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1
General introduction

Clostridium difficile is an enteropathogenic anaerobic Gram-positive spore forming 
rod, which can cause a wide variety of  symptoms. Clostridium difficile infection (CDI) 
is recognized as the leading cause of  infectious nosocomial diarrhoea. In the last 
decade the incidence and severity of  CDI has increased and currently C. difficile is 
also frequently recognized as an important cause of  community-acquired diarrhoea 
in humans. Finally, C. difficile may be present in the intestinal tract of  asymptomatic 
and diarrhoeal (farm) animals.

Clostridiaceae
A major part of  the human gut microbiome consists of  Firmicutes (1). The 
phylum Firmicutes was traditionally classified to include all Gram-positive bacteria, 
but recently it was re-classified as a bacterial core-group with low-G+C genomic 
DNA content (2). Many Firmicutes are able to form (endo)spores, which are highly 
resistant to disinfectants and extreme environmental conditions (2). The phylum 
of  Firmicutes can be roughly divided into two main classes; the Bacilli, which are 
aerobic, and the Clostridiaceae, which are obligate anaerobic (3).

The genus Clostridium belongs to the class of  Clostridiaceae which consists 
of  approximately 100 species (4). Clostridium spp. are ubiquitously found in the 
environment, soil, water and in the human and mammalian gastro intestinal tract as 
part of  the commensal microbial flora (5). The genus Clostridium comprises several 
well characterized important human pathogens such as: Clostridium tetani, Clostridium 
botulinum, Clostridium perfringens, Clostridium sordellii and Clostridium difficile (2,4,6). All 
diseases caused by Clostridium spp. are mediated by the secretion and action of  the 
secreted (exo)toxins (2,4,6,7).

Clinical disease and epidemiology
Almost eighty years ago (1935), Clostridium difficile was first described by Hall and 
O’Toole as Bacillus difficilis (8,9). Clostridium difficile was isolated from faeces of  new-
born infants and described as an actively motile, heavy bodied Gram-positive rod 
with elongated subterminal or nearly terminal non-bulging spores (8). Injection 
of  whole or filtrated cultures in guinea pigs and rabbits resulted in rapid death 
(8). Survival of  the animals injected with boiled and filtrated cultures led to the 
conclusion that C. difficile was able to produce a soluble heat labile toxin (8).

More insights in the pathogenicity of  C. difficile were obtained by investigations 
in germfree mice and rats (10). In addition, a prospective study by Tedesco et al, 
evaluating 200 patients, subsequently reported that clindamycin administration 
was associated with development of  diarrhoea (21%) and pseudomembranous 
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colitis (PMC) (10%) (11). In retrospect this was the first study to describe C. 
difficile as a nosocomial human pathogen (11). In 1977, Larson and Price isolated 
a clostridial toxin from faeces of  patients with antibiotic-associated colitis and 
PMC (12). Subsequently, Bartlett and colleagues reported that the causative agent 
of  antibiotic-associated PMC was indeed a toxin producing C. difficile (13). The 
lack of  sensitive and reliable detection and identification methods has delayed the 
recognition of  C. difficile as an important nosocomial pathogen for a long time 
(14). However, nowadays C. difficile is recognized as the most frequent cause of  
infectious nosocomial diarrhoea worldwide (9,15,16).

Several reports indicate that up to 3% of  healthy individuals and up to almost 
40% of  hospitalized patients are colonized with toxinogenic C. difficile strains (17-
19). Healthy individuals are usually protected by their normal colonic microflora 
(17). However, disturbance of  the colonic microflora by for instance antibiotic 
usage leads to loss of  the colonization resistance, enabling C. difficile to colonize, 
overgrow and cause disease (17). Besides antibiotic usage, other risk factors for 
CDI are advanced age (>60 years), underlying diseases and infection pressure (20). 
During infection C. difficile can produce three toxins which affect the integrity of  
the colon epithelium by destruction of  the tight junctions, disrupt the cytoskeleton 
and lead to the formation of  protrusions (21-24).

The typical clinical features of  CDI range from mild diarrhoea to fulminant 
colitis, which can be life-threatening (25-27). Endoscopic examination of  patients 
suffering from CDI may reveal minor abnormalities to extensive pseudomembranes 
(25). The formation of  these pseudomembranes is caused by deep haemorrhagic 
ulcerations of  the colon epithelium and a massive host inflammatory response (28). 
Symptoms of  pseudomembranous colitis are cramping, fever, hypo-albuminemia, 
leukocytosis, nausea and general malaise besides the typical lesions observed by 
endoscopy (25,26). Eventually, pseudomembranous colitis may evolve into a 
syndrome called toxic megacolon, the most serious form of  disease caused by 
CDI (29). Toxic megacolon is a toxic dilatation of  the colon causing paralysis of  
the peristaltic movement and systemic cytotoxicity (29) accompanied by sepsis and 
organ dysfunction and resulting in high (33%) mortality rates (29,30).

In the last decade the epidemiology of  CDI has changed radically. North-
America was the first to report numerous hospital outbreaks with an increased 
incidence of  CDI cases with a more severe course of  the disease (27,31,32). 
Later on reports of  outbreaks in Europe followed (33-35). These epidemics were 
primarily due to C. difficile PCR Ribotype (RT) 027, also known as North America 
Pulse-field type (NAP) 1 and Restriction Endonuclease Analysis (REA) type 
B1 (027/NAP1/B1) strain. Clostridium difficile RT 027 strains were referred to as 
hypervirulent strains, due to reports of  higher toxin production, higher relapse 
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rates, more severe course of  the disease and increased mortality rates (19,27,36-39). 
Certain other C. difficile types (e.g. RT017 and 078) have also been reported to be 
associated with outbreaks and a more severe course of  disease in a hospital setting 
(34,39-44). Besides the increase of  CDI incidence rates in a health care setting, 
an increased incidence rate in a community setting was reported (45-47). In some 
studies C. difficile RT 078 was more frequently associated with community acquired 
CDI than other ribotypes and affected a younger population than for instance C. 
difficile RT 027 strains (48,49). The course of  C. difficile RT 078 associated disease 
can be as severe as observed for the hypervirulent C. difficile RT 027 strain (48) 
and the incidence of  C. difficile RT 078 has increased in the Netherlands and other 
European countries (34,50). Interestingly recent studies have demonstrated that 
C. difficile RT 078 is the predominant type in cattle and pigs, suggesting a zoonotic 
potential (51-54).

Diagnostic and Typing methods

Diagnosis of  CDI
The emergence of  C. difficile strains as an important nosocomial human pathogen 
has stimulated the development of  better diagnostic, detection and typing methods. 
The diagnosis of  CDI is primarily based on clinical symptoms in combination with 
laboratory assays (55). Culturing C. difficile and the detection of  the toxin(s) with a 
cytotoxicity assay is regarded as the gold standard for diagnosis of  CDI (28,55,56). 
However, in many diagnostic laboratories culturing and cell cytotoxicity assays 
are not performed routinely, as they are labour intensive and costly (55,57,58). 
Most diagnostic laboratories depend on rapid and easy-to perform enzyme 
immuno assays (EIAs) that are generally designed to detect C. difficile Toxins A 
and/or B (55,57). Unfortunately, EIAs have limited specificity and/or sensitivity 
in an endemic situation (55). The limitations of  EIAs have tempted clinicians into 
testing multiple samples per patient and to develop two-step algorithms for CDI 
diagnosis (55,59). However, for prevention and management of  CDI rapid and 
more accurate assays are essential.

Quantitative real-time PCRs (qPCRs) are potential rapid assays with better 
performances than EIAs (56,60-62). Additionally, molecular tests such as qPCR 
have high sensitivities and specificities, comparable to the cell cytotoxicity assays 
for diagnosis of  CDI (56,60,63-66). Both commercial and in-house developed 
qPCRs for the detection of  C. difficile are primarily based on the detection of  the 
toxin B and/or toxin A genes (56,60,63-66). In some cases the detection of  the 
toxin genes is combined with the detection of  point mutations in the tcdC gene, or 
the binary toxin genes, i.e. cdtA and cdtB (56,60,63-66).
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The disadvantage of  molecular tests compared to conventional phenotypic tests 

such as the cytotoxicity assay is the lack of  discrimination between asymptomatic 
and symptomatic carriership. Despite the improved performances (sensitivity 
and specificity), molecular tests have in general low positive predictive values and 
therefore cannot be applied as stand-alone test (64). However, due to the high 
negative predictive values molecular tests, such as qPCRs, are valuable as first 
screening method in a two-step testing algorithm for diagnosis of  CDI (56,60).

Typing of  Clostridium difficile strains
Typing methods have been developed to study the epidemiology of  C. difficile for 
several reasons; for detection and investigation of  outbreaks, to recognize new 
emerging strains, to investigate local and global transmission routes, and to study 
the phylogeny (67,68). One of  the most crucial properties of  a typing method is 
the capability to differentiate between strains (67-69). Other important features are 
reproducibility and ease of  use (69,70). Typing methods can be differentiated into 
two groups: phenotypic assays and genome based assays. Phenotypic assays are 
based on gene expression products, whereas genotyping methods are based on the 
DNA content of  the strain (67,69,70).

Until the 1980s, phenotypic assays were standard to determine relatedness of  
strains (28,69). The simple and rapid serotyping assay was the most commonly used 
phenotypic assay (69,71). Eventually the assay was able to discriminate 23 different 
serotypes (69). Several of  these (A, G, K, S1 and S4) were associated with (severe) 
CDI and PMC caused by CDI (72). Other serotypes (D and Cd-5) were suggested 
to be associated with asymptomatic carriership (72). Other typing methods were 
the Radio PAGE (25 types) and immunoblotting assay (26 types) (69). Eventually, 
the phenotypic typing methods were abandoned due to low reproducibility and 
a low discriminatory power for epidemiological studies with a larger -than local- 
scope (69).

The emergence of  the important global epidemic C. difficile RT 027 strain has 
stimulated the development of  genotyping methods. Molecular typing methods 
rely on purified DNA of  a single cultured C. difficile clone. Often these techniques 
are performed in national reference centres, since culturing of  C. difficile is not 
routinely performed in most diagnostic labs (69). Molecular methods are generally 
more reproducible and sensitive compared to the phenotypic assays used in the 
1980s (69). The most common genotyping methods to include PCR ribotyping, 
Multi Locus Variable number of  tandem repeat Analysis (MLVA), Multi Locus 
Sequence Typing (MLST) and single nucleotide polymorphisms (SNP) typing (60).

PCR ribotyping is the most frequently used molecular typing method in Europe 
(67,73). This PCR band-size based typing method exploits the variability of  the 
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intergenic spacer region between 16S and 23S ribosomal DNA, as well as rDNA 
copy numbers (73-75). In comparison to other DNA based typing assays PCR 
ribotyping is superior in discriminatory power, (inter laboratory) reproducibility 
and its low hands on time (67,70). Although PCR ribotyping is the preferred typing 
method for monitoring outbreaks, it is not able to differentiate between strains in 
an outbreak situation (70).

MLVA is a highly discriminatory (sub)typing method to discriminate between 
strains within one Ribotype to identify outbreak transmission routes (60,68,70,76). 
MLVA is based on the amplification of  short tandem repeats that vary in size and 
are spread throughout the genome (77). Marsh et al., were the first to describe an 
automated analysis of  the number of  tandem repeats per locus followed by van 
den Berg et al., (78,79). The two independently developed MLVA typing methods 
contained four out of  seven identical loci (78,79). Based on MLVA results, a 
minimum spanning tree can be constructed to determine genetic relationships 
among strains. Genetic relationships are based on the number of  Summed Tandem 
Repeat Differences (STRD) (41,78). Despite the lack of  variability of  two loci in 
RT027, MLVA has been reported to be the most discriminatory subtyping method 
to investigate outbreaks with the epidemic C. difficile RT 027 strain (79,80).

The availability of  multiple genome sequences has made whole genome 
sequencing (WGS) accessible as a typing method (77,81-83). Recently, major 
advances have been made with WGS-based typing of  C. difficile strains (81,84). 
WGS is able to reveal the natural history, phylogeny and global spread of  epidemic 
strains (81,82,84). In addition, WGS is a reliable sequencing method that can 
distinguish strains at a single nucleotide level (81,84). The identification of  single 
nucleotide polymorphisms (SNPs) across sequenced genomes has the potential 
to improve the discriminatory power over the more traditional MLVA genotyping 
method (81,85). Although MLVA and WGS analyse different aspects of  the C. 
difficile genome, a recent publication on the performance of  both techniques resulted 
in similar discriminatory power in an outbreak situation (85). WGS is also capable 
of  detecting mixed infections, which offers prospects of  screening for mixed 
infections in transmission studies (86). To date, the costs of  WGS are still relatively 
high compared to other typing methods (67,86). However, the ability of  WGS to 
extrapolate PCR ribotyping, MLST, sequences of  toxin and resistance genes and 
other additional data, combined with standardized computational pipelines, could 
balance the cost benefit towards WGS in the future (38,67,77,81-83).

Mobile elements
WGS as a typing method is based on the non-repetitive core genome (82,84,87). 
However, comparative genomics has demonstrated that C. difficile has a highly 
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mosaic genome which consists of  a large proportion (11%) of  mobile elements 
(77,88). These mobile elements from phage, plasmid or transposon origin constitute 
the so called accessory genome (83,89). Mobile DNA elements can be transferred 
between C. difficile strains and may be passed on to other bacteria (77,90). Many C. 
difficile conjugative transposons (CTn) contain genes or other functions that could 
potentially contribute to the fitness and or virulence of  strains harbouring them 
(76,77,90-92).

Conjugative transposons are defined as “specific DNA elements that can 
integrate into one or more sites in one or more genomes” (93). In general, CTns 
consist of  a core region (conjugation and regulation module), a recombination 
module and a module with accessory gene(s) (91,93,94). After excision from the 
genome, intermediates are formed that can be transferred through conjugation into 
a recipient strain, where they can integrate via specific target site recombination 
(91,93,94). The accessory module can be diverse, and the genes primarily present 
encode determinants for antibiotic resistance or metabolic functions (76,91,93-98), 
often accompanied by dedicated transcriptional regulators (94).

The genomic sequence of  C. difficile strain 630 revealed the presence of  
six putative CTns in addition to the extensively investigated Tn5397 element 
(76,77,95,99). The putative CTns are named based on their locations in the 630 
genome (77). Four of  the identified transposons are closely related to Tn916 (77). 
The Tn916-like family of  conjugative transposons generally encode tetracycline 
resistance determinants and is broadly found in Firmicutes (94). The other CTns 
present in C. difficile strain 630 are more closely related to Tn1549, a conjugative 
transposon responsible for vancomycin resistance (77,100). Transposons in other 
(non 630) C. difficile strains encode resistance to chloramphenicol, spectinomycin, 
streptomycin and erythromycin (81,96).

It is easy to envisage how the presence of  antibiotic resistance determinants could 
increase the fitness of  strains, but the contribution of  other genes in the accessory 
genome to virulence remains largely unexplored. A recent study suggested that the 
accessory genome could be involved in the increased virulence and mortality of  a 
sub-group of  Clostridium difficile RT 015 strains (39). Furthermore, some virulence 
associated genes, including the C. difficile pathogenicity locus (PaLoc) have been 
suggested to be of  phage origin (101-103). Moreover, it has been demonstrated 
that phages can affect toxin production levels in C. difficile, thereby modulating 
virulence (103,104).
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Clostridium difficile virulence factors

Clostridium difficile toxins
The symptoms of  CDI are mainly caused by the two main virulence factors, 
Toxin A (TcdA) and Toxin B (TcdB) (23,105-107). All naturally disease causing 
(toxinogenic) C. difficile strains produce Toxin B, and most of  the strains also Toxin 
A (23,34,108,109). No naturally occurring Toxin B negative strains have been 
reported to date. Toxin A (308 kDa) and Toxin B (270 kDa) belong to the family 
of  large clostridial cytotoxins (21,24). The members of  this family are single chain 
toxins consisting of  at least four domains (Figure 1): a receptor binding domain 
(110,111), a cysteine protease domain, a translocation domain (112,113) and a 
glycosyltransferase domain (21,23,24).

Figure 1: Schematic view of  the domain structure of  clostridial toxins. The catalytic 
domain is located at the N-terminus and the CROP region, which serves as receptor binding 
domain, is situated at the C-terminus. In between the N- and C-terminus the translocation 
domain (hydrophobic region) and the cysteine protease domain are located (113). Jank, 
T and Aktories K., Structure and mode of  action of  clostridial glycosylating toxins: the 
ABCD model.Trends Microbiol.16:222-229, Copyright © 2014 Elsevier Masson SAS. All 
rights reserved.
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The receptor binding domain is located at the C-terminus and covers almost one 

third of  the toxin, in the case of  Toxin A (23,24). The C-terminus is characterized 
by repetitive peptide elements that are called combined repetitive oligopeptides 
(CROPS) (23,24,111). The crystal structure of  the CROPs of  Toxin A shows a 
solenoid like structure (110). Solenoid structures are widely present on bacterial 
surfaces and play a role in protein-protein or protein-carbohydrate interactions. 
The crystal structure of  the CROP region in complex with a carbohydrate 
demonstrated a specific interaction (114). However, the carbohydrates used in the 
crystal structure are absent in sensitive cells and in human tissue (113,115) and 
other (human) glycan structures need to be tested for their role in toxin binding.

Despite a similar structure of  the C-terminus of  Toxin B, experimental data 
suggest that binding of  Toxin A and B is mediated by different types of  receptors 
(113,116). Interestingly, it has recently been shown that toxins can enter eukaryotic 
cells via a CROP independent mechanism (117). Although the biological relevance 
of  this observation is not yet clear, it is suggestive of  an alternative binding 
motif  within the toxin (117).Binding of  the toxin to the eukaryotic cell receptor 
results in receptor-mediated endocytosis (21,24). Internalization of  the toxins 
occurs through the clathrin mediated pathway (118,119). After the clathrin coated 
vesicle is fused to an endosome (118), the low pH in the endosome results in a 
conformational change of  the toxin characterized by an increased exposure of  the 
hydrophobic region (21,24,115). This, in turn, allows translocation of  the catalytic 
domain and the cysteine protease domain into the cytosol (115). Cytosolic inositol 
hexaphosphate (InsP6) can subsequently induce the autocleavage activity of  the 
cysteine protease domain, resulting in the release of  the catalytic domain in the 
cytosol (21,24,115). Interestingly, it has recently been shown that cytotoxicity of  
Toxin B can be independent of  catalytic domain cleavage (120). The catalytic 
domain is a glycosyltransferase which inactivates Rho GTPases (Rho, Rac and 
Cdc42) in the cytosol by glycosylation (21,24,115,121). This results in the inhibition 
of  multiple effectors that ultimately results in apoptosis of  the targeted cell 
(21,23,24,113). A subsequent inflammatory response and further degradation of  
the intestinal epithelial cell layer eventually leads to the development of  the clinical 
symptoms of  CDI (23,24,122).

Transcriptional regulation of  the Pathogenicity Locus 
The genes encoding the major clostridial toxins, tcdA and tcdB, are located on a 
19-kb genomic region called the Pathogenicity Locus (PaLoc) (23,24). In between 
the toxin genes the tcdE gene is situated, which encodes a holin-like protein 
(101,123,124). TcdE is a membrane associated protein (23,101) but its involvement 
in the release of  the toxins is disputed (123,124). Besides the toxin genes and tcdE, 
the PaLoc also contains two regulatory genes, tcdR and tcdC (23,125,126).
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The tcdR gene encodes the alternative RNA polymerase sigma (σ) factor, TcdR 

that positively regulates toxin production. It mediates binding of  RNA polymerase 
core enzyme to the tcdA, tcdB and tcdR promoter regions (125-127). TcdR belongs 
to the sub-family of  extra cytoplasmic factor (ECF) σ70 factors (125). In other 
bacteria, members of  this family have also been demonstrated to positively regulate 
potent toxins, such as the tetanus neurotoxin of  Clostridium tetani (128). TcdC has 
been reported to act like an anti-sigma factor for toxin production by destabilizing 
the TcdR-RNA polymerase core enzyme complex in a way that is not yet fully 
understood (126). Besides the PaLoc encoded regulators, toxin levels are also 
directly influenced by the nutritional regulators CodY and CcpA, and the sigma 
factors σH and σD (129-134).

In strain VPI10463, the exponential growth phase of  C. difficile is associated 
with a high transcription level of  the tcdC gene and low transcription levels of  
tcdR and the toxin genes, whereas the stationary growth phase is associated with a 
low transcription level of  the tcdC gene and high transcription levels of  tcdR and 
the toxin genes (135). The synthesis and secretion of  the toxins is increased upon 
entry into the stationary growth phase (135-138). The decreasing transcription of  
tcdC correlates with diminishing TcdC protein levels in stationary growth phase 
(135,138,139). Interestingly, mutations in the tcdC gene in the hypervirulent strains 
RT 027 (Δ117) and RT 078 (C184T) have been linked to increased virulence (43,140). 
These mutations result in the absence of  a functional TcdC caused by a frame shift 
mutation (∆117 bp) or a premature stopcodon (C184T) in tcdC which is linked to 
an increased toxin production (19,140). Together, the reported inverse correlation 
between the transcription of  tcdC and the toxin genes and the expression patterns 
of  the corresponding proteins (TcdC, TcdA and TcdB), have led to the prevailing 
model that TcdC is an important repressor of  toxin expression (125,126,135,139). 
However, recently some doubts have been raised about the importance of  TcdC in 
the regulation of  toxin expression. (137,138).

Some strains that are associated with an increased mortality and morbidity (e.g. 
RT 027 and RT 078) also produce a third toxin, called the binary toxin since it 
consists of  two polypeptides encoded by the cdtA and cdtB genes (27,43). The 
binary toxin genes are located on a 6.2 kb region called the Cdt locus, or CdtLoc 
(141). A gene (cdtR) encoding for a regulatory protein is located alongside the 
binary toxin genes on the CdtLoc (141). It has been suggested that binary toxin 
may contribute to disease in hamsters (106) and in-vitro assays have demonstrated 
that the binary toxin affects adhesion of  C. difficile to cells through induction of  
protrusion formation of  the target cells (22,142).
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Non-toxin virulence factors of  Clostridium difficile

Clostridium difficile sporulation
Clostridium difficile is transmitted through the faecal-oral route. Spores are believed 
to form the primary vehicle for infection and sporulation is recognized as a crucial 
factor in the transmission route and as a persistence factor for C. difficile (143). 
Ingested spores germinate in the small bowel upon exposure to bile acids (144). 
The newly formed vegetative cells start to produce toxins and can cause disease 
(144).

The primary purpose for sporulation is survival of  the bacteria under harsh 
environmental conditions for prolonged periods of  time. Spores have a high 
tolerance against disinfectants and resistance towards antimicrobial compounds 
and therefore are able to persist on (hospital) surfaces and in the environment 
(145,146). The ability to form spores is a key factor to infect a new host, as they are 
able to survive the oxygenated environment outside the host as well as the harsh 
conditions in the host. Moreover, they confer the ability to persist whereas the 
commensal flora is eliminated by an antibiotic treatment (144,147).

The regulation of  spore formation in C. difficile is still poorly characterized 
compared to the extensively studied spore forming Bacillus subtilis (148). Though 
the pathways downstream of  the master regulator for sporulation, Spo0A, seem 
to a large extent conserved between B. subtilis and Clostridia, this is less so for the 
pathways upstream Spo0A activation (149-152). As expected, spo0A is required 
for sporulation in C. difficile (153). The sporulation pathway in Bacillus subtilis is 
induced under conditions of  nutrition-starvation (148). Under these conditions 
phosphorylation of  the master regulator Spo0A occurs (150,154). Phosphorylated 
Spo0A (Spo0A-P) is an essential activator of  the sporulation signalling cascade in 
Bacilli which ultimately leads to the formation mature spores (149,150). Importantly, 
in other organisms Spo0A regulates many other processes than sporulation, such 
as stress responses, biofilm formation, competence for genetic transformation, and 
DNA replication but also the synthesis of  virulence factors (155-164).

Clostridium difficile factors affecting colonization 
Spores and toxins are established virulence factors that contribute to transmission, 
infection and development of  disease (23,122,143,144). But an essential first step 
in establishment of  C. difficile in the colon is adhesion to the mucosal surfaces and 
subsequent colonization of  the host (Figure 2) (144). Relatively little is known 
about adhesion and colonization factors of  C. difficile. The surface layer of C. difficile 
contains a whole arsenal of  proteins that could potentially be involved in adhesion 
and colonization. Presently, a few surface proteins are identified or hypothesized to 
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play a role in adhesion to cells or colonization of  the host. Among these proteins 
are fibronectin-binding protein A (165), Cwp84 (166), flagellar proteins (167) 
CD1581 (168), and several S-layer proteins (169).

Figure 2: Visualisation (SEM picture) of  an adhered vegetative C. difficile (arrows) to host 
colon epithelium (This picture was kindly provided by A.M. Buckley).

Mechanisms of  stress survival
During its life cycle C. difficile encounters stressful environments, like antibacterial 
substances and proteins, elevated temperatures, extreme pH and osmotic stress. 
These extracellular stresses can result in the accumulation of  (partially) unfolded 
proteins, especially in the bacterial envelope, which are non-functional or form 
poisonous aggregates (170). They may also affect the integrity of  the bacterial cell 
envelope, compromising cell viability. Thus, sensing and responding to extracellular 
stresses is important for survival of  the bacteria. Adaptation to these host-induced 
stresses can play a vital role in the virulence of  bacteria and the establishment of  
an infection.

Regulated intramembrane proteolysis (RIP) is one of  the mechanisms that 
enables bacteria to monitor and respond to extracellular stresses (Figure 3) (171). 
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The RIP mechanism activates regulatory pathways by releasing the sequestered 
sigma factors from their cognate anti-sigma factors as the result of  envelope stress 
(171,172). In Bacillus subtilis, extracellular stresses are sensed by an site-1 protease, 
PrsW (172). Upon stress, PrsW undergoes conformational changes which allow 
cleavage of  an anti-sigma factor at the C-terminus (172). The cleaved anti-sigma 
factor is recognized and further processed by extracytoplasmic proteases and a site-
2 protease, RasP (171,172). The remaining part of  the anti-sigma factor is further 
degraded in the cytoplasm by proteases like ClpX, leading to release of  the sigma 
factor (171,172). The sigma factor then interacts with RNA polymerase to activate 
transcription of  stress related genes (171,172).

Another well described mechanism to sense and respond to stress are two-
component systems. Two component systems are composed of  a sensor kinase 
and a response regulator (173,174). Monitoring envelope stress by the sensor 
kinase results in phosphorylation of  the response regulator (174). This in turn 
leads to activation of  stress related target genes (173,174). In Bacillus subtilis a two 

Figure 3: Schematic view of  the RIP pathway in Bacillus subtilis. The stress induced PrsW 
degrades the C-terminus of  the anti-sigma factor (RsiW) resulting in further processing of  
RsiW by extracytoplasmic proteases and RasP. The partially degraded anti-sigma factor is 
released into the cytoplasmic and further degraded by cytoplasmic proteases like Clp. The 
released sigma factor interacts with RNA polymerase which results in activation of  stress 
related genes (171). Heinrich, J and Wiegert T. Regulated intramembrane proteolysis in the 
control of  extracytoplasmic function sigma factors. Res. Microbiol.160:696-703 Copyright 
© 2014 Elsevier all rights reserved.
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component system consisting of  a sensor kinase (CssS) and a response regulator 
(CssR) plays a role in the detection of  extracytoplasmic misfolded proteins (174). 
It does so primarily through the activation of  expression of  two homologous 
proteins of  the High temperature requirement A (HtrA) family (174).

Bacillus subtilis HtrA and HtrB are associated with the cytoplasmic membrane 
and are composed of  membrane spanning domain, a trypsin-like serine protease 
domain and one PDZ domain (174-178). Both proteins have fairly broad substrate 
specificity. PDZ domains are highly flexible domains and are involved in substrate 
recognition and/or the regulation of  protease activity (177,179). Bacterial HtrA-
like proteins are important for controlling protein quality and homeostasis by 
combining proteolytic and chaperone activities (175,176,179). Membrane anchored 
HtrA-like proteases are active as trimers and soluble HtrA-like proteases form 
larger active oligomers (176,179).

Outline of  this thesis
This thesis covers a broad range of  research topics varying from an applied 
approach to more fundamental experiments. Chapter 1 is the current chapter 
where we provide a general overview.

Applied research 
In Chapter 2 we describe the evaluation of  a modified in-house developed 
molecular assay with improved performance for diagnosis of  CDI. In addition we 
evaluated two other in-house developed qPCRs, of  which one detects the presence 
of  both toxin genes and the other detects the frame shift mutation in the tcdC 
gene. We evaluated the qPCRs by comparing them to a commercially available 
molecular assay and to the gold standards. In Chapter 3, the relatedness between 
human and porcine C. difficile RT 078 strains is investigated using a modified and 
optimized MLVA. Moreover, we also investigate the susceptibility to tetracycline 
and determined the genetic origin of  tetracycline resistance to further support 
the high relatedness between human and porcine RT 078 strains. In Chapter 4 
we identified a 100kb insert in a porcine RT 078 strain through whole genome 
sequencing and characterized this mobile element further.

Fundamental research 
Chapter 5 reports that C. difficile Spo0A recognizes and binds to similar sequences 
as the well characterized B. subtilis Spo0A. The in-vitro binding assays suggest that 
tcdB may be a direct target of  Spo0A. Therefore, we also characterized the toxin 
production of  an isogenic Spo0A mutant strain. In Chapter 6 we generated an 
isogenic tcdC mutant to investigate the possible role of  TcdC in toxin production. 



General introduction 

23

1
In Chapter 7 we propose an alternative role for the putative anti-sigma factor TcdC. 
Chapter 8 describes the identification and characterization of  a C. difficile HtrA-like 
protease. The effect on the transcriptome and in-vivo virulence was determined by 
comparing the generated isogenic HtrA mutant to wild type. 

Discussion
Chapter 9 provides the general discussion, including the main conclusions of  this 
thesis and future perspectives. Chapter 10 provides an overview of  the content of  
this dissertation in Dutch.
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