanzik equation (3.1), automat-
ically dictates the dependence of the theory on the physical scale t [102]. The mass
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3. Describing nature at its tiniest

dimension of a correlation function G(n)(x j; u, µ) of n operators O(x j) with scaling
dimension ∆0 is n∆0 [72]. Extracting a momentum-conserving δ(d) (p1 + . . . + pn)
function, the corresponding Fourier transformed correlation function has mass di-
mension ∆

(p)
n = n(∆0 − d) + d, which can be written in terms of the renormalization

scale µ and some function of dimensionless ratios p j/µ,

G(n)(p j; u, µ) = µ∆
(p)
n f

(
p j

µ

)
.

We can rescale all momenta with a common factor of t. It sets the energy at which
the physical process is probed. Using the relation between t and µ,

t
∂

∂t
G(n)(tp j; u, µ) =

(
−µ

∂

∂µ
+ ∆

(p)
n

)
G(n)(tp j; u, µ),

the Callan-Symanzik equation is written completely in terms of the overall momen-
tum dependence t,(

t
∂

∂t
− β(u)

∂

∂u
− (∆(p)

n + nγ(u))
)

G(n)(tp j; u, µ) = 0. (3.3)

In this form, the Callan-Symanzik equation fixes the dependence of the correlation
function with physical rescalings. A general solution to this equation is [72],

G(n)(tp j; u, µ) = G(n)(p j; ũ(t; u), µ) exp
(∫ t′=t

t′=1
d log t′

[
∆

(p)
n + nγ(ũ(t′; u))

])
, (3.4)

in terms of the function ũ(t; u) defined through the differential equation (3.2),

t
∂

∂t
ũ(t; u) = β(ũ(t; u)), ũ(1; u) = u. (3.5)

Usually, once a solution for ũ(t; u) is found, it is denoted with u(t) and simply referred
to as the running coupling of the theory.

For a free field theory, with β = γ = 0, the solution (3.4) indeed reproduces
the correct scaling G(n)(tp j; u, µ) ∼ t∆

(p)
n . When β and γ are nonzero, the momentum

dependence changes. In a given theory, the β function can be calculated by computing
the counterterms in a renormalization procedure. The differential equation (3.5) then
determines the running of the coupling constant u = u(t) as a function of the energy
scale t at which the specific process is considered. As such, the renormalization group
equations can be seen as a flow on the space of coupling constants of the theory:
depending on the sign of β(u), coupling constants are increasingly dominant or less
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3.1 Conformal field theory

and less important along the renormalization group flow. As we will see shortly, close
to a free field theory, u ≈ 0, the β functions determine a flow that indeed approximates
the anticipated u ∼ t∆−d behavior. However, once u , 0, the β function might change
and as a result the precise scaling behavior of u(t) will also change. Whether operators
are truly relevant, marginal or irrelevant therefore depends on whether β < 0, β = 0
or β > 0.

A nonzero anomalous dimension γ changes the scaling behavior of the correlation
function and induces a change in the scaling dimension of the operators O inside the
correlation function. This is best seen around a non-trivial fixed point of the theory,
where β(u∗) = 0 and u(t) is constant u(t) = u∗ , 0. Then the solution (3.4) yields

G(n)(tp j; u∗, µ) = t∆
(p)
n +nγ(u∗)G(n)(p j; u∗, µ).

Again, the n-point function scales with a power law of t, but now the exponent is
different than the usual ∆

(p)
n . Tracing back to the scaling dimension of the operator

O(x j), it appears as if its scaling dimension ∆0 is changed to

∆ = ∆0 + γ, (3.6)

which explains why γ is called the anomalous dimension.

3.1.2 Field theory without a scale

Conformal transformations

It is clear that theories with vanishing β functions play a special role in the study of
renormalization group flow on the space of theories. Such a scale invariant theory
acts as a fixed point for the renormalization group flow: the coupling constants are
scale invariant and remain scale invariant. As such, they form an ideal starting point
to study the renormalization group flow perturbatively. Before explaining the pertur-
bative approach, let us consider the conformal field theories themselves [83, 84].

Conformal field theories are invariant under conformal transformations, i.e. trans-
formations x 7→ x′(x) such that the metric hαβ changes with an overall spacetime
dependent factor,

h′αβ(x′) = Λ(x)hαβ(x).

Together with the standard Lorentz transformations, they form a group, the confor-
mal group, whose transformations in dimensions d > 2 are translations, dilations,
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3. Describing nature at its tiniest

rotations2 and special conformal transformations,

x′α = xα + aα, x′α = λxα, (3.7a)

x′α = Lαβxβ, x′α =
xα − bαx2

1 − 2bαxα + b2x2 , (3.7b)

respectively. The first three transformations together form the Poincaré group ex-
tended with dilations, i.e. the symmetry group of scale invariant theories. Hence,
conformal invariance, or local scale invariance, implies scale invariance, which is
why they form a good starting point to study renormalization group fixed points.

Rotations and special conformal transformations shall not play a large role in
this thesis and we shall focus on translations and dilations. On a field O, these two
transformations act as O′(x) = (1 − iGaωa(x))O(x), where ωa is the infinitesimal
parameter of the transformation and the generators Ga are given by

GT,α = −i∂α, GD = −i (xα∂α + ∆) ,

respectively. ∆ is the scaling dimension of the field O, O′(λx) = λ−∆O(x). The
conserved current associated with translational symmetry is the stress-energy tensor
jT,αβ = Tαβ. Canonically it can be expressed through a standard Noether procedure,
i.e. under translations x′α = xα + aα the action changes infinitesimally

δS =

∫
dd x
√

h T c
αβ∇

αaβ.

The disadvantage of this definition is that T c
αβ will not necessarily be symmetric.

Therefore, a new, improved stress-energy tensor can be defined [83, 98] which plays
the same role as T c

αβ and which is symmetric. Another way to define the stress-
energy tensor is by considering a dynamical metric hαβ for the theory. Under the
diffeomorphism x′α = xα + aα(x) the metric changes as a tensor, δhαβ = ∇αaβ +∇βaα.
Hence in an invariant theory, the metric itself must transform opposite to this,

δS = −
1
2

∫
dd x
√

h Tαβδhαβ. (3.8)

A manifestly symmetric stress-energy tensor can therefore also be obtained via

Tαβ = −
2
√

h

δS
δhαβ

, (3.9)

2 Although we will partly be interested in conformal field theories that are of Lorentzian signature, we
can always Wick-rotate to a Euclidian signature. For this reason, the inner products in this section are
always taken to be Euclidean. Moreover, when studying conformal field theory, the metric is fixed, which
for many purposes may assumed to be flat.
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3.1 Conformal field theory

where the normalization depends on convention. In particular the stress-energy tensor
in string theory often contains factors of π in its definition [85, 86].

Under an infinitesimal conformal transformation x′α = xα + εα(x), which can be
shown to satisfy the conformal Killing equation,

∇αεβ + ∇βεα =
2
d
∇γε

γhαβ, (3.10)

the action is invariant,

0 = δS = −
1
d

∫
dd x
√

h Tα
α∇βε

β, (3.11)

if the stress-energy tensor is traceless,

Θ = Tα
α = 0.

Hence, a theory with a traceless stress-energy tensor is conformally invariant. One
might be tempted to think that the reverse is also true, but since ε(x) has to satisfy
(3.10), it is not an arbitrary function. Nevertheless, for most conformal field theories,
the stress-energy tensor can indeed be made traceless by a procedure similar to the
one used to make it symmetric [83]. In those cases, the stress-energy tensor is related
to the dilational current,

jαD = Tα
βxβ,

and tracelessness follows from (translational and) scale invariance.

Correlation functions in a conformal field theory

The symmetries in a conformal field theory impose powerful constraints on the func-
tional dependence of n-point correlation functions, particularly the two- and three-
point functions. For example, translational and rotational invariance of the theory tell
us that the dependence on the arguments xa can only appear via |xa − xb|. Including
dilational invariance and special conformal transformations, the two- and three-point
functions of operators Oa with scaling dimension ∆a are fixed to have the form [83]

〈O1(x1)O2(x2)〉 =
Nδ∆1∆2

x2∆1
12

, (3.12a)

〈O1(x1)O2(x2)O3(x3)〉 =
C1

23

x∆1+∆2−∆3
12 x−∆1+∆2+∆3

23 x∆1−∆2+∆3
13

, (3.12b)
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3. Describing nature at its tiniest

where xab = |xa− xb|. The overall coefficients N and C1
23 are not fixed by any symme-

try constraints. N determines the overall normalization of the field Oa. C1
23 is called

the OPE coefficient because it is the coefficient in the operator product expansion,
an expansion similar to a Taylor expansion that relates the product of two operators
Oa(x) and Ob(y) to the other operators in the theory in the limit x→ y,

Ob(x)Oc(y) =
∑

a

Ca
bc|x − y|∆a−∆b−∆cOa

( x + y
2

)
.

Higher order n-point functions are less constrained than the two- and three-point
correlation functions. For example, the four-point function can have an arbitrary
functional dependence on cross ratios,

〈O(x1)O(x2)O(x3)O(x4)〉 = F
[

x12x34

x13x24
,

x12x34

x23x14

] 4∏
a<b

x
∑

c ∆c/3−∆a−∆b
ab .

Conformal invariance in two dimensions

Conformal symmetry is particularly powerful in two dimensions. This is clear from
the condition (3.10) on the infinitesimal parameter εα(x), which on a flat metric, hαβ =

δαβ, reduces to the Cauchy-Riemann equations

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1.

This suggests we should actually express the transformation parameter ε(z) = ε1 + iε2

and ε(z) = ε1 − iε2 in terms of the complex coordinates z = x1 + ix2, z = x1 − ix2. The
functions ε(z) and ε(z) are otherwise unconstrained, giving an infinite set of symmetry
generators z′ = z+ε(z), z′ = z+ε(z), rather than the finite set given by (the infinitesimal
version of) (3.7).

By momentarily promoting x1 and x2 to elements in C, the transformation be-
tween xα and z, z is a coordinate transformation of independent coordinates. The
symmetry algebras for ε(z) and ε(z) are then independent copies of the same algebra.
Only at the end of a calculation is the reality condition z = z∗ imposed.

Mathematically the restrictive power of two-dimensional conformal symmetry
is equivalent to the conditions imposed on (anti)-holomorphic functions in complex
analysis. Since complex analysis is such a rich and well-developed branch of mathe-
matics, many of the techniques can be applied successfully to two-dimensional con-
formal field theory [83, 84]. Although part of this thesis deals with conformal invari-
ance in two dimensions, its remarkable structure is not heavily or actively built upon.
For this reason, we do not elaborate much further on the special two-dimensional
case.
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3.1 Conformal field theory

3.1.3 Conformal perturbation theory

Weyl anomaly coefficients

In the previous section we have mostly been interested in the classical behavior of
conformal field theories. When considering quantum field theories with conformal
invariance, the situation becomes more involved. To make sense out of a quantum
field theory, its expressions need to be regularized and renormalized, thereby auto-
matically introducing a scale into the classically scale invariant theory [83]. For this
reason, it might be that a classically conformally invariant theory loses its confor-
mality as a quantum field theory. The departure from conformal invariance, can be
expressed in terms of a violation of the hallmark of a conformal field theory, i.e. the
trace of the stress-energy tensor is no longer vanishing,

Θ = −β(u)
δL

δu
. (3.13)

The notation of the coefficients, β(u), is no accident, as they are closely related to
the renormalization group β functions (3.2) [103–106]. Conceptually this is easy to
understand. Only a quantum field theory with a vanishing β function will remain a
fixed point for the renormalization group flow, without the introduction of any new
scale into the theory. All relevant and irrelevant operators induce a renormalization
of their couplings and therefore a scale dependence.

Technically the relation may be seen by the effect of an explicit scale transforma-
tion x′α = eωxα on the coupling δu = ωβ(u), where β(u) now really is the renormal-
ization group β function [72]. As a result the action changes as

δS =

∫
dd x δL =

∫
dd xωβ(u)

δL

δu
.

Compared to the definition (3.8) of the stress-energy tensor in terms of a scale trans-
formation of the metric h′αβ(x′) = e−2ωhαβ(x),

δS = −
1
2

∫
dd x Tαβδhαβ = −

∫
dd x Θω, (3.14)

the renormalization group β functions appear as coefficients in∫
dd x Θ = −

∫
dd x β(u)

δL

δu
.

Hence, the renormalization group β functions and the Weyl anomaly coefficients β
appearing in (3.13) are related in the same way as global and local scale invariance
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3. Describing nature at its tiniest

are related. The requirements
∫

Θ = 0 and Θ = 0 for global and local scale invariant
theories respectively are directly transferred to the β functions. Although this relation
can and is used [107–109] to simplify the computation of Weyl anomaly coefficients,
we will not emphasize the distinction.

In this section we have specifically restricted ourselves to flat metrics only. As we
will see when we turn our attention to string theory, conformal symmetry on a curved
space introduces another source for Weyl anomaly, due to the curvature scale that is
introduced.

Computation of the β functions

A conformal field theory, with vanishing β functions and traceless stress-energy ten-
sor, is a fixed point for the renormalization group flow. To study the flow perturba-
tively, we consider a perturbation of the conformal field theory S 0 by operators Oa

with coupling ua and dimension ∆0,a,

S u = S 0 +

∫
dd x uaOa(x). (3.15)

The trace of the stress-energy tensor is

Θ = −βa(u)Oa. (3.16)

The coefficients βa(u) can be calculated perturbatively by considering the Callan-
Symanzik equation (3.1). The anomalous dimension γ appearing in the Callan-
Symanzik equation actually becomes a matrix of anomalous dimensions γa

b for the
multi-operator case under consideration. It can be related to the β functions [110]
via3

γa
b(u) =

∂βa

∂ub − (∆0,b − d)δa
b. (3.17)

Writing βa(u) = Aa + Ba
bub + . . . and remembering that ua has mass dimension µd−∆0,a ,

applying the Callan-Symanzik equation to the partition function of the perturbed the-
ory,

Z = 〈e−
∫

dd x uaOa〉0 = 〈1 −
∫

dd x uaOa + . . .〉0,

enables us to compute β(u) recursively as a perturbation series in u [86, 110–112].
To compute the higher order coefficients of β(u), an operator product expansion is
necessary, whose singularities have to be regularized. The regularization scheme

3 We note that different conventions compared to [110, 111] are used.
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3.2 String theory

dependence is carefully explained in [111]. In the limit where the operators are nearly
marginal, |∆0,a − d| � 1, the result in the Zamolodchikov scheme [110, 111] is

βa(u) = (∆0,a − d)ua + 2πCa
bcubuc + . . . (3.18)

to second order in u. In the first term, there is no summation over the a-index.
As we see, conformal perturbation theory enables us to study the renormalization

group flow around a conformal fixed point. The flow is determined by the β functions,
which can be expressed in terms of the scaling dimension ∆0,a of the operator Oa in
the unperturbed conformal field theory, as long as the deviation from the fixed point is
small, ua � 1 and the operators under consideration are nearly marginal |∆a−d| � 1.

3.2 String theory

3.2.1 Worldsheet physics

Strings in a flat background

The previous section mostly dealt with conformal field theories with a fixed flat met-
ric. In essence, string theory is the study of two-dimensional conformal field theory
with a dynamical, and hence curved, metric. The motivation to study such a theory
follows from a direct generalization of the first quantization description of a point
particle. Similar to a point particle, the classical trajectory of a string is determined
by minimizing its worldvolume, which is called a worldsheet for a one-dimensional
extended object. The string is described by embedding the worldsheet, with coor-
dinates σα = (σ0, σ1) into the d-dimensional target spacetime σ 7→ xµ(σ). In a
flat target spacetime, the worldsheet area is minimized by the minimization of the
Polyakov action

S [x, h] = −
1

4πα′

∫
d2σ
√

h hαβηµν∂αxµ∂βxν. (3.19)

α′ is a coupling constant for the two-dimensional field theory, which determines the
string’s tension. Both the fields xµ and the worldsheet metric hαβ are dynamical ob-
jects. As a two-dimensional field theory, the Polyakov action describes d scalar fields
xµ coupled to two-dimensional gravity. Varying the action with respect to the met-
ric hαβ tells us that the two-dimensional stress-energy tensor Tαβ should vanish. The
equations of motion from a variation with respect to the fields xµ yield a free wave
equation, determining the string’s propagation in target spacetime. The latter varia-
tion also specifies boundary conditions, allowing both open and closed string solu-
tions [85, 86].
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The Polyakov action is invariant under several symmetries. It is invariant under
d-dimensional Poincaré transformations,

x′µ(σ) = Λ
µ
νxν(σ) + aµ, h′αβ(σ) = hαβ(σ),

and under two-dimensional reparameterizations σ 7→ σ′(σ),

x′µ(σ′) = xµ(σ), h′αβ(σ
′) =

∂σγ

∂σ′α
∂σδ

∂σ′β
hγδ(σ).

Most importantly, and very specific to the two-dimensional nature of the worldsheet,
it is invariant under Weyl transformations,

x′µ(σ) = xµ(σ), h′αβ(σ) = e2ω(σ)hαβ(σ),

which are, again, local scale transformations of the theory. From (3.14) it is clear
that the stress-energy tensor is traceless if and only if a theory is invariant under Weyl
transformations, explaining the terminology for the coefficients in (3.13). In two
dimensions, the Weyl symmetry is special, as it ensures that all three metric modes
can be gauged away. This also shows why there are no gravitational dynamics in two
dimensions.

The Weyl invariance of the worldsheet action is reminiscent of conformal invari-
ance. The relation can best be seen by noting that the symmetries of the Polyakov
action are gauge symmetries. Gauge symmetries describe a redundancy in the theory,
introduced for mathematical convenience but at the same time introducing more de-
grees of freedom than just the physical ones. In the Polyakov action the redundancy
can be removed by fixing a gauge, hαβ = ηαβ. After gauge fixing, the (Wick)-rotated
action,

S [x] =
1

4πα′

∫
d2σδαβ∂αxµ∂βxνηµν, (3.20)

is conformally invariant. Conformal transformations describe a residual gauge sym-
metry, a particular combination of diffeomorphisms that can be undone by a Weyl
transformation [87].

Weyl invariance and background dynamics

Before and after gauge fixing, string theory can equivalently be described by a Weyl
invariant worldsheet action with dynamical metric or by a two-dimensional confor-
mal field theory with a fixed metric respectively. As these are gauge symmetries, it is
important that invariance is maintained both at the classical as well as at the quantum
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level. An anomalous gauge symmetry would introduce a dependence on the gauge
choice, promoting unphysical degrees of freedom. For a conformal field theory the
risk of a quantum anomaly is not improbable. We have already seen that, even if a the-
ory is classically locally scale invariant, renormalization effects can easily introduce
anomalous contributions to the stress-energy tensor at the quantum level. Therefore,
imposing conformal invariance on the worldsheet even at the quantum level, intro-
duces severe constraints on the possible worldsheet theory.

One of the quantum excitations of the solutions xµ of the Polyakov action (3.19) is
the spacetime graviton. This introduces a quantum deviation from the flat Minkowski
metric ηµν through which the strings propagate. Building a full coherent target space-
time metric gµν from such gravitons, the string’s trajectory is determined by the space-
time curvature determined from the two-dimensional worldsheet action. At the same
time, conformal invariance dictates what kind of conformal theory, including its quan-
tum excitations such as the graviton, is allowed. The subtle interplay between the
string’s propagation in the background metric and the background dynamics built
up from string excitations is a non-trivial consistency check on the two-dimensional
worldsheet. Weyl (or, equivalently, conformal) invariance is at the heart of this con-
sistency of string theory. The relation between background dynamics and Weyl in-
variance is one of the best understood and most studied features of string theory,
going back to the advent of the theory in the early 1980s [85–87, 113–117]. We will
now explain how Weyl invariance determines the dynamics of the background fields
and as a result how general relativity follows from string theory.

Strings in a curved background

Strings moving in a curved background target spacetime metric can be described by
the Euclidean action

S [x, h] =
1

4πα′

∫
d2σ
√

h
[
hαβgµν(x)∂αxµ∂βxν + α′Φ(x)R(2)

]
, (3.21)

where gµν(x) is the target spacetime metric and Φ(x) is the dilaton field. The action
(3.21) is a straightforward generalization of (3.19), promoting the flat spacetime met-
ric ηµν to the (dynamical) metric gµν(x) of the curved background spacetime. The
dilaton contribution gives rise to a weight factor in the path integral sum over all
geometries. When the dilaton Φ is constant, it multiplies the topologically invari-
ant Euler number of the worldsheet, that counts the genus of the two-dimensional
Riemann surface. The vacuum expectation value of the dilaton is therefore directly
related to the string coupling constant gs = eΦ0 which determines the likelihood of
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strings joining or splitting. Usually one also includes a contribution from the anti-
symmetric Kalb-Ramond field Bµν(x), which will be assumed to vanish throughout
this thesis.

Equation (3.21) can be obtained from an exponentiation of the massless quan-
tum excitations of the string. In a flat Minkowski target spacetime metric, the mass-
less excitations of the string decompose into three irreducible representations of the
Poincaré algebra: a traceless symmetric representation giving rise to the graviton, an
anti-symmetric representation leading to Bµν and a trace, i.e. singlet, representation
for the dilaton Φ. Each of the excitations is described by a corresponding vertex
operator, inserting the required excitation in the far past, via the state-operator cor-
respondence. The vertex operators may be combined into the fields gµν(x) and Φ(x),
which give rise to (3.21) after exponentiation of the vertex operators [85, 86, 118].

As expected after our plea for Weyl invariance of the worldsheet theory, the first
term in the action (3.21) is (classically) Weyl invariant. The generalization from
(3.19) by promoting the Minkowski metric ηµν to a general metric gµν(x) has no effect
on the Weyl invariance of the theory. As a two-dimensional theory, it is just a change
in the functional of couplings in front of the kinetic terms for the scalar fields. The
way in which this is done is known as a nonlinear σmodel. The second term of (3.21)
is all the more surprising, as it already breaks Weyl invariance at the classical level
for a non-constant dilaton profile Φ(x). However, it is necessary to include the dilaton
in order to take into account the full multiplet of massless quantum string excitations.
For this reason, the term appearing in the action was introduced by [119] and was
shown to behave consistently with the other massless degrees of freedom. As we will
see shortly, the tree level Weyl variation of the dilaton can be combined with the one-
loop Weyl anomalies arising from the other terms [120]. The additional factor of α′

helps ordering the different contributions to the breaking of Weyl invariance.
To preserve Weyl invariance at the quantum level, we again impose a vanishing

trace of the stress-energy tensor Θ of the two-dimensional worldsheet tensor. Ex-
panding Θ in terms of the operators appearing in (3.21),

Θ = −
1

2α′
β

g
µνhαβ∂αxµ∂βxν −

1
2
βΦR(2),

the stress-energy tensor is traceless if the β functions,

β
g
µν = α′Rµν + 2α′∇µ∇νΦ + O(α′2), (3.22a)

βΦ =
d − 26

6
−
α′

2
∇2Φ + α′∇µΦ∇

µΦ + O(α′2), (3.22b)

vanish. The β functions are given up to first order in α′. To compute them, one has to
combine several contributions, which we consider individually.
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The first term in βΦ is a pure quantum anomaly, first calculated in the context of
string theory by [116]. In general, a conformal field theory with a curved metric hαβ
has an anomaly proportional to the two-dimensional Ricci scalar

Θ = −
c

12
R(2). (3.23)

The constant of proportionality is called the central charge, as it appears as a cen-
tral charge in the quantum algebra of the generators of conformal transformations.
This anomaly tells us that, in the quantum theory, the trace of the stress-energy tensor
no longer vanishes and conformal invariance is broken, i.e. the theory has become
scale dependent. Since in string theory the conformal symmetry follows from the
local Weyl gauge symmetry, the metric is dynamical and the only way to ensure an
anomaly-free quantum theory is to consider conformal field theories which have cen-
tral charge c = 0. The value of c = d − 26 in βΦ can be understood by the study
of the path integral of the string worldsheet [116]. Due to the gauge redundancy in
the path integral measure, one has to be careful to not overcount the number of (in-
equivalent) physical configurations. This can be done by the use of a Faddeev-Popov
determinant, which can be written in terms of a ghost action. The ghost action for
Weyl transformations is a conformal field theory with central charge c = −26. This
is why any worldsheet action, with the ghost action left implicit, has to have central
charge c = 26. The curved Polyakov action (3.21) achieves this geometrically by
considering d scalar fields, which explains the much emphasized critical dimension
for string theory. However, the curved Polyakov action only serves as a motivational
starting point for string theory. In principle, any conformal field theory with central
charge c = 26 would describe some solution to string theory, emphasizing it is not
the dimension but the central charge that is critical.

The other terms in (3.22) are conceptually more straightforward to understand,
but technically still quite involved to compute [85, 86, 115, 117]. The metric profile
gµν(x) and dilaton profile Φ(x) act as coupling functionals to the operators in (3.21).
Renormalizing these coupling constants will lead to β functions much in the same
way as we explained previously. The Ricci tensor Rµν of the target spacetime and the
second term of βΦ arise due to these renormalization effects. The remaining terms are
due to classical breaking of Weyl invariance by the dilaton term, which appear at the
same order as the renormalization effects from the other terms as predicted.

It can be shown explicitly that the β functions (3.22) are proportional to the equa-
tions of motion for the background fields, gµν(x) and Φ(x), that one would compute in
string perturbation theory [105, 121]. The stringy degrees of freedom, i.e. excitations
with a mass proportional to α′, do not play a role, as the worldsheet perturbation is
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derived in the limit of small α′, or in other words for strings with a very large tension.
In this limit, stringy excitations cost a lot of energy, which justifies the name “low en-
ergy equations of motion” for (3.22). In fact, (3.22) can be integrated to a low energy
effective action,

S [g,Φ] =
1

2κ2
0

∫
dd x
√

g e−2Φ

[
−

2(d − 26)
3α′

+ R + 4 (∇Φ)2 + O(α′)
]
. (3.24)

By a field redefinition Φnew = Φold −Φ0 and gnew
µν = e−4Φnew/(d−2)gold

µν , the action can be
written in a more familiar form,

S [g,Φ] =
1

2κ2

∫
dd x
√

g
[
−

2(d − 26)
3α′

e4Φ/(d−2) + R −
4

d − 2
(∇Φ)2 + O(α′)

]
,

(3.25)
where κ = κ0eΦ0 =

√
8πGN is the gravitational coupling constant. Equation (3.25)

describes a scalar field Φ coupled to Einstein gravity in d dimensions, showing ex-
plicitly that string theory is a theory of spacetime quantum gravity.

The relation between the two-dimensional worldsheet action and how it describes
general relativity in the d-dimensional target spacetime is an intricate result. The
fact that we can express the equations of motion given by (3.22) in terms of a target
spacetime action guarantees that the equations are mutually consistent [120]. Crucial
for the inner consistency is the interdependence among the β functions. The dilaton β
function βΦ acts as the central charge of the full nonlinear σmodel. Although it looks
like an x-dependent quantity, it is really a c-number due to the vanishing of βg

µν (and
βB
µν if we would not have set Bµν to zero to begin with) [117, 120]. It is this central

charge, or rather the combination βΦ − gµνβg
µν, that effectively acts as the integrand

for the low energy effective action (3.24). For the first order equations (3.22) we can
verify these statements explicitly, but it can be proven to hold on general grounds for
all order α′-corrections [107, 108, 122]. The possibility to interpret the conditions set
by worldsheet Weyl invariance as a spacetime low energy effective action is one of
the most remarkable results from string theory.

3.2.2 Supergravity

A super symmetry in our universe

In the previous section we considered the bosonic string, i.e. a string whose world-
sheet theory is defined in terms of bosonic scalar fields xµ only. It is a very interesting
theory to study the relation between the worldsheet and spacetime theories, but it is
unsure to what extent this version of string theory can describe our universe. Apart
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from the massless quantum excitations we have just considered, the bosonic string
also contains a tachyonic mode, indicating that the theory suffers from an instability
[85]. To remove the tachyon from the spectrum, the worldsheet is extended to a su-
perstring theory, in which worldsheet bosons and fermions are related by a symmetry
called supersymmetry. Similar to the previous discussion, the superstring worldsheet
theory defines a low energy effective field theory for the background fields on the tar-
get spacetime. Because the value of the central charge c of a worldsheet theory with
superconformal symmetry is c = 3d

2 − 15, the spacetime theory is a ten-dimensional
theory.

In order to relate to our four-dimensional spacetime, the spacetime has to be com-
pactified on an internal six-dimensional manifold [123]. The internal manifold is a
compact manifold, which is too small for us to detect at low energies, giving rise to an
effective four-dimensional action for the spacetime theory after compactification. In
this thesis we will study superstring theory only through its four-dimensional low en-
ergy effective action, except for a short excursion in chapter 5 where we discuss how
to possibly generalize the result of that chapter to open strings, the D-branes that they
end on and the background RR fields sourced by the D-branes. At the level of the low
energy effective action, supersymmetry remains a fundamental aspect for the theory,
since the spacetime bosons and fermions are also invariant under the supersymmetry
transformations [86].

The low energy effective action of superstring theory is an example of a super-
gravity theory, but the framework of supergravity is more general than just the su-
pergravity theories arising from superstring theory. In the 1970s supersymmetry was
discovered as a way to regulate UV-divergences in phenomenological particle physics
models [124–127]. As gauge symmetries were particularly popular at the time for the
successful way in which they describe particle physics, it was only a natural step to
consider a theory which is invariant under local supersymmetry [128]. The surprising
result is that such a theory necessarily incorporates gravity [88], hence the name “su-
pergravity”. Initial hope that supergravity theory might be a “theory of everything”,
unifying particle physics theories with general relativity, soon proved incorrect, be-
cause supergravity is not renormalizable. Therefore, in the beginning of the 1980s
superstring theory started to replace supergravity as the new candidate theory for
quantum gravity [85]. Nevertheless, through the relation between worldsheet super-
string theory and its supergravity low energy effective theory, supergravity models
have never really left the stage, providing an interesting playground at the effective
field theory level for the study of quantum gravity.
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Super dynamics

As with any symmetry, supersymmetrically invariant theories are constrained. The
bosons and fermions of the theory have to reside in supermultiplets, which are irre-
ducible representations of the supersymmetry algebra. To ensure that the algebra is
closed off-shell as well, each supermultiplet also contains an auxiliary field. Conven-
tionally for the chiral supermultiplets, i.e. the simplest four-dimensional supermulti-
plet that contains a scalar, the auxiliary field is denoted by F I , where I is an index
running over the number of chiral supermultiplets. Similarly, gauge vector super-
multiplets have an auxiliary field denoted by DA, where A runs over the number of
vector supermultiplets. These auxiliary fields do not have a kinetic term in the ac-
tion and therefore contain no propagating (physical) degrees of freedom. It turns out
that potentials in supersymmetric field theories are precisely generated by integrating
out these non-dynamical fields [88, 89]. Supersymmetry and supergravity potentials
therefore naturally fall into two categories. The scalar potentials built from F are
called F-terms, those built from the D-fields are called D-terms. In this thesis we will
be concerned with the scalars ξI of the chiral multiplets. We will assume they are
neutral under the gauge group, allowing us to concentrate on the F-terms.

In global supersymmetry the action for the complex scalars ξI in the chiral super-
multiplets can be written as

S = −

∫
d4x
√

g
[
gµνKIJ(ξ, ξ)∇µξI∇νξ

J
+ V(ξ, ξ)

]
. (3.26)

Supersymmetry has restricted the kinetic term to be a nonlinear σ model describing
a Kähler manifold. The Kähler potential K(ξ, ξ) is a real function which completely
specifies the metric GIJ(ξ, ξ) of the target manifold,

GIJ = ∂I∂J K ≡ KIJ , GIJ = GIJ = 0.

The F-term potential V is determined by the holomorphic superpotential W(ξ) [127]
via

V = K IJWIW J ,

where we denote derivatives with respect to the fields ξI and ξ
J

with a subscript,
e.g. WI = ∂

∂ξI W. In supersymmetric theories, supersymmetry is broken precisely if
the vacuum expectation value for F I is non-vanishing, which via the equations of
motion for F in the original action

F I = K IJW J ,
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implies that supersymmetry is broken if and only if WI = ∂IW = 0 [88, 127].
In supergravity, an important change happens to the potential. The action for the

complex scalars ξI in the chiral supermultiplets can now be written as

S =

∫
d4x
√

g

M2
pl

2
R − gµνKIJ(ξ, ξ)∇µξI∇νξ

J
− V(ξ, ξ)

 . (3.27)

Again the nonlinear σ model target manifold is restricted to be a Kähler manifold
with Kähler potential K(ξ, ξ), but the F-term potential is now given by

V = eK/M2
pl

K IJDIWDJW −
3

M2
pl

WW

 , (3.28)

where DIW denotes the Kähler covariant derivative

DIW = ∂IW −
∂I K
M2

pl

W.

The supergravity action is invariant under Kähler transformations

K(ξ, ξ)→ K(ξ, ξ) + f (ξ) + f (ξ), W(ξ)→ e− f (ξ)/M2
pl W(ξ),

by an arbitrary holomorphic function f (ξ), which suggests to rewrite the theory in
terms of one real, Kähler invariant function G(ξ, ξ) that is related to the Kähler poten-
tial and superpotential via

G(ξ, ξ) = K(ξ, ξ) + M2
pl log

W(ξ)
M3

pl

 + M2
pl log

W(ξ)
M3

pl

 . (3.29)

This definition is only valid for W , 0. A vanishing superpotential is a fixed point
under Kähler transformations and deserves special treatment. Throughout this thesis
we will therefore assume that W , 0. In terms of the Kähler function G(ξ, ξ), the
F-term potential reads

V = eG/M2
pl

(
GIJGIGJ − 3M2

pl

)
M2

pl. (3.30)

Since
F I = eG/2M2

plGIJGJ

in supergravity theories, supersymmetry is broken if and only if GI = DI W
W = 0 [88].
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The action (3.27) provides an interesting starting point for the purpose of infla-
tionary model building. Ideally, one would like to study inflation directly from the
superstring theory point of view, but since superstring theory is not yet fully known,
our investigations are restricted to its low energy effective limit. The supergravity
theories that appear as the low energy effective action of superstring theory are a
subset of all supergravity theories. However, in the literature this distinction is not
always made, because we first need to focus on the characteristic effects and possible
issues in supergravity in general. For example, from (3.30) we can already infer one
of these generalities, that a quasi-de Sitter phase with V > 0 requires supersymmetry
to be broken during inflation. Although string inspired work can be found throughout
the supergravity literature [1, 2], the construction of a model completely rooted in a
consistent superstring theory set-up is still to be found. Until such a model exist, the
rich but yet restricted character of supergravity make it an interesting framework for
the study of inflation in quantum gravity.

3.2.3 Holography

Gauge/gravity duality

A final ingredient we shall need for the studies following, is holography and the
AdS/CFT-correspondence. The discovery, about fifteen years ago, that string the-
ory realizes the holographic principle, is a major development in theoretical physics.
The holographic principle is a (crazy) hypothesis that the physics of a d-dimensional
gauge theory can also be described by a d +1-dimensional theory with gravity and
vice versa [129, 130]. The motivation for such a hypothesis derives from black hole
physics, in which all the information of the black hole can be encoded by way of its
event horizon.

Inspired by the work of others in this direction [131–135], a conjectured realiza-
tion of two dual theories was constructed by [136]. In this realization we consider a
system of D-branes4 in a flat background geometry. This configuration has two dis-
tinct limits, each with its own description. One description considers the supergravity
approximation around the branes, which is that of an anti-de Sitter AdS 5-geometry.
The other description decouples the interacting brane-bulk system, leaving only the

4The known examples of the holographic duality are all advanced constructs in superstring theory. As a
result, they contain elements not explained in this text elsewhere. The particular system in [136] is a set of
N parallel D3-branes in a ten-dimensional flat background, which one can view as the supergravity limit of
a type IIB superstring in an AdS 5 × S 5-background on the one hand or as a decoupled brane-bulk system
on the other hand, with the gauge theory on the brane being a four-dimensional N = 4 superconformal
S U(N) Yang-Mills theory.
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gauge theory on the brane, a specific four-dimensional conformal field theory. Since
both descriptions originate from the same system, they present a dual description of
the same physics [90, 91, 136]. We say that the theory in the bulk is dual to the
conformal field theory living on its boundary, because the brane resides at the bound-
ary of the anti-de Sitter space. The holographic duality in this construction is called
the AdS/CFT-correspondence as it is a duality between anti-de Sitter geometry and
conformal field theory.

Since a d-dimensional field theory has one dimension less than a d+1-dimensional
gravity theory, the natural question arises how holography manages to encode the
additional dimension of the bulk theory into the boundary theory. The example of
[136] provides a clear indication of how this happens. The (Euclidean) AdS d+1-metric
is given by

ds2 = dy2 + e−2y/Rdx2,

or

ds2 =
R2

z2

(
dx2 + dz2

)
,

in Poincaré coordinates, where R is the anti-de Sitter-radius and where the boundary
is located at z = 0. It is invariant under a scale transformation x → λx, z → λz.
The d coordinates x are naturally identified with the coordinates of the conformal
field theory, setting z = 0. The interpretation of the additional coordinate z becomes
clear when we consider a scale transformation x → λx in the field theory as well.
The theory is scale invariant when such a scale transformation is accompanied by a
rescaling of the energy scale µ→ λ−1µ [137]. Hence, the additional coordinate of the
gravity theory corresponds to the energy scale in the gauge theory,

z ∼
1
µ
,

and the direction towards the interior of the bulk corresponds to a renormalization
group flow from high energies to low energies. This immediately suggests that the
AdS/CFT correspondence could be generalized to a bulk theory that is asymptotically
anti-de Sitter with a dual gauge theory that approaches a conformal fixed point in the
ultraviolet [137, 138]. Renormalization of the ultraviolet divergences of the gauge
theory is completely understood in terms of regularizing and renormalizing the large
distance, i.e. near-boundary, behavior of the bulk theory [138–142].

An important aspect of AdS/CFT is that the two limits where either the field
theory or the gravitational description arises, correspond to opposite limits of the
intrinsic CFT coupling constant [136, 143]. This means that the strongly coupled
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physics of one theory is equivalently described by the weakly coupled dual theory.
On the one hand, the strong/weak-aspect of the duality makes it very difficult to verify
a conjectured holographic correspondence, since a perturbative approach can only
work for one of the two dual theories at a time. Making use of protecting symmetries
of the theory, it is possible to match some of the properties of each of the two systems,
indicating that the conjecture might hold. On the other hand, once a correspondence
between theories has been (reasonably) established, the strong/weak duality provides
a truly powerful approach to understand strongly coupled physics, by considering the
weakly coupled dual theory.

The holographic correspondence is conjectured to hold for more general gauge
and gravity theories than the AdS/CFT-correspondence of [136]. Finding other ex-
amples is difficult, but possible [90, 137]. As said, the hallmark strong/weak-duality
of dual theories gives ample motivation to search for holographic examples, for the
unique orthogonal approach the duality provides to the study of strongly coupled sys-
tems. Particularly relevant for cosmology would be if a correspondence between de
Sitter space and some gauge theory is found. In principle dS/CFT should be closely
related to AdS/CFT, as both gravity theories have a great resemblance [144–146].
This is immediate at the level of their symmetries, which in both cases is O(1, d) for
a d-dimensional spacetime. In practice it proves difficult to actually find an explicit
realization of the dS/CFT-correspondence. Nevertheless, the possibility of having
a holographic description of (quasi)-de Sitter geometry provides the motivation be-
hind chapter 6 of this thesis. In particular, in that chapter we will see to what extent
conformal invariance dictates the correlation functions of the gravity theory.

Correlation functions

The real power of the AdS/CFT-correspondence is the precise quantitative dictio-
nary, described in [147, 148], between the two perspectives. In these descriptions,
a Euclideanized version of the gravity theory is considered. A field φ(z, x) in the
bulk of the d + 1-dimensional gravity theory has an asymptotic value φ0(x) on the
d-dimensional boundary, which acts as a coupling constant for an operator O(x) of
the boundary field theory. The duality is then summarized by the statement that the
partition functions ZCFT and ZAdS are equal,

ZAdS [φ(φ0)] = ZCFT [φ0] =
〈
e−

∫
dd x φ0O

〉
CFT

. (3.31)

The partition function ZAdS [φ(φ0)] =
∫
φ0
Dφe−S AdS (φ) is evaluated in the semiclassical

limit, i.e. a classical solution for the field φ(z, x) is found subject to the boundary
condition φ0(x) around which the action is perturbed. n-point correlation functions
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of the operators in the conformal field theory can then be calculated in the usual way
through functional differentiation with respect to the boundary conditions,

〈O(x1) . . .O(xn)〉 =
δ

δφ0(x1)
. . .

δ

δφ0(xn)
ZAdS [φ(φ0)]

∣∣∣∣∣
φ0=0

, (3.32)

which act as sources to the operators.
To get finite answers in the matching of the asymptotic values for the bulk fields

φ with the boundary couplings φ0, the boundary fields are renormalized, which leads
to a relation between the scaling dimension of the operator O to which φ0 couples and
the mass m of the bulk field [137, 147, 148],

∆ =
d
2

+

√
d2

4
+ m2R2, (3.33)

where R is again the anti-de Sitter curvature radius. A massless field m corresponds
to a marginal operator ∆ = d. With the identification given above, the (physical de-
grees of freedom of the) metric field gµν(z, x) corresponds to the stress-energy tensor
operator Tαβ(x) of the conformal field theory. The stress-energy tensor is a marginal
operator that is always part of the conformal field theory, which is why the bulk theory
always has to include gravity [137].

As an illustrative example of how the correspondence works, we consider an in-
teracting massive scalar field φ in d+1-dimensional AdS, with action

S AdS =
1
2

∫
dd xdz

√
g

[
gµν∂µφ∂νφ + m2φ2 +

λ

3
φ3

]
. (3.34)

We have to solve the classical equation of motion subject to the boundary condition
φ0(x). This can be achieved conveniently by first finding the Green’s function for the
equation of motion of the quadratic part of the action [148, 149],

K∆(z, x, x′) =
Γ(∆)

π
d
2 Γ(∆ − d

2 )

(
z

z2 + (x − x′)2

)∆

,

where ∆ is related to the mass m via (3.33). The function K∆(z, x, x′) is called the
bulk-to-boundary propagator, which has to be normalized such that it is regular in the
interior and provides the required singular behavior for z → 0. The classical (ho-
mogeneous) solution is then automatically determined by the boundary value φ0(x)
via

φ(z, x) =

∫
dd x′ K∆(z, x, x′)φ0(x′).
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3. Describing nature at its tiniest

To find the three-point function of the dual operator O (3.32), we can substitute this
expression into (3.34) and find

〈O(x1)O(x2)O(x3)〉 =
δ

δφ0(x1)
δ

δφ0(x2)
δ

δφ0(x3)
ZAdS [φ(φ0)]

∣∣∣∣∣
φ0=0

(3.35)

= −λ

∫
dd xdz
zd+1 K∆(z, x, x1)K∆(z, x, x2)K∆(z, x, x3).

Since this is a three-point correlation function in a conformal field theory, it should
be of the form (3.12b). One can explicitly verify that this is so and determine the
coefficient from the explicit form of the bulk-to-boundary propagator [149, 150],

〈O(x1)O(x2)O(x3)〉 =
λa(∆)

(x12x23x13)∆
, (3.36a)

a(∆) = −
Γ
(

1
2 (3∆ − d)

)
Γ
(

∆
2

)3

2πdΓ
(
∆ − d

2

)3 . (3.36b)

The matching of (3.35) with (3.12b) is a necessary requirement for the correspon-
dence to hold. It is an explicit check that the anti-de Sitter space is constrained by
the same symmetries as the conformal field theory. In general, for a duality to hold,
the theories need to be invariant under the same symmetries. This is of course not a
sufficient condition. Nevertheless, it is interesting to see what one can already derive
based solely upon symmetry arguments. We will take the latter approach in our study
of a hypothesized dS/CFT-correspondence in chapter 6.
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4
Inflation embedded in supergravity

As we have emphasized earlier, inflation is a coarse phenomenon in classical general
relativity. In principle it should therefore not be too difficult to embed inflationary
models within a unifying theory of quantum gravity such as string theory or its su-
pergravity description at low energies. Nevertheless, inflation turns out to depend
sensitively on the microscopic description of the theory. Although this is a blessing
if we ever want to observationally verify our ideas about the microscopic structure
of our universe, it also means that we have to be very careful in neglecting any part
of the theory that we do not (yet) completely understand. By restricting ourselves to
the part of the model we have control over, we could be throwing away the baby with
the bath water. Although it is usual practice and often plain necessity to consider
inflation in a controlled environment, one makes implicit, and possibly unrealistic,
assumptions on the unknown parts of the theory in the way it (does not) contribute
to the inflationary dynamics. As a result, the predictive power of the theory and its
chance to be compared with observations from the early universe, are limited.

In this chapter we will see, in the context of supergravity, how hidden sectors
affect the carefully controlled physics of any model for inflation. This will be a useful
illustration of the sensitivity of inflation to unknown physics and of the importance to
compare inflation observationally with a complete description of nature. The chapter
is based on [151] and [152].

4.1 Introduction

The construction of realistic models of slow-roll inflation in supergravity is a long-
standing puzzle. Supersymmetry can alleviate the finetuning necessary to obtain
slow-roll inflation — if one assumes that the inflaton is a modulus of the supersym-
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4. Inflation embedded in supergravity

metric ground state — but cannot solve it completely. This is most clearly seen in
the supergravity η-problem: if the inflaton is a lifted modulus, then its mass in the
inflationary background is proportional to the supersymmetry breaking scale. There-
fore, the slow-roll parameter η ' V ′′/V generically equals unity rather than a small
number [153].

We will show here, however, that the η-problem is more serious than a simple
hierarchy problem. In the conventional mode of study, the inflaton sector is always a
subsector of the full supergravity theory presumed to describe our universe. When the
inflationary subsector of the supergravity is studied an sich, tuning a few parameters
of the Lagrangian to order 10−2 will generically solve the problem. We will clarify
that this split of the supergravity sector into an inflationary sector and other hidden
sectors implicitly makes the assumption that all the other sectors are in a “supersym-
metric” ground state: i.e. if the inflaton sector —which must break supersymmetry—
is decoupled, the ground state of the remaining sectors is supersymmetric. If this is
not the case, the effect on the η-parameter or on the inflationary dynamics in general
can be large, even if the sypersymmetry breaking scale in the hidden sector is small.
Blind truncation in supergravities to the inflaton sector alone, if one does not know
whether other sectors preserve supersymmetry, is therefore an inconsistent approach
towards slow-roll supergravity inflation. Coupling the truncated sector back in com-
pletely spoils the naïve solution found. This result, together with recent qualitatively
similar findings for sequestered supergravities (where only the potential has a two-
sector structure) [154], provides strong evidence that to find true slow-roll inflation in
supergravity one needs to know the global ground state of the system. The one obvi-
ous class of models where sector-mixing is not yet considered is the newly discovered
manifest embedding of single field inflationary models in supergravity [155, 156]. If
these models are also sensitive to hidden sectors, it would arguably certify the neces-
sity of a global analysis for cosmological solutions in supergravity and string theory.

We will obtain our results on two-sector supergravities by an explicit calculation.
The gravitational coupling between the hidden and the inflaton sectors is universal,
which can be described by a simple F-term scalar supergravity theory. As in most dis-
cussions on inflationary supergravity theories, we will ignore D-terms as one expects
its vacuum expectation value to be zero throughout the early universe [30]. Including
D-terms (which themselves always need to be accompanied by F-terms [88]) only
complicates the F-term analysis, which is where the η-problem resides. Furthermore,
although true inflationary dynamics ought to be described in a fully kinetic descrip-
tion [52], we can already make our point by simply considering the mass eigenmodes
of the system. In a strict slow-roll and slow-turn approximation the mass eigenmodes
of the system determine the dynamics of the full system.
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4.1 Introduction

Specifically we shall show the following for two-sector supergravities where the
sectors are distinguished by independent R-symmetry invariant Kähler functions:

• Given a naïve supergravity solution to the η-problem, this solution is only con-
sistent if the other sector is in its supersymmetric ground state.

• If it is not in its ground state, then the scalar fields of that sector cannot be static
but must evolve cosmologically as well.

• In order for the naïve solution to still control the cosmological evolution these
fields must move very slowly. This translates in the requirement that the con-
tribution to the first slow-roll parameter of the hidden sector must be much
smaller than the contribution from the naïve inflaton sector, εhidden � εnaïve.

• There are two ways to ensure that εhidden is small: Either the supersymmetry
breaking scale in the hidden sector is very small or a particular linear com-
bination of first and second derivatives of the generalized Kähler function is
small.

– In the latter case, one finds that the second slow-roll parameter ηnaïve re-
ceives a very large correction ηtrue − ηnaïve � ηnaïve, unless the supersym-
metry breaking scale in the hidden sector is small. This returns us to the
first case.

– In the first case, one finds that the hidden sector always contains a light
mode, because in a supersymmetry breaking (almost) stabilized super-
gravity sector there is always a mode that scales with the scale of super-
symmetry breaking. This light mode will overrule the naïve single field
inflationary dynamics.

Thus for any nonzero supersymmetry breaking scale in the hidden sector — even
when this scale is very small — the true mass eigenmodes of the system are linear
combinations of the hidden sector fields and the inflaton sector fields. We compute
these eigenmodes. By assumption, the true value of the slow-roll parameter η is
the smallest of these eigenmodes. Depending on the values of the supersymmetry
breaking scale and the naïve lowest mass eigenstate in the hidden sector, we find that

1. The new set of mass eigenmodes can have closely spaced eigenvalues, and thus
the initial assumption of single field inflation is incorrect. Then a full multi-
field re-analysis is required.
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4. Inflation embedded in supergravity

2. The relative change of the value of η from the naïve to the true solution can
be quantified and shows that for a supersymmetry breaking hidden sector, the
naïve model is only reliable if the naïve lowest mass eigenstate in the hidden
sector is much larger than the square of the scale of hidden sector supersymme-
try breaking divided by the inflaton mass. This effectively excludes all models
where the hidden sector has (nearly) massless modes.

3. The smallest eigenmode can be dominantly determined by the hidden sector,
and thus the initial assumption that the cosmological dynamics is constrained to
the inflaton sector is incorrect. Again a full multi-field re-analysis is required.

One concludes that in general one needs to know/assume the ground states and the
lowest mass eigenstates of all the hidden sectors to reliably find a slow-roll inflation-
ary supergravity.

The structure of this chapter is the following. Section 4.2 explains how sectors
are coupled in supergravity. To make contact with global supersymmetry models,
we consider the no-gravity limit of a multi-sector supergravity model. As we will
see, decoupling in this limit turns out to be more delicate than just taking the simple
Mpl → ∞ limit. We begin the discussion on the effects of having multiple sectors
in section 4.3 with the result that in a stabilized supergravity sector there always is
a mode that scales with the scale of supersymmetry breaking. In section 4.4 the η-
problem in a single sector theory is discussed and we consider the effect of a hidden
sector qualitatively and quantitatively. The quantitative result is analyzed in section
4.5 both in terms of effective parameters and direct supergravity parameters. As a no-
table example of our result, we show that if the hidden sector is the standard model,
where its supersymmetry breaking is not caused by the inflaton sector but otherwise,
spoils the naïve slow-roll solution in the putative inflaton sector. The chapter is sup-
plemented with two appendices in which some of the longer formulae are given.

4.2 Canonical coupling in supergravity

We shall start by arguing how two sectors are gravitationally coupled in supergravity.
We will seek for a minimal (universal) coupling between sectors. It has an interesting
interpretation in terms of the superpotentials, which multiply rather than add as in
globally supersymmetric minimally coupled systems. As a result, the zero-gravity
limit from multi-sector supergravities to decoupled multi-sector global supersymme-
try theories is more subtle than the usual Mpl → ∞ limit. To be able to embed the
supersymmetry objects into a multi-sector supergravity theory, we will consider a
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4.2 Canonical coupling in supergravity

possible decoupling limit with non-canonical scaling of the superpotential couplings.
This limit will later be used to apply our general results to a standard model-like
globally supersymmetric hidden sector in section 4.5.3

4.2.1 Maximal decoupling in supergravity

Multiple sectors are a common feature in supergravity cosmology and phenomenol-
ogy. These sectors are necessary to either incorporate inflation or supersymmetry
breaking or are a consequence of string model-building. In particular to study infla-
tion, it is desirable to separate the dynamics of all fields that do not contribute to the
exponential expansion of the universe from the inflaton fields that do. Since gravity
is the weakest possible interaction, the inflationary sector is assumed to only cou-
ple gravitationally to an unknown hidden sector that may also break supersymmetry
by itself. Whereas it is natural for a rigid supersymmetric theory to be separated
into several sectors, the restrictive structure of supergravity forces the different sec-
tors to couple not only non-locally through graviton exchange but also directly. For
this reason embedding supersymmetric theories as sectors into a supergravity can be
notoriously difficult, see e.g. [88, 89, 157–162].

Though multiple sector supergravities are a long studied subject, the context of
cosmology has seriously sharpened the question. In supergravity models of inflation,
it is commonly noted that one seeks a consistent truncation of the scalar sector. This is
necessary but not sufficient. Even with a consistent truncation one may have dominat-
ing instabilities towards the naïvely non-dynamical sectors, that can move them away
from their supersymmetric critical points. One needs either a symmetry constraint or
an energy barrier to constrain the dynamics to the putative inflaton sector.

During inflation, supersymmetry is broken and although it is frugal to consider
scenarios where the inflaton sector is also responsible for phenomenological super-
symmetry breaking (see e.g. [163–165]), this need not be so. For instance, in a
generic gauge-mediation scenario, the mechanism responsible for supersymmetry
breaking need not involve the fields that drive inflation. This example immediately
shows that the generic cosmological set-up must be able to account for a sector that
breaks supersymmetry independently of the inflationary dynamics.

This consideration is our starting point. We consider a multiple-sector supergrav-
ity that decouples in the strictest sense in the limit Mpl → ∞. In this limit the action
must then be the sum of two independent functions

S [φ, φ, q, q] = S [φ, φ] + S [q, q], (4.1)
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4. Inflation embedded in supergravity

such that the path integral factorizes.1 φ and q denote the fields in the two sectors
respectively. In the following, we will take the indices {i, } to run over the φ-fields,
while {a, b} denote the fields in the q-sector. Later, we will take the φ-fields to drive
inflation, while the q-fields reside in another sector which is naïvely assumed not to
take part in the inflationary dynamics and is hence called the hidden sector.

For a globally supersymmetric field theory with a standard kinetic term, a decou-
pled action can be achieved by demanding that the independent Kähler and superpo-
tentials sum as well,

Ksusy(φ, φ, q, q) = K(1)(φ, φ) + K(2)(q, q), Wsusy(φ, q) = W (1)(φ) + W (2)(q). (4.2)

By contrast, in supergravity complete decoupling in the sense of (4.1) appears to be
impossible, even in principle. Even with block diagonal kinetic terms from a sum of
Kähler potentials, the more complicated form of the supergravity potential (3.28) im-
plies that there are many direct couplings between the two sectors. It raises the imme-
diate question: if the low-energy Mpl → ∞ globally supersymmetric model must con-
sist of decoupled sectors, what is the relation between Ksugra,Wsugra and Ksusy,Wsusy,
or vice versa given a globally supersymmetric model described by Ksusy,Wsusy, what
is the best choice for Ksugra,Wsugra such that the original theory can be recovered in
the limit Mpl → ∞?

The conclusion of this section is that the scaling implied by the explicit factors
of Mpl in the supergravity potential (3.28) is an incomplete answer to this question.
The direct communication between the sectors, controlled by Mpl, has serious con-
sequences for both the ground state structure (solutions to the equation of motion,
i.e. the cosmological dynamics) and the interactions between the two sectors. To
be explicit, the first guess at how the rigid supersymmetry and supergravity Kähler
potentials and superpotentials are related

Ksugra(φ, φ, q, q) = K(1)
susy(φ, φ) + K(2)

susy(q, q) + . . . , (4.3a)

Wsugra(φ, q) = W (1)
susy(φ) + W (2)

susy(q) + . . . , (4.3b)

with . . . indicating Planck-suppressed terms and possibly a constant term, does not
define a sensible way of splitting up the action in multiple sectors. This definition is
not invariant under Kähler transformations in each sector separately and is valid only
in a specific Kähler frame or, say, gauge dependent [166]. Another way to understand

1As example we consider the simplest case, a model with uncharged scalar supermultiplets ξI = (φi, qa)
that are singlets under all symmetries. Gauge interactions and global symmetries will not change this gen-
eral argument provided the two sectors are not mixed by symmetries or coupled by gauge fields. Therefore,
we will also ignore D-terms in the supergravity potential below.
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4.2 Canonical coupling in supergravity

the problem is to realize that the definition (4.3) does not lead to a Kähler metric and
mass matrix that can be made block diagonal in the same basis [167], and thus there
is no sense of “independent” sectors. Moreover, (4.3) suffers from the drawback that
the ground states of the full theory are no longer the product of the ground states
of the individual sectors, except when both (rather than only one) ground states are
supersymmetric [168, 169] (see also [166, 167, 170]). This directly follows from
considering the extrema of the supergravity potential2

∇aV =
DaW

W
V + eK/M2

pl |W |2
∇a

(
DbW

W

)
DbW

W
+

1
M2

pl

DaW
W

+ ∇a

(
D jW

W

)
D jW

W

 ,
(4.4a)

∇a∇iV =
DiW
W
∇aV +

DaW
W
∇iV −

DaW
W

DiW
W

V + Da

(
DiW
W

) V +
2

M2
pl

eK/M2
pl |W |2


+ eK/M2

pl |W |2
∇a∇i

(
D jW

W

)
D jW

W
+ ∇i∇a

(
DbW

W

)
DbW

W

 . (4.4b)

Supersymmetric ground states, for which the covariant derivatives of W vanish on
the solution, DiW = 0 and DaW = 0, are still product solutions. But for Kähler and
superpotentials that sum (4.3), even if only one sector is in a non-supersymmetric
ground state, by which we mean DaW = 0, DiW , 0, we can neither conclude that
sector 2 is in a minimum, for which ∇aV would vanish, nor that the condition for
sector 1 to be in a local ground state is independent of the sector 2 fields qa, which
would mean that ∇a∇iV = 0. The former is only true when

∇a

(
D jW

W

)
D jW

W
= 0. (4.5)

The second requires, in addition,

∇a∇i

(
D jW

W

)
D jW

W
+ ∇i∇a

(
DbW

W

)
DbW

W
= 0, (4.6)

2To derive (4.4b) note that, since DW/W is Kähler invariant and since the Levi-Civita connection ∇ of
the field space manifold does not get cross-contributions in a product manifold,

∇a
DiW
W

= ∂a
DiW
W

= Da
DiW
W

.
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and also sharpens the first condition (4.5) to3

Da
DiW
W

= 0. (4.7)

Equations (4.5–4.7) are conditions for decoupling which apply not only to the ground
state of the full system but also to other critical points of the potential, for instance
along an inflationary valley. Generically these conditions are not met on the solution
(the second derivative need not vanish at an extremum; recall that DaW does not
vanish identically but only on the solution). Hence, generically the ground states
of hidden sectors mix and this spoils many cosmological supergravity scenarios that
truncate the action to one or the other sector (see e.g. [171] and references therein). It
is this issue that is particularly relevant for inflationary model building, where a very
weak coupling between the inflaton sector and all other sectors has to persist over an
entire trajectory in field space where the expectation values of the fields are changing
with time (see e.g. [52, 172–174]). At the same time, one is interested in the generic
situation in which both sectors may contribute to supersymmetry breaking.4

3These conditions are merely sufficient not necessary. However, it is clear that the restrictive nature of
supergravity enforces conditions on the unknown sectors for the system to be separate.

4This situation has to be contrasted to phenomenological models appropriate for studying gravity me-
diated supersymmetry breaking, such as an ansatz [175]

K(φ, φ, q, q) = K(0)(φ, φ) + qaqbK(1,1)
ab

(φ, φ) + qaqbK(2,0)
ab (φ, φ) + qaqbK(0,2)

ab
(φ, φ) + . . . ,

W(φ, q) = W(0)(φ) + qaqbW(1)
ab (φ) + . . . ,

or equivalently, if W , 0,

G(φ, φ, q, q) = G(0)(φ, φ) + qaqbG(1,1)
ab

(φ, φ) + qaqbG(2,0)
ab (φ, φ) + qaqbG(0,2)

ab
(φ, φ) + . . . .

In models like these, it is understood that q̇ = 0 and the q-sector can remain in its supersymmetric critical
point throughout the evolution of the supersymmetry breaking fields. For inflation, such an expectation is
unrealistic, as the supersymmetry preserving sector can become unstable during the inflationary dynamics,
see e.g. a recent discussion of the case in which the inflaton field φ is solely responsible for supersymmetry
breaking during inflation ([165] and references therein). In this relatively simple case, and except for very
fine-tuned situations, the generic scenario appears to be that one or more of the q-fields are destabilized
somewhere along the inflationary trajectory and they trigger an exit from inflation (in other words, they
become “waterfall” fields, and inflation is of the hybrid kind [176]). This implies that the pattern of
supersymmetry breaking today is not related to the one during inflation, and also, since the waterfall fields
are forced away from their supersymmetric critical points, that supersymmetry is broken by both sectors
as the universe evolves towards the current vacuum.
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4.2 Canonical coupling in supergravity

4.2.2 Natural multi-sector supergravities

There is a natural way to construct supergravity potentials for which the ground states
(and critical points) do separate better. This obvious combination of superpotentials
automatically satisfies (4.5–4.7) and hence does ensure that if one of the ground states
is supersymmetric, the ground state of the other sector is a decoupled field theory
ground state whether it breaks supersymmetry or not. This is if we choose a product
of superpotentials, keeping the sum of Kähler potentials as before,

Ksugra(φ, φ, q, q) = K(1)
sugra(φ, φ) + K(2)

sugra(q, q), Wsugra(φ, q) =
1

M3
pl

W (1)
sugra(φ)W (2)

sugra(q).

(4.8)
This is well-known [177–179] and has recently been emphasized in the context of
cosmology [166, 167, 170, 171, 173, 174, 180, 181]. This ansatz conforms to the
more natural description of supergravities in terms of the Kähler invariant function
(3.29) that can be defined if W is non-zero in the region of interest.5 In turn, the Käh-
ler function underlies a better description of multiple sectors in supergravity, where
G is a simple sum of independent functions

G(φ, φ, q, q) = G(1)(φ, φ) + G(2)(q, q). (4.9)

It is invariant under Kähler transformations in each sector separately [166–169, 182]
and thus defines a sensible way of splitting up the action in multiple sectors. As
a result, this split guarantees that a BPS solution in one particular sector is a BPS
solution of the full theory. It is the simplest ansatz that still allows some degree of
calculational control when both sectors break supersymmetry —as well as optimizing
decoupling along the inflationary trajectory. One of the simplest models of hybrid
inflation in supergravity, F-term inflation [183, 184], is in this class.

The sum of Kähler functions (4.9) implies the conventional separation of the Käh-
ler potentials, but it constitutes a class of minimally coupled scenarios due to the
multiplicative nature of the superpotentials put forward above. Let us illustrate the
importance of this multiplicative superpotential in the situation in which the hidden
sector resides in a supersymmetric vacuum, i.e. ∂aV(q0) = 0 and ∂aG(2)(q0) = 0.
We write the superpotential of the hidden sector as W (2)(q) = W (2)

0 + W (2)
dyn(q − q0).

The second term in this expression is what determines the potential for fluctuations
around the minimum of the hidden sector, while the first constant term is just an over-
all contribution and hence not interesting for the internal hidden sector dynamics at

5We expect this condition to hold around a supersymmetry breaking vacuum with almost vanishing
cosmological constant. It also holds in many models of supergravity inflation, although a notable exception
is [155, 156].
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energies much less than the Planck scale. However, for the gravitational dynamics
and the remaining φ-sector this “vacuum energy contribution” W (2)

0 = 〈W (2)〉 is of
crucial importance as it sets the scale of the potential

V = eK(2)/M2
pl |W (2)

0 |
2eG(1) (

G(1)
i G(1)i − 3M2

pl

)
M−4

pl , (4.10)

which is evaluated at q = q0 such that all terms depending on W (2)
dyn vanish. The

normal practice of setting W (2)
0 to zero as an overall contribution to the hidden sector

is neglecting the fact that gravity also feels the constant part of the potential energy, as
opposed to field theory. The inflationary sector feels the presence of the hidden sector
through this coupling and as such it may be more intuitive to regard W (2)

0 to contain
information about the inflationary sector rather than the hidden sector. Making a
similar split in W (1), the constant part W (1)

0 is the overall contribution to the hidden
sector due to the inflaton sector.

Using the minimal coupling scenario (4.9), the two-sector action (3.27) reads

S = M2
pl

∫
d4x
√

g
[
1
2

R − gµν(G(1)
i  ∂µφ

i∂νφ

+ G(2)

ab
∂µqa∂νq

b) − VM2
pl

]
, (4.11)

with

V(φ, φ, q, q) = eG(1)+G(2) (
G(1)

i G(1)i + G(2)
a G(2)a − 3

)
. (4.12)

We will often allow ourselves to drop the sector label from G in the remainder, since
G(1)
φ = Gφ and similarly for q. For a short overview of relevant conventions and

identities in supergravity, we refer the reader to appendix 4.A. For later calculational
convenience, we have given (4.11) and (4.12) in terms of the dimensionless scalar
fields ξI = (φi, qa) and functions V , G, K and W. However, before we start the explo-
ration of the inflationary consequences of a coupling such as (4.11), we will momen-
tarily keep the Mpl-dependence explicit (and quantities dimensionful) and study the
no-gravity limit Mpl → ∞ to see how the supergravity sectors decouple.

4.2.3 Zero-gravity decoupling limit

Given that we have just argued that a product of superpotentials is a more natural
framework to discuss hidden sector supergravities, the obvious question arises how
to recover a decoupled sum of potentials for a globally supersymmetric theory in the
limit where gravity decouples, i.e. in which

Vsugra = eK/M2
pl

|DW |2 −
3|W |2

M2
pl

 → Vsusy =
∑

n

|∂nW (n)|2.
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For a two-sector supergravity defined by equations (4.8) one would not find this an-
swer, if one takes the standard decoupling limit Mpl → ∞ with both K = K(1) + K(2)

and W = M−3
pl W (1)W (2) fixed6. Instead, the product structure of the superpotential

introduces a cross-coupling between sectors,

Veff =
1

M3
pl

(
|W (2)|2|∂αW (1)|2 + |W (1)|2|∂iW (2)|2

)
, Vsusy,

whose behavior under the limit Mpl → ∞ is best examined at the level of the super-
potential.

Supergravity is sensitive to the expectation value W0 = 〈W〉 of W, which relates
the scale of supersymmetry breaking to the expectation value of the potential, i.e. the
cosmological constant

Λ2M2
pl = 〈V〉 ∼ 〈DW2〉 −

3
M2

pl

〈W2〉 = m4
susy − 3

W2
0

M2
pl

.

The vacuum expectation value cannot vanish in a supersymmetry breaking vacuum
with (nearly) zero cosmological constant, such as our universe. Therefore, in the
following we assume 〈W〉 , 0 in the region of interest. Instead of the usual way to
incorporate it, Wsugra = W0 + Wdyn with Wdyn = Wsusy + . . ., we include the vacuum
expectation value for a two-sector product superpotential by writing

W(φ, q) =
1

M3
pl

W (1)W (2) =
1

M3
pl

(
W (1)

0 + W (1)
dyn(φ)

) (
W (2)

0 + W (2)
dyn(q)

)
=

1
M3

pl

(
W (1)

0 W (2)
0 + W (2)

0 W (1)
dyn(φ) + W (1)

0 W (2)
dyn(q) + W (1)

dyn(φ)W (2)
dyn(q)

)
. (4.13)

This is physically equivalent to a sum of superpotentials except for the last term. Note
again that if one uses the standard scaling, φ

Mpl
→ 0, q

Mpl
→ 0 with all couplings in

6Strictly speaking the decoupling limit sends Mpl → ∞ while keeping the fields φ, q fixed with
W(n)/M3

pl a holomorphic function of φ/Mpl or q/Mpl and K(n)/M2
pl a real function of φ/Mpl, φ/Mpl or

q/Mpl, q/Mpl. The limit zooms in to the origin so K must be assumed to be non-singular there. Formally
the decoupling limit does not exist otherwise. Physically it means that one is taking the decoupling limit
with respect to an a priori determined ground state, around which K and W are expanded. If K is non-

singular at the origin, the overall factor eK/M2
pl yields an overall constant as Mpl → ∞, which may be set

to unity, i.e. the constant part of K vanishes. In the decoupling limit, both K and W may then be written
as polynomials. Letting the coefficients in W and K scale as their canonical scaling dimension such that W
has mass dimension three and K has mass dimension two, then gives the rule of thumb that both K and W
are held fixed as Mpl → ∞.
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W (total) having the canonical scaling dimensions, this last term contains renormaliz-
able couplings involving the scalar partner of the goldstino, and these are not Planck-
suppressed: if supersymmetry is broken by the φ sector, terms of the form φq2 are
renormalizable and would survive the Mpl → ∞ limit, leading to a direct coupling
between the two sectors.7 If both sectors break supersymmetry then mass-mixing
terms φq also survive. All such (relevant) terms are of course absent if none of the
two sectors break supersymmetry, but this is not the case we are interested in. One
would have expected that these cross-couplings naturally vanish in the decoupling
limit.

The point of this section is simply to remark that the realization that each of
the superpotentials W (n) = W (n)

0 + W (n)
dyn contains a constant term can resolve this

conundrum by assuming a non-standard scaling for the constituent parts W (n)
0 , W (n)

dyn.

To achieve a decoupling we need that the cross term W (1)
dynW (2)

dyn, which contains the
coupling between the two sectors, scales away in the limit Mpl → ∞. As a result
the first term in (4.13) has to diverge, because its product with the cross term should
remain finite. In particular we can choose an overall scaling

W =
1

M3
pl

(W (1)
0 W (2)

0︸    ︷︷    ︸
∼M3+r

pl

+ W (1)
0 W (2)

dyn︸    ︷︷    ︸
∼M3

pl

+ W (2)
0 W (1)

dyn︸    ︷︷    ︸
∼M3

pl

+ W (1)
dynW (2)

dyn︸     ︷︷     ︸
∼M3−r

pl

), (4.14)

with r > 0. Let us account for dimensions by introducing an extra scale mΛ such that

W (1)
0 = m

3−r
2 −A

Λ
M

3+r
2 +A

pl , W (1)
dyn = M3

pl

W (1)
susy

W (2)
0

,

W (2)
0 = m

3−r
2 +A

Λ
M

3+r
2 −A

pl , W (2)
dyn = M3

pl

W (2)
susy

W (1)
0

, (4.15)

with W (n)
susy fixed as Mpl → ∞. Formally one can choose an inhomogeneous scaling

with A , 0, but as we shall see it has no real consequences. For any A it is easily seen

7For a product of superpotentials we can always choose a Kähler gauge at every point with 〈K〉 =

〈∂φK〉 = 〈∂qK〉 = 0 without mixing the superpotentials. In that case F-term supersymmetry breaking is
given by the linear terms in the expansion of W(1) and W(2): 〈DφW〉 ∼ 〈∂φW(1)〉, 〈DqW〉 ∼ 〈∂qW(2)〉.
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that with this scaling,

DiW = ∂iW
(1)
susy +

mr−3
Λ

Mr
pl

W (2)
susy∂iW

(1)
susy

+
∂iK(1)

M2
pl

m3−r
Λ Mr

pl + W (1)
susy + W (2)

susy +
mr−3

Λ

Mr
pl

W (1)
susyW (2)

susy

→ ∂iW
(1)
susy,

in the limit Mpl → ∞ if and only if 0 < r < 2 and thus

Vsugra = eK/M2
pl

|DW |2 −
3|W |2

M2
pl

→∑
n

|∂nW (n)
susy|

2 − 3m2(3−r)
Λ

M2(r−1)
pl + O

(
1

Mpl

)
.

For r < 1 the manifestly constant term in the potential vanishes as well and we recover
the strict decoupled field theory result, with the gravitino mass going to zero as m3/2 =

〈W〉M−2
pl = m3−r

Λ
Mr−2

pl =
m2

susy
√

3Mpl
. We see that the gravitino mass is independent of r in

physical scales.
The parameter r should not be larger than unity for the new decoupling limit

to be well defined. For the special case r = 1 [177], the potential has an additional
overall “cosmological” constant. For a generic non-gravitational field theory in which
Mpl → ∞ this is just an overall shift of the potential, which we can arbitrarily remove
since it does not change the physics. Nevertheless from a formal point of view, we
know that absolute ground state energy of a globally supersymmetric theory equals
zero, as a result of the supersymmetry algebra {Q,Q} = H. For this reason it is more
natural to restrict the value of r to the range 0 < r < 1.

It may appear that we have changed the canonical renormalization group scal-
ing of the theory. This is not quite true. For the interacting terms in the potential,
it is the coefficients in the product W (2)

0 W (1)
dyn = W (1)

susy that ought to obey canonical

renormalization group scaling. This precisely corresponds to holding W (n)
susy fixed as

Mpl → ∞ (see footnote 6). On the other hand, the scaling of the constant term in
the potential has changed from its canonical value. However, this is very natural in a
supersymmetric theory. The constant term,

∏
n W (n)

0 , equals the ground state energy.
Precisely supersymmetric theories can “naturally” explain non-canonical scaling of
the cosmological constant (at the loop level; the scaling of the bare ground state en-
ergy can be different in every model). A non-integer power is strange but r = 1 is
certainly a viable option in a supersymmetry-breaking ground state: it is the natural
scaling in theories with higher supersymmetry [185] when combined with a sublead-
ing log(Mpl/msusy) breaking. Our engineering analysis only focuses on power-law
scaling and these can always have subleading logarithms. (r = 2 would correspond
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to the cosmological constant for a spontaneously broken N = 1 theory due to mass
splitting).

The novel scaling in (4.15) can be readily generalized to an arbitrary number of
sectors. For s sectors, writing W (n) = W (n)

0 + W (n)
dyn for each sector, the superpotential

W = 1
M3(s−1)

pl

∏s
n=1 W (n) becomes

W =
1

M3(s−1)
pl

 s∏
n=1

W (n)
0 +

s∑
m=1

W (m)
dyn

s∏
n,m

W (n)
0

 +

s∑
l>m

W (m)
dynW (l)

dyn

s∏
n,l,m

W (n)
0

 + . . .

 .
In this expression, we want the last term before the . . . and all terms on the . . . to scale
away as M−r

pl or stronger under Mpl → ∞, where r > 0. The second term(s) should be
constant. As a consequence the first term will scale as Mr

pl. Assuming a scaling that
is homogeneous across sectors, this implies

W (n)
0 ∼ M

3(s−1)+r
s

pl , W (n)
dyn ∼ M

(3−r)(s−1)
s

pl ,

for each of the n ∈ {1, . . . , s}. With this scaling, a general term consisting of t dynam-
ical superpotentials and s − t constant parts, scales as

W t
dynW s−t

0

M3(s−1)
pl

∼ Mr(1−t)
pl ,

and as constructed any term containing dynamical interactions between sectors, t ≥ 2,
is Planck-suppressed. To ensure a vanishing constant term as in equation (4.2.3), r is
again limited to the range 0 < r < 1.

4.3 Zero mass mode for a stabilized sector

Anticipating the situation for an inflationary scenario we now analyze the mass spec-
trum of a stabilized q-sector in a de Sitter background. For Minkowski spaces it
is known that the lightest mass in a stabilized sector scales with the supersymmetry
breaking vacuum expectation value Ga [186]. Here we extend the analysis to de Sitter
vacua as the zeroth order approximation of slow-roll inflation. Already in this zeroth
order approach we will show that a similar light mode develops in the stabilized sec-
tor. Throughout this discussion we assume that the potential V is kept positive by the
presence of the “inflationary” sector. In the next section we show that this result can
be translated directly into an inflationary setting, where this light mode will affect the
slow-roll dynamics.
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4.3 Zero mass mode for a stabilized sector

Given that we insist the q-sector to be stabilized, we have ∂aV = 0. In terms of
the Kähler function G(φ, φ, q, q) this means

(∇aGb)Gb = −Ga(1 + e−GV).

If the q-ground state breaks supersymmetry, i.e. Ga , 0, we may rewrite it in terms
of the supersymmetry breaking direction fa = Ga/

√
GbGb,

(∇aGb) f b = − fa(1 + e−GV).

For simplicity we will assume that the q-sector consists of only a single complex
scalar field q, in which case we may write this equation as

∇qGq = −Gqq(1 + e−GV)Ĝ2
q. (4.16)

A hat ẑ on a complex number denotes the “phase”-part of the number, z = |z|̂z =

|z|ei arg(z). As such Ĝq =
√

Gqq fq. Note that in an arbitrary supersymmetric config-
uration Ga = 0 there are no restrictions on ∇aGb, but on a supersymmetry broken
configuration this is no longer true. Were one to turn on supersymmetry breaking,
one would first have to reach a surface in parameter space where this restriction can
be imposed at the onset of supersymmetry breaking.

We will now compute the mass spectrum for the two modes of the complex scalar
field q, at the hypersurface defined by (4.16). The mass modes are given by the
eigenvalues of the matrix

M2 =

Vq
q Vq

q

Vq
q Vq

q

 ,
which in our case means

m±q =
(
Vq

q ± |V
q
q|
)

= Gqq
(
Vqq ± |Vqq|

)
. (4.17)

Expanding the second derivatives of the potential (cf. appendix 4.B) to first order in
|Gq|, these eigenvalues are

m−q = eGGqqRe
{
(∇q∇qGq)Ĝq3}

|Gq| + O(|Gq|
2), (4.18a)

m+
q = eG

[
2(2 + e−GV)(1 + e−GV) −GqqRe

{
(∇q∇qGq)Ĝq3}

|Gq|

]
+ O(|Gq|

2). (4.18b)

We see from (4.18a) that in the limit of vanishing supersymmetry breaking the lightest
mass mode becomes massless, just as in the case of Minkowski space [186].8 It is

8The result can also be extended to hold for anti-de Sitter vacua. However, for −2 < e−GV < −1, also
a tachyonic mode develops.
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important to note that this result depends crucially on taking the limit Gq to zero in
the supersymmetry breaking direction. When supersymmetry is restored and both
Gq = 0 and Gq = 0, the phases of these vectors have no meaning. In fact, we see that
then a new degree of freedom arises: ∇qGq becomes unrestricted which allows one
to choose the masses freely.

The geometrical picture is that there is a whole plane of supersymmetric solutions
where arbitrary masses are allowed. However, when supersymmetry is broken, the
supersymmetry breaking direction has to align with its complex conjugate fixing one
point on this plane where supersymmetry can be broken. In this point, the lightest
mode becomes massless.

4.4 Two-sector inflation in supergravity

Generally, when inflation is described in supergravity, realistic matter resides in a
hidden sector.9 Supergravities descending from string theory often have additional
hidden sectors as well. These sectors are always gravitationally coupled. In the pre-
vious section we have seen that for de Sitter vacua the hidden sector develops a light
direction. In this section we will consider how this light mode of the hidden sector
can affect the naïve dynamics of the inflationary sector. We will show that despite the
weakness of gravity, these effects can be large. Realistic slow-roll inflation is charac-
terized by small numbers, the slow-roll parameters ε and η, and even small absolute
changes to these numbers can be of the order of 100% in relative terms.

We will first briefly review the η-problem in the context of single field inflation
in supergravity. Then we will explain what effects are to be expected when including
an additional (hidden) sector. The section ends with calculating the relevant objects
to determine the true dynamics of the full system.

4.4.1 Inflation and the η-problem in supergravity

In single scalar field models of inflation the spectrum of density perturbations is
characterized by the two slow-roll parameters ε and η. To ensure that this spectrum
matches the observed near scale invariance, both ε � 1 and η � 1. Inflationary su-
pergravity in its simplest form consists of a single complex scalar field, the inflaton,
whose potential is generated by F-terms (3.28). The definition of η may be phrased

9The supersymmetric partners of the standard model are not good inflaton candidates, as these partners
are charged under the standard model gauge group and gauge fields taking part in inflation would lead to
topological defects [eg. 187, 188]. The exception could be a gravitationally non-minimally coupled Higgs
field [eg. 189, 190].
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as the lightest direction of the mass matrix in units of the Hubble rate 3H2 = V , i.e. η
is the smallest eigenvalue of the matrix, cf. equation (2.7), [191]

Ñ =
1
V

(
∇i∇ jV ∇i∇ V
∇ı∇ jV ∇ı∇ V

)
,

where the tilde on Ñ indicates that this value of η is defined with respect to the inflaton
sector only.10 From the second φ-derivative of V ,

Vi  = Gi V + GiV  + G Vi −GiG V + eG
[
Ri klG

kGl + Gkl∇iGk∇ Gl + Gi 

]
,

we see that a natural value for η is V i
j/V ∼ ∇

iG j ∼ 1 is unity. Therefore, we must
tune Gi, ∇iG j and Ri kl so that V i

j = O(10−3)V . The necessity of this tuning is known
as the η-problem.

As shown in [194], successful inflation is achievable if one tunes the Kähler func-
tion G such that

Ri kl f i f  f k f l .
2
3

1
1 + γ

,

where γ = e−GV/3 is inversely proportional to an overall mass scale m3/2 = eG/2,
which is related to the gravitino mass and Ri kl is the Riemann tensor of the inflaton
sector. As f i fi = 1, the above equation defines the normalized sectional curvature
along the direction of supersymmetry breaking. The constraint becomes stronger as
γ � 1, thus as H � m3/2. When the bound is met, one can always tune η to be small
by tuning Gi, ∇iG j and Ri kl.

Finding a suitably tuned supergravity potential from a (UV-complete) string theo-
retical set-up has proven to be incredibly difficult [195, 196], but possible [197–199].
Currently, in models with correctly tuned slow-roll parameters it is typically assumed
that the “hidden sector” does not affect the finetuning of parameters. The subject of
this chapter is to examine whether such an assumption is justified and hence how
relevant tuned models are that only consider the inflationary sector.

4.4.2 Stability of the hidden sector during inflation

Having reviewed the η-problem in single sector supergravity theories, we will now
consider if and how the fields in the hidden sector can affect the inflationary evolution.
From the diagonalization of the kinetic terms in (4.11) the distinction between φ-fields

10A careful definition based on the kinetic behavior of the inflaton field is done in [192, 193]. In the
slow-roll, slow-turn limit, it reduces to the definition of η given here.
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and q-fields is explicit, leading naturally to an inflationary and a hidden sector. We
will again assume these sectors to both consist of only one complex scalar field, φ
and q respectively. The argument we shall present can already be made in a two-
field system. It carries through to multi-field models because the field φ is viewed
as the inflaton in an effective single field inflationary model, while the field q can be
seen as the lightest mode in the hidden sector. Following the usual practice [1, 2,
and references therein], we assume that inflation is solved by tuning the inflationary
sector only, including obtaining satisfactory values for the slow-roll parameters from
a phenomenological viewpoint. As a result all data in the inflationary sector are fixed
and known. Contrarily, the hidden sector is left unspecified and the restrictions we
find on it are a function of model specific parameters of the inflaton sector only.

To ensure that the hidden sector does not take part in the inflationary dynamics,
one generally assumes that the fields in the hidden sector are stabilized in a ground
state at a constant field value q = q0 throughout inflation

∂qV
∣∣∣
q0

= 0 (4.19)

and, hence, are not dynamical. Clearly an extremum for the hidden sector is obtained
if Gq = 0, i.e. when the ground state of the hidden sector preserves supersymmetry.
As was shown in detail in [155, 156, 166–170, 174], when Gq = 0 the ground state
of the hidden sector decouples gravitationally from the inflationary sector and the in-
flationary sector truly determines the inflationary evolution without any contributions
from the hidden sector. The stability of the extremum of the hidden sector, however,
depends on the inflationary trajectory and a stable extremum might develop into an
instability, leading to a waterfall for the hidden sector fields and, as a result, to the
end of inflation, as discussed in [166, 170].

The case we examine here is when supersymmetry is broken in the hidden sector,
Gq , 0. The first thing to note is that the stability assumption (4.19) cannot be met
anymore. In supergravity the position q = q0 of the minimum of the potential is given
by

Vq = GqV(φ, φ, q, q) + eG(φ,φ,q,q)
(
(∇qGq)Gq + Gq

)
= 0,

which shows that for Gq , 0 the ground state q0 depends on the inflaton field φ,
through V(φ, φ, q, q) and G(φ, φ, q, q). In the situation of unbroken supersymmetry,
Gq = 0, all φ-dependence drops out, but for Gq , 0 we see that it is impossible to
keep the position of the minimum constant during inflation. As the inflaton φ rolls
down the inflaton direction, the “stabilized” hidden scalar q will change its value. It is
clear that the assumption of a vanishing Vq = 0 for all q is incompatible with Gq , 0
and we should therefore abandon it. This in turn means that the hidden sector field
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q must be dynamical, through its equation of motion. Since we still want to identify
the field φ as the inflaton in the sense that it drives the cosmological dynamics, we
have to assume that q moves very little. We must therefore also assume a slow-roll,
slow-turn approximation to the solution of the q equation of motion

q̇ =
GqqVq

3H
.

The statement that the cosmological dynamics is driven by the φ-sector means that

‖q̇‖ � ‖φ̇‖, where ‖q̇‖ ≡
√

Gqqq̇q̇, etc. Through both slow-roll equations of motion
this equates to ‖Vq‖ � ‖Vφ‖ or εq � εφ,

As the hidden sector has now become dynamical, we have to treat the system
as a multi-field inflationary model. Since it is impossible to diagonalize the Kähler
transformations and mass matrix simultaneously, the fields will mix in the case of a
hidden sector with broken supersymmetry [166]. In the next section we will study
the consequences of this mixing by explicitly diagonalizing the mass matrix of the
full two-field system. From the result we shall find three possible effects on the
inflationary dynamics.

First, the lightest masses of fields from the different sectors can be too close to-
gether. It is obvious that one cannot consider an effective single field model if this is
the case, since for the dynamics to be independent of initial conditions, the lightest
field needs to be much lighter than the other fields. When the masses of the two fields
are similar, both of them contribute to the dynamics, resulting into a multi-field rather
than a single field inflationary scenario. As is known from the literature, a multi-field
inflationary model will produce effects such as isocurvature modes [eg. 67, 200–213],
features in the power spectrum [eg. 52, 214–216] and non-Gaussianities [isocurvature
models and eg. 58, 59, 217–224], pointing to a qualitatively different model.

Second, a change of the true value of η can occur. We have assumed the inflaton
sector to be tuned in such a way that it agrees with observed values for the slow-
roll parameters. If the effects of the hidden sector on the total dynamics are such
that η will change significantly, the initial naïve tuning would be of no meaning and
one would have to start the tuning process all over again after the hidden sector has
been added. Again we note that there is no contribution in the case of unbroken
supersymmetry in the hidden sector, since we shall show that the contribution to η
from the hidden sector is mostly determined by the cross terms in the mass matrix,

Vφq = GφVq + GqVφ −GφGqV,

which vanish when Gq = 0.
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Third, a complete change of the sector that determines η is possible. It is possible
that the eventual η-parameter is still within the limits of its naïve tuned value, satis-
fying the second bound, but instead it is determined by the hidden sector rather than
the inflationary sector. Any initial control obtained by tuning the inflationary sector
is superseded by the sheer coincidental configuration of the hidden sector.

4.4.3 The mass matrix of a two-sector system

To investigate when effects from the hidden sector are to be expected, we need to
calculate the eigenvalues of the mass matrix of the full two-field system. Since we
assume the inflationary evolution to be in the slow-roll, slow-turn regime, the dynam-
ics is completely potential energy dominated. The mass matrix of the full two-field
system determines which directions are stable or steep, as characterized by the eigen-
values of this matrix. Normalizing by 1/V to obtain the value of η directly, the matrix
we want to diagonalize is the 4 × 4-matrix

N =
1
V

(
∇I∇JV ∇I∇JV
∇I∇JV ∇I∇JV

)
. (4.20)

Equation (4.20) is to be evaluated at a point near q0 = q0(φ0), where q0 is such that
∂qV(q0) = 0, with φ0 indicating the beginning of inflation. As is clear from the
discussion of section 4.4.2 we cannot truly expect the hidden sector to be stabilized
throughout the inflationary evolution. Nevertheless we may consider ∂qV(q0) = 0 at
a certain point q0 = q0(φ0), with ‖∂qV‖ � ‖∂φV‖ around q0 in accordance with the
restriction εq � εφ.

The mass matrix is Hermitian and, considering again a two-field system, can be
put in the form

N =
1
V


∇φVφ ∇φVφ ∇φVq ∇φVq

∇φVφ ∇φVφ ∇φVq ∇φVq

∇qVφ ∇qVφ ∇qVq ∇qVq

∇qVφ ∇qVφ ∇qVq ∇qVq

 ,
by a coordinate transformation. Diagonalizing the full matrix in general is involved.
Therefore, we adopt the strategy to diagonalize the two sectors separately and then
pick the lightest modes only. The first step yields

N =


1
V (Vφ

φ − |V
φ

φ
|) 0 A11 A12

0 1
V (Vφ

φ + |Vφ

φ
|) A21 A22

A11 A21
1
V (Vq

q − |V
q
q|) 0

A12 A22 0 1
V (Vq

q + |Vq
q|)

 ,
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with

A =
1

2V

(
−V̂φφ V̂φφ

1 1

)−1 Vφ
q Vφ

q

Vφ

q
Vφ

q

 (−V̂qq V̂qq

1 1

)
.

Here, the first matrix is the inverse of the similarity transformation of the φ-sector and
the last matrix diagonalizes the q-sector.

In general the eigenmodes in the individual sectors will be different, one always
being smaller than the other. Dynamically the most relevant direction is the lightest
mode of each sector, but by restricting to these light directions, one assumes a hierar-
chy already within the sectors. For the inflationary sector this is phenomenologically
justified if we assume that inflation is described by a single field, where we know
that Vφ

φ and Vφ

φ
combine such that a light mode appears with mass ηV , much lighter

than the other mass modes. For the hidden sector we will simply assume that a large
enough hierarchy between mass modes exists. This will simplify matters without
weakening our result. By including only the lightest mode of the hidden sector, we
can already show that the true dynamics is in many cases not correctly described by
the naïve inflaton sector. Our case would only be more strongly supported if we would
include the heavy mode of the hidden sector, but this is technically more involved.
Projecting on the light directions, we get a submatrix of light mass modes

Nlight =

(
λφ A11

A11 λq

)
,

with

λφ =
1
V

(
Vφ

φ − |V
φ

φ
|

)
=

Gφφ

V
(Vφφ − |Vφφ|), (4.21a)

λq =
1
V

(
Vq

q − |V
q
q|
)

=
Gqq

V
(Vqq − |Vqq|), (4.21b)

A11 =
Gφφ

2V

(
V̂qqV̂φφVφq − V̂qqVφq + Vφq − V̂φφVφq

)
. (4.21c)

The eigenvalues of this two-field system are given by

µ± =
1
2

(
λφ + λq

)
±

1
2

√(
λq − λφ

)2
+ 4|A11|

2. (4.22)

Since µ− < µ+ the second slow-roll parameter for the full system is given by η = µ−.

67



4. Inflation embedded in supergravity

4.5 Dynamics due to the hidden sector

In the slow-roll and slow-turn approximation, the mass modes µ± from (4.22) deter-
mine the dynamics of the full system. In general the true dynamics will deviate from
the naïve single sector evolution. As explained in section 4.4.2 it is necessary to put
constraints on the full system for the true dynamics to still (largely) agree with the
initial naïve dynamics. We will quantify these constraints in terms of the hidden sec-
tor light mode λq and the dynamical cross coupling |A11| between sectors. The results
are graphically summarized in figures 4.1 and 4.2. In section 4.5.2 and figure 4.3
we will discuss the result again but then interpreted from the viewpoint of supergrav-
ity. Finally we will explain that a simple application of these bounds implies that the
standard model cannot be ignored during cosmological inflation, if standard model
supersymmetry breaking is independent of the inflaton sector.

4.5.1 Conditions on the hidden sector data

From (4.22) we see that the light modes λφ, λq from the two separate sectors mix
through a cross coupling |A11| and combine to the true eigenvalues µ± of the full two-
sector system. As explained in 4.4.2, for the inflaton sector to still describe the cos-
mological evolution and the η-parameter reliably, the three constraints it must obey
are (1) the bound arising from demanding a hierarchy between µ± to prevent multi-
field effects, (2) the bound arising from demanding the second slow-roll parameter
µ− = η to not change its value too much and (3) the bound from demanding that η is
mostly determined by the φ-sector rather than the q-sector.

To prevent multi-field effects from setting in, we take as a minimum hierarchy
that µ+ is at least five times as heavy as µ− in units of the scale of the problem |µ−|,

µ+ − µ−
|µ−|

> 5. (4.23)

This bound is rather arbitrary, but clearly a hierarchy between µ+ and µ− must ex-
ist. Calculations in [215] show that for a mass hierarchy . 5 multi-field effects are
typically important.

The second bound is given by the A11-dependence of µ−. The value of the second
slow-roll parameter from the single field inflationary model only is ηnaïve = λφ. In the
full two-sector system, µ− takes over the role as the true second slow-roll parameter
ηtrue = µ−. The contribution to the actual η-parameter from the presence of the hidden
sector is therefore

∆η = µ− − λφ =
1
2

[
(λq − λφ) −

√
(λq − λφ)2 + 4|A11|

2
]
, (4.24)
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4.5 Dynamics due to the hidden sector

which is always negative. We argue that this difference should stay within |∆η/λφ| <
0.1, i.e. η should not change by more than 10%. This choice for the range of η
is given by current experimental accuracy. Current experiments can only determine
ns = 1 − 6ε + 2η. WMAP has a 1σ error of 6.53% [10], Planck will have an error of
0.70% [69]. For ns − 1, assuming 0.96, this gives a 17.5% error on the combination
of −6ε + 2η, which means an uncertainty of about 10% on the value of η.

We will examine λq, A11 in units of |λφ| and exclude regions in which the hidden
sector affects the tuned inflationary sector too much. The analysis is best done sep-
arately for the cases λφ = ηnaïve > 0 and λφ = ηnaïve < 0 because of the qualitative
differences between these cases.

The case ηnaïve > 0

We first examine the hierarchy bound as explained above and focus first on the situa-
tion where µ− > 0. In this case (4.23) means that we demand

µ+ − 6µ−
λφ

=
1
2

−5
(
λq

λφ
+ 1

)
+ 7

√(
λq

λφ
− 1

)2

+ 4
(
|A11|

λφ

)2
 > 0,

which allows us to solve λq/λφ as a function of |A11|/λφ,

(
12
35

)2 (
λq

λφ
−

37
12

)2

+

2
√

6
5

2 (
|A11|

λφ

)2

= 1.

This excludes everything inside the ellipse demarcating the green region in figure 4.1.
The case µ− < 0 is not relevant as it is already excluded by the second bound.

For this second bound, to be somewhat more general than the observationally
inspired constraint ∆η/λφ > −0.1, we give the bound ∆η/λφ > − f . Solving for λq

this gives
λq

λφ
> 1 − f +

1
f

(
|A11|

λφ

)2

,

as is indicated in blue in figure 4.1. Note that since the true value of η is always lower
than ηnaïve (see [225] for some specific examples), a change in η of 100% means that η
changes sign from its naïve value. This shows that we were justified to only consider
positive µ− in the hierarchy bound earlier.

The third bound is given by a λq-dominance in µ−. Since λφ and λq are treated on
equal footing in µ−, the true η is dominantly determined by the smallest eigenvalue,
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Figure 4.1: Bounds from a dynamical hidden sector for ηnaïve > 0. The multi-field
constraint excludes an ellipse near the λq-axis (shaded in green). The bound from having
too much effect on η excludes large |A11| (shaded with increasing intensities of blue for
larger deviations). Around λq = A11 = 0 the hidden sector mode λq rather than λφ
determines η, excluding that region as well (shaded in purple).

which is not necessarily λφ. When λφ � λq and λφ � |A11| we see immediately that
the true η = µ− is determined by λq and is independent of λφ,

µ− =
1
2

(λq + λφ) − λφ

1 − λq

λφ
+ O

λ2
q

λ2
φ

,
|A11|

2

λ2
φ

 .
It is clear that this arguments excludes the lower left corner of parameter space. We
will take the bound to be 1/

√
2 such that

(
λq/λφ

)2
,
(
|A11|/λφ

)2
< 1/2 � 1, the

radius of convergence of this Taylor expansion. Contrarily to the somewhat debatable
bounds imposed by ∆η/λφ, the points within this circle are truly excluded because
they violate one of the core assumptions in the approach, viz. that the φ-sector is
responsible for all cosmological dynamics including determining the value of η. The
circle (

λq

λφ

)2

+

(
|A11|

λφ

)2

=
1
2
,
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4.5 Dynamics due to the hidden sector

is indicated as the purple region in the figure.
In figure 4.1 we have indicated in which regions of λq/λφ- and |A11|/λφ-parameter

space the effects of a hidden sector can be rightfully ignored. We have shown that all
negative values of λq are excluded and only in the region with large λq/λφ and small
|A11|/λφ there are no large effects from the hidden sector. This result is qualitatively
easily understood, as the hidden sector with broken supersymmetry will still decouple
if the masses in the hidden sector are truly large. We argue that this possibility is too
easily assumed to be the case in the literature without considering the actual hidden
constraints it imposes on the hidden sector. These hidden assumptions should be
mentioned explicitly and one should show that they can be obtained.

The case ηnaïve < 0

In the case that λφ = ηnaïve is negative, the last bound of section 4.5.1 does not impose
any condition on λq/|λφ|, |A11|/|λφ|-parameter space. When λφ < 0, i.e. when λφ =

−|λφ|, the eigenvalues can be written as

µ± =
|λφ|

2


(
λq

|λφ|
− 1

)
±

√(
λq

|λφ|
+ 1

)2

+ 4

∣∣∣∣∣∣A11

λφ

∣∣∣∣∣∣2
 ,

which means that µ− is not determined by λq to first order in λq/|λφ| but by λφ as
should be,

µ− =
|λφ|

2

[(
λq

|λφ|
− 1

)
−

(
1 +

λq

|λφ|
+ . . .

)]
.

However, by the hierarchy bound the small λq/|λφ|-regime does get excluded. Since
µ− is always negative in this case,

µ− ≤
|λφ|

2

[(
λq

|λφ|
− 1

)
−

∣∣∣∣∣∣ λq

|λφ|
+ 1

∣∣∣∣∣∣
]

= −|λφ|,

equation (4.23) translates into

µ+ + 4µ−
|λφ|

=
1
2

5
(
λq

|λφ|
− 1

)
− 3

√(
λq

|λφ|
+ 1

)2

+ 4

∣∣∣∣∣∣A11

λφ

∣∣∣∣∣∣2
 > 0.

This excludes everything beneath the upper branch of the hyperbola given by the line

λq

|λφ|
>

17
8

+
1
8

√
152 + 28

∣∣∣∣∣∣A11

λφ

∣∣∣∣∣∣2,
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Figure 4.2: Bounds from a dynamical hidden sector for ηnaïve < 0. The multi-field bound
excludes a hyperbola starting at λq = 4|λφ| and, in particular, small λq (shaded in green).
The bound from having too much effect on η excludes the large |A11|-region (shaded with
increasing intensities of blue for larger deviations), but leaves open in particular the full
range of λq.

which is shaded green region in figure 4.2.
The final constraint on the parameter space comes from the bound on the change

in η, see the previous paragraph on the ηnaïve > 0-case for a discussion. In the blue
region in figure 4.2 we have indicated the bound |∆η/λφ| < f , which means

λq

|λφ|
> −1 − f +

1
f

∣∣∣∣∣∣A11

λφ

∣∣∣∣∣∣2 ,
for different fractions of f .

In figure 4.2 we have indicated in which regions of λq/|λφ|- and |A11|/|λφ|-
parameter space the effects of a hidden sector can be rightfully ignored after imposing
both constraints. As in the case for ηnaïve > 0, the only allowed region is for large
λq/|λφ| and small |A11|/|λφ|. Note that all values of λq < 4|λφ| are explicitly excluded
by the imposed bounds.
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Figure 4.3: Excluded regions for the supergravity parameter range for |Gq| and β, which
contains in particular ∇q∇qGq, in units of |ηnaïve| and |α|, which contains εφ and Gφ. The
indicated regions come from the multi-field bound (shaded in green), the correct identifi-
cation of sectors (shaded in purple) and allowing only for small deviations of η (shaded
in higher intensities of blue for larger deviations). The left (right) picture describes the
case ηnaïve > 0 (ηnaïve < 0).

4.5.2 Conditions on supergravity models

In principle, figures 4.1 and 4.2 provide all the information needed to verify whether
the hidden sector of a given model may be neglected while studying the inflationary
dynamics. Through equations (4.21) and the expressions for VIJ as summarized in
appendix 4.A, one can explicitly calculate the corresponding λq and A11 for a given
model and compare them with the figures. However, we would like to have some
direct intuition about the dependence of the excluded regions on the supergravity data.
In this section we will investigate how much we can say about this in general without
having to specify a model. The main question to answer is whether the fact that λq

and A11 are determined by a supergravity theory, provides any additional constraint
on which regions are obtainable to begin with. The answer to this question turns out
to be that a priori supergravity is not restrictive enough to exclude any of the regions
in λq, A11-parameter space.

The easiest way to translate figures 4.1 and 4.2 in terms of supergravity data
would be to simply map the regions into supergravity parameter space. Unfortunately
the expressions in (4.21) are highly nonlinear and depend on too many supergravity
variables to conveniently represent figures 4.1 and 4.2 in terms of supergravity data.
However, for small |Gq| this does turn out to be possible.
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4. Inflation embedded in supergravity

Applying the explicit expressions for VIJ as found in appendix 4.A to (4.21c),
yields

A11 = α(φ, φ, q, q)|Gq|, with (4.25)

α(φ, φ, q, q) =
Gφφ

2

(
Ĝq − V̂qqĜq

) ((Vφ

V
−Gφ

)
− V̂φφ

(Vφ

V
−Gφ

))
.

From this equation we learn that A11 vanishes in the limit Gq → 0, which makes
sense as we know that the two sectors should decouple in the limit of restored su-
persymmetry. It is difficult to retrieve more information from this explicit expression
of A11 in terms of supergravity data. In principle A11(|Gq|, . . .) may be inverted to
give some function |Gq|(A11, . . .), but this is trickier than (4.25) suggests. Although
we have managed to extract one factor of Gq, the function α(φ, φ, q, q) still depends
on Gq through the phases of V̂qq and V̂φφ, making it hard to perform the inversion
explicitly.

The expression for λq looks even worse,

λq =
Gqq

V

(
Vqq −

√
VqqVqq

)
. (4.26)

At this stage we have refrained from substituting in the expressions for Vqq, Vqq and
its complex conjugate. The square root clearly shows that the dependence of λq on
|Gq| and the other supergravity data is involved and difficult to invert. To get a useful
expression we revert to the result of section 4.3 and consider λq in the small |Gq|-
regime by performing a Taylor expansion. Copying from (4.18a), we find

λq = β(φ, φ, q, q)|Gq| + O(|Gq|
2), with (4.27)

β(φ, φ, q, q) =
Gqq

e−GV
Re

{
(∇q∇qGq)Ĝq3}

.

Having obtained the relations (4.25) and (4.27) we can now accommodate the
reader with a graph of the allowed and excluded regions directly in terms of the
supergravity data. For small Gq � 1 both λq and |A11| scale linearly with Gq, making
it relatively easy to rewrite the bounds we found λq/|λφ| = λq/|λφ|

(
|A11|/|λφ|

)
in terms

of Gq, α and β as β/|α| = β/|α|
(
|αGq|/|λφ|

)
. The resulting figure is depicted in 4.3.

Note that α and β are still underdetermined — depending on Rqqqq and ∇q∇qGq at
higher orders in |Gq|— and are naturally of order 1. It is these numbers that determine
where in figure 4.3 the model under investigation lies.
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4.5 Dynamics due to the hidden sector

Figure 4.4: The effects of the multi-field bound (shaded in green), the identification of
the correct inflaton sector (shaded in purple) and the small deviations of η (shaded in blue)
on a doubly logarithmic scale for ηnaïve > 0 (left) and ηnaïve < 0 (right). The approximate
location of the standard model supergravity data is indicated with a red bar, showing that
a large range of parameters is excluded. In this plot α = 1 and λφ = ηnaïve = 10−3.

4.5.3 Inflation and the standard model of particle physics

As a simple application of the previous section, we can consider to what extent the
standard model ought to be included in any reliable supergravity model for cosmolog-
ical inflation. Our current understanding of nature includes a present-day supersym-
metrically broken standard model after an inflationary evolution right after the big
bang. As such the combined model is exactly that of a two-sector supergravity theory
with an inflationary and a hidden sector whose ground state breaks supersymmetry in
which it resides throughout the inflationary era.

Supersymmetry in the standard model sector can either have been broken by grav-
ity mediation of the inflaton sector or by a mechanism in the standard model sector
itself. The first situation would be a consistent approach as far as our analysis goes:
as Gq = 0 the sector decouples from the inflationary dynamics, might be stabilized
and the slow-roll parameters are reliably determined from the inflaton sector alone.
Nevertheless, from the point of view of our understanding of the standard model it
would be unsatisfactory to not know the precise mechanism behind its supersymme-
try breaking and (complete) models describing such mechanisms would still have to
be analyzed to shed light on the situation.

In the second situation, Gq , 0, we should apply the results of the previous
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4. Inflation embedded in supergravity

sections. The field q may be seen as some light scalar degree of freedom in the
(supersymmetrically broken) standard model. We assume the standard lore, that su-
persymmetry is broken in the standard model at a scale of about 1 TeV. In the F-term
scalar potential, this scale enters via Gq. To determine the correct numerical value,
we relate our dimensionless definition of the Kähler function to the standard dimen-
sionful definition. Dimensionful quantities are denoted with a tilde in the following.11

We recall from section 4.2.3 that in order to have a non-vanishing vacuum energy, the
superpotential in both sectors must have a non-zero constant term W (1)

0 = m(1)
Λ
/Mpl,

W (2)
0 = m(2)

Λ
/Mpl, which accounts for the always present gravitational coupling be-

tween the sectors. Hence, the dimensionful constant term in the total superpotential
(4.13) has value W̃ tot

0 = W (1)
0 W (2)

0 M3
pl = m(1)

Λ
m(2)

Λ
Mpl. In contrast, the supergravity

quantities K̃(2) and W̃ (2)
susy = W̃ (1)

0 W̃ (2)
dyn/M

3
pl describing the standard model are natu-

rally of the order of the TeV-scale, [W̃ (2)
susy] = TeV3, [∂q̃K̃(2)] = TeV. We relate the

scale of supersymmetry breaking G̃q̃ to the superpotential via

G̃q̃ =
M2

pl

W̃

∂q̃W̃ +
∂q̃K̃(2)

M2
pl

W̃

 ,
which is naturally of order

[
G̃q̃

]
=

M2
pl

m(1)
Λ

m(2)
Λ

Mpl + . . .

TeV2 +
TeV
M2

pl

(m(1)
Λ

m(2)
Λ

Mpl + . . .)

 =
MplTeV2

m(1)
Λ

m(2)
Λ

+TeV+ . . . ,

where the . . . are of subleading order. We expect that m(1)
Λ

, the constant term of the
inflaton sector, is of order [H] = 10−5Mpl, while [m(2)

Λ
] = TeV. Hence, translating

back to dimensionless units, we find Gq ∼ 10−11.
Taking the kinetic gauge, i.e. a canonical Kähler metric Gφφ = 1, we can easily

find the natural value of α. From (4.25) we see that α depends on εφ and Gφ via

α ∝
√
εφ −Gφ,

modulo some unknown but negligible phase factors. Gφ is of order
√

3 in order to
have a potential V > 0. Since εφ is of order O(10−3), the value of |α| is of order unity.
For a rough estimate of ηnaïve ∼ 10−3, we can therefore pinpoint the standard model
as indicated in figure 4.4. In both cases, ηnaïve > 0 as well as ηnaïve < 0, the lightest

11E.g. in dimensionful units [G̃] = mass2 and [̃q] = mass, while our conventions are [G] = [q] = 0. To

relate Gq to G̃q̃ we can use the expression
[
Gq

]
=

[G̃q̃]
Mpl

.
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supersymmetric particle is too light for the single sector inflationary dynamics to truly
describe the full system. Any tuned and working inflationary supergravity model
in which the standard model is assumed to not take part in the cosmic evolution,
requires implicit assumptions on the standard model that either the inflaton sector is
responsible for standard model supersymmetry breaking through gravity mediation
or the masses of the standard model scalar multiplets are unnaturally large in terms
of the now independent standard model supersymmetry breaking scale.

4.6 Conclusions

We have studied the effect of hidden sectors on the finetuning of F-term inflation in
supergravity, identifying a number of issues in the current methodology. Finetuning
inflationary models is only valid when the neglected physics does not affect this fine-
tuning, in which case the inflationary physics can be studied independently. As shown
in figures 4.1 and 4.2 this assumption holds only under very special circumstances.
The reason is that the everpresent gravitational couplings will always lead to a mixing
of the hidden sectors with the inflationary sector, even in the case of the most mini-
mally coupled action (4.11). For a hidden sector vacuum that preserves supersymme-
try, the sectors decouple consistently [166–169, 182]. However, for a supersymmetry
breaking vacuum the inflationary dynamics is generically altered, where the nature
and the size of the change depends on the scale of supersymmetry breaking.

For a hidden sector with a low scale of supersymmetry breaking, like the standard
model, the cross coupling scales with the scale of supersymmetry breaking, and is
therefore typically small. Yet, as shown in section 4.3, the lightest mass of the hidden
sector depends as well on the scale of supersymmetry breaking within that sector.
This light mode is strongly affected by the inflationary physics and thus evolves dur-
ing inflation. Therefore, any single field analysis is completely spoiled as discussed
in section 4.5.3.

For massive hidden sectors, the problem is more traditional. For a small hidden
sector supersymmetry breaking scale, one has a conventional decoupling as long as
the lightest mass of the hidden sector is much larger than the inflaton mass. However,
for large hidden sector supersymmetry breaking, this intuition fails. Then, the off-
diagonal terms in the mass matrix (4.20) will lead to a large correction of the η-
parameter.

To conclude, any theory that is working by only tuning the inflaton sector has
made severe hidden assumptions about the hidden sector, which typically will not be
easily met. Methodologically the only sensible approach is to search for inflation in
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4. Inflation embedded in supergravity

a full theory, including knowledge of all hidden sectors.

4.A Some supergravity relations

For easy reference to the reader, we use this appendix to state the relevant derivatives
of the supergravity potential of a two-sector system coupled via

G(φi, φ
ı
, qa, qa) = G(1)(φi, φ

ı
) + G(2)(qa, qa). (4.28)

We use middle-alphabet indices {i, ı} to denote the fields in the inflationary sector,
beginning-alphabet indices {a, a} to denote the fields in the hidden sector and capital
middle-alphabet indices {I, I} to denote the full system. Derivatives with respect to
these fields are denoted by subscripts, e.g. ∂iG = Gi and ∂i∂ jG = Gi j. The Hessian
GIJ describes the metric of the (product-) manifold parameterized by the fields. This
is a Kähler manifold and hence ∇IGJ = GIJ .

The supergravity potential is

V = eG(GIGI − 3) = eG(GIG
I − 3) = eG(GaGa + GiGi − 3).

Its covariant derivatives are denoted with subscripts (note that this is a different con-
vention than the one used for the Kähler function G), e.g. ∇iV = ∂iV = Vi and
∇i∇ jV = Vi j. In terms of derivatives of G, the first derivatives of V are given by

Vi = GiV + eG
(
(∇iG j)G j + Gi

)
, (4.29a)

Vı = GıV + eG
(
(∇ıG )G  + Gı

)
, (4.29b)

and similar expressions for Va and Va. The Hessian of covariant derivatives is

Vi j = ∇iG jV + GiV j + G jVi −GiG jV + eG
[
(∇i∇ jGk)Gk + 2∇iG j

]
, (4.30a)

Vi  = Gi V + GiV  + G Vi −GiG V + eG
[
Ri klG

kGl + Gkl∇iGk∇ Gl + Gi 

]
, (4.30b)

Via = ∇aGiV + GiVa + GaVi −GiGaV + eG
[
(∇a∇iGI)GI + ∇iGa + ∇aGi

]
= GiVa + GaVi −GiGaV, (4.30c)

Via = GiaV + GiVa + GaVi −GiGaV + eG
[
RIJiaGIGJ + GIJ∇iGI∇aGJ + Gia

]
= GiVa + GaVi −GiGaV, (4.30d)

and similar expressions for the other VIJ . The equalities in (4.30c) and (4.30d) result
from the specific form of the Kähler function (4.28).
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4.B Mass eigenmodes in a stabilized sector

4.B Mass eigenmodes in a stabilized sector

In this appendix we provide some intermediate results in the calculation of (4.18).
Using the expressions as stated in appendix 4.A, to first order in |Gq|, the second
derivatives of the potential are given by

Vqq = eG
[
(2 + e−GV)∇qGq + (∇q∇qGq)Gq

]
+ O(|Gq|

2), (4.31a)

Vqq = eG
[
Gqq(1 + e−GV) + Gqq(∇qGq)(∇qGq)

]
+ O(|Gq|

2). (4.31b)

Using the supersymmetry breaking restriction (4.16) in (4.31), we find

Vqq = −eGGqq

[
(2 + e−GV)(1 + e−GV)Ĝq−2

−Gqq(∇q∇qGq)Gq
]

+ O(|Gq|
2), (4.32a)

Vqq = eG
[
Gqq(1 + e−GV) + (1 + e−GV)2GqqGqqGqq

]
+ O(|Gq|

2)

= eGGqq(2 + e−GV)(1 + e−GV) + O(|Gq|
2), (4.32b)

and hence

|Vqq| = eGGqq(2 + e−GV)(1 + e−GV)×√√
1 −

2GqqRe
{
(∇q∇qGq)GqĜq

−2}
(2 + e−GV)(1 + e−GV)

+

∣∣∣Gqq(∇q∇qGq)Gq
∣∣∣2

(2 + e−GV)2(1 + e−GV)2 + O(|Gq|
2)

= eGGqq

[
(2 + e−GV)(1 + e−GV) −GqqRe

{
(∇q∇qGq)Ĝq3}

|Gq|

]
+ O(|Gq|

2).

(4.33)

Then (4.17) is evaluated to be

m−q = eGGqqRe
{
(∇q∇qGq)Ĝq3}

|Gq| + O(|Gq|
2), (4.34a)

m+
q = eG

[
2(2 + e−GV)(1 + e−GV) −GqqRe

{
(∇q∇qGq)Ĝq3}

|Gq|

]
+ O(|Gq|

2). (4.34b)
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5
Worldsheet cosmology

In the previous chapter we have discussed the difficulties one faces when studying
inflation in a separated but controlled environment in any supergravity theory. We
have seen that there is a substantial worry that other parts of the theory will contribute
to inflation in a non-negligible fashion. In this chapter we will capitalize on precisely
this, employing the opportunity inflation provides to constrain unknown physics. To
incorporate a complete system, we have to go back to the roots of string theory.
Therefore, our approach starts from the worldsheet description of string theory, using
conformal invariance to investigate the (coarse) constraints that inflation imposes on
the theory. The chapter is based on [226].

5.1 Introduction

The last ten years many attempts have been made to understand inflation from a more
fundamental level within string theory [1, 197, 227–230]. Cosmological observations
strongly suggest an era of inflation in the early universe, and string theory, being a
quantum theory of gravity with a unique UV-completion, should be able to describe
this. In addition, inflation generically probes energy scales that are unobtainable
in accelerator experiments, and there is a chance that string scale effects may be
detectable in future cosmological observations [51, 231–236].

One of the essential characteristics of inflation is that it solves the flatness and
horizon problem within classical general relativity [25–27]. Moreover, inflation is a
very coarse phenomenon that only depends on the energy density and pressure in the
universe without a need to specify any details of the matter content. In string theory
the equations of motion of classical general relativity are the conditions of conformal
invariance of the worldsheet string theory. As such, a string theoretic description of
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inflation should only depend on very generic scaling properties of the conformal field
theory on the worldsheet.

Extending worldsheet descriptions of tachyon condensation scenarios [111, 237,
238], we will attempt to describe inflation with a worldsheet theory that is a com-
bination of a spacetime and matter-part, which mix via spacetime dependent cou-
plings ua(x) for operators Oa of an abstract internal conformal field theory. From the
viewpoint of the internal conformal field theory alone such a deformation induces
an internal renormalization group flow. Total conformal invariance of the combined
theory can only be kept if the background fields adjust themselves in such a way
that the running induced by the scaling behavior of the operators Oa of the internal
conformal field theory is canceled. The renormalization group flow can therefore be
seen to define the possible dependence of ua(x) on the spacetime coordinates xµ, or in
other words the β functions of the full theory determine the equations of motion for
the background fields ua(x). These equations can be compared to slow-roll inflation
to find conditions on the internal conformal field theory. We shall indeed find that,
from the worldsheet perspective, the inflationary slow-roll parameters are completely
characterized by the central charge and the scaling behavior of the couplings of the
conformal field theory, in line with our expectation that inflation is a phenomenon
that only depends on generic properties of the matter sector.

This is not to say that we have solved inflation in string theory. Describing strings
in a time-dependent background is notoriously difficult. In a large part this is due to
our lack of a background independent description of the theory. At low energies we
can resort to a supergravity description, but inflation fits awkwardly in the low en-
ergy supergravity framework (η-problem, Lyth-bound, absence of de Sitter solutions
[239]). As recently emphasized [240], one almost certainly needs stringy ingredients
to describe accelerating backgrounds. The worldsheet approach is conceptually dif-
ferent from supergravity calculations, but it has its own drawbacks when trying to
describe a string in a de Sitter-like background. At tree-level (in gs), we are only
able to describe small deviations from Minkowski spacetime rather than de Sitter
spacetime, as is well known [241–245]. Inflationary solutions are a larger class of ac-
celerating spacetimes than pure de Sitter, so one could optimistically hope for a better
fit into string theory. Nevertheless, they are closely related to pure de Sitter and we
may already anticipate problems to describe them for the same reason. Substituting
the solutions to the β functions into the formal expressions, we indeed find a simi-
lar divergence due to the fact that the dilaton cannot be stabilized in tree-level string
theory and with a dynamical dilaton inflation does not occur. This is of course the
Fischler-Susskind phenomenon [241, 242]. This, however, is not the main point. We
wish to show that, inflation being a coarse phenomenon, it only depends on coarse
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details of the internal conformal field theory. That we do, formally, while at the same
time we recover the known Fischler-Susskind result that any tree-level string theory
model is ruled out as a theory for inflation.

This chapter is structured as follows: first we describe the worldsheet set-up suit-
able for inflation and derive the equations of motion. We review multi-field slow-roll
inflation in section 5.3, so that in section 5.4 we can state our main result. We shortly
discuss the possibility to generalize the results to higher loop order. We conclude
discussing the relation between our results with results known from the literature
[244, 245].

5.2 Background dynamics for a generic worldsheet
theory

5.2.1 Conformal perturbation of a coupled gravity and matter
system

We wish to describe a realistic model of inflation in string theory, i.e. there is a
3+1-dimensional homogeneous and isotropic cosmological spacetime which expe-
riences accelerated expansion. Similar to phenomenological model building, we are
naturally led to consider a worldsheet conformal field theory consisting of two parts:
a nonlinear σ model accounting for four-dimensional gravity in combination with a
matter/internal theory [111, 237]. The nonlinear sigma model is a curved bosonic
string in four dimensions, µ, ν ∈ {0, 1, 2, 3},

S NLσM = S g(x) + S Φ(x), (5.1a)

S g(x) =
1

2πα′

∫
d2z g(S )

µν (x)∂xµ∂xν, (5.1b)

S Φ(x) =
1

4π

∫
d2z
√

h Φ(x)R(2), (5.1c)

with g(S )
µν the four-dimensional string frame metric and hαβ the Euclidean worldsheet

metric. To keep the discussion simple we will set the Neveu-Schwarz form to zero,
Bµν = 0, but we do consider the effect of the dilaton. The dilaton is a (light) scalar
and is naturally a part of cosmological dynamics or any time-dependent scenario, e.g.
tachyon condensation [111]. More importantly, the dilaton is closely related to the
scale factor of the Einstein frame metric and as such could be driving part of the
cosmological expansion.
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The internal theory will be some two-dimensional conformal field theory S 0 with
central charge c and (primary and descendant) operators Oa with scaling dimensions
∆a. We purposely leave the theory unspecified. The goal of this study is to deduce
what type of internal conformal field theory, i.e. which constraints on the central
charge and operator dimensions and couplings, could give rise to a realistic model for
inflation. Since FLRW cosmological dynamics only cares about coarse characteris-
tics of the matter, viz. pressure and energy, we expect that only coarse information
about the internal conformal field theory should be needed to deduce cosmologi-
cal dynamics. Because time-dependent backgrounds must break supersymmetry, we
can incorporate all the fermionic partners to xµ and the worldsheet diff×Weyl- and
supersymmetry ghosts into the internal conformal field theory.1 The internal confor-
mal field theory will exhibit characteristic scaling behavior under a deformation by
nonzero couplings ua to the primary operators,

S = S 0 + S Φ + S u, (5.2a)

S Φ =
1

4π

∫
d2z
√

h ΦR(2), (5.2b)

S u =

∫
d2z uaOa. (5.2c)

This behavior is intrinsic to the internal theory and fully captured by the β functions
β

a
(u) of the couplings ua, whose lowest order (classical) contribution is given by

(∆a − 2)ua. We have again included the (constant part of the) dilaton Φ here as a (non
x-dependent) coupling to the worldsheet curvature R(2) in order to easily incorporate
the Weyl anomaly contribution of the internal theory. At a renormalization group
fixed point of this perturbed conformal field theory, β

Φ
(u) will just be proportional to

the central charge of the internal conformal field theory, cf. (3.23),

β
Φ

(u) =
c
6

+ O(u).

Due to the conformal perturbations of the internal theory, higher order effects in u
will result in a “running” of β

Φ
[110, 246].

To obtain spacetime dynamics driven by the matter sector, we couple the internal
theory plus dilaton to the Polyakov nonlinear σ model into a full worldsheet theory

1One could keep supersymmetry manifest in principle but it is technically far more involved: with the
worldsheet supersymmetric string one needs to track the GSO projection carefully whereas the superspace
Green-Schwarz string does not lend itself easily to non-supersymmetric backgrounds. Essentially all these
technicalities reside in the internal sector and it is not clear what one would gain by tracking them closely.
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with a cross-coupling ua(x)Oa between the two sectors,2

S tot = S g(x) + S 0 + S Φ(x) + S u(x), (5.3a)

S u(x) =

∫
d2z ua(x)Oa. (5.3b)

The couplings ua(x) to the internal conformal field theory operators Oa depend on the
spacetime coordinates xµ. Since a consistent string theory is described by a confor-
mal worldsheet theory, the full operators ua(x)Oa are assumed to be exactly marginal
deformations of the theory. That is, the total theory must remain conformally invari-
ant and the spacetime equations of motion are given by the requirement that the β
functions of the full theory vanish [103, 105, 117].

The β functions of the coupling functionals gµν(x), ua(x) and Φ(x) are readily
computed using worldsheet techniques and conformal perturbation theory [111]. We
give a brief summary in appendix 5.A. Here we simply state the result,

0 =
1
α′
β

g
µν = Rµν − Mab(u)∇µua∇νub + 2∇µ∇νΦ, (5.4a)

0 =
1
α′
βa =

1
α′
β

a
(u) −

1
2

D∇ua + ∇ρΦ∇ρua, (5.4b)

0 =
1
α′
βΦ = U(u) −

1
2
∇2Φ + (∇Φ)2 , (5.4c)

where Mab(u) is the positive definite Zamolodchikov metric on the space of coupling
constants [110, 111],

Mab(u) = 4π2〈Oa(ε)Ob(0)〉u.

We denote its connection by Ka
bc and we have defined a covariant derivative [193]

2As in [111] we do not include cross couplings in the dilatonic sector,
∫

d2z Φa(x)OaR(2), nor do
we consider a further dependence of the spacetime metric on the internal degrees of freedom through a
“warped geometry” cross coupling

∫
d2z ga

µν(x)∂xµ∂xνOa. Conformal perturbation theory is only valid
when all operators are marginal or nearly marginal, in which case the corresponding couplings describe
nearly massless string excitations and the deviation away from the conformal product structure is small.
When we assume the operators Oa to be nearly marginal, i.e. |∆a − 2| � 1, the couplings Φa and ga

µν

are highly irrelevant and describe very massive string excitations. As such they will fall outside the range
of validity. In order to describe these more general cross couplings, a different set of operators Aα with
dimension nearly zero would have to be introduced to combine with the Φα(x)R(2)- and gαµν(x)∂xµ∂xν-
operators. Considering the ubiquity of warped solutions in string inflation, it would be interesting to
extend the computation below to such solutions. One should bear in mind however that almost all warped
solutions other than a non-trivial dilaton involve contributions from different worldsheet topologies [102],
cf. the discussion in section 5.4.2.
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D∇ua and scalar function U(u) respectively by3

D∇ua = ∇ρ∇ρua + Ka
bc∇

ρub∇ρuc, (5.5a)

U(u) =
cx

6α′
+

1
α′
β

Φ
(u). (5.5b)

The scalar function U(u) accounts for the different quantum Weyl anomalous effects.
There are contributions from the central charges of the two components of the theory,
cx = 4 and c ≡ 6β

Φ
(0), and in addition there are higher order effects in u, which are

collected in the non-constant parts of β
Φ

(u).
The actual computation of the β functions combines two methods with distinct

perturbative expansions: conformal perturbation theory where ua and ∆a−2 are small
and β

a
(u) = (∆a − 2)ua + . . . is known exactly, and separately the background field

method where ua can be large but β
a
(u) and ∇ua are required to be small. By allowing

for arbitrary β
a
(u) and β

Φ
(u) these methods can be combined in a mixed α′-expansion:

it can be made “exact” to all orders in ua, but only to second order in ∇ua by capturing
all u-dependence in the arbitrary unknown functions Mab(u), β

a
(u) and β

Φ
(u). Note

that βg
µν(u) only depends on ∇ua as the two sectors of the total theory decouple when

ua is x-independent. Limiting ourselves to two derivatives is not an impediment,
since inflation should be captured by a two derivative description, especially slow-
roll inflation.

5.2.2 String dynamics from an action

The condition for Weyl invariance βg
µν = βa = βΦ = 0 determines the equations of

motion for the background fields Φ(x), gµν(x) and ua(x). A crucial ingredient for the
consistency of this interpretation is the coupling between the dilaton field Φ(x) and
the other matter fields ua(x). The potential terms, β

a
(u) and β

Φ
(u) in (5.4), are not

independent but related via

Mab(u)β
b
(u) = ∂aβ

Φ
(u), (5.6)

to all orders in ua. This result may be derived from the fact that the conformal
anomaly βΦ is a c-number rather than an operator by the Wess-Zumino consistency

3For later convenience we have rescaled the metric by a factor of 4π2 compared to more conventional
definitions. Furthermore, as can be read in the appendix, the Mab and U used in the main text differ from
the corresponding objects in conformal perturbation theory by ua-corrections that are beyond the order of
perturbation of interest to us.
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condition [105, 108, 111, 117, 120] and cf. section 3.2.1. In particular βΦ is x-
independent and hence ∇µβΦ vanishes. Since βg

µν = βa = 0, we can verify

0 = ∇νβ
Φ = ∇ν

(
βΦ −

1
4
β

gµ
µ

)
=

(
∂aβ

Φ
− Mabβ

b
)
∇νua.

The last step follows from the explicit formulae for the β functions (5.4). Recall
that the β functions are derived up to second order in ∇ua but are exact in powers of
zeroth derivatives of u due to the incorporation of all zeroth derivatives of u in the po-
tential functions β

a
(u) and β

Φ
(u). Whereas our result is only an effective description

for the connection between the spacetime and matter sector, the matter sector itself is
described exactly.

As a result of the relation (5.6) between β
Φ

(u) and β
a
(u) the equations of motion

can be integrated to an action

S SF =
1

2κ2
0

∫
d4x
√

ge−2Φ
[
R + 4(∇Φ)2 − Mab∇µua∇µub − 4U(u)

]
. (5.7)

Transforming to the Einstein frame g̃(E)
µν = eΦ0−Φg(S )

µν = e−Φ̃g(S )
µν , we obtain an action

that can be directly compared to standard cosmological models,

S EF =
1

2κ2

∫
d4x

√
g̃
[
R̃ − 2∇̃µΦ̃∇̃µΦ̃ − Mab∇̃µua∇̃µub − 4e2Φ̃U(u)

]
. (5.8)

Again, κ = κ0eΦ0 =
√

8πGN is the gravitational coupling. The action (5.8) is simply
that of a multi-scalar field model coupled to gravity,

S inflation =
1
κ2

∫
d4x
√

g
[
1
2

R −
1
2

Gi j∂
µφi∂µφ

j − V(φ)
]
, (5.9)

with the potential
V(φ) = 2e−2Φ0 e2ΦU(u), (5.10)

where we have defined a multi-scalar field φi = (Φ, ua)t and a metric on the space of
fields Gi j =

(
2 0
0 Mab

)
. Since we will be working in the Einstein frame from here on,

we have dropped the tilde on the spacetime metric gµν(x). The question we wish to
investigate is whether the potential (5.10) is flat enough to provide realistic slow-roll
inflation. Since V(φ) is proportional to the β function β

Φ
(u) of the internal sector and

the central charge ctot of the total theory, demanding slow-roll inflation is equivalent to
a set of phenomenological constraints on the internal conformal field theory. Before
we turn to this question, we quickly review slow-roll inflation in multi-field models.
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5.3 Multi-field slow-roll inflation

The rapid acceleration of the universe that characterizes inflation arises when the sys-
tem is potential energy dominated. Current observations favor an adiabatic slow-roll
inflationary model of early universe cosmology, whose phenomenology can be de-
scribed by gravity coupled to a single scalar field. The single field inflationary case
was formalized in [34] and shortly explained in section 2.2. Fundamentally there is
no reason to have only one scalar field. Indeed in string theory or supergravity one
generically has multiple scalar fields, although its characteristic signature, isocurva-
ture fluctuations, is at most 10% of the primordial power spectrum and is at this time
not a better fit to the data [10]. The connection to the power spectrum for multi-field
slow-roll inflation [26, 27, 247, 248] was formalized in [193, 212, 213]. We shall
follow [193].

Minimally coupled multi-field inflation is described by the action (5.9), where
V(φ) is the scalar potential and Gi j is the positive definite metric on the space of
scalar fields. For a flat, homogeneous and isotropic FLRW universe, the independent
equations of motion for the generic multi-field action (5.9) are4

H2 =
1
3

(
1
2

Gi jφ̇
iφ̇ j + V

)
, (5.11a)

0 = Dφ̇i + 3Hφ̇i + gi j∂ jV, (5.11b)

where Γi
jk are the connection coefficients for the metric Gi j and where we define

Dφ̇i = φ̈i + Γi
jkφ̇

jφ̇k,

similar to (5.5a). The field equations (5.11) completely determine the dynamics of the
model, but are difficult to solve exactly. Therefore, we again consider the slow-roll
approximation using the slow-roll parameters [193],

ε = −
Ḣ
H2 , ηi =

Dφ̇i

H|φ̇|
. (5.12)

The vector η can be decomposed in components parallel η‖ and perpendicular η⊥ to
the field velocity φ̇. Define

ei
1 =

φ̇i

|φ̇|
, ei

2 =
Dφ̇i −

Dφ̇ · φ̇
|φ̇|2

φ̇i∣∣∣∣Dφ̇ − Dφ̇ · φ̇
|φ̇|2

φ̇
∣∣∣∣ ,

4There is another equation of motion, Ḣ = −|φ̇|2/2, from the spatial part of the variation with respect
to the metric, but this also follows from (5.11).
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then

η‖ = e1 · η =
Dφ̇ · φ̇
H|φ̇|2

, η⊥ = e2 · η =

∣∣∣∣Dφ̇ − Dφ̇ · φ̇
|φ̇|2

φ̇
∣∣∣∣

H|φ̇|
, (5.13)

and
ηi = η‖ei

1 + η⊥ei
2.

Recall that the parameter ε is a direct measure for inflation [34],

ä > 0 ⇔ ε < 1.

ε and η together quantify the relative energy contributions of kinetic and potential
energy. One can reexpress (5.11) in terms of the slow-roll parameters,

H2 =
V
3

(1 −
1
3
ε)−1, (5.14a)

φ̇i +
1
√

3V
gi j∂ jV = −

1
3

√
2
3

√
εV

1 − 1
3 ε

ηi +
ε φ̇

i

|φ̇|

1 +

√
1 − 1

3 ε

 . (5.14b)

As it is given here, equation (5.14) is exact. It shows precisely which approximation
is made by assuming that “potential energy strictly dominates over kinetic energy”,
which is often the explanation behind slow-roll inflation. Using (5.14) one could
obtain results at any order in slow-roll [34, 193]. Limiting ourselves to first order in
the approximation, in which ε,

√
εη‖,
√
εη⊥ � 1, equation (5.14) reduces to

H2 =
1
3

V,

φ̇i = −
1
√

3V
gi j∂ jV.

The second equation tells us that slow-roll approximation implies gradient flow. Us-
ing these equations we see that in the slow-roll approximation

Ḣ =
1

6
√

V
3

∂iVφ̇i = −

√
3

6
√

V

1
√

3V
gi j∂iV∂ jV = −

1
6V
|∇V |2, (5.15a)

Dφ̇i = ∂t

(
−

1
√

3V
gi j∂ jV

)
+ Γi

jk
1

3V
g jlgkm∂lV∂mV =

1
6
∇i |∇V |2

V
, (5.15b)
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and hence in the slow-roll regime,

ε = −
Ḣ
H2 =

1
2
|∇V |2

V2 , (5.16a)

ηi =
Dφ̇i

H|φ̇|
=

1
2 |∇V |

∇i |∇V |2

V
, (5.16b)

η‖ =
Dφ̇ · φ̇
H|φ̇|2

=
−1

2|∇V |2
∇V · ∇

|∇V |2

V
= ε −

∇iV∇ jV∇i∇ jV
V |∇V |2

, (5.16c)

η⊥ =

∣∣∣∣Dφ̇ − Dφ̇ · φ̇
|φ̇|2

φ̇
∣∣∣∣

H|φ̇|
=

1
2|∇V |

√√√∣∣∣∣∣∣∇|∇V |2

V

∣∣∣∣∣∣2 −
(
∇V · ∇ |∇V |2

V

)2

|∇V |2

=

√
1

4|∇V |2

∣∣∣∣∣∣∇|∇V |2

V

∣∣∣∣∣∣2 − (η‖)2. (5.16d)

5.4 Inflation from the worldsheet

5.4.1 Slow-roll parameters for tree-level worldsheet string the-
ory

We are now in a position to address our question: how do we describe slow-roll
inflation in terms of worldsheet dynamics? That is, we need to verify that the po-
tential V(Φ, u) = 2

(
κ0
κ

)2
e2ΦU(u) is capable of driving a slowly rolling inflaton field.

We shall assume the spacetime part of the worldsheet theory to describe an accel-
erating (i.e. inflationary) flat, homogeneous and isotropic FLRW universe, g(E) =

diag(−1, a2(t), a2(t), a2(t)), which is driven by a homogeneous dilaton Φ(t, x) = Φ(t)
and homogeneous internal fields u(t, x) = u(t). The demand that the slow-roll param-
eters are small then provides restrictions on V(Φ, u) and hence, as conjectured, on the
coarse characteristics of the internal conformal field theory, c, β

Φ
(u) and β

a
(u). Direct

calculation of (5.16) for V(φ) = 2
(
κ0
κ

)2
e2ΦU(u) reveals

ε = 1 +
1
2
γ2, (5.17a)

η‖ = −ε −
D

2 + γ2 , (5.17b)

η⊥ =

√√
1
4

(2 + γ2)2 + D +

γbγc∇aβb∇
aβc

α′2U2 − 2γ2D − 2γ6 + γ4

2 + γ2 − (η‖)2, (5.17c)
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where we have defined the combinations,

γa(u) =
Mabβ

b

α′U
= ∂a log U = ∂a log

[
cx

6α′
+

1
α′
β

Φ
]
, (5.18a)

D(u) =
γaγb∇a∇bU

U
− γ4. (5.18b)

From (5.17a) we immediately see that V(Φ, u) = 2
(
κ0
κ

)2
e2ΦU(u) is incapable of

driving inflation: ε is always larger than unity. Regardless of the specific form of

γa = ∂a log
[

cx
6α′ + 1

α′
β

Φ
]
, the positive definiteness of the Zamolodchikov metric Mab

ensures that γ2 ≥ 0.
Tracing back we see that the coefficient 1 in ε, characteristic of an exponential

potential, is due to the dynamics of the dilaton. One could wonder whether taking
Φ constant, i.e. excluding it from the cosmological dynamics, would modify the
model into one which does allow for inflation. Because the field space metric Gi j is
block diagonal, equation (5.11) implies that for a constant Φ, Φ must be stabilized at
∂ΦV = 4

(
κ0
κ

)2
e2ΦU = 0. However, excluding Φ = −∞, the relation (5.6) precludes a

constant dilaton, as U is not allowed to vanish. In our set-up, fields ua(x) that undergo
a time evolution in four-dimensional spacetime are described by a renormalization
group flow of the couplings, i.e. β

a
, 0. Equation (5.6) then implies that U cannot

vanish, which forces the dilaton to be non-constant by the requirement (5.4c) of a
vanishing βΦ. Turning the argument around, suppose one magically stabilizes the
dilaton at tree-level. Then ε = U−2β

a
βa but U ∼ ∂ΦV which must vanish by the

assumption that the dilaton is stabilized.
Within tree-level worldsheet string theory, the dilaton is therefore always part

of the cosmological dynamics and its tree-level exponential potential rules out an
inflationary universe.

5.4.2 Inflation from the Ramond sector, string loop correc-
tions and inflation from open strings

Clearly to describe inflation in string theory we must have a more complicated po-
tential for the dilaton. One guess could be to supersymmetrize the worldsheet and
include RR fields, i.e. the background fields corresponding to string states with fermi-
onic boundary conditions. Technically this is a far from trivial task, as it is not yet
known how to compute β functions for RR vertex operators. However at the end of
the day, even including fermionic dynamics, the resulting worldsheet theory must be

91



5. Worldsheet cosmology

of the form (5.3). On the worldsheet, the dilaton/vertex operator interactions are such
that they always lead to an effective action S =

∫
e−2ΦL in the string frame [86]. Thus

one always deduces equation (5.7) and the remainder of the analysis is the same.
Let us be more specific in light of the known examples of string-inspired super-

gravity inflation built on RR- and NS-flux compactifications [199, 249, 250]. In all
global compactifications one needs O-planes to ensure tadpole cancelation. O-planes
correspond to non-oriented worldsheets, which occur at higher order in the string loop
expansion and are therefore not considered here. Secondly, a persistent issue in all
these constructions is the stabilization of the volume modulus of the compact space.
In essence this is the same absence of a potential as we exhibit for the dilaton. In cur-
rent models the stabilization is thought to happen through non-perturbative D-brane
effects [198, 251]. D-branes, i.e. open strings, are similarly higher order in the loop
expansion.

Thus one is naturally led to consider string loop corrections or non-perturbative
effects, i.e. open strings. From the worldsheet point of view these two additions
roughly boil down to the same thing. Both are obtained by including more general
worldsheet topologies than just the spherical worldsheet of tree-level string theory.
The corrections from including closed string loops could convert ε into a more sen-
sible expression. We can expect this based on the well-known dilaton tadpoles of
Fischler-Susskind [241, 242]. Our results are an extension of the Fischler-Susskind
result that to obtain a worldsheet description of strings in a de Sitter space, there
must be a one loop (in gs) contribution to the dilaton to have vanishing β functions,
i.e. to satisfy the equations of motion. Slow-roll inflation is in essence an adiabatic
continuation of de Sitter space to a slowly varying vacuum energy.

It is interesting to see what happens if we suppose that the higher loop contribu-
tions allow us to consistently stabilize the dilaton at weak coupling independent of
the value of ua. Then one finds the slow-roll parameters

ε =
β

a
βa

2(β
Φ

+ cx
6 )2

, (5.19a)

η‖ = ε −
β

a
β

b
∇aβb

(β
Φ

+ cx
6 )β

c
βc

, (5.19b)

η⊥ =

√√√√√
1

4β
c
βc

∣∣∣∣∣∣∣∣∇a
β

b
βb

(β
Φ

+ cx
6 )

∣∣∣∣∣∣∣∣
2

− (η‖)2. (5.19c)

The dilaton stabilization needs to be such that α′U = β
Φ

+ cx
6 is no longer proportional
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to ∂ΦV and hence the above expressions make sense. Of course dilaton stabilization
at weak coupling has its own problems [244, 245].

The inclusion of open strings, in addition to the closed strings considered here,
may yield more promising results for describing worldsheet theories on inflationary
backgrounds. In the supergravity literature the usefulness/necessity of open string
corrections has already been recognized [1, 197, 198, 227–230, 251].5 Open strings
have been extensively investigated from a low energy effective field theory point of
view, e.g. DBI inflation, and all known viable supergravity inflationary models have
an open string component.

5.5 Conclusions

Inflation does not care about anything but very coarse features of the matter sector,
only its pressure and energy. This suggests that in string theory inflation is deter-
mined by coarse features of the internal conformal field theory on the worldsheet.
Qualitatively this is what we find. At the same time our result shows that it is not pos-
sible to have an inflationary cosmology described by a tree-level string worldsheet.
The exponential potential for the dilaton ensures that ε is strictly larger than unity,
completely independent of the internal conformal field theory. At first sight this con-
clusion may be puzzling, as inflation is a classical phenomenon and one therefore may
expect tree-level string theory to be sufficient for a consistent description. Neverthe-
less the result simply recovers that de Sitter backgrounds arise only at one-loop level
in worldsheet string theory through the Fischler-Susskind mechanism [241–243]. For
inflation to occur, the dilaton must be stabilized through such higher loop effects. If
this stabilization happens at weak coupling, then inflation is possible with slow-roll
parameters that only depend on the β functions of the internal conformal field theory.

In a way Fischler-Susskind and the result here are special cases of Dine-Seiberg
runaway [244, 245]: within string theory one cannot probe a nearby vacuum from
the original vacuum because in string perturbation theory, as currently understood,
all higher order corrections are larger than the first order — string theory is either
free or strongly coupled. Whereas the result in [244, 245] is obtained by general rea-
soning, Fischler-Susskind specifically attempt to describe a de Sitter cosmology from
a Minkowski worldsheet, and we attempt to obtain inflation. We can be even more
explicit: in our tree-level analysis the time-dependent process of inflation requires on
the one hand a non-constant dilaton to satisfy the equations of motion, while on the

5In supergravity language open strings add D-terms in addition to F-term potentials. The closed string
worldsheet only captures a dilaton type F-term inflation.
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5. Worldsheet cosmology

other hand only a constant dilaton makes sense observationally. In the tree-level limit
we therefore have found a clear inconsistency of the approach. A strong coupling
analysis is necessary to realize inflation within string theory. The reader should be
aware that we have not ruled out a non-constant dilaton scenario at all, we simply
have found out that a zeroth order weak coupling approach is insufficient to describe
inflation. In the strong coupling regime the dilaton may turn out to be non-constant
after all.

It is interesting to note that our result confirms a conjecture in [245], that a cos-
mological solution in which the world is slowly sliding to its free Minkowski vacuum
cannot be studied from this final state. From the reasoning in [244, 245] this ap-
pears to be a perfectly fine solution, if unlikely. Our result confirms their expectation
that such a slow-roll inflationary scenario is not possible within tree-level worldsheet
string theory.

To conclude: we have provided a proof of principle that the coarse characteristics
of the internal conformal field theory determine whether and how inflation occurs, by
expressing the slow-roll parameters in terms of the β functions of the internal con-
formal field theory. As de Sitter-like solutions only arise at one-loop in a Minkowski
string worldsheet, a necessary requirement for real and realistic worldsheet models of
string inflation is to include higher order string loop corrections to the analysis. This
remains subject to further investigation.

5.A Calculating the β functions

In this appendix we will review the calculation of the β functions (5.4) of the total
theory (5.3). For more details concerning this calculation we refer to [111].

5.A.1 Conformal perturbation theory

For a general conformal field theory that is perturbed by adding operators to the ac-
tion,

S = S 0 +

∫
d2z uIOI ,

the β functions βI for the couplings uI can be defined as the coefficients of the trace
of the stress-energy tensor

Θ = −πβIOI , (5.20)

where the factor of π is convenient within a string theory context. In the Zamolod-
chikov renormalization group scheme these can be computed in an expansion in uI
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with ∆I − 2 small [86, 111, 252],

βI = (∆I − 2)uI + 2πCI
JKuJuK + O(u3), (5.21)

where CI
JK are the OPE coefficients defined via

OJ(y)OK(z) =
∑

I

CI
JK |y − z|∆I−∆J−∆KOI

(y + z
2

)
.

In the coupled system CFTx ⊗CFTO that is deformed by the term S u(x) =
∫

ua(x)Oa

as described in the main text, the operators in (5.20) are the three (types of) operators,

O
µν
g =

1
2πα′

∂xµ∂xν, Oa, OΦ =
1

8π
R(2),

which couple to the coupling functionals gµν(x), ua(x) and Φ(x) respectively. By a
Fourier transform these coupling functionals may be seen as an infinite set of cou-
pling constants gµν(p), ua(k) and Φ(q) that couple to the dressed operators Oµνp =

1
2πα′ ∂xµ∂xνeip · x1, O(k,a) = Oaeik · x and OΦ

q = 1
8πR(2)eiq · x with dimensions

∆
g
p = 2 +

α′

2
p2, ∆(k,a) = ∆a +

α′

2
k2, ∆Φ

q = 2 +
α′

2
q2. (5.22)

We are not constraining the graviton momentum or dilaton momentum to be lightlike.
p2 = 0 and q2 = 0 would be the on-shell condition for a free graviton and free dilaton,
whereas we wish to consider the coupled gravity-matter system. The OPE coefficients
can be readily computed to be

C(p,1)
(k1,a)(k2,b) = −

α′

8π
(k1 − k2)µ(k1 − k2)νδ (p − k1 − k2) Mab, (5.23a)

C(k1,a)
(k2,b)(k3,c) = δ (k1 − k2 − k3) Ca

bc, (5.23b)

where Ca
bc are the OPE coefficients of the internal conformal field theory and we have

denoted the Zamolodchikov metric by Mab = 4π2C1
ab. Applying (5.22) and (5.23) to

(5.21) and Fourier-transforming back to position-space, yields

1
α′
β

g
µν = −

1
2
∂ρ∂ρgµν +

1
2

Mab

(
ua∂µ∂νub − ∂µua∂νub

)
, (5.24a)

1
α′
βa =

1
α′

(
(∆a − 2)ua + 2πCa

bcubuc
)
−

1
2
∂ρ∂ρua

=
1
α′
β

a
(u) −

1
2
∂ρ∂ρua, (5.24b)

1
α′
βΦ = −

1
2
∂ρ∂ρΦ, (5.24c)

where we use (5.21) in reverse to express βa in terms of β
a
.
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5.A.2 Weyl anomaly and classical dilatonic contribution

In addition to the operator effects from (5.24c), the β function for Φ receives a further
contribution from the well-known Weyl anomaly, a worldsheet contribution propor-
tional to the worldsheet curvature. Its contribution is determined by the central charge
of the spacetime nonlinear σ model as well as by that from the (perturbed) internal
theory as explained in the main text,

Θ1−loop = −
cx

48
R(2) −

1
8
β

Φ
R(2) = −π

(cx

6
+ β

Φ
(u)

) 1
8π

R(2). (5.25)

Comparing this expression with the definition of the β functions as coefficients in the
stress-energy tensor (5.20), we find a contribution βΦ

1−loop = cx
6 + β

Φ
(u) = α′U(u) to

the β function of the dilaton.
The final contribution to all of the β functions comes from the dilaton term (5.1c)

in the worldsheet action, which breaks Weyl invariance already at the classical level.
Due to an additional overall α′-factor compared to the other terms in the worldsheet,
this classical contribution to the β functions is of the same order as loop effects from
the classically Weyl invariant terms. On a curved worldsheet the easiest way to deter-
mine deviation from Weyl invariance is by calculating the trace of the stress-energy
tensor via

Θ =
−π
√

h

δS
δhαβ

hαβ.

This definition for Θ in terms of a variation of the worldsheet metric differs by a
factor from more common definitions, which is necessary to relate the result properly
with our earlier definition (5.20). One can check that this leads to the right result by
looking at the metric and dilaton field, whose contributions are well-known [86, 117].
Making use of the equations of motion for xµ,

∂∂xρ = −Γ
ρ
µν∂xµ∂xν + πα′∂ρuaOa +

α′

8
∂ρΦR(2),

the classical violation of Weyl invariance by the dilaton term (5.1c) is

Θclassical =
−π
√

h

δS Φ(x)

δhαβ
hαβ

∣∣∣∣∣∣
hzz=1/2

= −∂∂Φ(x) = −
(
∂µ∂νΦ∂xµ∂xν + ∂ρΦ∂∂xρ

)
= −π

(
2α′∇µ∇νΦO

µν
g + α′∇ρΦ∇ρuaOa + α′(∇Φ)2OΦ

)
. (5.26)

96



5.A Calculating the β functions

Again comparing with (5.26), we find contributions

β
g
classical = 2α′∇µ∇νΦ, (5.27a)

βa
classical = α′∂ρΦ∂ρua, (5.27b)

βΦ
classical = α′∂ρΦ∂ρΦ. (5.27c)

Therefore the full β functions read

1
α′
β

g
µν = −

1
2
∂ρ∂ρgµν +

1
2

Mab

(
ua∂µ∂νub − ∂µua∂νub

)
+ 2∇µ∇νΦ, (5.28a)

1
α′
βa =

1
α′
β

a
(u) −

1
2
∂ρ∂ρua + ∂ρΦ∂ρua, (5.28b)

1
α′
βΦ = U(u) −

1
2
∂ρ∂ρΦ + ∂ρΦ∂ρΦ. (5.28c)

5.A.3 Covariantization

The β functions (5.28) are (partially) non-covariant. For example, βa is not covariant
on the space of couplings ua(x). The right expression for βa should be

1
α′
βa =

1
α′
β

a
(u) −

1
2
∂2ua −

1
2

Ka
bc(u)∂ρub∂ρuc + ∂ρΦ∂ρua, (5.29)

where Ka
bc is the connection coefficient associated to the Zamolodchikov metric Mab

[252]. In a general renormalization scheme it arises from contact terms in the OPE.
It has not appeared explicitly in the Zamolodchikov scheme because in that scheme
Ka

bc is already of first order in u [111], as a result of which Ka
bc(u)∂ρub(x)∂ρuc(x) is

beyond leading order in the calculation of the β functions. In the Zamolodchikov
scheme (5.29) is correct to leading order and by general covariance it holds in any
renormalization scheme.

Furthermore, the terms obtained using conformal perturbation methods are not
spacetime covariant at first. This is inherent to the conformal perturbation method,
which uses correlation functions defined with respect to flat spacetime. Conformal
perturbation is an expansion in δgµν = gµν − ηµν which is only sensitive to the trans-
verse traceless part of the graviton. The longitudinal and trace part of the graviton
are not encoded in (nearly) marginal operators and thus fall outside conformal per-
turbation theory. If one corrects for this by evaluating the Weyl transformation of
all terms of the coherent state of gravitons gµν(x), the expressions will become co-
variant. Covariantization is necessary because the true β functions are gravitationally
only consistent when all orders and all polarizations in δgµν are taken into account.
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Using background field methods one can obtain these spacetime covariant expres-
sions [86, 111].

We propose a different method to see how the covariant expressions (5.4) may
follow from the β functions derived using conformal perturbation theory methods
(5.28), by relating them at the level of their action functionals.6 We will do this only
up to second order in ua in the integrand, i.e. to first order in the equations of motion,
βa = 0, for the fields ua. The necessity of this approximation can directly be inferred
from the appearance of the non-tensorial object ua in the integrand.

Objects from the appendix are denoted with a tilde, while quantities without a
tilde refer to the fields and couplings in the main text. If we restrict ourselves to
transverse traceless variations in the metric, the covariant action7

S =

∫ √
g̃e−2Φ̃

[
R̃ + 4(∇̃Φ)2 +

1
2

M̃ab

(
uaD̃∇̃ub − ∇̃ua∇̃ub

)
− 4Ũ

]
, (5.30)

generates the equations of motion given by the vanishing of (5.28), to leading order
in ua, provided

1
α′

M̃abβ̃
b

= ∂aŨ +
1
2

M̃abubŨ.

The latter expression should be equivalent to the consistency condition (5.6), although
it is probably rather involved to derive this for the non-covariant (5.28).

Being a covariantly consistent expression, we expect the action (5.30) to provide
the true (spacetime and field space) covariant expressions for the β functions as we
would have found by background field methods [86, 111]. The double derivative of
ua is non-standard. However, we can now consider the field redefinition

Φ̃ = Φ +
1
8

M̃abuaub, g̃µν = e
1
4 M̃abuaub

gµν.

Together with the identifications

Mab = M̃ab, U = e
1
4 M̃abuaub

Ũ,

the action (5.30) transforms to the conventional covariant action

S =

∫
√

ge−2Φ
[
R + 4(∇Φ)2 − Mab∇ua∇ub − 4U

]
, (5.31)

6In [111] this is done by way of a diffeomorphism that is not entirely clear to the authors.
7Note that this restriction means that the contraction of the variation of the connection in MabuaD̃∇̃ub

does not contribute to the equations of motion. It is orthogonal to the transverse traceless fluctuations

g̃µνδΓ̃ρµν = −
1
2

(
2∇µδgρµ − gµν∇ρδgµν

)
= 0.
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up to second order in ua.
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6
Conformal universe

Our studies into the nature of supergravity inflation and worldsheet inflation point
towards an intrinsic difficulty in describing microscopic theories for inflation. In both
cases, the sensitivity of inflation to the underlying details of the theory demands a
level of understanding that is presently unobtainable and may remain unobtainable
for the (near) future. For this reason, we are led to consider different approaches to
understand the structure of inflation. Conventionally we can rely on the symmetries
of the theory to better understand its behavior. For inflation, which is a quasi-de
Sitter evolution, the late-time geometry has a conformal isometry group. Hence, the
restrictions and structure of conformal field theory are expected to be imprinted in the
late-time phenomena of the theory.

With this observation in mind, string theory provides a new approach in the man-
ner in which these symmetry considerations can be written down. The techniques
in the context of holography make full use of all of our knowledge of microscopic
physics. As we have seen in section 3.2.3, in the case of the known holographic
realization of anti-de Sitter spacetimes, the gravity theory can be understood from a
field theory perspective, interchanging strongly coupled and weakly coupled regimes.
Hopefully, knowing that anti-de Sitter and de Sitter spacetimes are closely related
mathematically, a holographic study of (quasi-)de Sitter spacetimes yields similar re-
sults, although the subject still needs to be shaped and molded before its full power
can be used.

In this chapter we present a small but important step towards a better understand-
ing of a cosmological holographic duality, at the level of the constraining symmetries
of inflation. We study the correlation functions of primordial curvature perturbations
generated during inflation, specifically the power spectrum and the bispectrum, from
a purely conformal point of view. At a technical level, many techniques that are
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developed in chapter 3 and put to use in chapter 5 will again prove to be useful, be-
cause again, conformal invariance and the deviation away from pure conformality are
central to the analysis. This chapter can therefore be seen as yet another example dis-
playing the breadth of the applicability of conformal invariance within physics. The
chapter is based on [253].

6.1 Introduction

Phenomenologically, the inflationary paradigm provides a satisfying explanation for
the initial value problems of the standard big bang model. Over the last decades, we
have gathered increasing evidence for the existence of an epoch of primordial infla-
tion, most importantly through the appearance of acoustic oscillations in the temper-
ature anisotropies of the cosmic microwave background radiation [10]. Via a careful
study of the relation between theory and observation, inflation enables us to open a
new window towards the study of the structure of our universe at very high energies.
As explained in chapter 2, the most accurate mapping we possess between theory and
observation is that of the n-point functions of curvature perturbations. The observa-
tion of primordial gravitational waves, of features in the power spectrum of primor-
dial density fluctuations [51, 52] or the observation of any type of non-Gaussianities
[45, 46, 54] would all pave the way for a leap in our understanding of the primordial
phase of the universe. It is for this reason that there is much research devoted to the
structure of the two- and three-point functions of primordial density perturbations.
A true understanding of the structure of the power spectrum and bispectrum may be
a direct probe of new physics, once the required sensitivity is obtained observation-
ally. To satisfy this need, different theoretical techniques have been developed in the
literature for calculating the three-point function [57, 59, 62, 76, 254].

Direct calculation of these correlation functions, however, can be rather involved
[56, 57, 61, 62], as the organization imposed by the slow-roll expansion does not nec-
essarily ensure that the expressions remain tractable at intermediate steps. As such,
the underlying structure behind the final result is obscured. It would certainly be wel-
coming to have alternative ways to derive these non-Gaussian correlation functions
which emphasize strongly the symmetries of inflation. In particular, slow-roll infla-
tion is a quasi-de Sitter expansion and as such, it is expected that the correlation func-
tions of inflationary curvature perturbations inherit constraints from the (remnants
of the) isometry group of the de Sitter phase. At late times, the isometry group of
the de Sitter phase asymptotically reduces to three-dimensional Euclidian conformal
symmetry, which suggests that the late-time correlation functions generated during
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inflation are naturally constrained by this (broken) conformal symmetry [57, 255–
257]. In this chapter, we investigate the constraints of late-time de Sitter symmetry
and the effect of its breaking on the bispectrum of primordial density fluctuations in
single field slow-roll inflation.

Many of the techniques we use, have come of age in the context of holography
and as such, our presentation and analysis have a distinct holographic flavor. Holo-
graphic duality between gravity theories and gauge theories [129, 130] is arguably the
most profound and deep achievement of string theory in the last fifteen years, with the
realization of the AdS/CFT-correspondence [90, 136, 147, 148]. The duality enables
us to understand a physical system from a different perspective, thereby emphasizing
aspects that had gone unnoticed before in the original description. For this reason,
holography can provide fundamental new insights into the structure of the phenom-
ena. When applied to critical phenomena in condensed matter systems, a holographic
understanding already seems to bear fruit [258–262].

Given the close relationship to anti-de Sitter spaces, our cosmic evolution might
also be described by some conformal field theory. Indeed, after the proposed
AdS/CFT-correspondence, the related dS/CFT-correspondence was quickly formu-
lated [144–146] and further investigated in the context of inflation [263–265]. How-
ever, no concrete proposal for a dS/CFT-correspondence exists and there are fun-
damental objections against a dS/CFT-correspondence [266–268]. Taking this into
consideration, we emphasize that our viewpoint is more modest, and depends only
on the symmetries. In our considerations, the late-time de Sitter symmetry will lead
the way to a different perspective, in terms of terminology inspired by (A)dS/CFT
[57, 263, 265]. Ultimately it is the symmetries, or the approximate lack thereof, of
the late-time behavior of the observed perturbations that constrain the form of the
n-point correlation functions.

In [264, 265] it was shown that the nearly scale invariant power spectrum of cur-
vature density perturbations can be fully understood from the constrained form of
two-point functions in a conformal field theory. This means that the universal be-
havior of the inflationary power spectrum can be explained as a critical phenomenon,
suggesting that there should not be any finetuning problems. The main motivation
for this chapter is to study to what extent this can be generalized to the three-point
function. Since slow-roll inflation is a quasi-de Sitter evolution, the exact conformal
symmetry is broken. This is understood holographically in terms of a renormalization
group flow, which has been extensively studied in the context of AdS/CFT [138–142]
as explained in chapter 3. The underlying symmetry imposes Ward identities on the
correlation function that restrict the form of the stress-energy tensor, i.e. the holo-
graphic dual of the curvature perturbations, in terms of the correlation functions of
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the nearly marginal operator driving the renormalization group flow. The final result
should then be obtained by finding the solution to the renormalization group equa-
tions.

The scale invariance of the power spectrum and the conformal symmetries of a
de Sitter spacetime are a striking feature of the inflationary epoch. It is therefore not
surprising that in recent literature active investigations are undertaken to understand
the structure of the power spectrum, bispectrum and trispectrum in terms of conformal
symmetries, for both scalar as well as tensor perturbations [57, 255–257, 269–278].
These studies recognize that a pure de Sitter phase is the zeroth order result in a slow-
roll inflation calculation and hence, the observed correlation functions are constrained
by conformal symmetry to leading order [255–257, 269]. To further understand the
connection with inflation, a departure from conformal symmetry is necessary, which
can be studied through consistency relations between the n-point function and the
squeezed limit of n+1-correlation functions [57, 270–274, 279, 280] or in terms of
spontaneously broken symmetries [275–278]. We provide a supplementary view by
studying the departure from conformal symmetry as a renormalization group flow.

Other studies employing the strengths of holographic renormalization to the infla-
tionary bispectrum exist [254, 281–283]. The approach undertaken in [254] provides
an alternative method for calculating the three-point correlation function, which pro-
vides a valuable consistency check and a clear insight in the dS/CFT-correspondence.
The techniques from AdS/CFT used by [254] are to regulate divergences in a cal-
culation that is in essence a bulk calculation. As such it is not clear to us how the
three-point function that they obtain could be found from a conformal field theory.
The purpose of our study is to supplement their analysis, fully from the perspective
of a boundary conformal field theory.

The study of [281–283] is a far-reaching, technically advanced understanding of
a proposed dS/CFT-correspondence. The authors apply the correspondence to a free
conformal field theory, thereby calculating the bispectrum of a strongly coupled grav-
itational theory. Our investigations are concerned with ordinary slow-roll inflation,
which is already a solution in classical general relativity. Hence, we are forced to
consider an arbitrary (strongly coupled) conformal field theory. The reason we are
still capable of considering interactions between operators is that the perturbations
are dictated by the renormalization group flow and conformal symmetry alone, al-
lowing us to circumvent any expected problems regarding the strong coupling of the
field theory. On the other hand, as far as our analysis goes, symmetry may not com-
pletely specify the full structure of the bispectrum, whereas [281–283] find explicit
predictions.

This chapter is organized as follows. In section 6.2 we review the relation be-
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tween time evolution during inflation and the energy scale of the boundary field the-
ory, i.e. holographic renormalization in the dS/CFT-correspondence. Then, in section
6.3 we relate the power spectrum and bispectrum of primordial density fluctuations
to Ward identities between the trace of the field theory stress-energy tensor and the
operator dual to the inflaton field. We will use this relation in 6.4 to investigate the
structure of the inflationary two- and three-point functions, focussing on the consis-
tency condition between them and on their behavior under a renormalization of the
field theory. Technical aspects concerning the Ward identities and the Fourier trans-
form of the three-point function are summarized in appendices.

6.2 Cosmology and the dS/CFT-correspondence

6.2.1 Renormalization group flow and cosmic evolution

The discovery of an explicit realization of the holographic principle [129, 130] in
anti-de Sitter geometry [136] immediately sparked the question whether other space-
time geometries could be seen to have a holographic dual as well. The holographic
principle itself does not rely on the precise structure of the spacetime geometry and it
would be rather unsatisfactory if no other realizations could be found. Since anti-de
Sitter geometry is mathematically very similar to de Sitter space, a natural candidate
for an extension of the AdS/CFT-duality is de Sitter geometry [145]. A realization
of the dS/CFT-correspondence would phenomenologically be very interesting, as our
own universe is observed to currently resemble de Sitter geometry [19, 20]. In theory,
we could therefore enlarge our understanding of our own spacetime geometry through
holographic means, by borrowing results from the mathematically related and much
better understood AdS/CFT-correspondence [144, 145, 284, 285].

Not only for the present de Sitter geometry would the existence of a dS/CFT-
correspondence be very interesting, but also for the primordial inflationary epoch,
which follows a quasi-de Sitter evolution [146, 263]. In this chapter we will con-
tinue our study of inflation from a holographic point of view, but we only consider
holography at its minimum (necessary) level, viz. that of the symmetries between the
theories. We will consider what structure the asymptotic de Sitter symmetries im-
pose on the late-time two- and three-point correlation functions. Investigations of a
correspondence between other correlation functions and thereby a first indication of
a more complete dS/CFT-correspondence is left for future research.

The dS/CFT-correspondence predicts a relation between cosmic evolution of the
de Sitter spacetime and scale invariance in the (boundary) field theory, similar to
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the relation in AdS/CFT between radial coordinates in the bulk and renormalization
group flow on the boundary field theory [138–142]. This relation follows from one
of the isometries of the pure de Sitter geometry,

ds2 = −dt2 + a(t)2dx2,

in flat spatial slicing with a(t) = eHt. It is invariant under the combined transformation
[146]

t → t + ∆t, x→ e−H∆t x. (6.1)

The parameter µ = Ha related to this time translation has dimensions of energy and
is therefore taken to be the typical energy scale of the boundary theory. With this,
the cosmic evolution can be seen as a reversed renormalization group flow in the
field theory [146]. One identifies primordial stages of the cosmic evolution with the
IR fixed point of the field theory and to study the late-time behavior of the gravity
theory, one can consider the field theory around the UV fixed point.

In the context of inflation, this observation suggests a natural description for the
inflationary dynamics in terms of the renormalization group flow. Inflation occurred
at early times in the cosmic evolution, right after the field theory IR fixed point. It is
described by the inflaton scalar field φ(t, x) coupled gravitationally to a background
FLRW spacetime that is spatially flat, in accordance with the Friedmann equations.
The asymptotic value φ0(x) of the inflaton scalar field φ(t, x), for t → ∞, acts in the
dual conformal field theory as the coupling u = φ0 to an operatorO. As a consequence
of this coupling, the conformal field theory S 0, which describes the asymptotic sym-
metry of pure de Sitter spacetime, is perturbed

S u = S 0 +

∫
d3x uO. (6.2)

When the operator is non-marginal, it will induce a renormalization group flow, which
in the case of the cosmic evolution is reversed and ends asymptotically in the UV fixed
point of the theory.

While one can consider the asymptotic behavior of inflation from the point of
view of the field theory IR fixed point [263], from the UV fixed point [265] or from
the bulk gravitational IR point of view [264], it is important to realize that inflation
itself actually is an epoch along the renormalization group flow, cf. figure 6.1. The
essence of slow-roll inflation is that at every point along the inflationary flow the
spacetime can be approximated by a de Sitter phase. Typically, a particular de Sitter
phase is chosen as the pivot point around which the slow-roll expansion is defined
[28, 30]. Similarly, at any intermediate point along the renormalization group flow,
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IR

UV
Ination

�

� Big bang Ination tLate times

Figure 6.1: The cosmic evolution can be seen as a reversed renormalization group flow,
from the IR fixed point of the dual theory to the UV fixed point of the dual theory. In-
flation occurs at a certain intermediate stage during the renormalization group flow. As
is usual for inflation, a pivot point along the flow is chosen around which the slow-roll
expansion can be studied. We observe the effects of inflation at late times, corresponding
to the UV fixed point of the renormalization group flow.

the dual description is approximately a conformal field theory itself, about which the
effects of the flow can be expanded. When considering the correlation functions at
late times, it is important to realize that the result has to be related to this intermediate
renormalization group point, rather than the IR or UV fixed points.

6.2.2 Holographic slow-roll parameters

The close relation between the renormalization group flow induced by the non-
marginal operator O and the inflationary solution for the bulk field φ(t, x) can be
made technically more precise [263]. For a massive scalar field and taking a(t) ∼ eHt

in the asymptotic limit t → ∞, the equations of motion determine the asymptotic
solution as φ = φ0(x)eλ±Ht, where

λ± = −
3
2
±

√(
3
2

)2

−
m2

H2 . (6.3)
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With the identification µ ∝ eHt, the invariance of the full asymptotic solution under
the transformation (6.1) dictates φ0 to transform as

φ0(x)→ φ0(xe−H∆t)e−λ±H∆t =

(
µ

µ0

)−λ±
φ0

(
µ0

µ
x
)
.

Hence, identifying φ0(x) and u, the operator O is seen to have scaling dimension
∆ = 3 + λ±. In accordance with AdS/CFT reasoning, the λ−-solution vanishes at the
boundary, i.e. at late times, and is therefore regarded as the vanishing mode. The
λ = λ+-solution defines a non-normalized mode, i.e. vanishing in the interior, which
is sourced by the boundary field φ0(x). Depending on the sign of λ, it describes a
relevant (λ < 0) or irrelevant (λ > 0) perturbation from the field theory perspective.
Via

λ =
∂log φ
∂log a

=
∂log u
∂log µ

=
β

u
,

(6.3) is related to the β function β = ∂u
∂log µ of the operator O. We can define the

non-marginal scaling dimension λ(u) as

λ(u) =
∂β

∂u
+ O(u), (6.4)

in accordance with (3.17) [110]. In the limit u→ 0 that we consider, both definitions
are equivalent and no ambiguity exists [263, 265].

In inflation, the pure de Sitter evolution is perturbed due to the varying inflaton
scalar field φ(t, x). From the observation of the near scale invariant power spectrum,
we know that the perturbation away from the de Sitter phase is only small, leading to
a time dependent Hubble parameter H(t) that is allowed to vary only slightly during
the inflationary evolution. This is conveniently expressed by the requirement that the
slow-roll parameters (2.5) are much smaller than unity. For ε = η = 0, the evolution
is that of a de Sitter spacetime.

From the field theory point of view, it will perturb away from the conformal fixed
point S 0 to which the pure de Sitter phase corresponds, due to the non-marginal nature
of O, i.e. λ , 0 to first order or, more precisely, its β function is non-vanishing, β , 0.
It is therefore to be expected that λ and the β function of the operator O express the
departure away from the pure de Sitter phase. Indeed the slow-roll parameters ε and
η can be fully expressed in terms of the conformal field theory-data β and λ via

β =
∂u

∂log µ
=

∂φ

∂log a
=
φ̇

H
= −2

H′

H
, (6.5)
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where in the last step, the Friedmann equations are employed, which tell us that
φ̇ = −2H′. By taking multiple derivatives of this relation with respect to φ = u, one
readily obtains

β2 = 2ε, ε =
1
2
β2, (6.6a)

λ = ε − η, η =
1
2
β2 − λ, (6.6b)

∂2β

∂u2 =
1
√

2ε

(
2ξ2 − 3εη + 2ε2

)
, ξ2 = β

(
1
2
∂2β

∂u2 +
1
8
β3 −

3
4
βλ

)
. (6.6c)

We have included the second derivative ∂2β
∂u2 and the third slow-roll parameter ξ2 =

2 H′H′′′
H2 as these will appear in later expressions.
The relation between scaling parameters of the field theory and the slow-roll pa-

rameters of the inflationary theory suggests that for the study of slow-roll inflation,
for which ε, η, ξ � 1, we can consider a nearly marginal deformation of the confor-
mal field theory fixed point, β, λ, ∂

2β
∂u2 ≈ 0. With the relations (6.6), more substance has

been given to the picture as presented in figure 6.1, in that the inflationary quasi-de
Sitter phase can be approximated by a near conformal field theory.

Although it is tempting to also rely on techniques from conformal perturbation
theory, the above relation between the β function (and its derivatives) and the slow-roll
parameters does not necessarily imply the smallness of the coupling u. In fact, from
the expression of β(u) in conformal perturbation theory (3.18), we can immediately
read off possible problems,

β = λu + . . . . (6.7)

If β2 = O(ε) and λ = O(ε), it means that u itself is of order O(ε−1/2). Hence, the slow-
roll expansion seems to correspond to the large u-regime. Drawing a parallel with
expansion in dimensionful parameters, we know that we should perhaps not attach
too much value to this observation, but it does emphasize a subtle mismatch between
the slow-roll expansion and conformal perturbation theory. Conformal perturbation
theory requires a small deviation from marginality λ � 1 and a small coupling u � 1.
The slow-roll expansion is an expansion for small β � 1 and its derivatives, but has no
analogue for u. For this reason, we will try to keep the use of conformal perturbation
theory and the u→ 0-limit to a minimum, although we will not succeed in doing this
everywhere. In particular, as we have seen, the u → 0-limit is necessary to relate the
higher order slow-roll parameters with β [263, 265].
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6.3 Holographic correlation functions

6.3.1 Wavefunction expansion

The previous section suggests that the physics of the inflationary epoch in our (four-
dimensional) universe resembles the (three-dimensional) physics close to a conformal
fixed point. We will investigate whether this suggested resemblance can be employed
at the level of the correlation functions. As was summarized in chapter 2, the form of
these correlation functions is well-known from gravity calculations [28, 37–43, 57].
To study these from the holographic viewpoint, we need a dictionary between the
gravity correlation functions and the correlation functions of the boundary field the-
ory. In the spirit of the AdS/CFT-correspondence, such a relation has been provided
by [57].

Quantitatively, the holographic relation between de Sitter geometry and confor-
mal field theory is given by an identification of the partition function of the field
theory with the wavefunction of the de Sitter universe with appropriate boundary
conditions,

ΨdS = ZCFT . (6.8)

The partition function (6.8) determines the correlation functions via

〈O1 . . .On〉 =
δnΨdS [φ]
δφ1 . . . δφn

∣∣∣∣∣
φ=0

.

Therefore the wavefunction may be trivially expanded as

ΨdS [φ] = exp
(

1
2

∫
d3 k1d3 k2 φk1φk2〈Ok1Ok2〉

+
1
6

∫
d3 k1d3 k2d3 k3 φk1φk2φk3〈Ok1Ok2Ok3〉 + . . .

)
.

Using this expression, the dictionary follows immediately. The two-point function
〈φk1φk2〉 =

∫
Dφ φk1φk2 |ΨdS |

2 can be rewritten as

〈φk1φk2〉 =

∫
Dφ φk1φk2 e

∫
d3 kd3 l φkφlRe〈OkOl〉

=
−1

2Re〈Ok1O−k1〉
′
δ(k1 + k2)

∫
Dφ̃ φ̃k1 φ̃−k1 e−

1
2

∫
d3 k φ̃kφ̃−k ,

where we have employed the substitution of variables φ̃k = i
√

2Re〈OkO−k〉′ and
where we have assumed the path integral measure to be invariant under this sub-
stitution. A prime ′ indicates that we consider the part of the correlation function

110



6.3 Holographic correlation functions

multiplying the momentum conserving delta function. The path integral equals some
number and hence the correlation functions are related via

〈φkφ−k〉
′ ∝

−1
Re〈OkO−k〉′

. (6.9)

For the three-point function we can do a similar calculation,

〈φk1φk2φk3〉 =

∫
Dφ φk1φk2φk3 e

∫
d3 kd3 l φkφlRe〈OkOl〉+

1
3

∫
d3 kd3 ld3 mφkφlφmRe〈OkOlOm〉

=

∫
Dφ φk1φk2φk3 e

∫
d3 k φkφ−kRe〈OkO−k〉

′

×(
1 +

1
3

∫
d3 kd3 ld3mφkφlφmRe〈OkOlOm〉

)
= 2Re〈Ok1Ok2Ok3〉

∫
Dφ φk1φ−k1φk2φ−k2φk3φ−k3 e

∫
d3 k φkφ−kRe〈OkO−k〉

′

=
−Re〈Ok1Ok2Ok3〉

4
∏3

j=1 Re〈Ok jO−k j〉
′

∫
Dφ̃ φ̃k1 φ̃−k1 φ̃k2 φ̃−k2 φ̃k3 φ̃−k3 e−

1
2

∫
d3 k φ̃kφ̃−k ,

where we can approximate the exponent because 〈OOO〉 � 〈OO〉. The zeroth order
term in this approximation will integrate to 0 as it is an odd function. Hence

〈φk1φk2φk3〉 ∝
−Re〈Ok1Ok2Ok3〉∏3

j=1 Re〈Ok jO−k j〉
′
. (6.10)

These expressions hold for any dual pair of fields and operators. In particular,
the correlation functions of the curvature perturbation ζ are related to the correlation
functions of the trace Θ of the stress-energy tensor via

〈ζkζ−k〉
′ ∝

−1
Re〈ΘkΘ−k〉′

, (6.11a)

〈ζk1ζk2ζk3〉 ∝
−Re〈Θk1Θk2Θk3〉∏3

j=1 Re〈Θk jΘ−k j〉
′
. (6.11b)

6.3.2 Ward identities

The trace of the stress-energy tensor is not a standard primary operator. Therefore,
to compute (6.11) we can not simply resort to the standard expressions (3.12) for
correlation functions of primary operators in a conformal field theory. However, in
the gravity calculation we have seen that the curvature perturbations are defined in
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a gauge independent way and one has the freedom to choose a gauge in which the
calculation is done. The gauge invariance of the gravity theory is translated to the
fact that in a scale dependent field theory one can either change the dimensionful
coupling u to the operator O or one can change the metric, relating ζ to Θ accordingly
[57]. This gauge relation is reflected in the field theory, since both operators are
related, to leading order, via [286, 287]

Θ = −βO, (6.12)

where the constant of proportionality β is the Weyl anomaly coefficient. For the
purpose of this thesis it is taken to be equal to the standard renormalization β function
for the coupling u to the operator O, cf. section 3.1.3. Making use of this relation,
the holographic two- and three-point functions can be calculated from the n-point
functions of the primary operator O.

The appearance of β is no coincidence, as was already explained in chapter 3. In
a quantum field theory, scale transformations are associated with the regularization
and renormalization of the theory. This can be described in terms of the Callan-
Symanzik renormalization group equations [99–101], where the β functions in the
Callan-Symanzik equation describe the dependence of the coupling constants on the
renormalization scale. Equivalently —and historically, in the derivation of the Callan-
Symanzik equation— the scale dependence is described in terms of the Ward identity
of scale transformations.

In gravity, gauge invariance is really important, but at the end of the day the only
meaningful physical quantity is ζ. This corresponds to the trace of the stress-energy
tensor Θ of the boundary field theory. In general, gauge symmetries of a theory
correspond to constraints. In the case of the gravity theory, these are the hamiltonian
and momentum/reparameterization constraints of the ADM formalism [256]. In a
field theory, the symmetries impose constraints on the correlation function through
Ward identities. It is in this way that the gauge choices are implemented in the field
theory.

In our particular case, we need to find the relations between the two- and three-
point function of the trace of the stress-energy tensor Θ and the operator O. As
the trace of the stress-energy tensor is the Noether current of Weyl transformations,
we consider the Ward identities of (multiple) trace insertions. Initially the calculation
follows directly from any textbook field theory calculation, particularly [83], but once
multiple trace insertions have to be taken into account, more care is required. The
details of the calculation can be found in appendix 6.A. The final result is given by

〈Θu(x)X〉u = −u(∆ − 3)〈O(x)X〉u +
∑

k

δ(x − xk)∆k〈X〉u, (6.13a)
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〈Θu(x)Θu(y)X〉u = u2(∆ − 3)2〈O(x)O(y)X〉u − u(∆ − 3)2δ(x − y)〈O(x)X〉u

− u(∆ − 3)
∑

k

δ(x − xk)∆k〈O(y)X〉u − x↔ y

+
∑
k,l

δ(x − xk)∆kδ(y − xl)∆l〈X〉u, (6.13b)

〈Θu(x)Θu(y)Θu(z)X〉u = −u3(∆ − 3)3〈O(x)O(y)O(z)X〉u (6.13c)

+ u2(∆ − 3)3δ(y − z)〈O(x)O(y)X〉u + x↔ y + y↔ z + . . . ,

where the correlation function 〈 〉u of the trace(s) of the stress-energy tensor Θu is
evaluated in the perturbed conformal field theory (6.2), contracted with an arbitrary
product of operators X = O(x1) . . .O(xn). ∆k is the (full) scaling dimension of the
k’th operator O(xk) inside X, which in a single field scenario are all equal. The . . .
contain highly local contributions that are negligible for our purposes.

The Ward identities (6.13) are valid throughout the renormalization group flow,
i.e. for each value of u. However, to write them in a more familiar form, we rely
on conformal perturbation theory. Equation (6.13a) does not yet seem to contain the
familiar β(u)-dependence, but it does contain the u-dependent conformal weight ∆u,
which carries similar information [286, 287]. Along the renormalization group flow,
the scaling behavior of the operator will change and also the coupling will adjust
accordingly. Near a conformal fixed point, u → 0, or similarly, near our quasi-
conformal fixed point dual to inflation u→ u∗ = 0, one can make the relation between
∆u and β(u) more precise in a conformal perturbation expansion, cf. (3.18)

β(u) = u(∆0 − 3) + 2πCu2 + . . . . (6.14)

Hence, as an expansion in the coupling u, one recognizes the first order contribution
u(∆0 − 3) to β(u) in (6.13a). The higher order contribution, as obtained via conformal
perturbation theory methods, is proportional to the operator product coefficient C of
the operators O [110, 111]. The combination Cu results from expanding the one-
point correlation function 〈O〉u with respect to the unperturbed theory 〈O〉0. It is of
order O(ε) and appears with increasing power, Cu, (Cu)2, etc., for higher orders in
u. Hence, although we can not be certain of the validity of conformal perturbation
theory itself, the expansion of perturbed correlation functions in terms of unperturbed
correlation functions is very much similar to the slow-roll expansion.

Since we are only interested in the small u-behavior around the (quasi-)conformal
fixed point, the lowest order contribution to β should be sufficient for our purposes
to interpret the result. We insist on writing the expression in terms of β, as it nicely
emphasizes the dependence on the renormalization group flow or equivalently, the
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slow-roll dependence. Hence,

〈Θu(x)X〉u = −β〈O(x)X〉0 +
∑

k

δ(x − xk)∆k〈X〉u (6.15)

is the more precise version of the familiar relation (6.12). These two equations are
equal up to contact terms in real space. Similarly, we may write the other Ward
identities (6.13b) and (6.13c) as

〈Θu(x)Θu(y)〉u = β2〈O(x)O(y)〉0 − βλδ(x − y)〈O(x)〉0 (6.16)

and

〈Θu(x)Θu(y)Θu(z)〉u = −β3〈O(x)O(y)O(z)〉0
+ β2λ

[
δ(y − z)〈O(x)O(y)〉0 + x↔ z + y↔ z

]
+ . . . (6.17)

respectively. The ellipsis contain lower n-point functions in the conformal fixed point,
which do not contribute. These relations form the starting point of the calculation of
the power spectrum and bispectrum through holographic means.

6.4 Slow-roll predictions from Ward identities

Using the holographic dictionary (6.11) from [57] between the two- and three-point
functions of the scalar curvature perturbations ζ and the two- and three-point func-
tions of the stress-energy tensor Θu of the (near) conformal field theory, we can inter-
pret the Ward identities (6.16–6.17) as inflationary correlation functions, with their
dependence on the slow-roll parameters captured by β and λ. In this section we will
investigate the prediction for the two-point and three-point correlation functions on
the basis of conformal symmetry of the field theory. Special care has to be taken to
correctly interpret the renormalization group flow, which takes the expressions away
from their conformal fixed point and can be seen as the transcription of the slow-roll
dependence. We will first consider the, known [264, 265], holographic description of
the two-point function. From this we can draw important lessons for the three-point
function, in particular via the consistency condition that should be satisfied in the
squeezed limit of the three-point function. We first consider the squeezed limit of the
bispectrum and then turn our attention to its full expression.
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6.4.1 Two-point function

Power spectrum in the conformal fixed point

The power spectrum 〈ζζ〉 of curvature perturbations can be found from the field the-
ory via the stress-energy tensor two-point function 〈ΘuΘu〉u, which in its turn is fully
determined by the two-point function of the dual operator O. As we have seen in
chapter 3, in a conformal fixed point, the two-point function for an operator O with
scaling dimension ∆ is completely specified by conformal symmetry [83, 84],

〈O(x)O(y)〉0 =
1

|x − y|2∆
.

In principle, this completely specifies the holographic power spectrum for the confor-
mal fixed point. However, before we can compare with (2.14), we need to perform
a Fourier transform. This is necessary as the constraints by conformal symmetry are
naturally given in terms of the real space variables x j, whereas n-point functions in
cosmology are naturally given in terms of the outgoing momenta k j. Any connec-
tion between conformal correlation functions and inflationary correlation functions is
therefore necessarily obtained only after a Fourier transform. Although finding the
Fourier transform for the two-point function is readily done, in general the Fourier
transform leads to a technical obstruction for any quick use of the holographic corre-
spondence [149, 150, 255]. As we will see, already for the three-point function this
obstruction is difficult to overcome.

The Fourier transform of the two-point function is

〈OO〉0
F.T.
−−−→

∫
d3xd3y |x − y|−2∆ei(k · x+k′ · y) =

∫
d3u eiu · (k+k′)

∫
d3v v−2∆eiv · (k2+k3−k1)

= δ(k + k′)k2∆−3
∫

dξ ξ−2∆+2
∫

dθ sin θe−iξ cos θ

∝ δ(k + k′)k2∆−3, (6.18)

up to factors of 2 and 2π. Since 〈O〉0 = 0, if we take β(u) to be an overall constant,
the stress-energy tensor correlation function in the conformal fixed point is

〈ΘkΘk′〉0 ∝ δ(k + k′)β2k2∆0−3.

Using 〈ζζ〉′ ∝ 1
Re〈ΘΘ〉′

and the expressions (6.6) for ε and η in the conformal fixed
point,

ε =
1
2
β2 = 0, η = −(∆0 − 3), (6.19)
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the Fourier transform of the two-point function of primary operators agrees with the
standard result (2.14), where β2 describes the singular behavior of the power spectrum
as ε → 0 and where the spectral index is given by

ns − 1 = −2(∆0 − 3) = 2η. (6.20)

Power spectrum in the renormalization group flow

As explained in section 6.2, away from the conformal fixed point, the perturbation
by the operator O will lead to a renormalization group flow. Holographically this
is understood as the deviation from the pure de Sitter phase to a (quasi-de Sitter)
inflationary phase and was interpreted by [264] in the light of the known AdS/CFT
holographic renormalization methods [139, 141, 142]. Conceptually, it is understood
in the Wilsonian sense as a flow between theories, specified by the running of the cou-
pling constants. Technically, the renormalization group flow is the result of the need
to renormalize the operators O appearing in (6.16). At the level of the correlation
functions, the differential Callan-Symanzik equation dictates the scale dependence of
the correlation functions, which was introduced by the inclusion of non-marginal cou-
pling constants. For the truly marginal stress-energy tensor Θu, the Callan-Symanzik
equation determines its two-point function via(

µ
∂

∂µ
+ β

∂

∂u

)
〈ΘuΘu〉

′
u = 0. (6.21)

The µ-dependence can be traded for momentum dependence via dimensional analy-
sis,

〈ΘuΘu〉
′
u = k3F

[
k2

µ2 , u(µ)
]
,

telling us that (
µ
∂

∂µ
+ k

∂

∂k

)
〈ΘuΘu〉

′
u = 3〈ΘuΘu〉

′
u.

Following the literature [72], the Callan-Symanzik equation acting on the renormal-
ized operators Õ = Z(u)O, can be solved by investigating the ansatz

〈ΘuΘu〉
′
u = Z2(u)β2(u)k3. (6.22)

This seems to separate the k- and u-dependence completely, although the two are
inherently related through the defining equation of the running coupling u,

β = k
∂u
∂k
.
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Applying the Callan-Symanzik equation on this ansatz, the wavefunction renormal-
ization Z is given by

∂Z
Z∂u

+
∂β

β∂u
= 0,

which is solved by

Z(u) = Z0e−
∫ u

0 du′ λ(u′ )
β(u′ ) . (6.23)

Since β = k ∂u
∂k , we can trade the integration variable for k, introducing µ as the only

other scale in the problem,

Z(k) = Z0e
∫ k
µ

d log( k′
µ ) λ

. (6.24)

In this form, it is clear that the wavefunction renormalization just introduces an
anomalous dimension to the correlation function. For a constant λ(u) = ∆ − 3, the
two-point function reads

〈ΘuΘu〉
′
u = Z2

0β
2k3+2(∆−3). (6.25)

For u → 0, this returns to the earlier found result with an exponent 2∆0 − 3. For
completely arbitrary λ, the result is expressed through the integral in (6.24), which
provides a possible method to go beyond the lowest order in slow-roll [265, 288].

As was mentioned in [265], and which deserves renewed emphasis, to connect
the conformal correlation function with the inflationary power spectrum, one has to
express the two-point function with respect to the average Hubble flow. The stan-
dard inflationary perturbation theory calculates correlation functions of the quantum
fluctuations around the classical inflationary evolution. This evolution is driven by an
almost —but not exactly— constant Hubble parameter H(u). Of course, the fact that
we have to consider a quasi-de Sitter phase rather than a pure de Sitter evolution is
precisely expressed through the slow-roll approximation, something we have already
incorporated in the holographic description by studying the renormalization group
flow. Still, to correctly identify the fluctuations, we need to express the result with
respect to the classical evolution. Since conformal perturbation theory only works
around a fixed point of the renormalization group flow, one might wonder how we
can express our results with respect to an arbitrary point on the flow, corresponding
to the quasi-de Sitter phase. For the two-point function this can be remedied by iso-
lating an explicit Hubble parameter dependence, expressed as an integrated effect of
the slow-roll parameter (6.5),

H(u) = H0e−
1
2

∫ u
0 du′ β(u′) = H0e

1
2

∫ k
µ

d log( k′
µ )β2

. (6.26)
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Using the expression in terms of k, we find

〈ζkζk′〉 ∝ δ(k + k′)k−3 H2

β2 e−
∫ k
µ

d log( k′
µ )(β2+2λ). (6.27)

The relation (6.6) between the slow-roll parameters and the (derivative of the) β func-
tion for constant β(k) and λ(k) then immediately gives

ns − 1 = −β2 − 2λ = 2η − 4ε, (6.28)

in agreement with (2.15).

6.4.2 Three-point function in the squeezed limit

In principle, using similar techniques, we should be able to analyze the holographic
three-point function and give it a slow-roll interpretation. Before we will start this
subtle endeavor, we will shape our understanding with a very useful consistency con-
dition of the three-point function in the long wavelength limit.

The bispectrum describes the three-point correlation between three different
Fourier modes of the curvature perturbation. If one of the three modes is very small,
i.e. its wavelength is very long, it will leave the horizon earlier than the other two
modes. This limit is called the squeezed limit, since the momentum conserving tri-
angle of Fourier modes has a squeezed shape. Due to momentum conservation, the
other two modes become equal in magnitude. Since one of the modes is frozen as a
dynamical mode, effectively the three-point function reduces to a two-point function
between the other two modes. The only effect of the long mode can be seen through
the tilt ns − 1 of the power spectrum, which describes the difference in horizon cross-
ing between the modes.

This observation was first translated into a quantitative statement by [57] in the
context of single field slow-roll inflation. It is known to hold for any inflationary
scenario with a single clock [279], including our single field set-up. Taking the mode
k3 much smaller than the other two modes, k3 � k1 ≈ k2, the consistency condition
in the squeezed limit is, to lowest order in k3 [280],

lim
k3→0
〈ζk1ζk2ζk3〉 = −δ(k1 + k2 + k3)〈ζk1ζ−k1〉

′〈ζk3ζ−k3〉
′
d log k3

1〈ζk1ζ−k1〉
′

d log k1
. (6.29)

Corrections to this expression of order 1/k3 and beyond are also investigated [270,
271, 279, 280]. Given the general applicability of the relation, such corrections pro-
vide interesting criteria to observationally test (and possibly rule out) large classes
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6.4 Slow-roll predictions from Ward identities

of slow-roll inflationary models once non-Gaussianities become within reach of ob-
servations. At the same time the squeezed limit provides a robust prediction the-
oretically, which can be used as a first check on the consistency of any particular
description for (single clock) inflation.

For our holographic formula (6.11b) of the three-point function, we can explic-
itly verify the consistency condition in the squeezed limit. First we need to find the
analogous expression of (6.17) for the Fourier transformed correlation functions. To
do so, note that the Fourier transform of the second term(s) on the right hand side of
(6.17) follows directly from the fact that the two-point functions in a conformal field
theory can only depend on the spatial separation of the arguments,

δ(x2 − x3)〈O(x1)O(x2)〉0
F.T.
−−−→

∫
d3x1d3x2d3x3 δ(x2 − x3)〈O(x1)O(x2)〉0eik j · x j

= 23
∫

d3ud3v 〈OO〉0(v)eiu · (k1+k2+k3)eiv · (k2+k3−k1)

= 23δ(k1 + k2 + k3)
∫

d3v 〈OO〉0(v)e−2iv · k1

= δ(k1 + k2 + k3)〈Ok1O−k1〉
′
0. (6.30)

As before in performing the Fourier transform, we have not paid particular attention
to the conventional factors of 2π. When we would include these, only an overall
contribution to (6.17) will be obtained, when taking the squeezed limit.

Next we consider the Fourier transform 〈Ok1Ok2Ok3〉0 of the first term of (6.17)
in the limit k3 → 0,

lim
k3→0
〈Ok1Ok2Ok3〉

′
0 =

∫
d3x〈Ok1O−k1O(x)〉′0 = −

∂

∂u
〈Ok1O−k1〉

′
u + O(u)

=
1
β

(
−k1

∂

∂k1
+ 3 + 2λ

)
〈Ok1O−k1〉

′
u + O(u)

=
−1
β

(
k1

∂

∂k1
− 3

)
〈Ok1O−k1〉

′
0 +

2
β
λ〈Ok1O−k1〉

′
0 + O(u), (6.31)

where in the second line, the Callan-Symanzik equation (3.3) is applied to the two-
point function, (

k
∂

∂k
− β

∂

∂u
− 2λ − 3

)
〈OkO−k〉

′
u = 0.

Taking into account the prefactors −β3 and β2 in the Ward identity of three stress-
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6. Conformal universe

energy tensors (6.17) and using limk3→0〈Ok3O−k3〉
′
0 = 0, the Ward identity yields

lim
k3→0
〈Θu(k1)Θu(k2)Θu(k3)〉′u = β2

(
k1

∂

∂k1
− 3

)
〈Ok1O−k1〉

′
0 − 2β2λ〈Ok1O−k1〉

′
0

+ β2λ
(
2〈Ok1O−k1〉

′
0 + 0

)
(6.32)

in the squeezed limit. The local term of (6.17) exactly cancels against the 2
β
λ-

contribution of the squeezed limit of 〈OOO〉′0. Therefore, the squeezed limit of
(6.11b) gives

lim
k3→0
〈ζk1ζk2ζk3〉

′ ∝

(
k1

∂
∂k1
− 3

)
〈Ok1O−k1〉

′

β4〈Ok1O−k1〉
′〈Ok2O−k2〉

′〈Ok3O−k3〉
′

= 〈ζk1ζ−k1〉
′2〈ζk3ζ−k3〉

′

[
−

1
〈ζk1ζ−k1〉

′

(
k1

∂

∂k1
log〈ζk1ζ−k1〉

′ + 3
)]

= −〈ζk1ζ−k1〉
′〈ζk3ζ−k3〉

′
∂ log

(
k3

1〈ζk1ζ−k1〉
′
)

∂ log k1
. (6.33)

Hence, the squeezed limit consistency condition to lowest order in k3, is immediate in
the holographic description. The crucial step in the derivation is the second equality
in (6.31), in which the three-point function with a zero Fourier mode is recognized
as the first order contribution to the two-point function in a perturbed conformal field
theory. In the squeezed limit the three-point function appears as a small perturbation
of the two-point function around the conformal fixed point, leading to the tilt of the
power spectrum. The other steps follow from a rewriting of this dependence, which
can be seen as a slight rescaling, i.e. the infinitesimal coordinate transformation in-
duced by the insertion of a stress-energy tensor. This interpretation is consistent with
the original motivation behind the consistency condition, which observes that, once
frozen, the only effect of the long wavelength mode to the bispectrum is to cause a
local rescaling of the spatial distance scales, cf. (2.17) [57, 279].

A separate, independent derivation of the consistency condition (6.29) using sim-
ilar ingredients has been given in [271], in which the (broken) conformal symmetry
is described using a Ward identity. This Ward identity is equivalent to the Callan-
Symanzik equation in our formalism, whereas our Ward identity relating Θ and O has
no equivalent in the description of [271], which work directly with the gauge-invariant
curvature perturbation ζ. Since Ward identities naturally relate an n+1-point correla-
tion function with the variation of an n-point function, the observation in [271, 277]
is that the consistency condition essentially is a Ward identity, applied to a particular
conserved current. The current under consideration corresponds to a combination of

120



6.4 Slow-roll predictions from Ward identities

a shift and dilational transformation, perturbing the system much in the same way
as the Callan-Symanzik equation in our formalism. It would be very interesting to
further investigate the connection between [271] and our work.

The consistency condition provides a powerful technique in the investigation of
the structure of the correlation functions of curvature perturbations generated during
inflation. Several approaches are considered in the literature to use the relation [271,
272] or possible generalizations [270] in order to restrict the n-point functions. In
our approach, we use it as a consistency check and as an important guide to the full
holographic bispectrum. In particular, the consistency condition explicitly shows that
the local contributions in the bispectrum should combine in such a way that there is
an overall contribution proportional to ns − 1 = 2η − 4ε. As we will see, in the full
expression of the holographic bispectrum, the dominating slow-roll contribution is
not at all obvious. With the consistency condition at our disposal, we have a strong
indication where the important contributions should reside.

6.4.3 Three-point function

Bispectrum in a quasi-conformal fixed point

To understand inflationary non-Gaussianities, we now employ an analysis of the con-
formal three-point functions, similar to section 6.4.1. The Ward identity (6.17) con-
sists of two contributions. The main contribution appears to come from the operator
three-point function 〈OOO〉0, but also a contact term proportional to the two-point
function 〈OO〉0 appears. Both of these contributions are again constrained by confor-
mal symmetry, in particular [83, 84],

〈O(x1)O(x2)O(x3)〉0 =
C

(x12x13x23)∆
+ contact terms, (6.34)

where x jl = |x j − xl| and C is the coefficient from the operator product expansion.
The local contribution is generally not included in the literature, as it only contributes
at coincident points. We have included it for completeness and wish to note that its
contribution may well be relevant in the final expression.

Before we can compare any of the conformal structure with the inflationary bis-
pectrum, we will need to Fourier transform these expressions. The contact terms are
analyzed straightforwardly from (6.18) and (6.30),

δ(x2 − x3)〈O(x1)O(x2)〉0
F.T.
−−−→ δ(k1 + k2 + k3)〈Ok1O−k1〉

′
0

∝ δ(k1 + k2 + k3)k2∆−3
1 .
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Figure 6.2: The inflationary phase at an intermediate point in the renormalization group
flow may be approximated by a conformal fixed point. The dashed line indicates a
marginal renormalization group flow from one UV theory to another, for an operator
with exactly marginal dimension ∆ = 3. The validity of the slow-roll approximation sug-
gests that expressions in the quasi-fixed point can be approximated by a ∆−3-expansion.
Around the quasi-fixed point, with coupling u∗, the effect of inflation can be found
through a further dependence on the renormalization group flow.

For nearly marginal operators, this is a local contribution k3
1. Adding the symmetrized

terms, yields a contribution

Q(k1, k2, k3) = k3
1 + k3

2 + k3
3. (6.35)

Fourier transforming (6.34) for arbitrary ∆ is technically more involved [255] and
requires some ingenuity in the analysis, cf. appendix 6.B

To understand the Fourier transform, we will make full use of the conceptual
relation between slow-roll expansion and renormalization group flow, cf. section 6.2.
As emphasized earlier, the dual to the inflationary phase appears as a point on (or
short section of) the renormalization group flow at an intermediate stage. Because of
the slow-roll expansion, at a given instance the inflationary expansion is that of a de
Sitter evolution. Therefore, we can approximate the intermediate dual point on the
renormalization group flow, by a nearby conformal fixed point, cf. figure 6.2. The
difference between the conformal fixed point and the quasi-conformal fixed point is
that the operator O does not describe a marginal renormalization group flow, i.e. ∆ ,

3. Since the slow-roll expansion indicates that the operator is nearly marginal, we can

122



6.4 Slow-roll predictions from Ward identities

approximate (6.34) as a Taylor series expansion with respect to λ = ∆ − 3,

〈O(x1)O(x2)O(x3)〉0
F.T.
−−−→Cδ(k1 + k2 + k3)R∆(k1, k2, k3)

= Cδ(k1 + k2 + k3)
[
R3(k1, k2, k3) + λR′3(k1, k2, k3) + . . .

]
.

The evaluation of R∆ to first order is a technical exercise, which we detail in appendix
6.B. Using the expression for three traces (6.17) and the relation (6.6) between slow-
roll parameters and β and λ, the holographic prediction (6.11b) for the bispectrum in
the quasi-conformal fixed point is

〈ζk1ζk2ζk3〉
′ ∝

1
ε2

1
k3

1k3
2k3

3

[
βC

(
R3 + (ε − η)R′3

)
+ (ε − η)Q

]
. (6.36)

Next we will interpret this holographic prediction in the light of the gravitational
calculation (2.22).

Local and non-local contributions to the bispectrum

The terms involving R3 and Q have a clear interpretation. The local contribution Q
seems to match precisely with the local contribution from the bispectrum (2.21),

λQ(k1, k2, k3) = (ε − η)(k3
1 + k3

2 + k3
3). (6.37)

The momentum dependence as well as the parametric dependence on the slow-roll
parameters agree, except for a relative factor of 2 between the ε- and η-terms.

The contribution βCR3 has a clear interpretation as well. This zeroth order contri-
bution, at ∆ = 3, has already been considered in [257], as a contribution from a direct
three-point interaction V ′′′δφ3 [76–78, 257], cf. 6.B.3,

R3(k1, k2, k3) =
(
−1 + γ + log[−ktτ∗]

) 3∑
j=1

k3
j + k1k2k3 −

∑
j,l

k jk2
l . (6.38)

For a massless spectator field it is the leading contribution, but as was argued in
[57, 76], it appears at second order in the slow-roll expansion for the curvature per-
turbations. The prefactor βC can indeed be seen to be related to the third order slow-
roll parameter, in agreement with (2.22). In a similar fashion to what we argued that
λ =

∂β
∂u in the limit u→ 0, it is clear from the expression (6.14) of β in the conformal

perturbation theory limit that the second derivative of the β function is equal to the
operator product coefficient,

∂2β

∂u2 (u) = 4πC + O(u).
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Hence, from (6.6) we find

βCR3 =
1

4π
β
∂2β

∂u2 R3 =
1

2π
(ξ2 −

3
2
εη + ε2)R3, (6.39)

which matches the result in (2.22).
In the holographic prediction (6.36), the final term λR′3 should then account for

the remaining terms in (2.22). In particular, we are looking for contributions to the
holographic bispectrum, which are both linear in the slow-roll parameters as well as
have an interesting momentum behavior which mixes different momenta and has a
1
kt

-dependence. As is clear from 6.B.4, the contribution from R′3 does contain more
involved momentum dependence,

R′3 ⊂
∑

j

k3
j (a + bγ) log[−ktτ∗] +

1
k3

t

∑
j

k6
j + k5

1k2 log[−ktτ∗] + k2
1k4

3Li2

[
kt

kt − 2k1

] ,
with a and b numerical constants. However, this contribution is multiplied by βCλ,
which seems to be higher order in slow-roll, cf. [79].

From the squeezed limit we know that the latter observation is misleading. In
the consistency condition we have found more terms that are linear in the slow-roll
parameters than just the local term Q. Although the squeezed limit is often interpreted
as a small momentum limit, k3 → 0, in principle it is a relative statement, k3 � k1, k2.
Hence, because of momentum conservation, the squeezed limit could also be seen as
a high frequency limit k1 → ∞. In this form, the squeezed limit tells us that the high
frequency dominant part of the holographic bispectrum does contain additional linear
dependence on the slow-roll parameters, despite the explicit second order dependence
of βC.

The question is how one could extract the “hidden” linear parametric dependence.
Since the bispectrum reveals its hidden parametric dependence in the high energy
regime, an obvious suggestion is to consider the counterterms of the regulated ex-
pressions. One objection might be that a counterterm is not able of producing a
non-local contribution of the form 1

kt
. Counterterms generically have at most poly-

nomial dependence on the momenta, which vanish in the small frequency limit. A
1
kt

-behavior looks awfully divergent in this limit. However, in the bispectrum (2.21),
the numerator of the 1

kt
-terms ensures that there is no divergent behavior for low

frequency modes. We conclude that counterterms can produce 1
kt

-terms and should
therefore be studied in more detail. Although R′3 comes with explicit divergent terms,
cf. (6.68), these are only homogeneous of degree 1 in the momenta and therefore do
not resemble any of the terms in (2.22).

124



6.4 Slow-roll predictions from Ward identities

Therefore, an alternative analysis is called for. In fact, the derivation of the
squeezed limit (6.31) and in particular the explicit division by β ∝ (∆ − 3) = λ

necessary for the cancelation against the two-point correlation function contribution
of (6.17), indicates that non-analytic behavior in λ plays an essential role. This un-
derlines the need for a Laurent series rather than a Taylor series. By analyzing the
Laurent series of 〈OOO〉0 in λ, one should be able to uncover the dominant contribu-
tions, which is the topic of future work.

The renormalization group flow

As with the power spectrum, to truly compare the inflationary bispectrum with the
holographic prediction, we will need to deviate away from the quasi-de Sitter phase
using the renormalization group flow. Compared to the two-point case, the sought-
for change in functional dependence is different. Whereas the slow-roll result for
the two-point function has slow-roll dependence in the exponent of the momentum
k, the slow-roll dependence of the three-point function is usually found in the overall
amplitude of the bispectrum, cf. (2.21).

To calculate 〈ζk1ζk2ζk3〉, we will have to find the renormalized expressions for
〈Θk jΘ−k j〉

′
u and 〈Θk1Θk2Θk3〉

′
u. As we have seen in the previous section, each of the

〈Θk jΘ−k j〉
′
u in the denominator of (6.11b), is given by

〈Θk jΘ−k j〉
′
u = Z2β2k3,

where Z(u) is given by (6.23). The stress-energy tensor three-point function can be
found by a comparable calculation. Using dimensional analysis,µ ∂∂µ +

∑
j

k j
∂

∂k j

 〈Θu(k1)Θu(k2)Θu(k3)〉′u = 3〈Θu(k1)Θu(k2)Θu(k3)〉′u,

we can write the Callan-Symanzik equation for the three-point function of the exactly
marginal stress-energy tensor as(

k j
∂

∂k j
− 3 − β

∂

∂u

)
〈Θu(k1)Θu(k2)Θu(k3)〉′u = 0. (6.40)

This equation determines Z̃(u) in the ansatz

〈Θu(k1)Θu(k2)Θu(k3)〉′u = −Z̃3β3CR(k1, k2, k3) + Z̃2β2λQ(k1, k2, k3),

where both R and Q are homogeneous in k1, k2, k3 of degree 3. This latter fact fol-
lows from the approximation we consider, in which the quasi-fixed point describing
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inflation is expanded with respect to a marginal conformal dimension, which ensures
the degree of homogeneity of the three-point function to be 3.

As a first attempt of finding a solution for Z̃, we consider the case in which λ(u)
is constant. Then, Z̃ is again given by (6.23). Collecting results,

〈ζk1ζk2ζk3〉
′ = Z−6β−6(k1k2k3)−3

(
−Z3β3CR(k1, k2, k3) + Z2β2λQ(k1, k2, k3)

)
= H4β−4(k1k2k3)−3(HZ)−4 (−ZβCR(k1, k2, k3) + λQ(k1, k2, k3)) . (6.41)

Again we have chosen to explicitly isolate the required H-dependence of the bispec-
trum. The overall factor (HZ)−4 contributes additional factors of β and λ via

(HZ)−4 = e2
∫ u

0 du′
(
β(u′)+2 λ(u′)

β(u′ )

)
= 1 + 2

∫ u

0
du′

(
β(u′) + 2

λ(u′)
β(u′)

)
+ . . . . (6.42)

Performing a similar expansion for Z = e−
∫
λ/β, the holographic bispectrum is given

by

Bζ(k1, k2, k3) =
H4

β4(k1k2k3)3

(
1 + 2

∫ u

0
du′

(
β(u′) + 2

λ(u′)
β(u′)

))
×[

λQ(k1, k2, k3) − βC
(
1 −

∫ u

0
du′

λ(u′)
β(u′)

)
R(k1, k2, k3)

]
. (6.43)

This expression makes clear that a renormalization of the bispectrum will only con-
tribute to higher order in slow-roll. Since we explicitly consider the renormalization
as a variation of the slow-roll parameters, this is little surprising, but it also means
that, for the time being, we do not have to consider the effect of renormalization on
the bispectrum.

6.5 Conclusions

In this chapter we have considered the late-time de Sitter symmetry constraints on
the two- and three-point correlation functions of curvature perturbations generated
during single field slow-roll inflation. The fact that the inflationary evolution is a near-
de Sitter phase is captured by considering the renormalization of the Ward identities
relating the stress-energy tensor and the operators holographically dual to the inflaton
field.

In the case of the power spectrum, the symmetry constraints are sufficient to re-
trieve the near scale invariance that is characteristic for slow-roll inflation. The fact
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that the power spectrum can be retrieved from the renormalization group flow, sug-
gests a type of universality in the two-point function. If a dS/CFT-correspondence
would be found, this universality contrasts with the finetuning problem for inflation,
whose dynamics does seem to depend sensitively on the slow-roll parameters.

In the case of the bispectrum, our study is, as yet, inconclusive as to whether sym-
metries are sufficient to specify the three-point function completely. Several ingredi-
ents of the bispectrum can be seen to appear directly from our holographic study, but
other ingredients, most notably the appearance of a 1

kt
-term at linear order in slow-

roll, remain hidden in the approach. Both ingredients do appear in one or more of
the terms that contribute to the bispectrum, but the necessary combination does not
appear. From the correctness of the consistency condition in the squeezed limit, we
obtain tantalizing hints that counterterms and/or a Laurent expansion in λ should con-
tain the required momentum-dependence, at the right order in slow-roll. However, a
first study into the subtle regularization procedure, has not proven to be successful.

The methods we have used resemble techniques from the AdS/CFT-correspond-
ence. If a holographic understanding of the primordial bispectrum could be found,
then our analysis should be a first step into a further understanding of a possible
dS/CFT-correspondence. At this stage, however, the dS/CFT-correspondence is only
considered at the level of the symmetries, which is a far more general statement than
the intricate details of a holographic correspondence. Moreover, one could worry
in which regime we consider the field theory. Since we are set out to study a phe-
nomenon in classical general relativity, a direct application of holography would sug-
gest the dual theory to be strongly coupled. However, for us, this question is irrele-
vant, since we never consider the coupling constant of the putative dual theory and
base our results solely on the restrictive power of the symmetries.

A subtle issue in our methods is the use of conformal perturbation theory. Con-
formal perturbation theory requires that the coupling that drives the theory away from
the conformal fixed point, is small u � 1. This requirement does not seem to follow
immediately from the slow-roll expansion. For this reason, it is unclear whether or
when we are entitled to rely upon conformal perturbation techniques. Possibly, some
of the unresolved puzzles are caused by the absence of a full understanding of the
applicability of conformal perturbation theory in this context.

In conclusion, we have presented a detailed but not yet finalized understanding
of how constraints from the asymptotic conformal symmetry of de Sitter space may
restrict the two- and three-point functions of primordial density fluctuations gener-
ated during inflation. The three-point correlation function seems to subtly depend on
regularization and renormalization, which is partly beyond the scope of this study.
Clearly, it would be interesting to fully develop the necessary techniques to study the
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three-point function. The bulk of the ingredients essential for this analysis has been
laid out in this thesis.

6.A Ward identities of multiple trace insertions

6.A.1 Ward identities for a perturbed action

The Ward identity of any symmetry generator can be derived from considering in-
finitesimal transformations of the correlation function,

〈X〉u =
1
Z

∫
DO Xe−S u[O], (6.44)

of a product of operators X = O(x1) . . .O(xn). We specifically evaluate the expecta-
tion value with respect to a perturbed conformal field theory,

S u[O] = S 0[O] +

∫
d3x uO(x) + S c.t.(µ). (6.45)

The last term is necessary to regulate any divergences, which we have introduced by
turning on a scale in the form of a non-marginal operator O. The precise form of S c.t.

is not clear at this stage, but its presence can later be used to regulate any divergences
in the correlators. Under the transformation O → O′ = O(x) − iωaGa(x)O(x), the
action transforms as

S u[O′] = S u[O] −
∫

d3xωa(x)∂µ jµa(x) − i
∫

d3xωa(x)Ga(x)uO(x)

−
1
2

∫
d3xωa(x)Ga(x)ωb(x)Gb(x)uO(x) + . . . ,

to second order in ωa, where jµa is the Noether current of the transformation in the
conformal field theory S 0[O] at the fixed point. The last term is a contact term, which
we have included because it is of second order in ωa. It stems from the transformation
O → O′ in the perturbation-part of the action (6.45). In principle, the unperturbed
conformal action S 0[O] also obtains a contribution at second order as a result of
the transformation to second order. However, this contribution is difficult to retrieve
from first principles, as the Noether current of the transformation is only defined
infinitesimally. It is therefore left implicit in the . . ., while its effect on the Ward
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identity will later be inferred by different means. Hence, for the moment we find

e−S u[O′] = e−S u[O]
(
1 −

∫
d3xωa(x)δLa(x) +

1
2

∫
d3xdyωa(x)ωb(y)δLa(x)δLb(y)

)
×

(
1 +

1
2

∫
d3xωa(x)Ga(x)ωb(x)Gb(x)uO(x)

)
,

up to second order, where δLa(x) is shorthand notation for

δLa(x) = −∂µ jµa(x) − iuGa(x)O(x).

Infinitesimally transforming X gives

X′ = e−iωa(x)Ga(x)X =X − i
∑

k

ωa,kGa,kX −
1
2

∑
k,l

ωa,kGa,kωb,lGb,lX,

where ωa,k = ωa(xk) and Ga,k = Ga(xk) acts on the k’th O(xk) inside X.
Assuming the measure is invariant, DO′ = DO, comparison of the transformed

expression for 〈X〉u and (6.44) gives

0 =

∫
d3xωa(x)〈δLa(x)X〉u + i

∑
k

ωa,kGa,k〈X〉u, (6.46)

to first order in ω. Similarly, to second order it gives

0 =

∫
d3xd3yωa(x)ωb(y)〈δLa(x)δLb(y)X〉u + 2i

∑
k

ωa,kGa,k

∫
d3xωb(x)〈δLb(x)X〉u

−
∑
k,l

ωa,kGa,kωb,lGb,l〈X〉u +

∫
d3xωa(x)Ga(x)ωb(x)Gb(x)u〈O(x)X〉u

=

∫
d3xd3yωa(x)ωb(y)〈δLa(x)δLb(y)X〉u +

∑
k,l

ωa,kGa,kωb,lGb,l〈X〉u

+

∫
d3xωa(x)Ga(x)ωb(x)Gb(x)u〈O(x)X〉u. (6.47)

6.A.2 Alternative derivation

As emphasized, these expressions have been derived with respect to the perturbed
theory. Since Ward identities are usually derived with respect to an invariant theory,
our approach may raise questions on its correctness. We therefore present a different
calculation, which is independent from the previous one. We use the fact that

〈X〉u = 〈Xe−
∫

d3 x uO(x)〉0
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and apply it to the standard u = 0 Ward identities,

〈∂µ jµa(x)X〉0 = i
∑

k

δ(x − xk)Ga,k〈X〉0, (6.48a)

〈∂µ∂ν jµa(x) jνb(y)X〉0 = −
∑
k,l

δ(x − xk)δ(y − xl)Ga,kGb,l〈X〉0. (6.48b)

Applying (6.48a) repeatedly to the Taylor expansion of the exponential yields

〈∂µ jµa(x)X〉u =
∑

n

(−u)n

n!

∫
d3x1 . . . d3xn 〈∂µ jµa(x)O(x1) . . .O(xn)X〉0

=
∑

n

(−u)n

n!

∫
d3x1 . . . d3xn ×

i

 n∑
k=1

+
∑
k=X

 δ(x − xk)Ga,k〈O(x1) . . .O(xn)X〉0

= −iuGa(x)〈O(x)X〉u + i
∑

k

δ(x − xk)Ga,k〈X〉u, (6.49)

where the summation
∑n

k=1 runs over all first n operators O coming from the exponent
and where

∑
k=X runs over all remaining operators O inside X. Similarly, for the

double Ward identity,

〈∂µ∂ν jµa(x) jνb(y)X〉u =
∑

n

(−u)n

n!

∫
d3x1 . . . d3xn ×(

−

 n∑
k,l

+

n∑
k=1

∑
l=X

+
∑
k=X

n∑
l=1

+
∑
k,l=X

 δ(x − xk)δ(y − xl)Ga,kGb,l

− δ(x − y)
n∑

k=1

δ(x − xk)Ga,kGb,k

)
〈O(x1) . . .O(xn)X〉0

= −u2Ga(x)Gb(y)〈O(x)O(y)X〉u + uδ(x − y)Ga(x)Gb(x)〈O(x)X〉u

+ uGa(x)
∑

k

δ(y − xk)Gb,k〈O(x)X〉u + x↔ y

−
∑
k,l

δ(x − xk)δ(y − xl)Ga,kGb,l〈X〉u, (6.50)
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where the summation
∑

k on the right hand side of the last equation only runs over
the operators inside X. We verify that

〈δLa(x)X〉u = −i
∑

k

δ(x − xk)Ga,k〈X〉u, (6.51a)

〈δLa(x)δLb(y)X〉u = 〈∂µ∂ν jµa(x) jνb(y)X〉u − u2Ga(x)Gb(y)〈O(x)O(y)X〉u
+ iuGa(x)〈∂ν jνb(y)O(x)X〉u + x↔ y

= −
∑
k,l

δ(x − xk)δ(y − xl)Ga,kGb,l〈X〉u

− uδ(x − y)Ga(x)Gb(x)〈O(x)X〉u, (6.51b)

in agreement with (6.46–6.47).

6.A.3 Trace Ward identities

Returning to the integral expressions (6.46–6.47), we consider the special choice for
ωa = ω(x)(1D,−xν1T ) to derive the trace insertion formulae, where 1D and 1T means
we consider the dilational and translational transformations. The combined effect of
this familiar combination [98, 271, 289] yields

ωa(x)Ga(x) = ω(x)
(
−i(xµ∂µ + ∆) − xν (−i∂ν)

)
= −iω(x)∆,

ωa(x)δLa(x) = ω(x) (−Θ0(x) − u∆O(x)) = ω(x) (−Θu(x) − u(∆ − 3)O(x)) .

In the last line we rewrite the answer in terms of the stress-energy tensor of the per-
turbed theory,

Θu =
−2
√

h
hαβ

δS
δhαβ

∣∣∣∣∣∣
hαβ=δαβ

= Θ0 +
−2
√

h
hαβ
−1
2

√
hhαβ

∣∣∣∣∣
hαβ=δαβ

uO = Θ0 + 3uO. (6.52)

The Ward identities can then be written as

〈Θu(x)X〉u = −u(∆ − 3)〈O(x)X〉u +
∑

k

δ(x − xk)∆k〈X〉u (6.53)
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and

〈Θu(x)Θu(y)X〉u =
∑
k,l

δ(x − xk)∆kδ(y − xl)∆l〈X〉u + uδ(x − y)∆2〈O(x)X〉u

− u(∆ − 3)〈Θu(x)O(y)X〉u − x↔ y − u2(∆ − 3)2〈O(x)O(y)X〉u

=
∑
k,l

δ(x − xk)∆kδ(y − xl)∆l〈X〉u

+ uδ(x − y)
(
∆2 − 2(∆ − 3)∆

)
〈O(x)X〉u

− u(∆ − 3)
∑

k

δ(x − xk)∆k〈O(y)X〉u − x↔ y

+ u2(∆ − 3)2〈O(x)O(y)X〉u, (6.54)

where ∆k is the (full) scaling dimension of the k’th operator O(xk) inside X.
At this stage, we have to reflect on the correctness of the expressions by perform-

ing a consistency check on the two-point function (6.54). When we perturb the con-
formal field theory with a purely marginal operator, ∆ = 3, the renormalization group
flow remains in a (different) conformal field theory. The trace Θu of this perturbed
theory is still vanishing. Hence, the two-point correlation function of the perturbed
stress-energy tensor should vanish with respect to the perturbed theory. However,
substituting ∆ = 3 into our expression,

〈Θu(x)Θu(y)〉u = u2(∆ − 3)2〈O(x)O(y)〉u − uδ(x − y)
(
(∆ − 3)2 − 32

)
〈O(x)〉u,

does not yield zero. Clearly in our derivation we must have missed a term of the
form −32uδ(x − y)〈O(x)〉u. This term is a contact term and should stem from the ne-
glected second order transformation of S 0[O], which will contain a contribution from
the variation of the Noether current. In [281–283] such a contribution is explicitly
included for the consistency of the expressions. In our case we can infer the final
result based on conceptual reasoning. We thus employ the expression

〈Θu(x)Θu(y)X〉u = u2(∆ − 3)2〈O(x)O(y)X〉u − u(∆ − 3)2δ(x − y)〈O(x)X〉u

− u(∆ − 3)
∑

k

δ(x − xk)∆k〈O(y)X〉u − x↔ y

+
∑
k,l

δ(x − xk)∆kδ(y − xl)∆l〈X〉u, (6.55)

for the double Ward identity.
We similarly derive the correlation function of three traces. Using either of the

two methods described above to third order in ω, the Ward identity of three current
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insertions gives

0 =

∫
d3xd3yd3 zωa(x)ωb(y)ωc(z)〈δLa(x)δLb(y)δLc(z)X〉u

− i
∑
k,l,m

ωa,kGa,kωb,lGb,lωc,mGc,m〈X〉u + . . . , (6.56)

where the . . . contain terms of order u. These terms are double contact terms and,
as is clear from the main text, are not relevant for our purposes. Choosing again
ωa = ω(x)(1D,−xν1T ) and using the single and double trace-inserted Ward identities
(6.53), (6.55), the three-point function of the stress-energy tensor reads

〈Θu(x)Θu(y)Θu(z)X〉u = −u3(∆ − 3)3〈O(x)O(y)O(z)X〉u
− u2(∆ − 3)2〈Θu(x)O(y)O(z)X〉u − x↔ y − x↔ z
− u(∆ − 3)〈Θu(x)Θu(y)O(z)X〉u − z↔ x − z↔ y + . . .

= −u3(∆ − 3)3〈O(x)O(y)O(z)X〉u
+ u2(∆ − 3)3δ(y − z)〈O(x)O(y)X〉u + x↔ y + y↔ z + . . . ,

(6.57)

where the . . . contain highly local contributions.

6.B The Fourier transform of the three-point func-
tion

6.B.1 Feynman parameters

In a conformal field theory, the three-point correlation function of an operator O with
conformal dimension ∆ is determined by the symmetries to be of the form

〈O(x1)O(x2)O(x3〉0 =
C

(x12x13x23)∆
,

in position-space. To find the momentum dependence, one has to perform a Fourier
transform,

F∆(k1, k2, k3) = C
∫

d3x1d3x2d3x3 ei
∑

j k j · x j (x12x13x23)−∆.

In practice, for arbitrary ∆, this quickly becomes difficult. In the appendix of [255]
it is explained how the result can be written as an integral over Feynman parameters.
For completeness, we shortly review this approach here.
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Inserting the Fourier transform,

|x|−∆ = B(∆)(2π)−3
∫

d3 p |p|∆−3e−ip · x, where B(∆) = 23−∆π3/2
Γ
(

3−∆
2

)
Γ
(

∆
2

) ,

into F∆, the x j integrals can be performed explicitly and also two of the momentum
integrals can be done to give

F∆(k1, k2, k3) = CB3(∆)δ(k1 + k2 + k3)
∫

d3 p (p2|p− k1|
2|p + k2|

2)λ/2, (6.58)

where λ = ∆ − 3. As is usual, the difficult dot-product dependence in the integrand
can be rewritten with the use of Feynman parameters. Using

A−αB−βC−γ =
Γ(α + β + γ)
Γ(α)Γ(β)Γ(γ)

∫ 1

0
du

∫ 1

0
dv×

uα−1(1 − u)β−1vα+β−1(1 − v)γ−1 [uvA + (1 − u)vB + (1 − v)C]−α−β−γ ,

the integral in (6.58) equals

Γ(−3λ/2)
Γ3(−λ/2)

∫ 1

0

∫ 1

0
dudv [(1 − u)(1 − v)]−(1+λ/2) v−(1+λ)G(u, v, k1, k2),

where

G(u, v, k1, k2) =

∫
d3 p

[
uvp2 + v(1 − u)|p− k1|

2 + (1 − v)|p + k2|
2
]3λ/2

=

∫
d3 p (p2 + a2)3λ/2 = π3/2 Γ(− 3

2 (1 + λ))
Γ(−3λ/2)

(a2)
3
2 (1+λ).

The second identity follows from a shift of the momentum p. We have written a as a
shorthand notation for

a2 = (1 − u)v(1 − (1 − u)v)k2
1 + v(1 − v)k2

2 + 2v(1 − u)(1 − v)k1 · k2,

which can be expressed fully in terms of the sizes of the three momenta, k1, k2 and k3

due to momentum conservation. Collecting results and changing variables u→ 1−u,
v→ 1−v, the Fourier transform of the three-point function is given by

F∆(k1, k2, k3) = C
23−3∆(2π)6

Γ2( ∆
2 )

δ(k1 + k2 + k3)k3∆−6
1 S ∆(X,Y), (6.59)
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where the shape function S ∆(X,Y) of the ratios X =
k2

2
k2

1
, Y =

k2
3

k2
1

is given by [255]

S ∆(X,Y) =
Γ
(
3 − 3∆

2

)
Γ
(

∆
2

) ∫ 1

0
du

∫ 1

0
dv

[u(1 − u)v]
1
2−

∆
2 (1 − v)

∆
2 −1

[u(1 − u)(1 − v) + (1 − u)vX + uvY]3− 3∆
2

=
2
√
π

Γ(3 −
3∆

2
)Γ(

3
2
−

∆

2
)×∫ 1

0
du

[u(1 − u)]
1
2−

∆
2

[(1 − u)X + uY]3− 3∆
2

2F1

(
3 −

3∆

2
,
∆

2
;

3
2

; Z(X,Y, u)
)
. (6.60)

The hypergeometric function 2F1 depends on u and the shape of the momentum con-
serving triangle via

Z(X,Y, u) = 1 −
u(1 − u)

(1 − u)X + uY
.

6.B.2 Bulk-boundary identity

The integral (6.60) over the hypergeometric function can not be evaluated for arbi-
trary values of ∆. Moreover it has divergences when ∆ has integer values. Regulating
the divergences is not easy, since the Feynman parameters u and v do not have a clear-
cut physical meaning. This is unfortunate, since from the gravity calculation we have
reasons to believe that the three-point function actually has a clean momentum depen-
dence, which for (6.60) remains hidden in the Feynman integral. For this reason, we
pursue a different approach to find the Fourier transforms. Although our technique
is borrowed from AdS/CFT and is reminiscent of the actual gravity in-in calculation
[57, 254], the calculation is to be understood as a pure mathematical identity, whose
AdS/CFT-origin is not of particular relevance. The identity we will use is, cf. (3.36)
[149, 150],

a(∆)
(x12x23x13)∆

= (6.61)∫ ∞

z0

dz
z4 d3x1d3x2d3x3d3w Kbb(∆; z, |x1 − w|)Kbb(∆; z, |x2 − w|)Kbb(∆; z, |x3 − w|),

where a(∆) depends on ∆,

a(∆) =
Γ
(

3
2 (∆ − 1)

)
Γ
(

∆
2

)3

2π3Γ
(
∆ − 3

2

)3 ,
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and where Kbb(∆; z, z, x) is the bulk-boundary propagator in anti-de Sitter spacetime,

Kbb(∆; z, z, x) =
Γ(∆)

π
3
2 Γ(∆ − d

2 )

(
z

z2 + (z − x)2

)∆

.

Equation (6.61) has to be understood as a regulated expression, picking out the regular
part as z→ 0.

We can Fourier transform the left hand side of (6.61) by Fourier transforming
each of the bulk-boundary propagators [148]

Kbb(∆; z, z0, k) =

(
z
z0

) 3
2 Kν(kz)

Kν(kz0)
,

where Kν(x) is the modified Bessel function of the second kind and ν = ∆ − 3
2 . The

special point z0 is used to normalize the bulk-boundary propagator. In Fourier-space
the three-point function 〈O∆(k1)O∆(k2)O∆(k3)〉0 = Cδ(k1 + k2 + k3)R∆(k1, k2, k3) is
then equal to

R∆(k1, k2, k3) =
1

a(∆)

∫ ∞

z0

dz
z4 Kbb(∆; z, z0, k1)Kbb(∆; z, z0, k2)Kbb(∆; z, z0, k3). (6.62)

6.B.3 The marginal case

The expression (6.62) is particularly simple for marginal operators O with ∆ = 3 or
equivalently ν = 3

2 . In that case, the Taylor series of the Bessel function terminates,
leaving a simple expression for the bulk-boundary propagator

Kbb(3; z, z0, k) = e−k(z−z0) 1 + kz
1 + kz0

.

The integral (6.62) can be done explicitly and is of the form

R3(k1, k2, k3) =
I−3

z3
0

+
I−1

z0
+ I0(k1, k2, k3)z0

0 + O(z0). (6.63)

The first two terms are singular in the limit z0 → 0. At the same time, these terms are
odd in z0, indicating that they are imaginary contributions if we would do the Wick-
rotation from the anti-de Sitter z0 to conformal time τ∗ [281]. Therefore, the leading
contribution comes from the regular coefficient multiplying z0

0. This term gives the
well-known result [77, 78, 257]

I0(k1, k2, k3) = −
1

3a(3)

(−1 + γ + log[−ktτ∗]
) 3∑

j=1

k3
j + k1k2k3 −

∑
j,l

k jk2
l

 , (6.64)

for spectator fields in a de Sitter background, cf. (2.22).
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6.B.4 The nearly marginal case

For general ∆, the expression (6.62) is less easy to evaluate. When ∆ is nearly
marginal, ∆ ≈ 3, we may approximate the result via a Taylor series,

R∆(k1, k2, k3) = R3(k1, k2, k3) + (∆ − 3) ∂∆R∆(k1, k2, k3)|∆=3 + O(λ2). (6.65)

This approach is very similar to the one employed in the appendix of [79], in which
higher order corrections in the slow-roll expansion are calculated. The zeroth order
term R3(k1, k2, k3) equals the result of the previous section, which now gets correc-
tions of order ∆ − 3 proportional to the derivative of R∆ at ∆ = 3.

Using one of the explicit formulae for the Bessel function [290], Kν =
√
π

Γ(ν+ 1
2 )

K̃ν,
where

K̃ν(Z) =

(Z
2

)ν ∫ ∞

1
dx e−Zx(x2 − 1)ν−

1
2 ,

the first order contribution ∂∆R∆|∆=3 can be written as

∂∆R∆|∆=3 = −R3(k1, k2, k3)
(
∂∆a(∆)

a(∆)
+
∂νK̃ν(k1z0)
K̃ν(k1z0)

+
∂νK̃ν(k2z0)
K̃ν(k2z0)

+
∂νK̃ν(k3z0)
K̃ν(k3z0)

)∣∣∣∣∣∣
∆=3

+ L(k1; k2, k3) + L(k2; k1, k3) + L(k3; k1, k2), where (6.66a)

L(k1; k2, k3) =
1

a(3)

∫ ∞

z0

dz
z4 ∂νK̃ν(k1z)

K̃ν(k2z)K̃ν(k3z)
K̃ν(k1z0)K̃ν(k2z0)K̃ν(k3z0)

∣∣∣∣∣∣
ν= 3

2

. (6.66b)

The advantage of using K̃ν is that its derivative can be explicitly evaluated,

∂νK̃ν(Z)
∣∣∣
ν= 3

2
=

(Z
2

)3/2 ∫ ∞

1
dx e−Zx(x2 − 1) log

[Z
2

(x2 − 1)
]

= 2(2Z)−3/2e−Z
(
3 + Z − γ(1 + Z) + (−1 + Z)e2ZEi(−2Z)

)
, (6.67)

where Ei(Z) = −
∫ ∞
−Z dt e−t

t is the exponential integral function. Hence, the contri-
bution from the first line of (6.66a) can be directly found from an expansion in z0.
Again, since all singular terms are odd, the leading order contribution comes from
the z0

0-term. The result resembles (6.64), but now also includes terms proportional to
log[−k jτ∗].

To find L(k1; k2, k3), the derivative of the Bessel function (6.67) needs to be in-
tegrated over z ∈ (z0,∞). The total contribution consists of two parts, one part L(1)

coming from the integration of e2k1zEi(−2k1z) and the other part L(2) from the integra-
tion over the other terms. The latter contribution can be readily done and it gives an
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answer of the form

L(2)(k1; k2, k3) =
L(2)
−3

z3
0

+
L(2)
−2

z2
0

+
L(2)
−1

z0
+ L(2)

0 z0
0 + O(z0). (6.68)

In this case, the leading order contribution comes from the even, divergent, contribu-
tion L(2)

−2, which is given by

L(2)
−2(k1; k2, k3) = −k1π

5/2. (6.69)

Interestingly, this contribution is not homogeneous of degree 3 in the momenta. The
contribution L(2)

0 is

L(2)
0 (k1; k2, k3) =

π5/2

3

(
(k3

2 + k3
3)((γ − 1)(γ − 3) + γ log [−ktτ∗])

+ k3
1(γ(γ − 1) − 3 + γ log [−ktτ∗])

− γ(k2
1k2 + k2

1k3) + (k1k2
2 + k1k2

3)(3 − 4γ − 3 log[−ktτ∗])

+ γk1k2k3 + (k2
2k3 + k2k2

3)(γ − 3)(γ − 2)
)
. (6.70)

It is again a term that looks very much like (6.64), except for its coefficients.
In order to calculate the integral L(1) over the exponential integral function, we

consider the integral of each term of its Taylor series expansion separately,

eZEi(−Z) =

∞∑
n=0

[
1
n!

(γ + log [Z])
]

Zn +

∞∑
n=1

 n∑
j=1

(
(−1) j

j j!(n − j)!

) Zn.

The integral over each of the summands can be straightforwardly computed. Fur-
thermore the restrictions L(1)

−2 and L(1)
0 of L(1) to the z−2

0 - and z0
0-contributions can be

resummed into closed expressions. Both expressions are too long to include in this ap-
pendix. Most important is the generic momentum dependence, which can already be
appreciated by inspection. The contribution L(1)

−2(k1; k2, k3) is a polynomial of degree
1 in the momenta, with logarithmic dependence on each of the k j’s. The contribution
L(1)

0 (k1; k2, k3) is a sixth degree polynomial multiplied by 1
k3

t
with polylogarithmic de-

pendence on kt, but also on k1 − k2 − k3. These expressions show the type of mixing
that can occur between the different momenta. After a decent rewriting they may
unveil the typical 1/kt-momentum dependence of the slow-roll result, although at the
moment it seems that there is a much more exotic dependence on the momenta.
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7
Conclusions

In this thesis we have collected the findings of three separate studies in inflationary
string cosmology. The initial motivation for each of these studies is the important
role inflation might play in our understanding of the microscopic structure of nature.
This thesis helps to reveal important aspects of the theory, that we need to understand
better before we can let inflation fulfill its intended role.

7.1 Microscopic sensitivity

One of the lessons of this thesis is that observations from the early universe might
indeed be capable of unveiling hints of the universe at the tiniest scales, but that the
sensitivity of inflation to microscopic physics requires a detailed and complete under-
standing of its underlying microscopic description before we can reap the benefits of
the cosmological approach to quantum gravity. Both in the context of supergravity
approaches to inflation as well as in the newly developed worldsheet approach, the
sensitivity of inflation to the details of the full theory proves to be more restrictive
than one would initially imagine.

In chapter 4 we have argued this by studying the η-problem in supergravity, which
we have shown cannot be solved without knowledge of the hidden sectors that are
gravitationally coupled to the inflaton. If the hidden sector breaks supersymmetry
independently, its fields cannot be stabilized during the cosmological evolution of
the inflaton. It is shown that both the subsequent dynamical mixing between sectors
as well as the mass of the lightest field in the hidden sector are set by the scale of
supersymmetry breaking in the hidden sector. The true cosmological η-parameter
arises from a linear combination of the lightest mode of the hidden sector with the
inflaton. Generically, either the true η deviates considerably from the naïve η implied
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by the inflaton sector alone, or one has to consider a multi-field model. Only if the
lightest mass in the hidden sector is much larger than the inflaton mass and if the
inflaton mass is much larger than the scale of hidden sector supersymmetry breaking,
is the effect of the hidden sector on the slow-roll dynamics of the inflaton negligible.

Therefore, we argue that the η-problem is even more severe than what is usually
understood from the literature. Typical models for inflation in supergravity do not
include anything else but inflationary dynamics. The assumption that other physics,
such as the standard model, does not contribute, imposes implicit constraints on this
other physics that are in many cases unrealistic. One could therefore say that inflation
does not only probe the microscopics of its own underlying theory, but also that of
other fields that are initially assumed not even to partake in inflation.

For this reason we have turned our attention in chapter 5 to a description of infla-
tion that explicitly includes all known and unknown physics. We have tried to make
full use of the constraints imposed by slow-roll inflation on the string worldsheet, by
using a general gravity-matter set-up in which the worldsheet consists of an abstract
conformal field theory coupled to a 3+1-dimensional nonlinear σ model. The empir-
ical slow-roll parameters are expressed in terms of the β functions of operators in the
matter/internal conformal field theory and the β function of the dilaton. The result
confirms that inflation is only sensitive to coarse properties of the matter sector, but
that in string theory inflation is a non-perturbative (in gs) phenomenon and one must
go beyond tree-level string theory.

In principle the observed detailed sensitivity of the worldsheet approach to in-
flation, i.e. the necessity to go beyond tree-level, might be understood simply as the
worldsheet variant of the well-known observation that inflation is sensitive to the de-
tails of the theory, like we have already seen in the supergravity situation. However,
the worldsheet approach sharpens the statement, making exact what inflation is sen-
sitive to. The results in chapters 4 and 5 complement each other, since their regimes
of validity differ subtly but fundamentally, cf. figure 7.1. The supergravity approach
is a low energy effective approach, i.e. valid for small values of α′, which should es-
sentially be enough to describe the classical phenomenon that is inflation. Although
the motivation to study such supergravity theories comes from the low energy limit
of gs-perturbative expressions of the string worldsheet, one might hope that one can
generalize this to also capture some higher order (in gs) unknown physics, still within
the low energy limit. In this language, our reasoning in the supergravity limit shows
that certainly the low energy limit (in α′) is insufficient for a full description of in-
flation. At that stage a possible resolution might be that either one needs to go to
higher order in α′ or that the assumption that a low energy limit might be sufficient
to encode higher order gs-effects is invalid. Initially one could hope that higher or-
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Supergravity WorldsheetInation

��
Figure 7.1: The regimes of applicability for a worldsheet set-up and in a supergravity
context. Supergravity is the small α′-regime of string theory and is (without a strong
justification) also applied at higher values of gs. The worldsheet approach of chapter 5 is
valid for all α′ but certainly not in the large gs-regime. Inflationary models in supergravity
are very sensitive to the physics of hidden sectors, indicating that inflation is strongly
coupled in α′. In chapter 5 we have shown that no tree-level (in gs) string inflationary
models can be found. This means that inflation is located in the upper right part of the
diagram.

der effects in gs are not really relevant, since inflation seems to be not a specifically
strongly coupled string phenomenon. In a leap of faith, this would mean that by in-
cluding all α′ corrections to any unknown sector in the theory, inflation can be fully
understood. Although the worldsheet approach is only a lowest order expansion in α′

for the inflationary part of the theory, the unknown theory is explicitly incorporated to
all orders in α′. Hence, while the former should be sufficient to describe the classical
evolution of inflation, the latter exactly achieves the sought-for parameterization of
the remaining unknown physics. In this language, chapter 5 shows that inflation is
also sensitive to strong coupling effects in gs. As such, the worldsheet approach rules
out a whole class of theories that have previously been inaccessible in the approach
of the supergravity low energy limit, while at the same time producing a qualitatively
very similar conclusion: inflation is more sensitive to the details of the full theory
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than one would initially imagine. It is both strongly coupled with respect to the α′-
as well as with respect to the gs-corrections of the theory.

7.2 Conformal invariance

The approach taken in chapter 6 could provide a completely new perspective on infla-
tionary cosmology. Guided by holographic principles, it possibly evades the problems
from which the more conventional approaches of chapters 4 and 5 suffer. In chapter
6 we have investigated the constraints imposed by symmetry on the three-point cor-
relation function of primordial density fluctuations in slow-roll inflation. It follows
from the defining property of slow-roll inflation that primordial correlation functions
inherit most of their structure from weakly broken de Sitter symmetries. Using holo-
graphic techniques borrowed from the AdS/CFT correspondence, the symmetry con-
straints on the bispectrum are mapped to a set of stress-tensor Ward identities in a
weakly broken three-dimensional Euclidean conformal field theory. The most gen-
eral solution to these Ward identities can be constructed using conformal perturbation
theory. Translating back to the gravity side, our answer illustrates the full underlying
symmetry structure of slow-roll non-Gaussianities.

Once again, the approach in chapter 6 is a testimony to the importance of the
guiding hand of symmetries in physics. Another conclusion of this thesis is there-
fore the ubiquity of the applicability of conformal symmetry in our understanding of
the universe. The appearance of conformal invariance in any description of quantum
gravity is perhaps not very surprising, since it is a core ingredient of the renormaliza-
tion procedure inherent to any quantum theory. On the other hand, the role conformal
symmetry plays in each of the two approaches presented in chapters 5 and 6 is surpris-
ingly different. In chapter 5, conformal invariance of the two-dimensional worldsheet
theory is a strict consistency condition for the quantum string description. Formally
we have shown that the coarse slow-roll description in terms of ε and η can be related
to coarse properties of the hidden conformal field theory, like its β functions. Thus,
inflation might in principle be described by a two-dimensional conformal field theory
and this can be used to observationally constrain the theory. This conformal descrip-
tion happens at the level of the worldsheet, where the gravity and inflaton degrees of
freedom appear as background fields. In chapter 6, conformal invariance is used at
the level of the three-dimensional asymptotic future of the inflationary gravity theory
itself. The conformal symmetry and its spontaneously broken rendition present them-
selves through constraints on the structure of curvature perturbations, which suggests
an underlying holographic transcription of quantum gravity. For now, the relation
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between both conformal theories eludes any detailed understanding. Such a relation
would be highly non-trivial and is perhaps unlikely —for one thing, the dimensions
of the theories differ. Nonetheless, it is very interesting to see that conformal field
theories play such an important role in inflation at several levels of the string theory
description. It puts conformal invariance at the heart of inflationary cosmology, albeit
in two variously different guises.

In conclusion, the different viewpoints on string inflation investigated in this thesis
shed a brighter light on different aspects of the merits and problems of our current
understanding of inflationary cosmology and its underlying microscopic structure.
Although —or precisely because— each chapter investigates a different aspect of
early universe cosmology, together they sketch a more detailed picture which may
prove to be useful for further research. Our studies help crystalizing some of the
fundamental problems and overarching guiding principles, which will help to pave the
way in the understanding of the primordial universe and, with it, of the microscopic
origin of nature.
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Snaarkosmologie

Het wereldoppervlak van de snaar

De mens is een nieuwsgierig wezen, dat al sinds mensenheugenis zijn omgeving aan
het beschouwen, verklaren en voorspellen is. Staande op de schouders van onze
voorgangers, hebben we onze kennis van de fundamentele bouwstenen van de natuur
en hun onderlinge wisselwerkingen weten te verfijnen tot een tweetal theorieën. De
kwantumveldentheorie van het standaard model beschrijft de natuur op kleine schaal.
De algemene relativiteitstheorie geeft een meetkundige beschrijving van zwaarte-
kracht, wat weliswaar een zeer zwakke kracht is en daardoor op kleine schaal nage-
noeg verwaarloosbaar, maar die met zijn lange dracht dominant is op grote afstand-
schalen. De volgende stap is om ook deze twee theorieën samen te voegen tot één
theorie, een kwantumzwaartekrachttheorie. Op dit moment is snaartheorie de beste
kandidaat voor een kwantumzwaartekrachttheorie.

In de snaartheorie wordt de natuur beschreven in termen van fundamentele één-
dimensionale deeltjes, heel anders dan “elementaire” deeltjes zoals elektronen en
quarks, welke nul-dimensionale deeltjes zijn. Terwijl een snaar door de ruimte be-
weegt, genereert hij een twee-dimensionaal oppervlak —één richting langs de lengte
van de snaar en één richting die de beweging van de snaar volgt—, het wereldop-
pervlak van de snaar. Snaartheorie is een twee-dimensionale theorie die beschrijft
hoe dit wereldoppervlak is ingebed in de vier-dimensionale ruimte om ons heen.1 De
ruimte waardoor de snaar reist, beïnvloedt de mogelijke bewegingen van de snaar.
Deze invloeden komen in de twee-dimensionale wereldoppervlaktheorie voor als pa-
rameters van de theorie, net zoals de massa en lading van het elektron als parameters
voorkomen in de theorie van elektromagnetisme.

De parameters van snaartheorie zijn echter niet willekeurig, aangezien het voor

1Sinds het begin van de 20e eeuw behandelen theoretische natuurkundigen tijd en ruimte op ge-
lijke voet. Voor hen is onze ruimte, met één tijdsrichting en drie ruimtelijke richtingen, daarom vier-
dimensionaal.
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de kwantumconsistentie van snaartheorie cruciaal is dat de wereldoppervlaktheorie
invariant is onder lengte veranderende, maar hoekgetrouwe tranformaties. Een theo-
rie die invariant is onder hoekgetrouwe transformaties, “conformal transformations”,
beschrijft een systeem dat onveranderd blijft bij (plaatselijke) herschalingen, zoals bij
het inzoomen op de cirkels op de voorkant van dit proefschrift. Aangezien de wereld-
oppervlaktheorie hoekgetrouw moet zijn, worden de parameters van snaartheorie en
daardoor de mogelijke theorieën sterk beperkt. De eis van hoekgetrouwe invariantie
van de twee-dimensionale snaartheorie bepaalt zo de vier-dimensionale achtergronds-
ruimte van de snaar, oftewel de natuur om ons heen. Het bijzondere aan snaartheorie
is dat diepere studie van de theorie onthult dat de snaar zelf deze parameters be-
paalt. Hoe dit werkt, begrijpen we alleen voor achtergrondsruimten die statisch zijn,
d.w.z. niet veranderen met de tijd. De natuur is echter niet statisch. Alles beweegt en
zelfs de kosmos dijt uit met de tijd. Hoe tijdsafhankelijke achtergrondsruimten, en in
het bijzonder kosmologische achtergronden, beschreven kunnen worden, is één van
de grote puzzels binnen de kwantumzwaartekracht.

Kosmische inflatie

Het heelal is dynamisch. Zo’n 13,8 miljard jaar geleden is het heelal ontstaan in een
hete, dichtopeengepakte toestand, welke sindsdien uitdijt. De kosmologie onderzoekt
de dynamica van het gehele heelal, waaronder het precieze verloop van het allereerste
begin, de oerknal. We hebben een goed begrip van reeds luttele momenten na de
oerknal, maar onze onzekerheid groeit naarmate we dichter en dichter bij dit eerste
begin komen. Het vroegst bekende stadium is kosmische inflatie, een korte periode
waarin het heelal immens versneld is uitgedijd, zie figuur 1.

De wiskundige beschrijving van inflatie is verrassend eenvoudig. De dynamica
van de versnelde uitdijing van het heelal, is dezelfde als die van een rollende bal
in een heuvellandschap, zoals in figuur 2. Het heuvellandschap wordt de potentiaal
genoemd, de rollende bal het inflaton. De uitdijing van het heelal wordt bepaald door
de manier waarop het inflaton naar beneden rolt in de potentiaal.

De kosmische dynamica tijdens inflatie, zoals bepaald door de vorm van de poten-
tiaal, kan worden achterhaald aan de hand van de kosmische microgolf achtergrond-
straling. Deze straling geeft weer hoe het heelal er uitzag tijdens het recombinatie-
proces waarbij protonen en elektronen stabiele, neutrale atomen vormden, dat zo’n
380 000 jaar na de oerknal heeft plaatsgevonden. Door het licht van de kosmische
microgolf achtergrondstraling te detecteren met sattelieten zoals COBE, WMAP en
sinds kort PLANCK, krijgen we een afbeelding van de structuur van het jonge heelal,
zie figuur 3.
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Figuur 1: Een schematische weergave van de uitdijing van het heelal en structuurvor-
ming gedurende de afgelopen 13,8 miljard jaar. Links in de afbeelding is de oerknal
weergegeven. Vrijwel direct erna vindt inflatie plaats, een haast instantane, immense uit-
dijing van het heelal. Na 380 000 jaar vindt recombinatie plaats, weergegeven met de
blauw/groene schijf (zie ook figuur 3), waarvan het licht gedetecteerd kan worden door
een satteliet als WMAP (uiterst rechts op de afbeelding). In de periode na recombinatie
vindt sterformatie plaats en dijt het heelal geleidelijk verder uit. Recentelijk is de uitdijing
weer licht versneld. Afbeelding afkomstig van NASA/WMAP Science Team.

Hoewel recombinatie veel later heeft plaatsgevonden dan inflatie, weten we hoe
we de afdruk van de kosmische microgolf achtergrondstraling, d.w.z figuur 3, wis-
kundig kunnen terugleiden naar de periode van inflatie. Zo weten we uit het feit
dat de temperatuur van de achtergrondstraling maar heel weinig over de ruimte vari-
eert, dat de inflatie-potentiaal zeer vlak moet zijn voor een voldoende lange periode,
waarbij inflatie moet hebben plaatsgevonden in een langzame rol, “slow-roll infla-
tion”. Bij nauwkeurige meting van de microgolfstraling vinden we kleine variaties
in de verder homogene temperatuursverdeling. De statistische eigenschappen van de
temperatuurinhomogeniteiten kunnen worden vergeleken met de voorspellingen van
inflatie en op die manier kunnen we verschillende scenario’s voor inflatie testen.
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Figuur 2: Inflatie wordt wiskundig beschreven door een potentiaal waarover het infla-
ton naar beneden rolt. Om in overeenstemming te zijn met de waarnemingen, moet de
potentiaal zeer vlak zijn over een lange afstand.

Figuur 3: De kosmische microgolf achtergrondstraling heeft een vrijwel homogene
temperatuur over de gehele hemel. Kleine temperatuurschommelingen, maximaal
0, 00003 ◦C, zijn zichtbaar en geven inzicht in de oorsprong van het heelal. Afbeelding
afkomstig van NASA/WMAP Science Team.

Het heelal als een vergrootglas

Om snaartheorie beter te kunnen begrijpen, moet de theorie experimenteel onder-
bouwd worden. Echter, snaartheoretische effecten zijn alleen relevant bij zeer hoge
energieën, die maar liefst een biljard (1 000 000 000 000 000) keer zo hoog zijn als de
energieën in een deeltjesversneller als de Large Hadron Collider van CERN. Dit gaat
onze huidige technologische capaciteiten te boven, en eveneens die van de nabije (en
verre) toekomst. Inflatie, op haar beurt, lijkt fenomenologisch weliswaar een goede
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weergave te geven van de omstandigheden vlak na de oerknal, maar de oorsprong er-
van blijft een mysterie. Voor een gedegen microscopische onderbouwing is het nodig
dat inflatie beschreven kan worden binnen een fundamentele kwantumzwaartekracht-
theorie.

In snaarkosmologie vormen deze twee problemen in principe elkaars oplossing.
De omstandigheden waarin het heelal verkeerde tijdens inflatie waren dusdanig ex-
treem dat kwantumzwaartekrachteffecten een rol hebben gespeeld. De mogelijke po-
tentialen en ook de kandidaten voor het inflaton worden bepaald door snaartheorie,
zoals ook andere aspecten van onze vier-dimensionale natuur daarin hun fundamen-
tele beschrijving vinden. Via de statistische eigenschappen van de kosmische mi-
crogolf achtergrondstraling kunnen we achterhalen welke potentialen, d.w.z. welke
scenario’s voor inflatie, een natuurgetrouwe beschrijving geven. Inflatie en haar im-
plicaties in de achtergrondstraling blijken sterk afhankelijk te zijn van de precieze
microscopische, snaartheoretische beschrijving. Mits theoretisch begrip en observa-
ties elkaar volledig aanvullen, vormt inflatie de ideale overgang van de zichtbare,
hemeloverspannende structuren van de kosmos naar de kleinste, snaartheoretische
schalen van de natuur.

Dit proefschrift

Het onderzoek in dit proefschrift draagt bij aan de zoektocht naar het fundamentele
begrip van de natuur en van het begin van ons universum, door de snaartheoreti-
sche oorsprong van de oerknal te bestuderen. De titel Conformal invariance and
microscopic sensitivity in cosmic inflation, wat zich laat vertalen als Hoekgetrouwe
invariantie en microscopische afhankelijkheid in kosmische inflatie2, verraadt dat we
daarbij met name ingaan op de wijze waarop inflatie afhankelijk is van zijn microsco-
pische, snaartheoretische beschrijving en de mate waarin hoekgetrouwe invariantie
daarin een leidende rol speelt. Het onderzoek belicht een drietal onafhankelijke me-
thoden om inflatie te beschrijven binnen de snaartheorie, welke in drie verschillende
hoofdstukken gepresenteerd worden.

2 De afbeelding op de voorkant van dit proefschrift verenigt verschillende belangrijke concepten in
het onderzoek. Het stelt een snaar voor die afkomstig is uit de oerknal en die aldoende de hoekgetrouw
invariante oorsprong van de oerknal onthult. Tegelijkertijd kan de afbeelding worden opgevat als het hoek-
getrouwe wereldoppervlak van de snaartheoretische beschrijving van inflatie. De kleuren van de regenboog
verwijzen naar het taalgebruik om microscopische afhankelijkheid in een theorie aan te duiden met “ultra-
violet” en macroscopische verschijnselen met “infrarood”. De uitdijing van inflatie laat de microscopische
details van de snaar uitgroeien tot zichtbare verschijnselen aan de hemel en brengt daarmee de kleinste en
grootste schalen van ons universum met elkaar in verband.
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Inflatie en het standaard model

De uit de snaartheorie afkomstige beschrijving van onze vier-dimensionale natuur is
onderhevig aan supersymmetrie, een (nog niet waargenomen) symmetrie tussen de
elementaire bouwblokken van de natuur, die de theorie sterk beperkt. Omdat deze
vier-dimensionale beschrijving zwaartekracht bevat, is het een voorbeeld van een su-
perzwaartekrachttheorie. In zo’n theorie heeft de inflatie-potentiaal een specifieke
vorm, waarmee expliciete berekeningen mogelijk zijn.

In het algemeen zijn er meerdere kandidaten om als inflaton dienst te doen in een
superzwaartekrachttheorie. De superzwaartekrachttheorie die volgt uit snaartheorie
bevat bijvoorbeeld een volledige beschrijving van de hele natuur, waaronder zowel
inflatie als het standaard model. Hierdoor is het onwaarschijnlijk dat inflatie voldoet
aan de simpelste beschrijving van een één-dimensionale potentiaal zoals in figuur 2,
waarin de bewegingsrichting van het inflaton maar in één richting is. In superzwaarte-
krachttheorieën met meerdere sectoren, bijvoorbeeld een inflatie-sector en een sector
voor het standaard model, beschrijft de potentiaal een meer-dimensionaal landschap
—zoals een sneeuwbal van een alpenhelling— en wordt de dynamica ingewikkelder.
Echter, wanneer kosmologen zich richten op inflatie, is het vooralsnog te complex
om alle informatie op te nemen in het model en daarom wordt het standaard model
(voorlopig) buiten beschouwing gelaten in studies van inflatie. De vraag is of deze
vereenvoudiging geoorloofd is en hoe realistisch het is dat de verwaarloosde bewe-
gingsrichtingen niet bijdragen aan de dynamica.

In hoofdstuk 4 bekijken we de interactie tussen het standaard model en de inflatie-
sector. We richten ons hierbij op het bestaan van langzame-rol inflatie. Al voor een
één-dimensionaal inflatie-scenario in superzwaartekracht blijkt het erg lastig, maar
wel mogelijk, om te voldoen aan de fenomenologische eis van langzame rol. Het is
daarom allerminst vanzelfsprekend dat de daadwerkelijke, complexere beschrijving
waarin het standaard model wél zou worden meegenomen, de langzame rol intact
laat. Inderdaad is onze conclusie dat er in een beschrijving van standaard model-loze
langzame-rol inflatie impliciete aannames zijn gemaakt over het standaard model.
Wanneer niet is voldaan aan deze (sterke) aannames, wordt de daadwerkelijke, meer-
dimensionale dynamica verstoord tot een niet-langzame rol. Hiermee tonen we aan
dat inflatie zeer gevoelig is voor de microscopische details van de gehele snaartheo-
retische beschrijving, zowel de sector waarin men naïef verwacht dat inflatie plaats-
vindt als de (onterecht) als irrelevant aangenomen onderdelen van de theorie zoals
het standaard model of andere nog onbekende sectoren. Inflatie biedt hierdoor de
mogelijkheid om tot de fundamentele kern van de microscopische beschrijving van
de gehele natuur door te dringen.
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Inflatie vanuit het wereldoppervlak

Zoals uit het voorgaande blijkt, is inflatie afhankelijk van de microscopische details
van de gehele theorie. Aangezien we niet, en waarschijnlijk nooit, de volledige natuur
kunnen doorgronden, is het in superzwaartekracht onhandig om afhankelijk te zijn
van onbekende sectoren. Aan de andere kant opent inflatie de mogelijkheid om meer
te weten te komen van de nu nog onbekende structuur van ons universum. Hiervoor is
echter wel een formalisme nodig dat een gehele beschrijving van de natuur mogelijk
maakt.

In hoofdstuk 5 gaan we daarom terug naar de basis van de snaartheoretische
methode om de natuur te beschrijven, de twee-dimensionale wereldoppervlaktheo-
rie. Dit is een hoekgetrouwe theorie, wiens hoekgetrouwe invariantie, zoals gezegd,
aanleiding geeft tot de beschrijving van de vier-dimensionale ruimte waar de snaar
doorheen beweegt. Het twee-dimensionale wereldoppervlak kan in principe elke (ab-
stracte) hoekgetrouwe theorie zijn, maar aangezien we inflatie willen beschrijven, zal
in ieder geval een deel van de twee-dimensionale theorie hiervoor verantwoordelijk
moeten zijn. Het andere deel is onbekend, maar het hoekgetrouwe formalisme van
het wereldoppervlak stelt ons in staat om de theorie globaal weer te geven in termen
van slechts enkele (abstracte) parameters.

De beide delen van de wereldoppervlaktheorie hoeven afzonderlijk niet hoekge-
trouw te zijn, zolang de totale theorie dat maar wel is. De wisselwerking tussen beide
onderdelen van de theorie kan geanalyseerd worden door de symmetrie van de on-
bekende sector licht te breken. Het breken van de hoekgetrouwe invariantie van de
onbekende sector heeft een reactie in de inflatie-sector tot gevolg om te voorkomen
dat de hoekgetrouwe invariantie van de totale theorie verloren gaat. Deze reactie kan
worden herkend als de bijdrage van de onbekende sector op de dynamica van inflatie
in de vier-dimensionale ruimte. Door het resultaat te vergelijken met langzame-rol
inflatie, kunnen we bepalen welke parameters van de onbekende sector, oftewel welk
soort abstracte theorieën, mogelijk zijn voor een snaartheoretische beschrijving van
langzame-rol inflatie.

De conclusie van deze studie is dat, wanneer men alleen wereldoppervlaktheo-
rieën van vrije snaren in de analyse meeneemt, langzame-rol inflatie onmogelijk is,
ongeacht welke theorie er in de onbekende sector beschreven wordt. Een consistente
beschrijving van inflatie in de wereldoppervlaktheorie vereist dat men ook botsende
snaren beschouwt. Dit is verrassend omdat inflatie een beschrijving is binnen de
klassieke algemene relativiteitstheorie, welke reeds door vrije snaren beschreven kan
worden. Aan de andere kant benadrukt dit resultaat, vanuit een ander oogpunt, iets
dat we al wisten: inflatie is zeer afhankelijk van de microscopische details van de
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kwantumzwaartekrachtbeschrijving.

Holografische inflatie

Omdat inflatie zo afhankelijk is van de microscopische details van de beschrijving,
is een alternatieve aanpak nodig. In hoofdstuk 6 bestuderen we zo’n aanpak, op het
niveau van de eigenschappen van de statistische variaties van de kosmische micro-
golf achtergrondstraling. De correlaties tussen koude en hete plekken in de achter-
grondstraling kunnen worden berekend vanuit het inflatie-scenario. De gevonden uit-
drukking vertoont een uitstekende overeenkomst met de waarnemingen —één van de
redenen voor ons vertrouwen in dat inflatie een correcte beschrijving van het vroege
heelal is—, maar deze berekening verzuimt te verhelderen waaróm het het specifieke
antwoord is. Hierdoor blijft de structuur van inflatie een mysterie.

Eén van de bekende eigenschappen van inflatie is dat er een (licht gebroken) drie-
dimensionale hoekgetrouwe symmetrie is op, voor inflatie, late tijden. In het bijzon-
der zouden de uitdrukkingen ten tijde van recombinatie, 380 000 jaar later, (vrijwel)
invariant moeten zijn onder de hoekgetrouwe symmetrie van inflatie. Aangezien in
elke hoekgetrouwe theorie de uitdrukkingen voor correlaties volledig kunnen worden
bepaald door de symmetrie, is het interessant om te weten of en op welke manier dit
ook geldt voor de correlaties die volgen uit de inflatie-berekening. Deze in hoofd-
stuk 6 gepresenteerde aanpak gaat in op de structuur van inflatie, op een manier die
loodrecht staat op de twee eerder besproken methoden, omdat geen gebruik gemaakt
wordt van de onbekende delen/sectoren in de theorie maar alleen de symmetrieën van
het systeem als leidraad gebruikt worden.

We kunnen veel leren van de manier waarop de drie-dimensionale hoekgetrouwe
symmetrie verpakt zit in de correlaties die volgen uit het vier-dimensionale inflatie-
model. Snaartheorie suggereert dat er een, veel algemenere, relatie moet zijn tussen
elke zwaartekrachttheorie en een corresponderende theorie zonder zwaartekracht van
één dimensie lager. Deze correspondentie wordt holografie genoemd, omdat net als in
een hologram de d-dimensionale informatie van het systeem volledig opgeslagen kan
worden op een (d−1)-dimensionaal “scherm”. De holografische dualiteit is een ver
reikend inzicht afkomstig uit snaartheorie, dat diep geworteld is in de microscopische,
snaartheoretische beschrijving van de natuur. Slechts enkele (potentiële) realisaties
van deze correspondentie zijn bekend. De bekendste is er evenwel een waarvan de
zwaartekrachttheorie een sterke gelijkenis heeft met inflatie en de corresponderende
lager dimensionale theorie hoekgetrouw is. In het licht van deze bekende hologra-
fische correspondentie bestuderen we de (licht gebroken) hoekgetrouwe symmetrie
van de correlaties uit inflatie.
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Samenvatting

Uit het onderzoek komt naar voren dat de correlaties, d.w.z. de statistische ei-
genschappen van de fluctuaties in de achtergrondstraling, inderdaad voor een groot
deel bepaald zijn door hoekgetrouwe symmetrie, hoewel het vooralsnog te vroeg is
om te zeggen of de symmetrie (en de wijze waarop deze gebroken wordt in inflatie)
voldoende is om de correlaties volledig te beschrijven. De variaties lijken de onder-
liggende hoekgetrouwe structuur van inflatie te onthullen, terwijl tegelijkertijd een
beter begrip gecreëerd wordt van de holografische correspondentie, die raakt tot in de
kern van snaartheorie.

Conclusie

De gevoeligheid van inflatie voor microscopische effecten is zowel een zegen als een
vloek. Het is een zegen omdat we via de kosmische microgolf achtergrondstraling
toegang hebben tot het onderzoeken van de kleinste schalen in de natuur. Het is een
vloek, omdat de afhankelijkheid aanwezig is in heel de beschrijving van inflatie. Zo-
wel in de superzwaartekracht- als in de wereldoppervlakbeschrijving blijkt het zeer
lastig te zijn om een consistente microscopische beschrijving te geven van inflatie.
Om de structuur van inflatie beter te begrijpen, hebben we ons daarom laten leiden
door de hoekgetrouwe symmetrieën, op een manier die ingaat op de holografische
oorsprong van inflatie. Als zodanig biedt dit proefschrift nieuwe inzichten in de oor-
sprong van ons heelal en de kleinste structuur van de natuur.
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two-field inflationary models. 2010. arXiv:1010.3021 [hep-th]

[217] L. Verde, L.-M. Wang, A. Heavens and M. Kamionkowski. Large-
scale structure, the cosmic microwave background, and primordial non-
Gaussianity. Mon. Not. Roy. Astron. Soc., 313:L141–L147, 2000.
arXiv:astro-ph/9906301

[218] F. Bernardeau and J.-P. Uzan. Non-Gaussianity in multi-field inflation. Phys.
Rev., D66:103506, 2002. arXiv:hep-ph/0207295

[219] G. I. Rigopoulos, E. P. S. Shellard and B. J. W. van Tent. Large non-
Gaussianity in multiple-field inflation. Phys. Rev., D73:083522, 2006.
arXiv:astro-ph/0506704

[220] G. I. Rigopoulos, E. P. S. Shellard and B. J. W. van Tent. Quantita-
tive bispectra from multifield inflation. Phys. Rev., D76:083512, 2007.
arXiv:astro-ph/0511041

[221] F. Vernizzi and D. Wands. Non-Gaussianities in two-field inflation. JCAP,
0605:019, 2006. arXiv:astro-ph/0603799

[222] A. J. Tolley and M. Wyman. The gelaton scenario: Equilateral non-
Gaussianity from multi-field dynamics. Phys. Rev., D81:043502, 2010.

174

http://dx.doi.org/10.1088/1475-7516/2007/07/014
http://arxiv.org/abs/0704.0212
http://dx.doi.org/10.1016/j.physrep.2009.03.001
http://arxiv.org/abs/0809.4944
http://dx.doi.org/10.1088/1475-7516/2008/12/004
http://arxiv.org/abs/0809.4646
http://arxiv.org/abs/0809.4646
http://dx.doi.org/10.1088/1475-7516/2008/04/017
http://arxiv.org/abs/0801.1085
http://dx.doi.org/10.1103/PhysRevLett.101.061301
http://dx.doi.org/10.1103/PhysRevLett.101.061301
http://arxiv.org/abs/0804.3139
http://dx.doi.org/10.1103/PhysRevD.78.063523
http://dx.doi.org/10.1103/PhysRevD.78.063523
http://arxiv.org/abs/0806.0336
http://dx.doi.org/10.1103/PhysRevD.73.083521
http://arxiv.org/abs/astro-ph/0504508
http://arxiv.org/abs/1005.4056
http://arxiv.org/abs/1010.3021
http://arxiv.org/abs/astro-ph/9906301
http://dx.doi.org/10.1103/PhysRevD.66.103506
http://dx.doi.org/10.1103/PhysRevD.66.103506
http://arxiv.org/abs/hep-ph/0207295
http://dx.doi.org/10.1103/PhysRevD.73.083522
http://arxiv.org/abs/astro-ph/0506704
http://dx.doi.org/10.1103/PhysRevD.76.083512
http://arxiv.org/abs/astro-ph/0511041
http://dx.doi.org/10.1088/1475-7516/2006/05/019
http://arxiv.org/abs/astro-ph/0603799
http://dx.doi.org/10.1103/PhysRevD.81.043502


Bibliography

arXiv:0910.1853 [hep-th]

[223] X. Chen and Y. Wang. Large non-Gaussianities with intermediate
shapes from quasi-single field inflation. Phys. Rev., D81:063511, 2010.
arXiv:0909.0496 [astro-ph.CO]

[224] X. Chen and Y. Wang. Quasi-single field inflation and non-Gaussianities.
JCAP, 1004:027, 2010. arXiv:0911.3380 [hep-th]

[225] X. Dong, B. Horn, E. Silverstein and A. Westphal. Simple exercises to flatten
your potential. 2010. arXiv:1011.4521 [hep-th]

[226] K. Schalm and T. van der Aalst. A worldsheet perspective on string inflation.
2010. arXiv:1008.5024 [hep-th]

[227] S. H. Henry Tye. Brane inflation: String theory viewed from the cosmos. Lec-
ture Notes in Physics, 737:949–974, 2008. arXiv:hep-th/0610221

[228] J. M. Cline. String cosmology. 2006. arXiv:hep-th/0612129
[229] R. Kallosh. On inflation in string theory. Lecture Notes in Physics, 738:119–

156, 2008. arXiv:hep-th/0702059
[230] C. P. Burgess. Lectures on cosmic inflation and its potential stringy realiza-

tions. PoS, P2GC:008, 2006. arXiv:0708.2865 [hep-th]
[231] J. Martin and R. H. Brandenberger. A cosmological window on trans-

Planckian physics. 2000. arXiv:astro-ph/0012031
[232] A. Kempf and J. C. Niemeyer. Perturbation spectrum in inflation with cutoff.

Physical Review, D64:103501, 2001. arXiv:astro-ph/0103225
[233] R. Easther, B. R. Greene, W. H. Kinney and G. Shiu. Inflation as a

probe of short distance physics. Physical Review, D64:103502, 2001.
arXiv:hep-th/0104102

[234] N. Kaloper, M. Kleban, A. E. Lawrence and S. Shenker. Signatures of short
distance physics in the cosmic microwave background. Physical Review,
D66:123510, 2002. arXiv:hep-th/0201158

[235] B. Greene, K. Schalm, J. P. van der Schaar and G. Shiu. Extracting new physics
from the CMB. 2005. arXiv:astro-ph/0503458

[236] M. G. Jackson and K. Schalm. Model independent signatures of new physics
in the inflationary power spectrum. 2010. arXiv:1007.0185 [hep-th]

[237] C. Schmidhuber and A. A. Tseytlin. On string cosmology and the
RG flow in 2-d field theory. Nuclear Physics, B426:187–202, 1994.
arXiv:hep-th/9404180

[238] S. Hellerman and I. Swanson. Cosmological solutions of supercritical string
theory. Physical Review, D77:126011, 2008. arXiv:hep-th/0611317

[239] G. W. Gibbons. Aspects of supergravity theories. 1984. Three lectures given at
GIFT Seminar on Theoretical Physics, San Feliu de Guixols, Spain, Jun 4-11,

175

http://arxiv.org/abs/0910.1853
http://dx.doi.org/10.1103/PhysRevD.81.063511
http://arxiv.org/abs/0909.0496
http://dx.doi.org/10.1088/1475-7516/2010/04/027
http://arxiv.org/abs/0911.3380
http://arxiv.org/abs/1011.4521
http://arxiv.org/abs/1008.5024
http://arxiv.org/abs/hep-th/0610221
http://arxiv.org/abs/hep-th/0612129
http://dx.doi.org/10.1007/978-3-540-74353-8_4
http://arxiv.org/abs/hep-th/0702059
http://dx.doi.org/10.1088/0264-9381/24/21/S04
http://arxiv.org/abs/0708.2865
http://arxiv.org/abs/astro-ph/0012031
http://dx.doi.org/10.1103/PhysRevD.64.103501
http://arxiv.org/abs/astro-ph/0103225
http://dx.doi.org/10.1103/PhysRevD.64.103502
http://arxiv.org/abs/hep-th/0104102
http://dx.doi.org/10.1103/PhysRevD.66.123510
http://arxiv.org/abs/hep-th/0201158
http://arxiv.org/abs/astro-ph/0503458
http://arxiv.org/abs/1007.0185
http://dx.doi.org/10.1016/0550-3213(94)90131-7
http://arxiv.org/abs/hep-th/9404180
http://dx.doi.org/10.1103/PhysRevD.77.126011
http://arxiv.org/abs/hep-th/0611317


Bibliography

1984
[240] S. R. Green, E. J. Martinec, C. Quigley and S. Sethi. Constraints on string

cosmology. 2011. arXiv:1110.0545 [hep-th]
[241] W. Fischler and L. Susskind. Dilaton tadpoles, string condensates and scale

invariance. Physics Letters, B171:383, 1986
[242] W. Fischler and L. Susskind. Dilaton tadpoles, string condensates and scale

invariance. 2. Physics Letters, B173:262, 1986
[243] S. R. Das and S.-J. Rey. Dilaton condensates and loop effects in open and

closed bosonic strings. Physics Letters, B186:328, 1987
[244] M. Dine and N. Seiberg. Couplings and scales in superstring models. Physical

Review Letters, 55:366, 1985
[245] M. Dine and N. Seiberg. Is the superstring weakly coupled? Physics Letters,

B162:299, 1985
[246] A. B. Zamolodchikov. “Irreversibility” of the flux of the renormalization group

in a 2D field theory. Journal of Experimental and Theoretical Physics Letters,
43:730–732, 1986

[247] H. Kodama and M. Sasaki. Cosmological perturbation theory. Progress of
Theoretical Physics Supplement, 78:1–166, 1984

[248] A. A. Starobinsky. Multicomponent de Sitter (inflationary) stages and the gen-
eration of perturbations. Journal of Experimental and Theoretical Physics
Letters, 42:152–155, 1985

[249] K. Dasgupta, G. Rajesh and S. Sethi. M theory, orientifolds and G-flux. Journal
of High Energy Physics, 08:023, 1999. arXiv:hep-th/9908088

[250] B. R. Greene, K. Schalm and G. Shiu. Warped compactifications in M and F
theory. Nuclear Physics, B584:480–508, 2000. arXiv:hep-th/0004103

[251] M. R. Douglas and S. Kachru. Flux compactification. Review of Modern
Physics, 79:733–796, 2007. arXiv:hep-th/0610102

[252] D. Kutasov. Geometry on the space of conformal field theories and contact
terms. Physics Letters, B220:153, 1989

[253] K. Schalm, G. Shiu and T. van der Aalst. Consistency condition for inflation
from (broken) conformal symmetry. 2012. arXiv:1211.2157 [hep-th]

[254] D. Seery and J. E. Lidsey. Non-Gaussian inflationary perturbations from the
dS/CFT correspondence. JCAP, 0606:001, 2006. arXiv:astro-ph/0604209
[astro-ph]

[255] I. Antoniadis, P. O. Mazur and E. Mottola. Conformal invariance, dark energy,
and CMB non-Gaussianity. 2011. arXiv:1103.4164 [gr-qc]

[256] J. M. Maldacena and G. L. Pimentel. On graviton non-Gaussianities during
inflation. JHEP, 1109:045, 2011. arXiv:1104.2846 [hep-th]

176

http://arxiv.org/abs/1110.0545
http://dx.doi.org/10.1016/0370-2693(86)91425-5
http://dx.doi.org/10.1016/0370-2693(86)90514-9
http://dx.doi.org/10.1016/0370-2693(87)90303-0
http://dx.doi.org/10.1103/PhysRevLett.55.366
http://dx.doi.org/10.1103/PhysRevLett.55.366
http://dx.doi.org/10.1016/0370-2693(85)90927-X
http://dx.doi.org/10.1143/PTPS.78.1
http://dx.doi.org/10.1143/PTPS.78.1
http://arxiv.org/abs/hep-th/9908088
http://dx.doi.org/10.1016/S0550-3213(00)00400-4
http://arxiv.org/abs/hep-th/0004103
http://dx.doi.org/10.1103/RevModPhys.79.733
http://dx.doi.org/10.1103/RevModPhys.79.733
http://arxiv.org/abs/hep-th/0610102
http://dx.doi.org/10.1016/0370-2693(89)90028-2
http://arxiv.org/abs/1211.2157
http://dx.doi.org/10.1088/1475-7516/2006/06/001
http://arxiv.org/abs/astro-ph/0604209
http://arxiv.org/abs/astro-ph/0604209
http://arxiv.org/abs/1103.4164
http://dx.doi.org/10.1007/JHEP09(2011)045
http://arxiv.org/abs/1104.2846


Bibliography

[257] P. Creminelli. Conformal invariance of scalar perturbations in inflation. 2011.
arXiv:1108.0874 [hep-th]

[258] S. A. Hartnoll, P. K. Kovtun, M. Muller and S. Sachdev. Theory of the
Nernst effect near quantum phase transitions in condensed matter, and in
dyonic black holes. Phys.Rev., B76:144502, 2007. arXiv:0706.3215

[cond-mat.str-el]

[259] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz. Building a holographic super-
conductor. Phys.Rev.Lett., 101:031601, 2008. arXiv:0803.3295 [hep-th]

[260] S.-S. Lee. A non-Fermi liquid from a charged black hole: A critical Fermi ball.
Phys.Rev., D79:086006, 2009. arXiv:0809.3402 [hep-th]

[261] H. Liu, J. McGreevy and D. Vegh. Non-Fermi liquids from holography.
Phys.Rev., D83:065029, 2011. arXiv:0903.2477 [hep-th]
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