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Quantum Mechanics is one of the most success-
ful physical theories of the last century. It explains physical 
phenomena from the smallest to the largest lengthscales. 
Despite this triumph, quantum mechanics is often perceived 
as a mysterious theory, involving superposition states that are 
alien to our everyday Big World.
 The construction of a future quantum computer relies on 
our ability to manipulate quantum superposition states in 
qubits. In this thesis it is shown that these qubits can be subtly 
influenced by the physics associated with spontaneous sym-
metry breaking. This process destroys the quantum nature of 
the qubit and renders it useless for quantum computation.
 An even more fundamental problem with quantum super-
positions is that they cannot be reconciled with the theory of 
general relativity. In the end of this thesis a model is proposed 
which describes the effective, deteriorating, influence of 
gravity on quantum states, thus suggesting a path toward the 
demise of quantum mechanics in the big world.
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Chapter 1

Introduction

"The more success quantum theory has, the sillier it looks."

This statement made by Albert Einstein in the beginning of the last century
nicely illustrates the confusion that the theory of quantum mechanics caused among
its inventors [1–9]. Even now, after many decades in which quantum mechanics has
proved to be an excellent description of ever growing realms of physics, the confu-
sion still remains [10–13]. All microscopic particles are believed to be quantum
mechanical, and the properties of these particles predicted by quantum mechanics
have been tested to great accuracy all the way from quarks to collections of billions
and billions of atoms and molecules [13]. But therein also lies the problem: if quan-
tum mechanics describes all of the fundamental particles, and if all matter is made
out of these quantum mechanical particles, then surely everything we see around us
in the everyday world should obey the laws of quantum mechanics as well. Yet we
never get to see a coin that shows both heads and tails after a coin toss, or a soccer
ball that just manages to tunnel through the goalkeeper’s hands to score that last
winning point..

The discrepancy between what matter can and cannot do in the everyday "Big
World", and what its constituent particles have been proved to be capable of in
accordance with quantum mechanics, has lead to a number of extreme proposals
for the metaphysical interpretation of the firmly established mathematical frame-
work of quantum mechanics [14–16]. Even though these proposals are usually con-
structed in such a way that they cannot be proved wrong by any known measure-
ment, the far-stretching implications that they have on our view of the world stops
most people from accepting any of them. Instead physicists have adopted a sort of
"shut up and calculate" approach to quantum mechanics [17], in which they simply
accept that the rules of quantum mechanics will successfully give a statistical de-
scription of the outcomes of experiments, even though no one understands exactly
how quantum mechanics is reduced to classical physics in each individual measure-
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ment [18].
In this thesis I will discuss the role played by quantum mechanics in the every-

day, classical Big World. In this first part I will give a short discussion of the in-
terpretational problems posed by quantum mechanics. Apart from the somewhat
counter-intuitive features of quantum physics there is also a real, physical short-
coming of the theory, as it turns out not to be able to describe the observed non-
unitarity of a single measurement.

In part II of the thesis I will then focus on the typical way that quantum ef-
fects show up in macroscopic bodies. The fact that constituent particles are de-
scribed by a quantum mechanical wavefunction rather than as classical particles
influences the thermodynamic properties of the bulk of a piece of matter. As an
example of a condensed matter system for which quantum mechanics is essential
to understand its collective properties, I will look at the titanium pyroxene com-
pound N aT iSi2O6 [19, 20]. In this compound there are one dimensional strings
of titanium ions that each have a free spin and orbital degree of freedom [21, 22].
The interplay of these degrees of freedom leads to the formation of a novel orbital-
assisted Peierls groundstate. As we will see the transition into this Peierls-like state
is driven by combined quantum fluctuations of both the spins and the orbitals, and
the resulting value of for example the magnetic susceptibility of titanium pyroxene
can only be explained by invoking this strongly quantum mechanical behavior of
its constituent particles.

The third part of this thesis will be dedicated to the quantum mechanical be-
havior of macroscopic bodies as a whole. Even though the process of spontaneous
symmetry breaking leaves these objects as classical as possible, they are still essen-
tially quantum mechanical. The hidden quantum origin of classical objects can
influence them in a very subtle way. One instance in which the illusive quantum in-
fluence could in principle be observed is in the operation of mesoscopic, solid-state
qubits [23]. Even though these devices are built up out of classical building blocks,
they can contain a superposition of two quantum states. This superposition of the
system is very sensitive to its surroundings. All interaction with the environment
will destroy the superposition through the process of decoherence, and render the
qubit in a merely classical state [24]. I will show that the very fact that these qubits
are made out of classical, symmetry broken materials already inevitably leads to
decoherence. The hidden quantum states of the classical objects are enough to de-
cohere the qubit state within a fundamental timescale that does not depend on the
detailed properties of the qubit [23, 25]. This result will be shown to hold for such
systems as crystals and antiferromagnets, but also for more robust objects such as
superconductors.

Finally, in part IV, I will argue that despite the large extent of its applicability,
quantum mechanics must come to an end at some point and make way for purely
classical physics. After a brief review of why this must necessarily happen through
the wavefunction collapse process, I will focus on one particular idea about the sub-
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ject that was recently put forward by Roger Penrose [26,27]. In his proposal Penrose
observes that if gravity has anything to do with the reduction of quantum mechan-
ics, then there is a clear timescale at which its influence should start to be visible.
This timescale turns out to sit precisely in the experimental gap between micro-
scopic observations and the manipulation of macroscopic bodies [26, 28]. Penrose
then writes down an Ansatz-equation to describe the interplay between quantum
mechanics and gravitation [29]. I will show that if we take this equation literally
it will never be able to fulfill all requirements that observations demand the col-
lapse process to obey. Even an improved version of the equation will turn out to
be insufficient, and thus we are forced to leave the collapse process as an unsolved
problem.

At the very end of this work though, I will try to argue that perhaps the pro-
cesses described in this thesis could be combined somehow, and that a dynamical
description of the collapse process, in the spirit of Penrose’s idea, but based on spon-
taneous symmetry breaking, might be the most promising way forward for further
investigation of the subject.
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Chapter 2

The Fundamental Issue

The theory of quantum mechanics as we know it today was formed and slowly given
shape by many different physicists throughout the first decades of the previous cen-
tury. Even though it successfully describes the behavior of microscopic particles
in terms of a so-called wavefunction, the metaphysical interpretation of what this
wavefunction tells us about the nature of fundamental particles has been a point of
fierce discussion ever since its first introduction, and until this very day [11].

There are in fact two sorts of interpretational problems posed by quantum me-
chanics [12, 13]. The first difficulty concerned with quantum mechanics is the rec-
onciliation of its predictions with the things we already thought to know about
nature. Although this level of interpretation has been a real challenge for students
of quantum mechanics throughout the last century, it is not really a physical prob-
lem. Upon closer inspection of the workings of quantum mechanics it will be seen
that the theory is in fact fully consistent with all possible experimental observations,
however counter-intuitive these may seem to be at first sight.

Apart from the fact that our intuition is not naturally attuned to the quantum
world however, there is also a separate, second issue that has caused much debate.
This issue is related to the reduction of quantum mechanics to classical physics dur-
ing a single measurement, and it is usually referred to as ’the measurement problem’,
’quantum state reduction’ or ’the collapse of the wavefunction’. The measurement
problem is a real, physical problem which states that we do not yet have a descrip-
tion of the dynamical process which reduces a quantum state to a classical object
during measurement. Some attempts have been made to construct interpretations
of the mathematical framework of quantum mechanics with which the quantum
state reduction could be avoided or circumvented. As I will show in this chapter
though, none of these interpretations can fully get rid of the measurement prob-
lem.
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2.1 Intuition

Both interpretational problem posed by quantum mechanics can be discussed most
clearly by considering a model experiment. The experiment of choice is the elec-
tronic version of the famous experiment proposed by Thomas Young in 1805 [30,
31]. Young suggested to shoot light rays at a screen with two narrow slits in it, so
that by looking at the presence or absence of an interference pattern behind the two
slits, one could finally reach a conclusion about the nature of light. Of course an
interference pattern was seen, and it was consequently concluded that light must
consist of waves, and not particles. One could do the same experiment with a beam
of electrons, which quantum mechanics tells us are described by a wavefunction as
well, and which should thus produce an interference pattern similar to the one ob-
served by Young. This electronic beam experiment was first done in 1961 by Claus
Jönsson, and sure enough an interference pattern was observed [32, 33]. With the
advance of technology an improved version of the experiment could be done first
in 1974 by Pier Giorgio Merli [34], and then more accurately by Tonomura et al. in
1989 [35].

Figure 2.1: A sequence of pictures showing the progress of Young’s double slit ex-
periment done with single electrons [35]. In a) there are 8 electron spots, in b) 270,
in c) 2000 and in d), after 20 minutes of exposure, there are 6000 electron spots.

In this advanced version, the experimentalists made absolutely sure that there
was only one single electron within the setup at any time. Each of these electrons
then turned out to produce only a single spot at a seemingly random position on
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the measurement screen. Upon combination of all of the spots made during a large
ensemble of measurements however, the interference pattern reemerged (see fig-
ure 2.1). The experiment can be done routinely nowadays, and can even be repro-
duced with the electrons replaced by different kinds of particles, ranging from C60

molecules to single photons [36, 37].

2.1.1 The Wavefunction

The first problem in interpreting these experiments is the instinctive abhorrence
that comes from the realization that in order to produce an interference pattern on
the screen, each single electron must have passed through both of the slits. How can
one particle possibly be in two positions at the same time? The answer of course
is very simple: the electron is not a particle, it is a wave. According to quantum
mechanics electrons and all other particles should be described by a wavefunction.
The wavefunction is not a literal matter wave such as the one that we could use
to describe for example a drop of water spreading out over a table. Instead the
quantum wavefunction is a complex valued function which lives in a Hilbert space.
Nonetheless it is a wave, and it therefore has all the properties common to waves, as
opposed to particles.

The most obvious wave-property is the superposition principle: if a wave has a
non-zero amplitude in two places, then one can describe it as a linear superposition
of two separate waves, which both have a finite amplitude in only one position. This
is the reason that the electron in Young’s experiment can pass through two slits at
same the time, and interfere with itself afterward. There is no particle being split
up, but only a wave passing through two slits simultaneously.

Incidentally, the spreading out of the electron wavefunction over the available
space is also an example of the powerful influence that symmetry has on waves. In
classical mechanics symmetry already dictates all the conservation laws of a physical
system. For example, if space is completely isotropic and homogeneous and thus
has translational symmetry, then inevitably momentum is a conserved quantity.
After all, if there is a particle with a certain velocity present within such a space, and
it would not always retain exactly that velocity, then where in space did it change its
velocity, and why precisely there1?

For waves, the power of symmetry increases even further. If there would be a
wave within a completely isotropic and homogeneous space, then where would it
be? There is no good reason for it to be at any place in particular, and thus the wave
must be in all positions at the same time: it must be spread out completely over the

1One might think that there is the possibility of changing the particle’s velocity with the same amount
at every single position, thus still obeying the symmetry of the space. In that case though one could ask
in which direction the particle is accelerated at every point in space. That question then cannot be
answered, because the space is required to be isotropic.
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entire space2.
The existence and occurrence of superpositions in quantum mechanics thus is a

direct result of the combination of the wave nature of microscopic matter with the
symmetries that exist in the experimental setup.

2.1.2 Complementarity

The second point which causes confusion when trying to interpret the double slit
experiment with our classical intuition, is known as Heisenberg’s uncertainty prin-
ciple. This principle implies that if we would for example try to very gently detect
through which of the two slits each single electron passes, then we will be able to
retrieve that "which-path information", but the interference pattern on the screen
(the "both-paths information") will disappear. Apparently only one of these com-
plementary sets of information can be known to us at any given time. This prin-
ciple of complementarity not only governs the possible knowledge of which-path
and both-paths information, but also the simultaneous knowledge of position and
momentum or of orthogonal projections of the spin operator. Indeed, the generic
situation in quantum mechanics is that for every observable quantity that one tries
to measure there is at least one complementary observable that cannot be accurately
measured at the same time.

It becomes even worse if we realize that we can use quantum mechanics to mea-
sure both the which-path information and the both-paths information at the same
time, store the outcome of the experiment, and then at some later point come back
to the experimental setup and choose which of these sets of information to display
on our screen. This delayed choice quantum eraser measurement has been per-
formed recently by Marlan O. Scully et al. using pairs of entangled photons [37], as
is shown schematically in figure 2.2. The execution of this experiment is of course
still in full agreement with quantum mechanics, because in making the delayed
choice on what to register, one necessarily needs to quantum-erase the complemen-
tary set of information, so that Heisenberg’s uncertainty relation is never violated
(see figure 2.3).

As a matter of fact, the obedience to Heisenberg’s uncertainty relations is an-
other feature that all waves share. A wave by its very nature cannot possibly have
both a well defined position in space, and a clearly measurable wavelength (which is
set by its momentum). The complementarity of these quantities can already clearly
be demonstrated by observing wave patterns on a lake or even in the bath tub. It
should therefore be no surprise that only one out of two complementary wave-
properties can be detected at any one time. The electron which is allowed to pass
through two slits and then to interfere with itself carries only both-paths informa-
tion and no which-path information. If however one changes the setup in such

2Incidentally, a wave can only spread homogeneously over all of space if it has a single, well defined
value for its momentum.
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Figure 2.2: A schematic representation of the delayed choice quantum eraser ex-
periment performed by M.O. Scully et al. [37]. At the beginning of the experiment
a pair of entangled photons is created either at A or at B (more precisely, the pair
is created in a superposition state of being at both A and B). Detector D0 can be
moved along the x-axis to measure the interference of the right moving electron
originating from both A and B, while the left moving electron ends up, after en-
countering two beam splitters, at one of the detectors D1 through D4. If the left
mover is detected at D3 or D4 then which-path information is available, while de-
tection at D1 or D2 erases such information. Notice that the detection at D0 can be
performed long before the left moving electron is detected.

a way that the electron will carry which-path information after passing the double
slit, then this naturally leads to a corresponding decrease in both-paths information,
and thus a disappearance of the interference pattern. This transfer of information
is exactly analogous to trying to catch a wave at a particular position in the bathtub,
and then afterward not being able to accurately measure its wavelength anymore.

Although the delayed choice quantum eraser experiment may be a bit more
elaborate than Young’s experiment, the fact that one can look at only one property
of the wavefunction at a time still is a direct consequence of Heisenberg’s uncer-
tainty principle, and thus of the wave nature of quantum mechanics. In this ex-
periment the which-path or both-paths information is very cleverly separated from
the registering device that will show the actual presence or absence of an interfer-
ence pattern. Only after cross correlating the measurements of this device with the
separate measurements that determine which set of information we’re looking at,
can any pattern be distinguished at all. Because the which-path information, even
when separated from the measurement of the interference pattern, remains com-
plementary to the both-paths information, one can only detect one or the other
wave property [37].
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Figure 2.3: The results of the delayed choice quantum eraser experiment of fig-
ure 2.2. In the top plot those points from the D0 detections are selected that coin-
cide with a detection at D2. Because the which-path information has been erased,
an interference pattern can be observed. In the bottom plot the coincidences be-
tween D0 and D3 are selected. This time which-path information was available, and
thus the both-paths information has been lost, in full accordance with Heisenberg’s
uncertainty principle.

2.2 Interpretations

After accepting all the counter-intuitive features of the double slit experiment as just
being due to the wave nature of quantum mechanical objects, there remains one last
cause for confusion that needs to be dealt with. The greatest problem posed by the
single electron version of Young’s experiment is the question of how it is possi-
ble that each electron creates only one single spot on the screen [18]. After all, we
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know that according to the rules of quantum mechanics the electron must have been
spread out in front of the entire screen just before the spot is formed. The emer-
gence of the interference pattern after doing many measurements in fact confirms
this. Still what we see on the screen is single well defined position of the electron,
and not a superposition of spots all over the screen [35]. If the laws of quantum
mechanics were to be followed also by all the individual atoms in the screen then
surely a superposition state of the screen with spots on all possible positions would
be the required final state of Young’s experiment.

More precisely stated, it seems that the measurement of the electron’s position
(by letting it interact with a screen) breaks the unitarity of the quantum mechanical
time evolution. Independent of the number of particles in the system, the defining
characteristic of quantum mechanics is its unitarity. After only a single spot has
appeared on the screen this unitarity has been broken, as can be clearly seen by
realizing that the electron can no longer be propagated back in time to its original
state: time inversion symmetry is broken, and thus time evolution can no longer be
unitary [18]. The fact that the act of measurement breaks the unitarity of quantum
mechanics is the one fundamental, physical problem with the quantum theory.

There have been many attempts to cure this situation, most often through the
introduction of ’interpretations’ of quantum mechanics in which one tries to avoid
the measurement problem altogether.

2.2.1 The Copenhagen Interpretation

The most important of these interpretations has become known as the Copenhagen
interpretation of quantum mechanics, and it is based on the ideas of two of the
founding fathers of quantum theory: Niels Bohr and Werner Heisenberg [6–8]. Al-
though they disagreed on details, both men advocated the idea that the wavefunc-
tion in quantum mechanics should be seen as a probability wave, rather than as a
true matter wave. The probabilities described by the wavefunction then represent
the possible outcomes of a measurement [38]. Until one has actually performed
a measurement, there is no way that one could possibly know anything about the
quantum particle in the experimental setup, and thus it is argued that it is useless to
discuss or even think about the properties of such a quantum particle before doing
a measurement [7]. In particular one is thus not allowed to say that there exists
a quantum particle which travels through two slits and is spread out all along the
screen just before the spot on the screen has been measured. By selecting which ex-
perimental setup to use, the experimentalist in a way creates a particle with specific
properties. In our case the choice of making the electron visible by using a screen
dictated that the electron would show up at a well defined position. The quantum
mechanical wavefunction only gives information about the probability of a certain
outcome for each possible experimental setup, but not about the actual particle
before measurement [7, 8, 38].
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John von Neumann has carefully analyzed these ideas and he proposed to de-
scribe them formally by the conjunction of two separate processes [39]. In first
instance all microscopic systems are described by a wavefunction which evolves pre-
cisely according to the rules of quantum mechanics. But at the moment that one
performs a measurement on the wavefunction using a classical measurement ma-
chine, a second process takes over, which instantaneously collapses the microscopic
wavefunction onto one of the experimental outcomes that is allowed by the clas-
sical measurement machine. The selection of which state to collapse to is purely
probabilistic, with the chance for a certain outcome to appear being determined by
the corresponding amplitude of the microscopic wavefunction [38]. This formu-
lation of the measurement process is known as the collapse of the wavefunction,
and it is a clearly non-unitary process which formally completes the Copenhagen
interpretation.

The problem with this description is that does not solve anything. A rather par-
ticular (instantaneous) non-unitary collapse process is introduced and postulated
to take place during measurement, which in turn is defined as the interaction with
a classical measurement machine. But which objects count as classical measure-
ment machines and which do not? In practice it is often easily decided if something
is classical or not. But theoretically a classical table is nothing more than a large
collection of quantum mechanical atoms. So the question remains at what point a
collection of atoms stops being a complex quantum mechanical wavefunction and
begins to be a classical object, which would thus be usable as a measurement ma-
chine. The first part of this question can be answered by using the description of
spontaneous symmetry breaking, as will be discussed in part III of this thesis. But
as I will also argue, an explanation of how such a classical, symmetry broken object
could initiate a non-unitary collapse process is still missing.

2.2.2 The Statistical Interpretation

Apart from the Copenhagen interpretation of quantum mechanics, there are two
other popular interpretations. The first is the statistical interpretation that was first
formulated as such by L.E. Ballentine in 1970 [16], and then used in many different
variations [40–45]. The idea behind this interpretation is that quantum mechanics
is really complete in itself, as long as one looks only at ensembles of measurements.
To describe such ensembles one uses density matrices, which are equivalent to wave-
functions for single measurements, but which have the advantage that they can also
be used to describe a statistical mixture of different outcomes within an ensemble
of experiments. The disappearance of superpositions of large collections of mi-
croscopic particles can be explained in terms of density matrices by the process of
decoherence [40, 44, 45]. If an observer looks at the screen in Young’s experiment,
then he will only register the position of the dark spot on it. He will not know the
exact properties of all the individual atoms within the screen. The true superposi-
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tion state of the screen having a spot in many different positions at the same time
however, does also involve a superposition of these many microscopic degrees of
freedom. If one now starts out with a superposition state of all these degrees of
freedom, but averages over the unobserved part, then the resulting reduced den-
sity matrix will describe a classical, statistical mixture of states and not a quantum
mechanical superposition of states. This apparent reduction of a quantum super-
position to a statistical mixture is what is usually referred to as decoherence.

The statistical interpretation has the clear advantage that no extra ingredients
need to be added to quantum mechanics at all, except for a definition of which
degrees of freedom will be measured and which will not. On the other hand it
has the great disadvantage that it simply forbids us to discuss or even think about
the dynamics of a single act of measurement [16, 43]. According to the statistical
interpretation, the non-unitarity of measurement is caused by the averaging over
unobserved quantities, which can only be done in the description of an ensemble
of measurements. Why the time evolution within a single measurement should be
non-unitary remains unclear.

2.2.3 The Many Worlds Interpretation

The second alternative interpretation of quantum mechanics is the many worlds
interpretation which was originally proposed by Hugh Everett in 1957 [14]. In-
stead of introducing an extra distinction between microscopic particles and clas-
sical, macroscopic objects, the disciples of this interpretation suggest to take the
mathematical formulation of the wavefunction literally [14, 46–48]. One of the
fundamental properties of waves in general is that they can occur in superposition
with one another. The many worlds interpretation suggests that we should look at
the quantum mechanical wavefunction as a literal superposition of infinitely many
worlds. There would be one world for each possible outcome of each possible mea-
surement that one could do. Because the human observer of such a measurement is
only in one of these many parallel worlds, he can only see one outcome, which then
seems to be randomly chosen [14, 46–48]. The probability for a certain outcome to
appear is given by the squared amplitude of the wavefunction which must thus rep-
resent the percentage of the infinitely many parallel worlds in which that particular
outcome is realized (see figure 2.4).

Even though there is no experiment yet that can distinguish between the many
worlds interpretation and the Copenhagen interpretation (including collapse of the
wavefunction), there is one known experiment with which a truly daring believer
of the many worlds interpretation could at least convince oneself of its correctness:
the quantum suicide experiment [48, 49]. In this experiment the observer is sup-
posed to set up a device which will kill him as soon as some unstable atom decays.
Since the decay process is quantum mechanical there exists at any point in time a
superposition of the decayed atom, and the original atom. If indeed this also im-
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Figure 2.4: A schematic representation of the many worlds interpretation. Initially
the observer (represented here by Max Tegmark, the inventor of the quantum sui-
cide experiment [48]) is separated from a quantum system. The quantum system in
this case is a spin 1/2 with its spin polarized in the x y-plane, so that it corresponds
to a superposition of states with different z-projection. After the measurement, the
observer has found the spin to be either up or down, and the observer and spin
therefore form an entangled state. The different parts of the entangled state cannot
possibly communicate with each other, and are thus interpreted by the many worlds
interpretation as being in two different worlds. The observer is only conscious of
one of the outcomes of the experiment, and must therefore live in only one of the
worlds.

plies that there exists a superposition of worlds in which the observer ends up dead
and alive, then according to the many worlds interpretation one could safely per-
form such an experiment, since only the living observer is (supposedly) conscious
of the outcome of the experiment, and thus the observer will always find himself in
a world in which the atom has not decayed yet3 [48].

2.3 Symmetry Breaking

As we have seen, the quantum mechanical description of microscopic matter in
terms of the wavefunction, despite being very powerful and readily explaining the
existence of complementary quantities, superpositions, etc., must still come to an

3Notice that this last step in the reasoning assumes a sort of free will: it assumes that you have have
only one consciousness, and that at the moment of measurement your consciousness can be transferred
into either one of the resulting worlds. Taken even more literally, the many worlds interpretation could
also mean that we are simply in one part of the universe’s wavefunction, with the outcomes of all possible
future experiments already decided.
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end somewhere. After all, a single measurement of a quantum mechanical property
clearly leads to a non-unitary time evolution.

As I will discuss in more detail in part III of this thesis, there is at least one way
in which quantum mechanics carries along the means of its own demise. As a col-
lection of quantum particles grows toward an infinite size, it becomes possible for
the system as a whole to spontaneously organize into a state which is as classical as
possible [50, 51]. That is, after this spontaneous symmetry breaking has occurred,
the uncertainties in both momentum and position are as low as can possibly be al-
lowed by Heisenberg’s uncertainty relation. Since the uncertainty in position and
momentum of the object as a whole is negligible with respect to its size, it can then
be ignored in further analyses and for all practical purposes a classical (particle-like)
object has been formed. The theory of spontaneous symmetry breaking works very
well in explaining the apparent classicality of all sorts of objects, ranging from tables
and magnets all the way to superconductors [50, 51]. It is however, only a descrip-
tion of the equilibrium state of matter. In the third part of this thesis I will show that
it does have some effects on the dynamics of macroscopic objects (it leads to a fun-
damental limit of quantum coherence in qubits), but unfortunately spontaneous
symmetry breaking cannot be used to formulate a dynamical, non-unitary reduc-
tion to classical behavior. In particular, spontaneous symmetry breaking is not a
substitute for the collapse process that we need to describe quantum measurement
with.

As it is, very little is known about what physical principle could underlie a dy-
namical description of the wavefunction collapse. Over the past decades many pro-
posals for a possible mechanism have been considered. These range from the intro-
duction of extra nonlinear terms in the time evolution governed by stochastically
distributed ’secret parameters’ [15], via the description of the time evolution in
terms of quantum diffusion equations [52–57] to the introduction of ad hoc local-
ization events [58,59]. No consensus on any of these theories has been reached, nor
is any one of them supported by specific experimental observations.

Recently, there has also been a suggestion by sir Roger Penrose [26, 27], based
on earlier ideas [58–60], that the problem may be linked somehow to the problem
of the unification of quantum mechanics with gravity. Although I will show in
part IV of this thesis that the dynamical description that follows from this proposal
cannot fully explain all observed properties of the collapse process, it does have
the advantage that it can explain the difference between quantum objects and the
classical systems that are to be used as measurement machines by looking at their
gravitational self energy.

Despite the huge realm of applicability of the quantum theory, ranging from
the quantum mechanics of microscopic particles within larger bodies (see part II
of this thesis) to the actual quantum behavior of macroscopic objects as a whole
(see part III), it thus is still unclear how to describe a single act of measurement
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(as discussed in part IV). The mysterious wavefunction collapse therefore remains
a riddle that needs to be solved before one can truly understand the nature of quan-
tum mechanics. With the current rapid advance in the possibilities of manipulating
microscopic and mesoscopic quantum objects, it could well be that direct experi-
mental observation of the collapse process is just around the corner. That would
then finally liberate the discussion from its metaphysical stronghold and open up
a directed experimental and theoretical search for the physical process responsible
for the suppression of Quantum Mechanics in the Big World.



Part II

Quantum Mechanics
in

the Big World
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Chapter 1

Introduction

Quantum mechanics dictates the behavior of all physics on microscopic length
scales. Consequently it also greatly influences the world at larger distances, be-
cause many properties of macroscopic bodies depend on the characteristics of their
constituent particles [61, 62]. This is particularly true for the material properties of
solid state systems [63,64]. Many of these material properties can only be explained
by considering a quantum mechanical formulation of the underlying microscopic
theory. A particularly interesting class of materials to be considered is formed by the
transition metal compounds. Because of their strongly interacting electronic struc-
ture these materials display an extremely wide range of different types of orderings
and excitations, and thus of material properties [65–69]. In this part of the thesis
we will study one of these transition metal compounds, N aT iSi2O6, as an exam-
ple of how quantum fluctuations on the microscopic level can give rise to ordering
and observable thermodynamic effects at the macroscopic level. N aT iSi2O6 is an
interesting example to study here because it turns out to undergo a novel type of
orbital-assisted Peierls transition, in which the orbital quantum fluctuations help
to stabilize an electronically dimerized phase [19, 20, 70].

1.1 Titanium Pyroxene

The occurrence of an unusually large variety of physical phenomena in the transi-
tion metal compounds is mainly due to the fact that the relevant electrons in these
systems can be regarded as having separate and independent degrees of freedom re-
lated to their charges, spins and orbitals, and to the lattice [67]. Of these the orbital
degree of freedom is of particular interest,since it can couple on one hand to the
spins via the superexchange interaction, and on the other hand to the lattice via the
cooperative Jahn Teller effect [66, 68]. Couplings of this kind are hard to observe
in most systems since they can be very easily obscured by more profound magnetic
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Figure 1.1: Top: A schematic picture of the crystal structure. Bottom: Possible
uniform orbital orderings (a-c) and a schematic indication of the orientation of the
T iO6 octahedra (d).

effects. In the pyroxene compound N aT iSi2O6 however, the coupling of spins and
lattice via the orbitals may be visible, and in fact gives rise to a novel kind of phase
transition: the orbital Peierls transition.

The crystal structure of titanium pyroxene consists of chains of T i3+O6 octa-
hedra, separated by SiO4 tetrahedra and N a+ ions, as pictured in figure 1.1A [21].
The T iO6 octahedra are edge-sharing, so that the titanium ions lie on separated
zig-zag chains. Since the titanium ions all have one electron in the d-shell, these
chains are effectively one dimensional spin 1/2 chains. The d-orbitals of the tita-
nium atoms are split by the surrounding crystal field into low lying t2g orbitals,
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and energetically less favorable eg orbitals. For the low energy physics of this sys-
tem we thus need to consider one dimensional zig-zag chains with on each site a
spin 1/2 occupying one of three possible, degenerate t2g orbitals [19, 21, 22]. The
orientation of the orbitals within the crystal structure is such that there are three
different uniform orderings, as shown in figure 1.1B: the orbitals can be oriented
completely parallel to both neighbors (dzx orbitals); in this case there is negligible
overlap between neighboring orbitals and thus also no exchange coupling between
neighboring spins. Another possibility is the dxy orientation. In that case the lobes
of the orbitals point directly toward the neighbor on the same x y-plane, but they
are exactly parallel to the orbitals on different x y-planes. Consequently there is an
exchange coupling present between neighboring spins on the same x y plane, but
there is no coupling to the spins on other planes. Finally, in the dyz orientation
the situation is just opposite to that of the dxy case; now there is an overlap and an
exchange coupling within the yz plane but not within the x y plane [22, 71].

Already at this level of the description it thus becomes clear that the orbital and
spin ordering will necessarily be strongly dependent upon each other. We will see
that eventually this will give rise to an orbital driven transition in which spin dimers
are formed: the orbital Peierls transition.
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Chapter 2

The Microscopic Model

Before we turn to the detailed description of our microscopic model for titanium
pyroxene, let’s first consider what experimental and calculational data that model
will have to account for.

2.1 Experimental Data

Powder samples of N aT iSi2O6 were first studied by Isobe et al. in 2002 [21]. They
found that the temperature dependence of the magnetic susceptibility displays a
peak at a temperature of 210 K , corresponding to the opening of a spin gap at that
temperature (see figure 2.1). This behavior is quite different from what has been
found in other pyroxene compounds (for example those containing vanadium or
chromium instead of titanium): all of these display low temperature antiferromag-
netic order [22]. From the fact that titanium pyroxene consists of one dimensional
spin 1/2 chains, Isobe et al. concluded that instead of the antiferromagnetic or-
dering, there should be a kind of spin Peierls transition, possibly aided by the ap-
pearance of orbital order. The formation of a dimer phase at low temperatures was
further supported by their finding a peak in the x-ray diffraction data which splits
into two exactly at 210 K . This splitting of the x-ray Bragg peak is indicative of the
lowering of the crystallographic symmetry; in this case from a high temperature
monoclinic phase to a low temperature triclinic phase.

Raman spectra of N aT iSi2O6 taken by Konstantinović et al., show that the
phonon modes of the crystal are also affected by the transition at 210 Kelvin [22].
A couple of phonon modes shift in energy exactly at this temperature, and almost
all modes get broadened above the transition temperature. This broadening of the
modes is explained as an indication of having a high temperature dynamical Jahn
Teller phase in which orbital fluctuations dominate. The transition at 210K should
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Figure 2.1: The magnetic susceptibility as a function of temperature [21]. The dot-
ted line shows a Curie-law fit, and the inset shows the data with the Curie term
subtracted. The solid line in the insert gives a rough estimate of the size of the spin
gap.

then correspond to a freezing of the orbitals. Because of the peculiar orientation
of the orbitals and their effect on the size of the exchange integral, this in turn will
lead to the formation of spin dimers, and thus to the opening of a spin gap. This
scenario is further supported by the formulation of a model Hamiltonian for the
spin and orbital degrees of freedom in the titanium chains [22].

2.2 Calculational Data

A crystal field analysis of the orbital dimer model however, has lead to a different
explanation of the data [72]. In their calculations Bersier et al. find that the t2g

orbitals of the titanium ions are split in energy by the surrounding crystal field to
such an extent that they can no longer be considered degenerate. Instead Bersier et
al. propose that N aT iSi2O6 undergoes a structural transition, in which the crystal
field produced by the oxygens rotates at 210 K . At high temperatures then, the
ground state for the t2g orbital configuration will be uniform in its overlaps along
the chain, whereas at lower temperatures the rotation of the crystal field will induce
a rotation of the orbitals, and thus lead to a dimerization of the lattice, and of the
spin structure.
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Yet another suggestion for explaining the experimental data is made by Popović
et al., who used a density functional approach to study the system [73]. After cal-
culating the bandstructure and density of states of the conduction electrons they
arrive at the conclusion that the ground state of titanium pyroxene should not be
a valence bond state, but rather a Haldane spin one chain: the dimerization of the
titanium atoms should then cause the spins to align with their closest neighbor in
order to effectively create a spin one, spread out over two neighboring titanium
sites. These effective spins in turn tend to align antiferromagnetically, as is depicted
in figure 2.2.

Figure 2.2: The ground state configuration as proposed by Popović et al. Upon
inclusion of the quantum fluctuations, the antiferromagnetic bonds will turn into
spin valence bonds.

In this chapter we argue that all of the above observations, including both the
experimental data and the results of the calculational studies, can be explained us-
ing the spin orbital model, originally proposed in Konstantinović et al. [19,22]. We
will show that the transition indeed should be considered an orbital-assisted Peierls
transition; i.e. an orbital ordering transition which causes both a lattice dimeriza-
tion and the formation of a spin valence bond state. We will also predict an upper
bound for the crystal field splitting of the titanium t2g orbitals, and we will show
that the Haldane chain can be obtained from the same model if we ignore quantum
fluctuations.

2.3 The Model

As mentioned before, the T i3+O6 octahedra in titanium pyroxene form separated,
quasi one-dimensional zig-zag chains within the crystal structure. The Coulomb
interaction between electrons on the same titanium site is so large that all exchange
interactions can be determined by second order perturbation theory in the electron
hopping parameter. For a single titanium site, the cubic surrounding formed by
the oxygen octahedron splits the 3d states into three low lying t2g states and two eg

states of higher energy. The T i3+ (3d1) ion then has one electron with spin 1/2
which can be in any of the three degenerate t2g orbitals. These orbitals have an
overlap, and thus an allowed hopping path and magnetic interaction, with at most
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one neighbor (see figure 1.1B). Because the dzx can be considered inert, we will
neglect them in the following model description, and only focus on the remaining
two t2g orbitals. If we label these remaining orbitals as the eigenstates of some Ising
like operator (say the z-projection of some pseudospin: T z

i = 1/2 corresponds to
dxy and T z

i = −1/2 to dyz being occupied on site i), then we can write the effective
model Hamiltonian as [19, 22]:

H0 = J
∑
<i , j>

�Si · �S j

[
1

4
+ T z

i T z
j + (−1)i

2

(
T z

i + T z
j

)]
, (2.1)

where i and j are on neighboring sites, J is the exchange integral and T z are the
orbital operators. The part between square brackets is such that this Hamiltonian
will only give a nonzero result if it acts on a state in which x y (or yz) orbitals are
occupied on neighboring sites and these orbitals also are in the same x y (or yz)
plane. The ground state of this Hamiltonian will clearly be a state in which the
orbitals are all in the same configuration (ferro-orbital order), and in which a spin
singlet is formed on all of the bonds on which hopping is allowed by symmetry. The
dimerization of the lattice that is seen in x-ray diffraction should then be explained
as being due to the Jahn-Teller distortions associated with the orbital ordering. The
ordering will in fact tend to lengthen the distance between orbital wavefunctions
with lobes pointing toward each other and thus effectively reduce the distance be-
tween sites which are not magnetically coupled. At higher temperatures the orbital
order will melt, and the spin valence bond pattern will disorder accordingly, thus
explaining the disappearance of the spin gap at the transition. The result is a state
with large orbital fluctuations which lead to an effective rising of the symmetry of
the lattice (since the Jahn Teller distortions are averaged out), and thus a shift in
some of the phonon frequencies. The fluctuations at the same time broaden the
phonon peaks, and especially those of the modes along the T i − O bonds.

2.3.1 Crystal Field and Inter Chain Interactions

For the valence bond scenario to be applicable it is clearly important that the two
active t2g orbitals are at least nearly degenerate. To be able to determine the effects
of a small crystal field splitting, we will include it in our model Hamiltonian.

On top of this, we will need to raise the dimensionality by introducing some
weak inter chain coupling parameter in order to be able to describe a true phase
transition with our model. This inter chain coupling will be done in a mean field
fashion in our model.

Finally, we will also add an extra “bare” orbital-orbital interaction to the model
which has been shown by Hikihara et al. to come directly from the tight binding
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perturbation theory, but has been neglected up to this point [71]:

H1 = H0 + (JCF + JIC)
∑

i

T z
i + J

4

∑
<i , j>

T z
i T z

j , (2.2)

where JCF is the size of the crystal field splitting, JIC is the mean orbital field of all
neighboring chains, given in terms of the small inter chain coupling parameter J ′
(which in the present approach is approximated to be of the order of J/10), the
number of neighboring chains z and the mean value for the orderparameter per
site:

JIC = z J ′

N

〈∑
i

T z
i

〉
. (2.3)

2.4 The Analysis

In our analysis of the model Hamiltonian (2.2), we have used three different calcu-
lational techniques. First we have neglected all quantum fluctuations by turning all
spin operators into Ising operators, so that the Hamiltonian has an exact solution.
We have also used a mean field treatment to solve the model including quantum
fluctuations, but in doing so we needed to restrict our focus to XY spins. Finally
then we have examined the behavior of the full Hamiltonian by doing a Monte
Carlo simulation of the system.

2.4.1 Ignoring Quantum Fluctuations

If we turn off quantum fluctuations by projecting all spin operators onto the z-axis,
then Hamiltonian (2.2) turns into:

HIsing = J
∑
<i , j>

(
1

4
T z

i T z
j + Sz

i Sz
j

[
1

4
+ T z

i T z
j + (−1)i

2

(
T z

i + T z
j

)])

+JCF

∑
i

T z
i , (2.4)

neglecting the inter chain coupling for the moment. It is trivial to see that the
groundstate of this (classical) Hamiltonian is given by the configuration in which
the orbitals are all aligned, and each spin is anti-aligned with its neighbor along
the bond formed by the orbitals. In principle the relative orientation of the spins
along the remaining bonds is completely free, giving rise to an infinitely degenerate
groundstate. This degeneracy will however be lifted by higher order effects that have
been neglected in the approximation so far. As was shown in the work of Hikihara
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et al. the Hund’s rule coupling will be the dominant higher order effect along the
bonds where (2.4) gives no magnetic interaction [71]. The resulting groundstate
then is no longer infinitely degenerate but consists of a ferro-orbital state with a
chain of alternating ferromagnetically and antiferromagnetically aligned spins on
top of it (see figure 2.3). This chain is exactly the ground state found by Popović et
al. The fact that ignoring quantum fluctuations leads to the same ground state as the
one observed through density functional calculations should come as no surprise:
in density functional calculations these quantum fluctuations of the electron spin
are neglected as well. Notice that the strongest spin-spin interaction in our model
is in fact the antiferromagnetic coupling. The formation of a Haldane-chain like
structure will therefore probably not be sustainable if we include quantum fluctu-
ations: in that case the antiferromagnetic bonds will turn into spin valence bonds,
and the small residual Hund’s rule coupling will play no role in the transition.

Figure 2.3: The nearest-neighbour spin-spin correlation function Cs for the Ising
system of equation (2.4). The lowest line shows the data without any Hund’s rule
coupling while the line on top shows the data if a small Hund’s rule is included. The
lowest line converges to a value of −1/8 for T → 0, which indicates a random spin
ordering on half of the bonds and antiferromagnetic ordering on the other half.
The upper line goes to 0 instead and represents the ordering displayed in the inset,
which corresponds exactly to the ordering of figure 2.2, found by Popović et al.
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2.4.2 Including Quantum Fluctuations

Now that we understand the groundstate of the classical model, let’s go back to the
full Hamiltonian (2.2), including all of the quantum fluctuations and the inter chain
coupling. To get some further analytical understanding of this Hamiltonian we
will decouple spin-orbit interaction by introducing mean fields for their respective
orderparameters:

H S
MF = J

∑
<i , j>

(
t + (−)iδt

) �Si · �S j

HT
MF = J

∑
<i , j>

(
1

4
+ s + (−)iδs

)
T z

i T z
j

+
∑

i

(δs J + JCF + JIC) T z
i , (2.5)

where we have recursively defined the mean fields through the equations:

s + (−)iδs =
〈 �Si · �S j

〉

t + (−)i δt =
〈
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4
+ T z
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2
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T z

i + T z
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)〉
.

Even after decoupling the spin and orbital part of the Hamiltonian, the spin part still
is a bit too involved to be solved head on. Instead we introduce a further approx-
imation by using XY spins instead of full Heisenberg spins (so we project the spin
vectors onto the x y plane). This way we do still include spin quantum fluctuations,
so we expect the results to be qualitatively correct. Having done the projection, we
are now in a position to solve the two parts of the coupled problem independently
in terms of the mean fields.

The XY Spins

Let’s first consider the spin part of the problem. Since we only have XY-spins left,
we can simplify the problem by turning the spins into fermions, using the Jordan-
Wigner transformation S+

i S−
i+1 = a†

i ai+1. If we then also switch to Fourier space,
we find:

H S
MF = J

∑
k

(
t cos(k) a†

k ak + i δt sin(k) a†
k+π ak

)
. (2.6)

This fermion Hamiltonian can be forced into the diagonal form H = ∑
q εq c†

q cq

by introducing transformed fermions c† through a†
k = ∑

q c†
qUqk . The εq and Uqk
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are then simply given by the eigenvalues and eigenvectors of the matrix

hqk = t cos(q) δq,k + i δt sin(q) δq+π ,k .

Having found this diagonal form it has then become trivial to check that the ex-
pressions for the mean spin field and the corresponding susceptibility are given by:
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Here we have used the Jordan-Wigner transformation to define Sz = − 1
2 + a†

i ai .

The Orbitals

Having diagonalized the spin sector, let’s turn to the orbital part of the problem
(2.5). Since the Hamiltonian involves only Ising operators, it is effectively classical.
We can therefore solve this sector by adopting a transfer matrix approach. If we
write the classical configuration as a state vector

∏
i |T z

i >, with every T z
i = ±1/2,

then we can write the partition function for the classical Hamiltonian HT
MF in (2.5)

as:

ZT
MF =

∑
T z

1 ..T z
N

N/2∏
j=1

(〈
T z

2 j

∣∣∣R̂even
∣∣∣ T z

2 j+1

〉 〈
T z

2 j+1

∣∣∣R̂odd
∣∣∣T z

2 j+2

〉)
, (2.8)

where the matrices R̂, written out in the one particle basis (+1/2, −1/2), are given
by:

R̂even =
(

e− β
4 ( J[3δs+s+1/4]+2JCF+2JIC) e− β

4 ( J[δs−s−1/4]+2JCF+2JIC)

e
β
4 ( J[3δs+s+1/4]+2JCF+2JIC) e

β
4 ( J[δs−s−1/4]+2JCF+2JIC)

)

R̂odd =
(

e− β
4 ( J[δs+s+1/4]+2JCF+2JIC) e− β

4 ( J[3δs−s−1/4]+2JCF+2JIC)

e
β
4 ( J[δs+s+1/4]+2JCF+2JIC) e

β
4 ( J[3δs−s−1/4]+2JCF+2JIC)

)
.

In the form (2.8), we can do the summations over the one particle states, to find
that the value for the partition function in terms of the eigenvalues λ± of R̂ =
R̂odd R̂even, is simply given by:

ZT
MF = λ

N/2
+ + λ

N/2
− . (2.9)
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All that remains then, is to relate the quantities of interest to the partition function.
This can easily be done if we use the relation < ∂H/∂ x >= −β/Z ∂Z/∂ x:

t = 1

N

〈∑
i

(
1

4
+ T z

i T z
i+1 + (−)i

2

[
T z

i + T z
i+1

])〉
= 1

4
− 1

βN Z

∂Z

∂ s

δt = 1

N

〈∑
i

(
(−)i

4
+ (−)i T z

i T z
i+1 + 1

2

[
T z

i + T z
i+1

])〉
= − 1

βN Z

∂Z

∂δs

χT = β

N

(〈
T z

totT
z
tot

〉 − 〈
T z

tot

〉 〈
T z

tot

〉) = 1

βN

(
1

Z

∂2Z

∂ J 2
CF

−
[

1

Z

∂Z

∂ JCF

]2
)

(2.10)

These expressions, combined with the earlier expressions (2.7), enable us to solve
for the mean fields self consistently, and in the process find the corresponding values
for the mean field susceptibilities as well. Since we can do all of this as a function of
temperature, we can then identify magnetic and orbital transition temperatures as
being the peaks in the corresponding susceptibilities.

2.4.3 Monte Carlo

Apart from the above analytical considerations, we can also examine the full Hamil-
tonian (2.2) numerically, without any further approximations. A Monte Carlo
treatment of this system turns out to be particularly easy to implement. Because
magnetic interactions exist only along the bonds formed by neighboring orbitals,
there can be no spin structures that spread beyond two sites: the spatial orientation
of the orbitals allows for bonding with one neighbor only. This greatly simplifies
the problem, since depending on the orbital configuration, a spin is now either iso-
lated or in a two-spin valence bond state (either singlet or triplet). In both cases we
can represent the spin variable by a classical variable, just like the orbitals, and thus
we can get away with doing classical Monte Carlo instead of quantum Monte Carlo.
We have therefore studied the system (2.2) using a one dimensional, classical Monte
Carlo code for a chain of 100 sites, which we then couple to surrounding chains via
the mean field inter chain coupling JIC. By varying the external fields in our sim-
ulation we were able to extract the spin and orbital susceptibilities as a function of
temperature. Again we then identified the top in these susceptibility plots as the
transition temperature of the material.

2.5 The Results

As we have seen, the analysis of the model ignoring quantum fluctuations gave us
the same groundstate as Popović et al. found in their calculations. However, our
system consists of quasi one dimensional spin 1/2 chains, so quantum fluctuations
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Figure 2.4: A fit of the experimental data using the Monte Carlo results.

can be expected to be important. These quantum fluctuations are taken into ac-
count in our mean field approach, as well as in the Monte Carlo simulation. The
transition temperatures at which the spin and orbital order emerges in these cal-
culations, are plotted as a function of the crystal field splitting in figure 2.5. In the
region below JCF � J both analyses clearly lead to a coincidence of the transition
temperatures. This corresponds nicely to the observed opening of a spin gap com-
bined with phonon shifts at 210 K .

A rough estimate for the crystal field splitting can be found by trying to fit our
Monte Carlo data to the experimental data taken by Isobe et al. The results of this
fitting procedure are shown on in figure 2.4. The fit captures all qualitative features
of the experimental curve, for a value of the crystal field splitting of JCF � 0.8J .
Quantitatively it is a little off at the top of the susceptibility curve, but noticing the
simplicity of the model, and the fact that we have only one fitting parameter (i.e.
JCF), this was to be expected. On the other hand, the crystal field analysis of Bersier
et al. lead to a value for the crystal field splitting that was much higher than the
exchange coupling [72]. The actual value in titanium pyroxene, is expected to be
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Figure 2.5: The transition temperature as a function of the crystal field splitting, as
found in the mean field and Monte Carlo calculations. The mean field data have
been adjusted to account for the difference in energy between the excitations for XY
spins and full Heisenberg spins.

lower than the value found in their calculations because of the approximations they
were forced to make. With our result of figures 2.5 and 2.4, we can now turn around
the reasoning, and make a new prediction: assuming that our model captures the
correct physics of the transition in N aT iSi2O6, we can predict that the crystal field
splitting JCF will be no larger than the exchange coupling J .
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Chapter 3

Conclusions

We have examined the microscopic model Hamiltonian originally proposed by Kon-
stantinović et al. using a Monte Carlo simulation augmented by a mean field treat-
ment and a classical approximation scheme. The model Hamiltonian incorporates
both spin and orbital degrees of freedom, and was extended to also include the lo-
cal crystal field splitting. All treatments of the model have provided strong support
for the idea that an orbital-assisted Peierls transition occurs in the titanium chains
of N aT iSi2O6. This transition is characterized by the uniform ordering of the
orbitals, accompanied by a lattice dimerization and the formation of spin valence
bonds.

Using these calculations we were able to understand all previously published
data, including the density functional data which seemed to suggest the formation
of a spin one Haldane chain. From the results of our calculations we were further-
more able to abstract a firm upper bound on the size of the crystal field splitting in
this material: it should not be larger than the strength of the magnetic exchange in-
teraction. We thus conclude that our microscopic description is consistent with all
available data, and that at 210 K , titanium pyroxene undergoes an orbital-assisted
Peierls transition.

The occurrence of this orbital-assisted Peierls transition, and the associated ef-
fects in the spin susceptibility, the phonon spectrum and so on, are all made pos-
sible by the quantum fluctuations of the orbital and spin degrees of freedom. The
quantum mechanics of the underlying microscopics thus plays a decisive role in
determining the thermodynamic properties of the macroscopic material. This situ-
ation is of course not at all unique for titanium pyroxene. In fact most properties of
most solid state materials are related to the quantum mechanical bases upon which
they are built. As we will see in the next part, this can even extent to properties of
the system as a whole: the very rigidity of the solids under consideration is really a
quantum effect!
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Chapter 1

Introduction

As we have seen, the quantum mechanical nature of microscopic particles is often
a necessary ingredient in understanding the properties of macroscopic materials.
Upon realizing this, we could take things one step further, and argue that since all
macroscopic objects are ultimately built up from a collection of microscopic parts,
they too should obey the laws of quantum mechanics. This simple reasoning imme-
diately leads to a paradox: on the one hand we know from experiment that quantum
mechanics is certainly the correct theory to describe atoms, molecules, etc. On the
other hand it seems that even though it is constructed from a large number of atoms
and molecules, the chair that you are sitting on does not obey quantum mechanics.
After all, if the chair had been a quantum mechanical object then it should have re-
spected the translational symmetry of the space around it, and spread throughout
the entire room in a wave of quantum superpositions. Clearly this does not happen
in the everyday world, and the question thus arises how macroscopic objects can
resist their quantum origins.

The way out of this paradox lies in the process of spontaneous symmetry break-
ing [51, 63]. It turns out that because of their enormous size (as compared to their
constituent particles), the wavefunctions of macroscopic objects become extremely
unstable, and can easily be molded into as classical a form as possible. In fact, for
truly large objects, like tables and chairs, this reduction to a classical form is so easy
that it happens spontaneously [50]. And once the translational symmetry of the
chair-wavefunction is broken, the shear size of the chair is enough to slow down its
delocalization so far that it seems to truly be stuck in place [50, 51].

1.1 Qubits

This process of spontaneous symmetry breaking which enables chairs (and other
crystals) to be localized in one position, is also the reason that magnets and anti-
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ferromagnets can have their (sublattice) magnetization point in one direction only,
that superconductors (and superfluids) can acquire an overall definite phase, and
so on [50, 74–77]. It is the reason that the world around us looks classical in the
first place. However, it is still a quantum effect, and a very subtle remnant of the
quantum nature of macroscopic objects remains, even in the objects of our every-
day world [23, 25]. Normally the quantum behavior of macroscopic bodies as a
whole is much too delicate to be detected, but if we start to decrease the system size
then at some point the quantum origin will start to come into play. In particular,
this may lead to unexpected results in the so called solid state qubits: systems de-
signed specifically to be small enough to act quantum mechanically in some ways,
but to remain classical in others [24,78–81]. As we will see in this part of the thesis,
the quantum origin of classical objects will inevitably lead to a universal and finite
lifetime of solid state qubits [23, 25].

Figure 1.1: Two examples of the many-particle qubits discussed in the text. Left:
An STM image of the superconducting flux qubit used in Delft [80]. Supercurrent
circulates both clockwise and anti-clockwise through the central ring. The ’obstruc-
tions’ in the ring are the Josephson junctions. Right: The Cooper-pair box qubit or
’quantronium’ studied in Saclay [79, 82]. The actual Cooper-pair box is the small
rectangular island in the centre which can hold a superposition of N and N + 1
Cooper pairs.

The many-particle qubits that motivate us to study decoherence due to spon-
taneous symmetry breaking are realized in a number of mesoscopic solid state sys-
tems. For instance, by engineering aluminum on a sub-micron length scale, su-
perconducting flux qubits and Cooper pair boxes can be manufactured. The flux
qubit is a Josephson device that can be brought into a quantum superposition of
two electrical currents: a left and a right circulating current [80, 81]. Typically
this current is carried by N ∼ 106 Cooper pairs, where N denotes the number
of constituent particles making up the superposition. A Cooper pair box on the
other hand is a superconducting island, containing N ∼ 108 electrons, which can
be put in a superposition of two states with different average numbers of Cooper
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pairs [79,82–84]. Magnetic many-particle qubits are realized for instance in molec-
ular nanomagnets. Molecules with large magnetic moments can be brought into a
superposition of directions of magnetization. A well studied example is Mn12 ac-
etate, a molecule that contains 12 manganese atoms, coupled together to form a to-
tal spin of S = 10. The molecule can be brought into a superposition of states with
Sz = +10 and Sz = −10 and coherent Rabi-oscillations of the magnetization have
been observed [85]. An even larger molecule is ferritin, which contains about 4500
Fe3+ ions [86]. If the total magnetic moment of a ferritin molecule is brought into
a coherent superposition, this corresponds to a superposition of N ∼ 102 spins.
For these mesoscopic superconducting and magnetic qubits the limit in coherence
due to spontaneous symmetry breaking is certainly a relevant process. Even though
at present other sources of decoherence form a stricter boundary on the usability of
these qubits, the intrinsic limit set by spontaneous symmetry breaking may will be
reached within the near future [23].
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Chapter 2

The Harmonic Crystal

As mentioned before, one of the most fundamental differences between quantum
and classical physics lies in the role of symmetry. Dealing with an exact quan-
tum mechanical eigenstate, all configurations equivalent by symmetry should have
exactly the same status in principle, while in a classical state one of them can be
singled out. That is, given that space is translationally invariant, a quantum object
should be in an eigenstate of total momentum, being spread out with equal prob-
ability over all of space. In the classical limit however it takes on a definite locus.
The explanation of this ‘spontaneous symmetry breaking’ as a ramification of the
singular nature of the thermodynamic limit is one of the central achievements of
quantum condensed matter physics [51, 74]. One imagines a symmetry breaking
‘order parameter field’ B (e.g., a potential singling out a specific position in space).
Upon sending B to zero before taking the thermodynamic limit (N → ∞) one
finds the exact quantum groundstate respecting the symmetry. However, taking the
opposite order of limits one finds that the classical state becomes fact. Although the
concept of spontaneous symmetry breaking was originally introduced in the con-
text of quantum magnetism in solid state physics [51, 74], spontaneous symmetry
breaking is a general phenomenon, that is just as relevant in other fields, including
elementary particle physics and cosmology [87–92].

2.1 Spontaneous Symmetry Breaking

Let us first consider how spontaneous symmetry breaking arises in a crystalline
lattice. Consider the textbook example of a harmonic crystal, with the Hamilto-
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nian [64]

H =
∑

j

p2
j

2m
+ κ

2

∑
j

(
x j − x j+1

)2
, (2.1)

where j labels all N atoms in the lattice, which have mass m, momentum p j and
position x j . We consider here only a one-dimensional chain of atoms, but all of the
following can be straightforwardly generalized to higher dimensions as well. The
harmonic potential between neighboring atoms is parametrized by κ ; it turns out
that the results on spontaneous symmetry breaking that follow are equally valid for
an-harmonic potentials. Let us first identify the collective dynamics which describe
the spontaneous symmetry breaking of this short-ranged microscopic Hamiltonian.

In the standard treatment of the quantum crystal one begins by introducing
new coordinates, which are the displacements of atoms from their equilibrium po-
sition. Then, after a Fourier transform the eigenstates of this Hamiltonian are easily
found [63, 64]. We take a slightly longer route by introducing bosonic phonon op-
erators from the very beginning and diagonalizing the quadratic part of the Hamil-
tonian by performing a Bogoliubov transformation at the end. In doing so we do
not have to introduce any equilibrium position of the atoms. Instead we can keep
track of the center of mass motion of the crystal as a whole, and this brings to the
fore the thin spectrum in a natural manner. Moreover, we can use the exact same
procedure in the next chapter to find the collective order parameter dynamics for
antiferromagnets.

The momentum and position operators are expressed in terms of bosonic op-
erators as

p j = iC

√
�h
2
(b†

j − b j ); x j = 1

C

√
�h
2
(b†

j + b j ), (2.2)

so that the commutation relation [x j , p j ′ ] = i �hδ j , j ′ is fulfilled. We choose C2 =√
2mκ so that the Hamiltonian reduces to

H = �h
4

√
2κ

m

∑
j

2(b†
j b j + b j b†

j )− (b†
j + b j )(b

†
j+1 + b j+1), (2.3)

and after a Fourier transformation

H = �h
√
κ

2m

∑
k

[
Ak b†

k bk + Bk

2
(b†

kb†
−k + bk b−k )+ 1

]
,

where Ak = 2 − cos (ka), Bk = − cos (ka) and a is the lattice constant. This Hamil-
tonian is still not diagonal, since the terms b†

k b†
−k and bk b−k create and annihilate



2.1. SPONTANEOUS SYMMETRY BREAKING 39

two bosons at the same time. We get rid of these terms by a Bogoliubov transfor-
mation (see appendix E). After this the Hamiltonian in terms of transformed boson
operators βk = cosh(uk)b−k + sinh(uk )b

†
k is

H = �h
√
κ

m

∑
k

[
2 sin |ka/2|

(
β

†
kβk + 1

2

)

+ 1

4

√
2 cos (ka)

]

= 2�h
√
κ

m

∑
k

sin |ka/2|
[

nk + 1

2

]
, (2.4)

since
∑

k cos k = N
2π

∫ π
−π dk cos k = 0.

This result seems to coincide with the textbook Hamiltonian which we would
have obtained if we had followed the conventional route of Fourier transforming
the Hamiltonian for the displacements, and then quantizing it [64]. However, the
Bogoliubov transformation has the advantage that it brings to the fore a rather sub-
tle point. When k → 0 the excitation energy ωk → 0 and the two parameters in
the Bogoliubov transformation diverge: sinh(uk ) → ∞ and cosh(uk ) → ∞. Pre-
cisely at k = 0 the canonical transformation is no longer well defined. We therefore
should investigate the bosonic terms in the Hamiltonian with k = 0 separately. This
zero momentum part of the Hamiltonian describes the obvious fact that the crystal
as a whole carries a kinetic energy associated with the combined mass of all of its
constituents, and is given by

Hk=0 = �h
√
κ

2m

(
b†

0b0 − 1

2

(
b†

0b†
0 + b0b0

)
+ 1

)

= �h
√
κ

2m

[
1 − 1

2

(
b†

0 − b0

)2
]

, (2.5)

where (b†
0 − b0)

2 = −2
�h
√

2mκ
p∗

0p0 so that

Hk=0 = p2
tot

2N m
+ constant, (2.6)

where ptot ≡ ∑
j p j = √

Npk=0 is the total momentum of the entire system, or
equivalently, its center of mass momentum. When N is large, this Hamiltonian has
states that are very low in energy. These states in fact form the thin spectrum of
the harmonic crystal. We call this part of the spectrum thin because it contains so
few states of such low energy that its contribution to the free energy in the ther-
modynamic limit completely disappears (see appendix B). In turn, this implies that
these thin spectrum states do not contribute to any thermodynamically measurable
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quantities such as for instance the specific heat of the crystal. Their effect on the
properties of the crystal is thus increasingly subtle, but its existence can nonethe-
less have profound consequences. About a decade ago the deep meaning of the
thin spectrum for interacting quantum systems became clear and consequently its
explicit mathematical structure was determined [77, 93].

Figure 2.1: A schematic representation of the very longest wavelength excitations
of a finite-sized harmonic crystal. The excitations on the right represent the stan-
dard phonon modes, which are found at finite wavelengths. The lowest possible
wavenumber for a phonon mode is proportional to 1/L, where L is the linear sys-
tem size. The thin spectrum on the other hand, which describes the collective dy-
namics of the crystal as a whole, is found exclusively at k = 0. Its excitation energies
are lower than even the lowest phonon modes.

The groundstate of the Hamiltonian at k = 0, which governs the collective be-
havior of the crystal as a whole, obviously has total momentum zero. It thus has
no uncertainty in total momentum and maximum uncertainty in total position:
translational symmetry is unbroken. Symmetry breaking can occur if we add to
the Hamiltonian of equation (2.6) a symmetry breaking field of the form Bx2

tot/2,
where the center of mass coordinate is xtot ≡ ∑

j x j . This yields a harmonic os-
cillator equation for the collective position coordinate. Its well known groundstate
wavefunction is

ψ0(xtot) =
(

mωN

π �h

)1/4

e− mωN
2�h x2

tot ; ω =
√

B

mN
. (2.7)
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This state describes a wave-packet for the center of mass coordinate in real space,
which of course corresponds to an equivalent superposition of total momentum
states: the symmetry breaking field B couples the different thin spectrum states of
the crystal. For a vanishing symmetry breaking field B and finite number of atoms
we have ωN → 0 and the collective coordinate is completely delocalized, as before:
ψ0(xtot) = const . But taking the thermodynamic limit (N → ∞) in presence of
a finite symmetry breaking field gives ωN → ∞ and the center of mass position
becomes completely localized in the center of the potential well (ψ0(xtot) = δxtot,0),
even if at the end the symmetry breaking field is sent to zero. As we already pointed
out, such a singular limit characterizes spontaneous symmetry breaking [51, 77];
in this particular case the translational symmetry of the crystal as a whole is spon-
taneously broken. The occurrence of a thin spectrum which consists of the states
associated with the quantum mechanics of the macroscopic body as a whole is a
universal notion. Whenever a system exhibits a continuous symmetry which is bro-
ken in the classically realized, macroscopic state, then consequently there must be
a spectrum of states associated with the symmetry-restoring fluctuations of the or-
derparameter as a whole. The smallness of the energy spacing within the thin spec-
trum warrants the orderparameter dynamics of macroscopic bodies to take place
on a time scale much larger than anything observable [50].

2.2 Decoherence

To study the effect of the thin spectrum on the coherence of many particle qubits,
let us first investigate the dynamics of such a qubit in the most general terms. Con-
sider a many particle system that is large enough to display a spontaneously broken
continuous symmetry, but small enough to be used as a qubit. This qubit will then
have a thin spectrum which we can label by the quantum number n. At the same
time the system must have two accessible quantum states that can be used as the
qubit states, and which can be labeled by the quantum number m. Because we have
no experimental control over the thin spectrum states, we will have to start out the
experiment with a thermal mixture of those states:

ρt<t0 = 1

Z

∑
n

e−βEn
0 |0, n〉 〈0, n| , (2.8)

where ρt is the density matrix, En
m is the energy of the state |m, n〉 and where, by

definition, the partition function is Z = ∑
n e−βEn

0 and β−1 = kBT . To begin using
this qubit in a quantum computation we will typically have to prepare it in some
coherent superposition of the states in the two level system. To do this we apply a
rotation that takes the state |0, n〉 into the state

√
1/2 (|0, n〉 + |1, n〉) for all values
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of n. The resulting density matrix then is given by

ρt=t0 = 1

2Z

∑
n

e−βEn
0 (|0, n〉〈0, n| + |0, n〉〈1, n|

+ |1, n〉〈0, n| + |1, n〉〈1, n|) . (2.9)

If we know the Hamiltonian H which governs the dynamics of the qubit, then we
can follow the time evolution of this density operator by applying the time evolution

operator U |m, n〉 ≡ e− i
�h H(t−t0)|m, n〉 = e− i

�h En
m (t−t0)|m, n〉. We then find for the

density matrix at t > t0

ρt>t0 = Uρt=t0U †

= 1

2Z

∑
n

e−βEn
0 (|0, n〉〈0, n| + |1, n〉〈1, n|

+
[

e− i
�h (E

n
0 −En

1 )(t−t0)|0, n〉〈1, n| + H .c .
])

, (2.10)

where H .c . denotes the Hermitian conjugate of its preceding term.
Experimentally the thin spectrum is as good as unobservable because of its ex-

tremely low energy and its vanishing thermodynamic weight (see appendix B). We
therefore have to trace these states out of the density matrix [94, 95]. This will yield
a reduced (observable) density matrix, defined by

ρred
t>t0

=
∑

j

〈 j |ρt>t0| j〉, (2.11)

where the trace is over thin spectrum states labeled by j and 〈 j |m, n〉 ≡ |m〉δ j ,n .
Performing the trace, we find the following reduced density matrix in the basis of
the states |m〉

ρred
t>t0

= 1

2

[
1 ρOD

t>t0[
ρOD

t>t0

]∗
1

]
, (2.12)

where the off-diagonal matrix element is defined as

ρOD
t>t0

≡ 1

Z

∑
n

e−βEn
0 e− i

�h (E
n
0 −En

1 )(t−t0). (2.13)

If this off-diagonal matrix element vanishes at some time, then the qubit will have
decohered at that time, due to the presence of the thin spectrum. In general there
will be a non-zero �Ethin ≡ En

0 − En
1 , and this shift in energy corresponds to a

phase shift of the thin spectrum states. These phases will typically interfere destruc-
tively, lowering ρOD

t>t0
and leading to dephasing and decoherence. The timescale for
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this decoherence process is set by the inverse of the involved energy scale, and will
therefore be proportional to �h/�Ethin.

For this dephasing to occur however, it is necessary that a finite number of thin
spectrum states participates in the dynamics of decoherence. How many states do
contribute to the process is governed by the Boltzmann factor e−βEn

0 , which expo-
nentially suppresses states of energy higher than ∼ kBT/Ethin with Ethin the typical
level spacing of the thin spectrum states. Putting these arguments together, one
finds that the characteristic timescale on which ρOD

t>t0
will vanish should be propor-

tional to

tspon ∝ �h
kBT

Ethin

�Ethin
. (2.14)

In the following sections we will calculate tspon explicitly for a number of re-
alizations of the many particle qubit. We will see that in the generic situation
�Ethin ∝ Ethin/N so that we find

tspon ∝ N �h
kBT

, (2.15)

which is our main result.

2.2.1 The Interstitial Excitation

As a first example of the influence of the thin spectrum on coherence, let us try to
employ the harmonic crystal as a qubit. In order to do so we will have to define
a set of two states that are to be used as the calculational states of the qubit. A
simple choice for such a set could be to use the presence or absence of an interstitial
excitation. This leads to the definition of the state |m = 0〉 describing the crystal
with N atoms, and the state |m = 1〉 which has one extra interstitial atom, and
is described by the same model, but with N + 1 atoms in the lattice. The thin
spectrum is exactly as described in (2.6), so that the energy can be defined as

En
m = n2

2M (N + m)
+ µm, (2.16)

where M is the mass of an atom, n labels states with different total momentum
(which make up the thin spectrum), and µ is the chemical potential associated
with adding an extra atom to the lattice.

We are now in the position to simply substitute this information into the general
expression for the off-diagonal matrix element of the reduced density matrix (2.13),
yielding

ρOD
t>t0

= 1
Z e− i

�hµ(t−t0 )
∑

n

e−β n2
2M N ·

e
− i

�h
n2
2M

(
1
N − 1

N+1

)
(t−t0). (2.17)
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The constant phase factor e− i
�hµ(t−t0 ) does not contribute to the decoherence pro-

cess, but the terms depending on n introduce phase shifts into the dynamics of
the system, which lead to the disappearance of ρOD

t>t0
over time (see figure 2.2).

Upon introduction of Ethin = 1/(2M N ) and �Ethin = 1/(2M N (N + 1)) �
1/(2M N 2), a straightforward evaluation of the sum over thin spectrum states yields
tspon, defined as the half time for

∣∣ρOD
t>t0

∣∣
tspon = 2π �h

kBT

Ethin

�Ethin

= N
2π �h
kBT

. (2.18)

By using the crystal and its interstitial excitation as a qubit we have assumed
that we can just ignore the symmetry breaking field as soon as the crystal has been
localized in space at some time in the past. In general this may not be true, because
the thermodynamic limit and the limit of disappearing localization field do not
commute. We should therefore also consider the situation in the presence of a small
but finite symmetry breaking field B. In that case the energies of the system will be
given by

En
m = n

√
B

2M (N + m)
+ µm, (2.19)

which will again lead to a phase factor which is constant in n, and a sum over phases
which can be written as multiples of Ethin = √

B/2M (N + m) and �Ethin =
Ethin/N . The summation over thin spectrum states will thus again yield the co-
herence time tspon = N 2π �h

kBT .

2.2.2 Goldstone Modes

The interstitial excitation that is used in the previous section to make a qubit state
out of the harmonic crystal is a very rough excitation to use for that purpose. The
extra atom in the crystal will not only increase the mass of the crystal as a whole
but also immediately affect its lattice structure, and thus couple to many phonon-
excitations. Because of this, serious decoherence effects are to be expected. In con-
structing a qubit using the quantum crystal it is therefore better to look for a more
’silent’ excitation. These silent excitations are naturally found in the long wave-
length Goldstone modes of the crystal, i.e. the low energy phonons [96].

To see what the effect of phonons on the thin spectrum is, we need to con-
sider the symmetry breaking of the crystal more carefully. In the previous section
we focused on the collective behavior of the crystal as a whole. Thus we disre-
garded all internal degrees of freedom. Now we are interested in the localization of
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Figure 2.2: The off diagonal element of the reduced density matrix given by equa-
tion (2.17) as a function of time. The value 1 implies full coherence, while 0 signifies
that the qubit has completely decohered. The curves have been displaced vertically
for ease of presentation.

the individual atoms within the crystal structure because the existence of the Gold-
stone phonons is a manifestation of the internal breaking of translational symmetry
within the crystal lattice [96]. For this purpose we introduce a symmetry breaking
field V such that it acts as a pinning potential for the individual atoms:

H = H0 + HSB

=
∑

j

p2
j

2m
+ κ

2

(
x j − x j+1

)2 − V cos (2πx j). (2.20)

Here the lattice constant a is taken as the unit of length. For small deviations of the
atoms from their mean positions, we can expand the symmetry breaking term to
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read

HSB = V
∑

j

2π 2x2
j − 2π 4

3
x4

j

= 2Vπ 2
∑

k

xkx−k

−2Vπ 4

3N

∑
k,K ,q

xk xK xqx−k−K−q , (2.21)

where the last line results from a Fourier transformation of the position opera-
tors. The thin spectrum of the crystal is formed by the zero momentum part of
the Hamiltonian, while the phonons can be found after the bosonization and Bo-
goliubov transformation of the finite momentum part. The relation between the
phonons and the thin spectrum thus becomes clear if we consider the zero momen-
tum terms of HSB in lowest order given by

HSB ≈ 2Vπ 2

N
x2

tot − 4Vπ 4

N 2
x2

tot

∑
k �=0

β
†
kβk + ... (2.22)

where higher order collective terms and boson-boson interaction terms are ne-
glected. The first term in this expression is of the form of the symmetry breaking
field that we considered before. It contains a factor 1/N because of the specific
periodic pinning potential that we now consider. The symmetry of the crystal as a
whole is still broken by this term, as can be easily checked by comparing the col-
lective fluctuations to the size of the crystal. The energy scale of the thin spectrum

is determined by the first term in (2.22) to be Ethin ∝ 1
N

√
B
m . The second term

shows how the presence of a phonon excitation will in first order lead to an energy

shift in the thin spectrum which sets �Ethin ∝ 1
N 2

√
B
m . Putting these together in

the general expression for the decoherence time in Eq. (2.14), we immediately find
once again that tspon ∝ N �h

kBT .
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Chapter 3

The Lieb-Mattis model

Let us now turn to the discussion of the antiferromagnetic Lieb-Mattis model [77,
93, 97]. The reason for considering the rather particular, long ranged Lieb-Mattis
model is that for a broad class of Heisenberg models with short-ranged interac-
tions it constitutes the effective Hamiltonian for the thin states. Similar collective
models underlie the breaking of other continuous symmetries, such as for instance
U(1) phase symmetry in a superconductor. In that case the collective Hamiltonian
turns out to be very similar to the Lieb-Mattis Hamiltonian as far as the structure
of the thin spectrum and the composition of the wavefunction of the symmetry
broken state are concerned. To explicitly show how the Lieb-Mattis model arises
from a Heisenberg model, let us consider an antiferromagnet on a bipartite lattice
with isotropic nearest neighbor interactions between quantum spins of size σ . Its
Hamiltonian is [63, 64]

H = J
∑
i ,δ

Si Si+δ , (3.1)

where i labels all the spins on the A sublattice, and the δ are the vectors connecting
site i to its neighbors on sublattice B. The generalization to other types of inter-
actions and even other types of lattices is straightforward [98–103]. The magnon
spectrum of this Hamiltonian can be found within linear spin wave theory [104].
One approximates the spin operators with Holstein-Primakoff bosons as

Sz
iεA → σ − a†

i ai , Sz
iεB → b†

i bi − σ ,

S+
iεA → √

2σ ai , S+
iεB → √

2σ b†
i ,

S−
iεA → √

2σ a†
i , S−

iεB → √
2σ bi . (3.2)
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To quadratic order in the boson operators the Hamiltonian then becomes, after a
Fourier transformation

HLSW = 1

2
J N zσ 2 + J zσ

∑
k

(
(a†

kak + b†
kbk)

+ γk (a
†
kb†

−k + akb−k)
)

, (3.3)

where z is the coordination number of the lattice, N the number of lattice sites and
γk ≡ 1

z

∑
δ eikδ . The last two terms in this expression can be diagonalized by a

Bogoliubov transformation (see appendix E). Again the important point is that the
Bogoliubov transformation is singular at k = 0 and k = π, as in both cases γ 2

k → 1.
We therefore treat these two k-points separately. Turning back to the notation in
terms of spins, using that the Fourier transform of our Hamiltonian is

H = J
∑

k

γkSk · S−k (3.4)

and

Sk=0 = 1√
N

∑
iεA,B

Si = 1√
N
(SA + SB ),

Sk=π = 1√
N
(SA − SB),

we find that the singular parts of the spectrum reduce exactly to the Lieb-Mattis
Hamiltonian [97, 99, 100]:

H = H
sym
LM + J

∑
k �=0,π

γkSk · S−k

H
sym
LM = 2J

N
SA · SB = J

N
(S2 − S2

A − S2
B ), (3.5)

where SA and SB are the total spins of each sublattice, and S is the total spin of the
system. From here on we will focus entirely on this collective Hamiltonian, as it is
the only part of the Heisenberg-like Hamiltonians that is relevant for the sponta-
neous symmetry breaking of the antiferromagnet as a whole. Notice that the in-
ternal ordering of the individual spins within the antiferromagnet can be destroyed
by fluctuations of finite wavelength that we do not consider in this collective, long
ranged model [50]. We assign to the Hamiltonian H

sym
LM the superscript sym be-

cause this Hamiltonian, as we will show below, describes the symmetric (symmetry
unbroken) state of the antiferromagnet.

In H
sym
LM each spin on the A sublattice interacts with all spins on the B sub-

lattice and vice versa, thus creating infinite range interactions. The energies of
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the Hamiltonian are trivially identified as J
N [S(S + 1) − SA(SA + 1) − SB(SB +

1)] and the corresponding eigenfunctions are labeled by their quantum numbers
|SA, SB, S, M〉. Here the z-component of the total spin S is denoted by M . Clearly
the ground state of H

sym
LM is a singlet of total spin: the state with lowest energy has

S = 0. In fact there is an exact proof that the groundstate of any finite spin system
of this sort is a total spin zero (S = 0) singlet [105]. Notice that all states which
differ only in M are degenerate. For simplicity (and without loss of generality) we
henceforth take the quantum number M to be zero [97].

The groundstate singlet |Nσ/2, Nσ/2, 0, 0〉, with both SA and SB maximal and
S = M = 0 is separated by energies of order J/N from states with higher S. The
set of these extremely low energy states that only differ in their total spin quantum
number forms the thin spectrum [51, 74, 93, 97]. Since (3.5) is contained in (3.1)
as its k = 0 and k = π components, and since the thin spectrum of the Lieb-
Mattis model is formed by the k = 0 component, exactly the same thin spectrum
must govern the collective dynamics of other antiferromagnets with short-range
interactions [98, 101, 102].

There are also excitations in (3.5) that can be created by lowering SA or SB. This
costs an energy of order J , and it can easily be shown that these excitations corre-
spond to the elementary excitations, the magnons, of the Lieb-Mattis system [106].
Because of the extremely long ranged interactions the magnons are gapped and dis-
persionless.

3.1 Breaking the Symmetry

Having defined the Lieb-Mattis model in its symmetric form, we now review how
to explicitly break its SU(2) spin rotation symmetry. We will show that in the ther-
modynamic limit the symmetry breaking occurs spontaneously [51, 74]. Since the
groundstate of H

sym
LM is a singlet of total spin, this state is orthogonal to the Néel

state, which is the ground state of a classical antiferromagnet. We should stress here
that there is a marked difference between ferro- and antiferromagnets [50]. Even if
spontaneous symmetry breaking is very often discussed with the example of a fer-
romagnet at hand, the spontaneous symmetry breaking in a ferromagnet is not the
generic situation for an interacting quantum system. The reason is that the total
magnetization (pointing along, e.g., the z-axis), which is the order parameter of a
ferromagnet, commutes with the Hamiltonian: it is nothing but the projection of
the total spin along that axis, Sz

tot. So the situation arises that the orderparameter
is already a constant of motion of the symmetric Hamiltonian. This is a pathology
of the ferromagnet. This same pathology leads to the absence of an interesting thin
spectrum, because in the ferromagnet states with different Sz

tot are strictly degener-
ate. Quantum systems in general, however, have non-trivial thin spectra.

Refocusing on antiferromagnets, we need to proof that the Néel state is a stable
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groundstate in the thermodynamic limit. In order to do so, an explicit symmetry
breaking field B is introduced [77]:

HLM = H
sym
LM − B(Sz

A − Sz
B). (3.6)

Clearly the symmetry breaking field induces a finite sublattice magnetization. The
field couples the different total spin states of the thin spectrum by the matrix ele-
ments

〈SA, SB, S, M |Sz
A − Sz

B|S′
A , S′

B , S′, M ′〉
= δSA ,S′

A δSB ,S′
B δM ,M ′

[
fS+1δS,S′−1 + gSδS,S′ + fSδS,S′+1

]
(3.7)

where

fS ≡
√

[S2−(SA−SB )2][(SA+SB+1)2−S2][S2−M2]
(2S+1)(2S−1)S2

and

gS ≡ (SA−SB )(SA+SB+1)M
S(S+1) . (3.8)

These matrix elements are found by performing a rather tedious sum over Clebsch
Gordon coefficients in the following expression (see also appendix D):

〈SA, SB, S, M |Sz
A − Sz

B|S′
A , S′

B , S′, M ′〉 =∑
MA

[
CS,M

SA ,SB ,MA ,M−MA
CS′ ,M

SA ,SB ,MA ,M−MA
(2MA − M)

]
δSA ,S′

A δSB ,S′
B δM ,M ′ . (3.9)

The spectrum of eigenstates |n〉 in the presence of a symmetry breaking field can
now be found by expanding these states in the basis of total spin states: |n〉 =∑

S un
S |S〉 (for clarity of notation we suppress the dependency of un

S and other vari-
ables on the quantum numbers SA, SB and M). In this basis, Schrödinger’s equation
becomes [77]

HLM|n〉 = En
0 |n〉 ⇔∑

S

[
J S(S+1)

N un
S + E

sym
LM un

S − B fS+1un
S+1

−B fSun
S−1

] |S〉 = En
0

∑
S un

S |S〉, (3.10)

where E
sym
LM is the groundstate energy of H

sym
LM and En

0 is the energy of eigenstate |n〉
of the symmetry broken Hamiltonian –its thin spectrum. Here we restricted our-
selves to the zero-magnon subspace, where SA = SB = Nσ/2 (hence the subscript
0 in En

0 ). The generalization to systems with a finite number of magnons will be
straightforward.
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In the continuum limit where N is large and 0 � S � N , the matrix elements
due to the symmetry breaking field simplify considerably. It is easy to show that in
this case [77]

fS � Nσ

2

√
1 −

(
S

Nσ

)2

� Nσ/2. (3.11)

We will see shortly that only the first ≈ √
N total spin states contribute to the

groundstate wavefunction, so that an expansion in S/N is justified. Notice that
when the sublattice spin SA is reduced by one, i.e. when there is a spin-wave present,
the matrix element fS is reduced: f 1

S ≈ fS
Nσ−1

Nσ = fS
(
1 − 1

Nσ

)
, for large N . This

reflects the fact that a magnon reduces the Néel order parameter (the staggered
magnetization) by unity. This effect is small, but turns out to be essential when we
shall consider the quantum coherence of magnons: dephasing will occur because
magnons give rise to a subtle change in the level splitting of the thin spectrum.
This change in level splitting turns out to be inversely proportional to N , the total
number of spins in the antiferromagnet.

S

uS

Figure 3.1: Wavefunctions of the thin-spectrum state in presence of a symmetry
breaking field, in the continuum limit. The boundary condition S ≥ 0 implies that
of the harmonic oscillator solutions (left) only the odd ones are allowed (right), as
these have a node at the origin.

In the continuum limit the Schrödinger’s equation (3.10) reduces to [77]

−1

2

∂2

∂S2
un

S + 1

2
ω2S2un

S = νnun
S , (3.12)

where again we have used 0 � S � N . In this equation we introduced ω = 1
N

√
2J
Bσ

and νn = En
0 −E0

LM
BNσ + 1. Obviously this is the differential equation of a harmonic os-

cillator. The eigenstates un
S thus are well known and the corresponding eigenvalues
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are νn = (n + 1/2)ω, so that

En
0 = E

sym
LM − BNσ +

(
n + 1

2

)
Ethin, (3.13)

where the quantum of energy for the states labeled by n is Ethin = √
2σ J B. For the

harmonic oscillator n is a non-negative integer. However, in the present situation
we have to meet the boundary condition that S ≥ 0 or, equivalently, that un

S = 0
if S < 0. So un

S has to vanish at the origin [50, 77]. This boundary condition is
trivially met by eigenfunctions that are odd and have a node at S = 0, see Fig. 3.1.
Thus solutions to the Schrödinger’s equation (3.12) are harmonic oscillator eigen-
functions of order n, where n is an odd positive integer. In Fig. 3.2 the groundstate
wavefunction in the continuum limit is compared with the exact wavefunction for
large N . It makes clear that the continuum approximation is very good one.

Figure 3.2: Comparison of the exact symmetry broken Néel wavefunction (for N =
500 spins) and the Néel wavefunction in the continuum limit (a harmonic oscillator
eigenstate). The overlap of the Néel state with the different total spin states is shown
as a function of the total spin quantum number. The spin coupling strength is set to
J = 1 and the symmetry breaking field is B = 1/10. The wavefunctions are rescaled
such that the maximum of the harmonic oscillator wavefunction is unity.
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Let us consider the energy spectrum in Eq. (3.13) in more detail. Clearly if
B is zero we recover the groundstate energy E

sym
LM of the symmetric case that we

discussed before. However, if there is a finite staggered field B, there is a gain in
groundstate energy proportional to BN , which reveals that the energy spectrum in
Eq. (3.13) is the one of a Néel state. The same conclusion is reached by directly
calculating the orderparameter (see appendix C). The result is shown in Fig. 3.3.
Apparently, for the symmetry broken Néel state to be stable, the symmetry breaking
field can be exceedingly small, as long as N is large enough. In other words: in
the thermodynamic limit the spin rotation symmetry of H

sym
LM can be spontaneously

broken by an infinitesimal field B. Putting it in a more formal manner: spontaneous
symmetry breaking is characterized by the singular limit

lim
N→∞ lim

B→0

〈
Sz

A − Sz
B

Nσ

〉
= 0 and

lim
B↓0

lim
N→∞

〈
Sz

A − Sz
B

Nσ

〉
= 1. (3.14)

This in fact defines spontaneous symmetry breaking, just as it did in the case of
the quantum crystal. That for the Lieb-Mattis Hamiltonian this limit is singular is
directly clear from Fig. 3.3.

In the symmetry broken Néel state the excitations labeled by n act as a new
thin spectrum with excitation energies that are multiples of Ethin = √

2σ J B. The
magnon excitation energy is still of order J .

3.2 The Many-Spin Qubit

Using the many-body Lieb-Mattis model with N spins and σ = 1/2, we now study
the coherence of the antiferromagnet when it is used as a qubit [23]. Again there are
many ways in which one can define a two-level system to be used as the qubit states.
The best possible choice in this case is provided by the gapped and dispersionless
magnons: we use as a qubit the superposition of a perfectly ordered antiferromag-
net and the state of the antiferromagnet with one magnon on each sublattice. Due
to the long-range nature of the interaction in the Lieb-Mattis model the gapped
magnons themselves are not damped and as such do not decay or decohere. Also,
in analogy to the quantum crystal we expect the magnons or Goldstone modes of
the antiferromagnet to influence the thin spectrum as little as possible. A magnon
has an energy J , which we assume is an energy scale that is available to the (thought-
)experimentalist to prepare, manipulate and read out the qubit1.

1Because of a technicality we choose to use a state with two magnons instead of a single one. By
doing so we can ensure that our system stays in the subspace of zero total magnetization (M = 0), which
considerably simplifies the calculations without loss of generality.
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Figure 3.3: Orderparameter as a function of symmetry breaking field. The vertical
axis is in units of the normalized order parameter

〈
Sz

A − Sz
B

〉
/N , while the hori-

zontal axis shows the value of 4N 2B/ J . The exact result is shown for N = 100
spins. The continuum expression for the orderparameter depicted here is derived
in appendix C.

To find out the precise effect that the presence of a magnon has on the thin
spectrum, we can repeat the analysis of the previous section using a Néel state with
m excited magnons (by setting SA = SB = Nσ/2 − m/2 and using f m

S instead of
fS). In this case the energy spectrum becomes

En
m = En

0 + m(2σ J + B)− m

2Nσ
(n + 1/2)Ethin, (3.15)

see Fig. 3.4. Note that as we stated before, there is a subtle effect of the magnons
on the thin states: m magnons cause a change in energy of the thin spectrum of the
order of m/N . This effect turns out to be essential for the decoherence mechanism
discussed in this section.

Physically, the change in energy of the thin states due to the presence of a
magnon can easily be understood. If there are m magnons present in the anti-
ferromagnet, then the order parameter of the total system is reduced by m. Since
the thin spectrum describes the global excitations of the order parameter, its energy
is proportional to the order parameter itself. The ratio of the Néel order parameter
of the excited state with m magnons and the one of the groundstate with a fully
developed order parameter is (N − m)/N . Therefore, when there are m magnons
present, the relative change of the orderparameter is m/N and the change in energy
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Figure 3.4: Energy level scheme with the zero and two magnon states, each with
its tower of thin spectrum states. The level spacing in the thin spectrum is Ethin,
magnons live on an energy scale J .

of the thin states is therefore of the order mEthin/N which explains the last term in
expression (3.15).

3.2.1 Preparing the Initial State

With the exact expressions for all eigenstates and energies of both the symmetric
and the symmetry broken Hamiltonian at hand, we are in the position to set up the
initial state for our many-particle qubit. Instead of simply assuming that we are in
a previously prepared superposition of states with zero and two magnons, we will
explicitly construct this initial state. This can be done by coupling at time t = t0

a two spin singlet to the symmetry broken N -spin Lieb-Mattis system, see Fig. 3.5.
This will result in the desired superposition state. So for times t < t0, the Lieb-
Mattis antiferromagnet is completely decoupled from the two spin singlet and the
total wavefunction is thus the direct product of the wavefunctions of the N -spin
magnet and the two-spin singlet state:

|ψt<t0〉 = |0, n〉 ⊗ ∣∣sing let
〉
. (3.16)
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Figure 3.5: Semi-classical time evolution of a two spin qubit that at t = t0 starts
interacting with a N -spin Lieb-Mattis magnet, thus forming at t > t0 a many-
body qubit made out of N + 2 spin. In the semi-classical approximation quantum
coherence is preserved at all times, because the thin spectrum is neglected.

Here we denote the Néel state with m magnons and n thin spectrum excitations by
|m, n〉. The state |sing let 〉 is 1√

2
[| ↓1↑2〉 − | ↑1↓2〉]. Upon instantaneous inclu-

sion at t = t0 of the two spin state in the Lieb-Mattis lattice, the groundstate of
the decoupled system at t < t0 can be expressed in terms of the eigenstates of the
N + 2 spin system at t = t0. The exact groundstate wavefunction is then given by
the following formidable expression

|ψt<t0〉 =
N−1∑
S=0

un
S |S, 0〉 ⊗ ∣∣sing let

〉

=
N−1∑
S=0

un
S

∑
CS,0

N/4,N/4,MA ,−MA
C0,0

1/2,1/2,M1 ,−M1
CSA1,MA+M1

N/4,1/2,MA ,M1

CSB2,−MA−M1
N/4,1/2,−MA ,−M1

C
S,0
SA1,SB2,MA+M1 ,−MA−M1

δS,ST |SA1, SB2, S, 0〉, (3.17)

where we sum the Clebsch Gordon coefficients over MA , M1 and over the total spins
SA1, SB2 and S, A/B denote the spins on sub-lattices A and B and the spins on sites
1 and 2 make up the singlet. With A1(B2) we denote the set of spins on sublattice
A(B) combined with spin 1(2). The sums can be evaluated and we obtain

|ψt<t0〉 =
N−1∑
S=0

un
S

(√
(N−2+2S)(N+4+2S)

2(N+2)2

∣∣ N+2
4 , N+2

4 ,S,0
〉

+
√

2S(S+1)
(N+2)2

∣∣ N+2
4 , N−2

4 ,S,0
〉−√

2S(S+1)
(N+2)2

∣∣ N−2
4 , N+2

4 ,S,0
〉

+
√
(N−2S)(N+2+2S)

2(N+2)2

∣∣ N−2
4 , N−2

4 ,S,0
〉)

. (3.18)

Again the equations simplify drastically in the continuum limit of large N ,
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where as before 0 � S � N . In this case the wavefunction of the system at t < t0,
expressed in the eigenstates of the N + 2 spin system at t = t0 is

|ψt<t0〉 = [|0, n〉 + |2, n〉] /√2. (3.19)

Here all states on the right hand side, i.e. all the thin spectrum states labeled by
their quantum number n with either zero or two magnons, refer to configurations
of N + 2 spins.

To account for a finite temperature of our many particle qubit, we combine
initial states with different n into a thermal mixture before we let it interact with
the two spin singlet. We should stress that we only consider temperatures that are
much below the magnon energy: kBT � J so that there is no thermal occupation
of the magnon states 2. This implies that the order parameter is not affected by the
thermal fluctuations. So, all that we introduce is an incoherent mixture of the low
lying thin spectrum states, which all support a finite sublattice magnetization. Still,
the implicit assumption is that the thin states are in thermal equilibrium –and it is
an important assumption as our final result relies on it. In principle it can of course
not be excluded that occupation distribution of the thin spectrum states is far from
thermal equilibrium. But as we have not a priori prepared the thin states in some
particular way, we assume them to be thermally occupied. The density matrix at
times t < t0 is then

ρt<t0 = 1

Z

∑
n

e−βEn
0 |0, n〉 ⊗ |sing let 〉〈sing let |⊗ 〈0, n|

= 1

2Z

∑
n

e−βEn
0 (|0, n〉〈0, n| + |0, n〉〈2, n|

+ |2, n〉〈0, n| + |2, n〉〈2, n|) , (3.20)

where, by definition, the partition function is Z = ∑
n e−βEn

0 and β−1 = kBT .

3.2.2 Time Evolution and Decoherence

By coupling the symmetry broken Lieb-Mattis model to the two spin singlet, we
have created the initial state of our N + 2 spin qubit. This initial state is precisely
equivalent to the initial state (2.9) of the general description, and we can thus follow
equations (2.10), (2.11) and (2.12) directly. That way we compute the exact time
evolution of the initial state density matrix, trace away the thin spectrum states
which have vanishing thermodynamic weight, and finally define the off-diagonal
element of the reduced density matrix as

2Note that in a d-dimensional system the number of spins is N = Ld , where L is the linear extent of
the system. So the energy scale for the lowest possible spin wave (magnon) excitation is J/L. However

the energy scale of the thin spectrum is J/N = J/Ld , and is thus –in any dimension higher than one–
much lower than the magnon energy scale.
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ρOD
t>t0

≡ 1

Z

∑
n

e−βEn
0 e−i(En

0 −En
2 )(t−t0)/�h . (3.21)

We can then substitute the exact expressions for Em
n in this matrix element, and

perform the summation. We find

ρOD
t>t0

= 1 − e−x

1 − e−N x

1 − e−N (x+iτ )

1 − e−x−iτ
, (3.22)

where x = Ethin
kBT and τ = 2

�h�Ethin(t − t0), with Ethin = √
J B and �Ethin =

Ethin/N . We again define the coherence time tspon as the half-time of
∣∣ρOD

t>t0

∣∣. For
x, τ � 1, expression (3.22) becomes a Lorentzian, and in that limit one thus finds

tspon � 2πN �h
kBT

, (3.23)

our main result.
Notice that just as in the case of using a quantum crystal with an interstitial

excitation, the coherence time tspon in the end does not depend on any details of
the underlying model. The fact that �Ethin is proportional to Ethin itself removes
all dependence of tspon on the model parameters J and B.

3.3 Special Situations

It is remarkable that the coherence time is such a universal time-scale, independent
of the detailed form of the thin spectrum –which, after all, is determined by the
parameters J and B in the Lieb-Mattis Hamiltonian. Mathematically this is due to
the fact that both x and τ are proportional to Ethin. Physically one can think of this
universal time-scale as arising from two separate ingredients. First, the energy of
a thin spectrum state |n〉 changes when magnons appear, as we pointed out above.
The change is of the order of nEthin/N , where Ethin is the characteristic level spacing
of the thin spectrum that we happen to be considering. The fact that each thin state
shifts its energy somewhat at t > t0 leads to a phase shift of each thin state and in
general these phases interfere destructively, leading to dephasing and decoherence.
The larger nEthin/N , the faster this dynamics.

But from the argument above it is clear that in order for this dephasing to occur,
it is necessary for a finite number of thin states to participate in the dynamics of de-
coherence. Since temperature is finite (but always small compared to the magnon
energy) a finite part of the thin spectrum is available for the dynamics. Thin spec-
trum states with an excitation energy higher than kBT are suppressed exponentially
due to their Boltzmann weights. Therefore the maximum number of thin states
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Figure 3.6: Log-log-log plot of the off-diagonal matrix element ρ as a function of
time and system size. In this plot the temperature was set to T = 10K.

that do contribute is roughly determined by the condition that nmax ∼ kBT/Ethin.
Putting the ingredients together, we find that the highest energy scale that is avail-
able to the system to decohere is approximately nmaxEthin/N = kBT

Ethin

Ethin
N . All to-

gether, the thin spectrum drops out of the equations. The time scale at which the
dynamics take place is determined by the inverse of this energy scale, converted
into time. From this argument we immediately find again the coherence time
tspon ∝ �hN

kBT .

3.3.1 Simulated High Temperature

The physical picture also suggests an alternative way of introducing decoherence
into the many particle qubit. Instead of raising the temperature and making an in-
coherent superposition of more and more thin spectrum states, we could start out
at t < t0 with the Lieb-Mattis antiferromagnet in its (zero temperature) symmetric
ground state, and then instantaneously turn on the symmetry breaking field B at
t = t0. At t > t0 the eigenstates are the Néel-like thin spectrum states |n〉. No
magnons are created by switching on the symmetry breaking field. As we can ex-
pand the states |n〉 in the basis of total spin states as |n〉 = ∑

S un
S |S〉 we can, by the

inverse transformation, expand the total spin singlet state in the basis of the Néel-
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like thin spectrum states as |S = 0〉 = ∑
n u0

n|n〉. We can now use this singlet state
as the initial state for our qubit. This singlet state is a superposition of all of the dif-
ferent Néel-like states, which are separated by energies Ethin. This procedure thus
roughly corresponds to creating a ’maximal temperature’ kBT ∼ N Ethin. As time
evolves, all of these states pick up different phases, which leads to decoherence when
we trace over them. The coherence time due to this switching on of the symmetry
breaking field is therefore tSB = 2π �h√

J B
.

3.3.2 The Symmetric Case

This raises the question what would have happened if we had not broken the sym-
metry in the Lieb-Mattis magnet (by introducing a finite symmetry breaking field
B) at all. In the symmetric case S, SA and SB are good quantum numbers at all
times. It is easy to see that in this situation the thin spectrum, determined by the
quantum number S, is independent of the "magnon" states, which are determined
by the quantum numbers SA and SB. Since in the symmetric Lieb-Mattis Hamil-
tonian the thin spectrum does not communicate with the magnons and vice versa,
we will find �Ethin = 0, and accordingly no decoherence.

The fact that S, SA and SB are all good quantum numbers, may be regarded as
a pathology of the Lieb-Mattis model. In fact, the model is integrable just because
there are so many conserved quantities. In a more general, short ranged Heisenberg
model the magnons will acquire a finite lifetime and it is expected that they will in
general influence the structure of the thin spectrum, even if the symmetry breaking
field is absent. In this sense, the Lieb-Mattis model can really be seen as the best
case scenario for avoiding decoherence in SU(2) symmetric models. Its infinitely
long ranged interactions introduce a large energy gap for all magnons, which thus
become extremely ’silent’ excitations. On top of that the coupling to the collective
dynamics is so subtle that it can only be seen because of the existence of a singular
limit: Only because we need to always consider an infinitesimal symmetry breaking
field when looking at the thermodynamic limit do we find decoherence at all.

3.3.3 Recurrence

Finally we notice that the off-diagonal elements of the density matrix, given by
equation (3.22), are periodic in time, and the initial density matrix recurs when
N τ = 2π or, equivalently, trec = π �h/Ethin. Such a periodicity is required by the
fact that the time evolution is unitary. As the recurrence time is inversely propor-
tional to the level spacing of the thin spectrum, it depends on the microscopic pa-
rameters of the model. It becomes infinitely long if the symmetry breaking field
vanishes. In the physical limit the recurrence time is always much longer than the
decoherence time as trec/tspon = kBT/Ethin � 1.
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Chapter 4

The Superconductor

It has been proven already three decades ago by Elitzur that local (gauge) symme-
tries cannot be broken spontaneously without invoking an explicitly asymmetric
gauge fix [107]. Also, it has been argued recently that because the local gauge sym-
metry in superconductors cannot be broken spontaneously, the order should be of
a purely topological nature, and that the low energy properties of the supercon-
ducting state are determined solely by its topological structure [108]. At first sight
then, the claim that a superconductor possesses states related to spontaneous sym-
metry breaking, which have a vanishing energy gap, might come as a surprise. On
the other hand it is well known that the superconducting ground state is character-
ized by a definite phase and a corresponding uncertainty in the number of Cooper
pairs [109]. The underlying Hamiltonian however will be diagonal in the num-
ber basis and thus the superconductor will have to spontaneously break its phase
symmetry. The breaking of this symmetry in the thermodynamic limit requires the
existence of a thin spectrum of total phase states whose energies all collapse onto
the groundstate energy in the thermodynamic limit. This result does not disagree
with the fact that local symmetry cannot be broken spontaneously. We will show
that the symmetry that is broken in a superconductor is a global U(1) phase sym-
metry. The resulting superconducting state is still manifestly invariant under local
gauge transformations.

To clearly illustrate this point we will first discuss the superconducting state of
an array of Josephson junctions. In this array the non-commutativity of number
and phase variables straightforwardly gives rise to a thin spectrum and to sponta-
neous symmetry breaking. After that we will switch to a strong coupling model
of superconductivity in which the role of gauge symmetry can be more clearly dis-
cussed. We will then use this model to describe a Cooper-pair box qubit [79, 83]
and show that the presence of the thin spectrum again leads to the maximum co-
herence time tspon of the qubit, which is of the order of milliseconds. Finally we will
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show how the description of the thin spectrum can also be incorporated into the
familiar BCS description of superconductivity, and comment on the application of
that description to superconducting flux qubits [78, 80, 81].

4.1 The Josephson Junction Array

It is well known that an array of superconducting islands, coupled together by
Josephson junctions, can undergo a (quantum) phase transition from an insulat-
ing state to a superconducting state [110–116]. Such an array of Josephson junc-
tions occurs naturally in a superconducting granular material in which individual
grains of superconducting material are form weak links with neighbouring grains.
They can also be made artificially in the lab, so that the number of superconducting
islands, the numbers of links with neighbouring islands and the capacities of the
Josephson junctions is under full control of the experimentalist (see figure 4.1).The
description of a superconductor as an array of Josephson junctions is particularly
useful to us here because it naturally focuses the attention on the the conjugate
variables number and phase. The description of the symmetry breaking in terms
of these variables turns out to be exactly analogous to that of the symmetry break-
ing in quantum crystals or magnetic systems which we discussed in the previous
chapter [25]. The Hamiltonian for the Josephson junction array is given by [112]

H JJ =
∑
j ,δ

[
EC

2
n2

j − E J cos
(
θ j − θ j+δ

)]
. (4.1)

Here θ j represents the phase of the superconducting orderparameter on island j ,
while n j gives the number of Cooper pairs above average, and δ connects neighbor-
ing sites. The charge or number operator n j = −i(∂/∂θ j) is the variable conjugate
to the phase, and can be written in terms of the voltage V and the capacitance C of
the Josephson junctions as n j = (C/2e)Vj. The coupling constants are the charging
energy EC and the Josephson coupling energy E J .

The phase θ in this description can be thought of as the phase of the Ginzburg-
Landau wavefunction for the superconducting island, or equivalently as the phase
describing the perfectly ordered BCS state defined through the wavefunction |θ 〉 =∏

k

(
|uk | + |vk | eiθ c†

k c†
−k

)
|vac〉 [109]. This phase is not measurable as such, but a

difference in phase across a Josephson junction causes a supercurrent given by J =
JC sin

(
θ j − θ j+δ

)
to run through the junction, and therefore phase differences are

measurable [109]. The condition of measurability implies the gauge independence
of these quantities, because a gauge transformation by definition cannot alter the
outcome of any experiment. The unmeasurable total phase is in fact not a gauge
independent quantity.

If we expand the cosines in the Hamiltonian of equation (4.1) in powers of
the phase difference θ j − θ j+δ , then it becomes exactly equal to the description
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Figure 4.1: An electron microscope image of the Josephson Junction array that is
studied in Delft by Mooij et al [117].

of a quantum crystal with (even) anharmonic terms. As we have seen before, the
thin spectrum of such a crystal, and thus also the thin spectrum of the Josephson
junction array, is given by the infinite wavelength part of the Hamiltonian, because
exactly at k = 0 the Bogoliubov transformation that would diagonalize the Hamil-
tonian turns out to be singular [25]. The zero wavenumber part of H JJ is

H JJ
k=0 = EC

2N
n2

tot, (4.2)

where N is the total number of superconducting islands, and ntot ≡ ∑
j n j is the

charge of the total network of Josephson junctions. To see how the array can spon-
taneously break its total phase symmetry we should add a symmetry breaking field
to the collective Hamiltonian. We cannot simply add a term which involves the
bare total phase θtot, because that total phase is not a gauge independent, measur-
able quantity. Instead we can look at the difference of phase between the Josephson
junction array and some given reference superconductor. In the end of course we
will let the strength of the symmetry breaking field go to zero, or equivalently move
the reference superconductor away to infinity. The collective Hamiltonian includ-
ing the symmetry breaking field thus becomes

H JJ
SB = EC

2N
n2

tot − B cos (θtot − θref) . (4.3)

For small values of �θtot ≡ θtot − θref we can expand the cosine to quadratic order
and then the Hamiltonian reduces to a harmonic oscillator with well known solu-
tions in terms of Hermite polynomials, in exact analogy to the case of spontaneous
symmetry breaking in quantum crystals and antiferromagnets [25]. Using these
Hermite polynomials, it is easy to show that indeed the Josephson junction array
can spontaneously break the rotational symmetry of its total phase. We do so by
looking at the expectation value of the phase fluctuations in the limit of disappear-
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ing symmetry breaking field and infinite number of superconducting islands:

f 2 ≡ 〈
(�θtot)

2〉 − 〈�θtot〉2 ∝
√

EC

N B

lim
N→∞ lim

B→0
f 2 → ∞

lim
B→0

lim
N→∞ f 2 → 0. (4.4)

Clearly the fluctuations in the total phase disappear in the thermodynamic limit
if only an infinitesimal symmetry breaking field is present. The symmetry broken
state that is formed in that limit has a well defined total phase, and must thus be
in a superposition of many different total number states. These total number states
were precisely the eigenstates of the collective Hamiltonian (4.2), which we iden-
tified as being the thin spectrum of the Josephson junction array. The symmetry
broken Hamiltonian also has a tower of low lying states that form a sort of dual thin
spectrum which consists of all the total phase states necessary to build a state with
a fixed total number of Cooper pairs. Notice that the thin spectrum states must
be observable states, because the description of the collective dynamics in Hamil-
tonian (4.3) is still manifestly gauge invariant. This also implies that the symmetry
breaking which we have just described is not the breaking of a local gauge symme-
try. Only the U(1) symmetry of the global total phase is spontaneously broken, and
even then only in the sense that its fluctuations disappear in the thermodynamic
limit, so that its value relative to that of some other, external superconductor will
be fixed1.

4.2 The Local Pairing Superconductor

Now that we have seen in the previous section that the non-commutativity of num-
ber and phase naturally gives rise to the presence of a thin spectrum in a supercon-
ducting system, we would like to take a closer look at the process of spontaneous
symmetry breaking itself and its relation to gauge symmetry and the superconduct-
ing orderparameter. This relation was not visible in the context of a Josephson
junction array, because there we started out with islands that were already in a su-
perconducting state. That way we could describe the whole system with an effective
Hamiltonian that only consisted of observables related to the macroscopic proper-
ties of the superconducting state. For a more general description of superconduc-
tivity it would be better to start out with a microscopic Hamiltonian for a single

1The fact that we can only define the phase of the superconductor relative to some other, given
superconductor is not a problem. Indeed, in the case of the translational symmetry breaking of a crystal
which we discussed in the previous chapter, we also silently assumed there was some point in space which
we could call the origin of our coordinate system. This given origin of the coordinates corresponds
precisely to the given ’origin of phase’ defined by the external superconductor in the present discussion.
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superconductor that incorporates the effects of the gauge field. The simplest such
model is the extensively studied local pairing, negative U Hubbard model [50, 118]

H = 1

2

∑
j ,δ,σ

(
t δj c†

j+δ,σ c j ,σ +
(

t δj

)∗
c†

j ,σ c j+δ,σ

)

− |U |
∑

j

n j ,↑n j ,↓. (4.5)

Here c†
j creates an electron on site j , δ connects neighboring sites and n j counts the

number of electrons. The reason to consider this local pairing model rather than for
example the BCS model for superconductivity is the fact that this model is explicitly
gauge invariant, while the BCS model is not [75]. From the symmetry point of view,
the models are the same: there is no phase transition in going form weak to strong
coupling superconductivity, only a cross-over [119]. If we parametrize the hopping

in terms of a uniform amplitude and a bond dependent phase as t δj = t eiψδj , then

minimal coupling allows us to identify the phase of the hopping parameter with the
electromagnetic vector potential integrated along the bond under consideration,

so that ψδj = e
�hc

∫ j+δ
j Aδ (t )dt . It is thus clear that the Hamiltonian is manifestly

invariant under the gauge transformation [50]

c†
j → ei e

�hc f ( j)c†
j ,

A( j) → A( j)+ ∇ f ( j), (4.6)

which immediately implies

ψδj → ψδj + e
�hc

[ f ( j + δ)− f ( j)] . (4.7)

We focus on the strong coupling limit U � t , so that we only need to con-
sider the physics of the lowest lying Hubbard sector. On each site there will thus be
either a pair of electrons or nothing at all. Single electron excitations are only virtu-
ally allowed and give rise to pair-pair interactions. The effective low energy theory
given by second order perturbation theory can be written in terms of pseudospin
operators defined by

S+
j = c†

j ,↑c†
j ,↓

Sz
j = 1

2

(
n j ,↑ + n j ,↓ − 1

)
. (4.8)

The z projection of the pseudospin measures the local electron density, while the
x y components provide the dynamics of the Cooper pairs. Writing out the Hamil-
tonian (4.5) to second order in the hopping, and adding a chemical potential µ that
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determines the overall electron density and thus explicitly breaks the electron-hole
symmetry, we find [50]

Heff = J

2

∑
j ,δ

[
ei2ψδj S+

j S−
j+δ + e−i2ψδj S−

j S+
j+δ

]

+ J
∑
j ,δ

[
Sz

j Sz
j+δ − 1

4

]
− h

∑
j

[
Sz

j + 1

2

]
. (4.9)

Here J is defined to be 2t 2/|U |, and h ≡ |U | − 2µ determines the overall electron
density. Away from half filling (where h = 0) the global SU(2) symmetry of the
Hamiltonian is broken, and what remains is the U(1) symmetry which describes
rotations around the z-axis. Before we discuss the actual spontaneous symmetry
breaking and the thin spectrum associated with it, we will show that the emerging
classical state which spontaneously breaks the U(1) phase symmetry is in fact a
superconducting state.

The state that is classically realized in the thermodynamic limit is not an eigen-
function of the Hamiltonian (4.9), just as the classically realized states of for ex-
ample crystals, rotors and antiferromagnets are not eigenstates of the underlying
Hamiltonians. Instead the classical state can be written as a generalized coherent
state. For the S = 1/2 pseudospin problem at hand, the coherent state has the
form [50]

|�class〉 =
∏

j

(
e−i

φ j
2 sin

(
θ j

2

)

+ei
φ j
2 cos

(
θ j

2

)
c†

j ,↑c†
j ,↓

)
|vac〉 . (4.10)

In this expression the angles φ j and θ j are the Euler angles which describe the classi-
cal vectors that replace the quantum spins in the classical state. To find the ground-
state energy of Heff we need to minimize its expectation value in the generalized
coherent state with respect to the orientations of the classical spin-vectors. It is easy
to check that the classical energy will then be proportional to the difference between

neighbouring Euler angles: E ∝ cos
(

2ψδj − φ j+δ + φ j

)
. The classical state with

lowest energy thus links the orientation of the spin-vectors to the bond variables
ψδj . These variables in turn were connected to the electromagnetic vector potential.

In the lowest energy state we find [50]

Āδj = − �hc

2e

φ j+δ − φ j − π

a
, (4.11)

where Āδj is the average vector potential along the bond. At distances much larger
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than the lattice spacing a this expression becomes

�A (�r) = − �hc

2e
�∇φ (�r) . (4.12)

The classical state thus forces the electromagnetic potential to become pure gauge,
which of course immediately implies that its rotation will vanish, and thus that the
condensate does not allow any magnetic field to penetrate its bulk. This manifes-
tation of the Meissner effect is a direct consequence of the well known Anderson-
Higgs mechanism for mass generation [76, 120, 121], and its occurrence is a clear
indication that indeed the classical condensate formed by (4.10) describes a super-
conductor.

4.2.1 The Thin Spectrum

We have seen in the previous section that the tight binding, negative U Hubbard
model gives rise to a classical state in the thermodynamic limit which can be iden-
tified as a superconductor. Let’s now back up a few steps and see if we can describe
the symmetry breaking that lead to the formation of this state in a more analytical
manner by studying the exact eigenstates of the collective part of the Hamiltonian,
just as we did for the Josephson junction array. The difficulty in such a global de-
scription will be to correctly account for the gauge field, which can fluctuate locally.
To circumvent this problem we introduce transformed pseudospins, analogous to
what is done in the weak coupling theory [75, 118]

σ+
j = e

−2i
∑ j

j′=0
ψδ

j′ S+
j

σ z
j = Sz

j . (4.13)

The summation in the exponent is over some path connecting position j to some
origin j = 0 (see figure 4.2). For simplicity we will assume the applied external
magnetic field to be zero from here on.

Notice that the individual transformed pseudospin operators of equation (4.13)
are not by themselves gauge invariant. Their purpose is to transform the local gauge
transformations (4.6) of the actual pseudospins �S into a global transformation of
the new pseudospins �σ :

σ+
j → e

−2i
∑ j

j′=0

[
ψδ

j′ + e
�hc ( f ( j ′+δ)− f ( j ′))

]
e2i e

�hc f ( j)S+
j

= e2i e
�hc f (0)σ+

j ≡ eiψ0σ+
j

σ z
j → σ z

j . (4.14)

The cancellation of the many exponential factors picked up along the paths con-
necting j ′ = 0 to j ′ = j is due to the fact that there is no external magnetic field
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(0,0)

(3,2)

j 0 j 0 j

= +

Figure 4.2: Different ways in which the points (0, 0) and (3, 0) can be connected.
The summation over bond variables will in fact be independent of the path chosen,
because the difference between two possible paths always consists of a summation
around a closed loop. Such a closed-loop summation is sure to give a zero result in
the absence of a magnetic field.

present, which guarantees that the sum of the gauge field terms ψδj ′ around a closed

loop is always zero (see figure 4.2). The local gauge transformation of the pseu-
dospins �S has now been turned into a global transformation of the new pseudospins
�σ : equation (4.14) describes a global rotation of all pseudospins on the entire lat-
tice around the z-axis. It is the global character of the gauge transformations on the
transformed pseudospins that will now allow us to switch to a description of just
the collective behavior of the system without invoking any specific gauge choice. In
terms of the transformed pseudospins the effective low energy Hamiltonian (4.9)
becomes

Heff = J
∑
j ,δ

�σ j · �σ j+δ − h
∑

j

σ z
j . (4.15)

This Hamiltonian describes an antiferromagnetic interaction between neighboring
pseudospins, within an overall uniform magnetic field. Notice that this Hamilto-
nian is still exactly equal to Heff in equation (4.9), and is thus still gauge invariant.
The antiferromagnetic sign of the pseudospin interaction is due to the repulsive
effective interaction between Cooper pairs in the local pairing model, and the mag-
netic field in equation (4.15) is really a pseudomagnetic field, which acts on the
pseudospins, and not on the original electrons. The classical state that we expect
to find in terms of the pseudospins σ in Heff is a canted antiferromagnet. That is,
an antiferromagnet in which all spins are uniformly canted out of the z = 0 plane,
but in which the x y projections still form an antiferromagnetic pattern. As we no-
ticed before, the canting of the spins which breaks the full SU(2) symmetry is done
explicitly by the field h, while the breaking of the in-plane U(1) symmetry into an
antiferromagnetic structure will have to be done through spontaneous symmetry
breaking.

The thin spectrum of the Hamiltonian Heff consists of the states necessary to
construct the symmetry broken classical state. These thin spectrum states describe
the dynamics of the superconductor as a whole, and as before they can be found
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Figure 4.3: A schematic representation of the classically realized state of the tight
binding superconductor on a square lattice in which the arrows are a classical car-
toon for the transformed pseudospins σ . The circles represent the U(1) symmetry
of the Hamiltonian that is spontaneously broken in the superconducting state.

at the singular points of the Bogoliubov transformation which diagonalizes the
quadratic part of the Hamiltonian. In the antiferromagnet both the point k = 0
and the point k = π are singular. The resulting collective part of the Hamiltonian
is given by

Hcoll = 4J

N
�σA · �σB − hσ z

tot, (4.16)

where σA,B denotes all spins on the A, B sublattice and σtot is the sum of all spins
on the entire lattice. This collective Hamiltonian is just a Lieb Mattis model in a
uniform magnetic field [25, 77, 93, 97], and the eigenstates are trivially identified
as the states labeled by the quantum numbers σA, σB , σtot and σ z

tot. The difference
between this collective model and the one describing the spontaneous symmetry
breaking in the antiferromagnets discussed before, is the field h. It explicitly reduces
the symmetry of the Hamiltonian from SU(2) to U(1). The ground state now has
maximum total spin on both the A and B sublattice, and obeys σtot = σ z

tot =
(hN )/(4J ). Excitations of the quantum numbers σA and σB are gapped with an
energy J from the groundstate, because of the infinite long range of the interactions
in Hcoll. We will henceforth set these quantum numbers to their maximum value
and only consider the low energy excitations which describe the behavior of the
entire system as a whole. We can relabel these states by introducing

σtot = σ̄ + n

σ z
tot = σ̄ + n − y . (4.17)

Here σ̄ is the groundstate value for the pseudospin z-projection: σ̄ = (hN )/(4J ).
As we will see the excitations labelled by n (which simultaneously increase or de-
crease σtot and σ z

tot) form the thin spectrum of the local pairing superconductor.
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The excitations y on the other hand (which only decrease σ z
tot) correspond to a

change in the number of Cooper pairs in the superconductor. In terms of the quan-
tum numbers n and y , Schrödinger’s equation becomes

Hcoll

∣∣n, y
〉 = (

E0
coll + hy + 2J

N
n2

) ∣∣n, y
〉
. (4.18)

From this equation it is clear that the excitations labeled by n will play the role of
the thin spectrum for the local pairing superconductor. It can be easily checked
that indeed the contribution of these states to the partition function vanishes in
the thermodynamic limit. The excitation labeled by y on the other hand costs an
energy proportional to the chemical potential to excite. This is, in other words, the
quantum number that determines the average total number of Cooper pairs in the
superconductor.

4.2.2 Breaking the Symmetry

To study the spontaneous symmetry breaking of Hcoll we will have to introduce a
symmetry breaking field, which we will send to zero again at the end of the cal-
culation [77]. The field should break the symmetry in the x y plane of the pseu-
dospins and stabilize an antiferromagnetic configuration there. The obvious candi-
date would be a staggered magnetic field along the x-axis

H SB
coll = 4J

N
�σA · �σB − hσ z

tot − B
(
σ x

A − σ x
B

)
. (4.19)

Notice that this symmetry breaking field is not gauge invariant. We can think of
this term as arising from the coupling to a different, symmetry broken, external su-
perconductor just as in the case of the Josephson junction array. This form of the
symmetry breaking field is then the result of integrating out the second supercon-
ductor from an expression which involved the full gauge invariant coupling between
the two orderparameters. Alternatively we can see the symmetry breaking field as
an implicit gauge fixing term. A gauge transformation corresponds to a uniform
rotation of all spins on the entire lattice around the z axis. Every explicit choice
for the direction of B along a particular axis in the x y plane is therefore connected
to all other directions in the plane by a gauge transformation. This implies that
all ordered antiferromagnetic states in the x y plane form a gauge volume of states
which are equivalent descriptions of the same physical state. Picking the symmetry
breaking field to lie along the x-axis in equation (4.19) thus corresponds to mak-
ing a gauge choice and we will have to check afterward if the conclusions based on
calculations in this particular gauge fix are robust under gauge transformations.

The matrix elements of the symmetry breaking field in the basis
∣∣n, y

〉
can be

computed by performing a sum over Clebsch-Gordon coefficients [25]. In the limit
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(n, y)� (σ̄ , N ), the Hamiltonian can be written in terms of its matrix elements as

H SB
coll =

∑
n,y

∣∣n, y
〉 [

E0
coll + hy + 2J

N
n2

] 〈
n, y

∣∣
− ∣∣n ± 1, y

〉 [B

4
f (y)

] 〈
n, y

∣∣ , (4.20)

where f (y) ≡ (
2 − y

σ̄

)√(N
2

)2 − σ̄ 2. If we write the eigenfunctions of this equation

as
∣∣x, y

〉 = ∑
n � (n, x)

∣∣n, y
〉

and take the continuum limit, then Schrödinger’s
equation reduces to the well known harmonic oscillator equation,

−1

2

∂2

∂n2
� (n, x)+ 1

2
ω2n2� (n, x) = ν� (n, x) , (4.21)

with ω2 = 8J
BN f (y) and ν = 1 + 2

E(x,y)−E0
coll−hy

B f (y) . The wavefunctions � are the

eigenfunctions of the harmonic oscillator, which can be written explicitly in terms
of Hermite polynomials. The corresponding eigenvalues obey ν = (x + 1/2)ω, and
thus we find the energies of the symmetry broken collective Hamiltonian (4.19) to
be given by

E
(
x, y

) = E0
coll + hy − 1

2
BN g (y)

+
(

x + 1

2

)√
2J B

√
g (y), (4.22)

where g (y) ≡ (
1 − 2 y

σ̄

)√
1 −

(
h
2J

)2
. The term ∝ BN in this expression shows

that the symmetry of the system will be spontaneously broken: even if only an in-
finitesimal symmetry breaking field is present, the pseudospins can gain an infinite
amount of energy in the limit of N → ∞ by aligning with that field. In the ther-
modynamic limit the alignment will thus happen spontaneously and the resulting
symmetry broken state is exactly the classically expected canted antiferromagnet.

The z-projection of each pseudospin is just σ̄ /N , while the projections in the
x y plane all lie along the x-axis, with signs alternating between nearest neighbors.
If we denote the angle in the x y plane of a pseudospin at position j by φ j then
the orderparameter equation which describes the anti-alignment of neighboring
spins becomes φ j+δ − φ j = π . In terms of the angles describing the rotation of
the untransformed pseudospins S j around the z-axis, the orderparameter equation
directly yields

φ j+δ − φ j = π + 2ψδj . (4.23)
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Figure 4.4: A schematic representation of the classically realized state of the tight
binding superconductor on a square lattice. The arrows represent a classical cartoon
for the transformed pseudospins σ .

This equation is exactly equivalent to equations (4.11) and (4.12) and thus confirms
the occurrence of the Meissner effect in the symmetry broken, classically realized
state of the local pairing superconductor.

4.2.3 The Gauge Volume

Having found the the eigenfunctions of the collective, symmetry broken Hamil-
tonian, the question arises what these states represent, and even if they are truly
physical states. As mentioned before, the symmetry breaking field in the collective
Hamiltonian (4.19) acts as an implicit gauge fix. It is not a priori clear whether or
not this (non-physical) gauge fixing introduced any extra unphysical states in the
spectrum. If we define the gauge volume of a certain state to be the collection of all
possible states that are connected to it by a gauge transformation, then the question
is whether the excited states predicted by H SB

coll are part of the ground state gauge
volume or not.

The ground state of the collective Hamiltonian is a canted antiferromagnet in
terms of pseudospins, and we have seen that it corresponds to a superconducting
state of Cooper pairs. The excitations labeled by x in the pseudospin picture must
involve the superposition of collective excitations with wavenumbers k = 0 and
k = π. However as mentioned before, the gauge volume of this system is made up
of global uniform rotations of all of the pseudospins on the entire lattice around the
z-axis. We can thus prove that the excitations labelled by x are not within the gauge
volume of the groundstate wavefunction, by showing that the excited states cannot
be written as only a global rotation of the groundstate. To do so we will consider one
specific thin spectrum state (the state with x = 0), and do a gauge transformation
on it by rotating it over an angle θ . We will then compare the resulting state with
all other thin spectrum states (labelled with x = X) of the un-rotated model, and
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show that the overlap between the states is smaller than one for all possible choices
of X and θ . The thin spectrum with x �= 0 does therefore not contain a states which
is merely a rotated version of the state x = 0, and thus the thin spectrum states do
not coincide with the ground state’s gauge volume. Using the explicit formulas for
the eigenfunctions of H SB

coll it is easy to check that indeed the overlap between the
state with x = X and the state with x = 0, rotated over an angle θ , is one if and
only if both X and θ are zero (see figure 4.5). This shows that indeed the excited
state cannot be written only as a global rotation of the groundstate, and thus that
the excited state is not within the ground state’s gauge volume.

Figure 4.5: The overlap between the thin spectrum state |x〉 and the rotated ground-
state R̂ (θ ) |0〉, as a function of the angle of rotation θ , for different values of x. To
make this graph we used the values J = 10, B = h = 1 and N = 100. For higher
values of N the graph for each x will be scaled horizontally, but the height of the
top remains unaffected. The plot is symmetric under mirroring in the θ = 0 axis.
The inset shows the maximum of each curve, plotted as a function of x. The max-
imum of a curve also corresponds to the maximum overlap that a certain excited
thin spectrum state has with (a gauge transformation of) the ground state. The
solid line in the inset is included to guide the eye only.

The excitations labeled by y were already identified as corresponding to a change
in the average total number of Cooper pairs in the superconductor. They alter the z
projection of the pseudospins and thus are trivially seen to be outside of the ground-



74 PART III, CHAPTER 4. THE SUPERCONDUCTOR

state’s gauge volume. These excited states are gapped and could thus be used to
define an appropriate two-level system for building a qubit out of this local-pairing
superconductor. Using that qubit we can then study its decoherence due to the
existence of the (dual) thin spectrum formed by the x states.

4.2.4 Decoherence

We would now like to apply the results of the previous section to the description of
quantum coherence. In analogy to the result for antiferromagnets [23], we expect
the existence of the unobservable thin spectrum to give rise a maximum coherence
time tspon ∝ N �h/kBT .

Let us define a qubit made of the eigenstates of the collective part of the local
pairing superconductor. If temperature is sufficiently low (i.e. kBT � J , h) then we
can use the states y = 0 and y = 1 as the computational states of such a qubit. These
states correspond to states with a different number of Cooper pairs, and qubits of
this type have been made experimentally in the form of Cooper-pair boxes [79, 83,
122]. In these Cooper-pair boxes a superconducting island can be brought into a
superposition of having N̄ and N̄ + 1 Cooper-pairs present. Superpositions of this
type can reach coherence times of up to 500 ns [84, 123].

Figure 4.6: The Cooper-pair box qubit or ’quantronium’ studied in Saclay [79, 82].
The actual Cooper-pair box is the small rectangular island in the centre which can
hold a superposition of N and N + 1 Cooper pairs.
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In our local pairing description of the qubit, the initial state of the system must
be a thermal mixture of thin spectrum states. After all, controlling these states
experimentally is practically impossible [51, 63]. The initial state should then be
brought into some superposition of the computational states y = 0 and y = 1,
so that it can be used in a quantum computation. Because we know all eigenstates
and eigenvalues of the Hamiltonian exactly, we can then explicitly follow the time
evolution of the superposition [25]. The complete process is thus described by

ρt<0 = 1

Z

∑
x

e−βE(x,0) |x, 0〉 〈x, 0|

ρt=0 = 1

2Z

∑
x

e−βE(x,0) [|x, 0〉 + |x, 1〉] [〈x, 0| + 〈x, 1|]

ρt>0 = 1

2Z

∑
x

e−βE(x,0) [|x, 0〉 〈x, 0| + |x, 1〉 〈x, 1|

+e− i
�h (E(x,0)−E(x,1))t |x, 0〉 〈x, 1| + h.c.

]
. (4.24)

where Z is the partition function at t < 0. The thin spectrum states labeled by
x cannot be observed or controlled experimentally, and they should therefore be
traced out of the final density matrix [94, 95]. The remaining reduced density ma-
trix then shows the coherence of only the superposition of y states. The disap-
pearance of the off-diagonal matrix element of the reduced density matrix serves
as a measure of the resulting coherence time, and it can easily be checked that this
coherence time is given by

tspon = 2π �h
kBT

σ̄

2
. (4.25)

Here σ̄ signifies, as before, the average number of Cooper pairs on the supercon-
ducting island in the groundstate. This coherence time is the maximum coherence
time of a superconducting island, which is limited by the existence of a thin spec-
trum in the superconductor. Just as in the cases of crystals and antiferromagnets,
the details of the model (e.g. J or h) do not enter into the expression for the maxi-
mum coherence time, which thus looks like a universal timescale [23, 25].

Filling in the values for the constants �h and kB and taking σ̄ � 106 and T � 40
mK [83], we find a coherence time for the experimentally realized Cooper pair
boxes of � 500 µs. In fact this is a rather conservative estimate, since the elec-
tronic temperature of the Cooper-pair box is probably higher then the environmen-
tal temperature of 40 mK. Even so though, the timescale set by the presence of the
thin spectrum states which are associated with the spontaneous symmetry break-
ing, is clearly much larger than the current experimentally seen limit to coherence
of the Cooper-pair boxes. This present limit is due to environmental factors, which
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induce decoherence in times of the order of microseconds. However, it is well pos-
sible that the limit set by the thin states will come within the experimental reach in
the near future, either because the isolation from external sources of decoherence
will be developed further, or because the size of the Cooper-pair box itself is reduced
even more.

4.3 The BCS Superconductor

In the previous sections we have shown that the superconductive groundstate is a
state with a spontaneously broken U(1) symmetry. As a consequence the supercon-
ductor must have a thin spectrum of states that describe the collective excitations on
top of the ground state. In the case of a local pairing model for superconductivity
we have found an explicit expression for these thin states and we have shown how
they can cause decoherence if we try to use a superconductive island as a qubit.

It could be argued that the local pairing model is somewhat pathological, and
not really representative for real-life superconductors, even though from the point
of view of symmetry the model is equivalent to a weak coupling model (because
there is no phase transition which separates the two [119]). We will therefore also
work out the symmetry breaking and decoherence in a BCS description, and show
that although the picture changes slightly, the underlying physics is exactly equiv-
alent, and in fact gives rise to the exact same conclusions regarding the thin spec-
trum and the timescale on which decoherence will set in. The draw-back of doing
the calculation in the BCS description is that we cannot do it in a manifestly gauge
invariant way, so that the role of the vector potential is obscured.

After creating Cooper pairs, we arrive in the standard BCS theory at the (gauge
fixed) effective Hamiltonian [75]

HBCS =
∑

k

εk

(
c†

k ck + c†
−k c−k

)

−U
∑
k �=k′

c†
k c†

−k c−k′ ck′ . (4.26)

Here we have adopted the convention to write (k, ↑) as k and (−k, ↓) as −k. The
dispersion of the bare Fermi-sea is characterized by εk while U is the effective pair-
ing interaction due to phonon exchange. U is non-zero and attractive only in a shell
around the Fermi energy with a width of about the Debije energy. It is easy to see
that extensivity of the model in fact requires U to be inversely proportional to the
total number of electrons in the system. We will therefore redefine the pairing po-
tential as U = V /N , where N denotes the total number of electrons in the k-space
shell in which U is non-zero.

By writing down the Hamiltonian (4.26) we have assumed that there is no ex-
ternal magnetic field and we have fixed the gauge to ensure that the electromagnetic
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vector potential vanishes everywhere. Anderson showed that the BCS Hamiltonian
in this form can be rewritten as a spin problem by introducing the pseudospins [75]

S+
k = c−k ck

Sz
k = 1

2

[
1 − c†

k ck − c†
−k c−k

]
. (4.27)

In the subspace without any quasiparticles (i.e. nk = n−k ∀k), the Hamiltonian up
to an overall constant becomes

HBCS = −2
∑

k

εk Sz
k − V

N

∑
k �=k′

(
Sx

k Sx
k′ + S

y
k S

y
k′
)

. (4.28)

Interpreted at face value, this Hamiltonian describes pseudo spins on a lattice which
has position-label k. On this lattice, three different and independent regions can be
identified. In the region k < kF − kD (where kF is the Fermi wavenumber and kD

the Debije wavenumber) we know that the pairing potential vanishes and εk is neg-
ative, so that all pseudospins in that region will point down, which corresponds to
completely filled electronic states. In the region k > kF + kD the pairing potential
is zero as well, but here εk will be positive, causing all spins to point up, and all
electronic states to be empty. In the shell of width kD around kF a more interest-
ing situation occurs. There V is nonzero (and approximately constant), while εk

switches sign right at kF . The pseudo-spin structure that one would classically ex-
pect in that region is that of a magnetic domain wall [75]: the pseudospins point up
at one end of the region, then continuously fall over until they reach the x y plane
exactly at kF , and then they continue on until they point down at the other end
(see figure 4.7). Electronically that structure corresponds to the BCS wavefunction∏

k

(
uk + vk c†

k c†
−k

)
|vac〉 [109].

The Hamiltonian HBCS however is invariant under rotations around the z-axis,
and thus the groundstate will also obey this symmetry and have a completely de-
localized projection of the pseudospins on the x y plane. To form a true domain
wall, and thus the classical superconducting state, this U(1) symmetry will have to
be spontaneously broken.

Because the symmetry breaking will only have an effect in the region around
kF and because this region is fully decoupled from the other two regions of k-
space, let’s focus solely on that shell from now on, and define all sums over k to
run from kF − kD to kF + kD . The collective dynamics of the system will again be
described by the singular points of the Bogoliubov transformation which diagonal-
izes the Hamiltonian. Because of the ferromagnetic sign, the collective model in this
case consists of only the infinite wavelength part of equation (4.28), which involves
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Figure 4.7: A schematic representation of the region of width kD around kF . The
vectors represent the pseudospins S. Spontaneous symmetry breaking causes the
projections of the pseudospins in the horizontal plane perpendicular to the paper
to align.

only the q = 0 part of the Fourier transform Sq = ∑
k eikq Sk :

Hcoll = − 2

N
εtotS

z
tot − V (N − 1)

N 2

[
Sx

totS
x
tot + S

y
totS

y
tot

]
� − V

N

[ �Stot · �Stot − Sz
totS

z
tot

]
, (4.29)

where Stot ≡ ∑
k Sk and where we have neglected terms of order 1/N 2. We have

also made a strong coupling approximation by setting εtot = 0. Other approxi-
mations of εtot are possible, but it turns out that after some tedious mathemat-
ics these will give the exact same form for the thin spectrum and the maximum
coherence time as the simple approximation εtot = 0. We will discuss two dif-
ferent approximations for εtot at the end of this section. The eigenstates of the
collective Hamiltonian are trivially found to be labeled by the total spin quantum
number S and its z-projection M , while the corresponding energies are given by
Ecoll(S, M) = −V /N

(
S (S + 1)− M2

)
. The thin spectrum in this case is labeled

by M , and describes states with different total electron densities. The total spin ex-
citations labeled by S on the other hand, are gapped with an energy ∼ V . To break
the x y-symmetry of Hcoll we can add a symmetry breaking field −BSx

tot along for
example the x-axis. After evaluating its matrix elements [25] and taking the con-
tinuum limit, Schrödinger’s equation can once again be written as a harmonic os-
cillator equation

−1

2

∂2

∂M2
� (M , x)+ 1

2
ω2M2� (M , x) = ν� (M , x) , (4.30)

with ω2 = 2V
BN S and ν = 1 + E(S,x)−Ecoll (S,0)

BS . The symmetry broken wavefunctions
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|S, x〉 ≡ ∑
M �(M , x) |S, M〉 thus have energies

E(S, x) = − V

N
S (S + 1)− BS

+
(

x + 1

2

)√
V B

√
2S

N
. (4.31)

In the ground state S will be maximal (i.e. N /2), and then the term ∝ N B in
the energy signals spontaneous symmetry breaking: in the thermodynamic limit
the system can gain an infinite amount of energy by aligning with an infinitesimally
small symmetry breaking field. The collective excitations that make up the (dual)
thin spectrum on top of the symmetry broken ground state are labeled by x. Their
energies are slightly influenced by the remaining collective quantum number S. If
we make a superposition of total spin states and trace away the unobservable thin
spectrum, then this small shift in the thin spectrum’s energy levels will cause the de-
coherence of the visible, reduced density matrix, in a manner completely analogous
to the one described in equation (4.24). The resulting maximum coherence time is
given by

tspon = 2π �h
kBT

N , (4.32)

where N counts the number of states in the k space volume of kD around kF , which
is proportional to the number of Cooper pairs in the superconducting condensate.
Notice that we find the same universal form for the expression of the coherence time
set by spontaneous symmetry breaking as in the case of the local pairing model for
superconductivity, as considered in the previous section.

4.3.1 Reintroducing Kinetic Energy

As mentioned before, the collective Hamiltonian (4.29) can be seen as a strong cou-
pling limit, because we require εtot to be much smaller than V . We can drive the
system to a somewhat weaker coupling regime by reincluding an approximate form
of

∑
k εk Sz

k into Hcoll. One possible choice for such a term would be

t
(

Sz
kmin

− Sz
kmax

)
, (4.33)

which acts as a boundary condition, pulling the pseudospins down at the low k
boundary and up at the other end. A second choice could be the inclusion of the
term

t
(
Sz

A − Sz
B

)
, (4.34)
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where SA consists of all spins with k < kF and SB denotes spins above the Fermi
surface. In the latter case we should take care that t cannot be too great, for if
it would dominate over V everywhere, then it would transform the domain wall
structure of the superconducting state into a trivial Fermi-sphere structure again.

In both of these cases the mathematics of diagonalizing the collective Hamilto-
nian is complicated by the fact that the kinetic energy term (which is proportional
to t ) does not commute with the potential energy given by equation (4.29). The
potential energy term (proportional to V ) is diagonal in a basis labelled by the total
spin quantum number Stot and its z-projection Sz

tot. If we include a a boundary
term such as the one given by equation (4.33) then this can be written as a 4x4
matrix in the total spin basis (using Clebsch Gordon coefficients to separate the
boundary spins from the bulk). This matrix could then be diagonalized numeri-
cally. We do not have to go through this diagonalization explicitly though, because
we know that the kinetic energy term only couples states with equal z-projection
of total spin. The energy spectrum of the Hamiltonian, including the boundary
term, can thus be written as E = (Sz

tot)
2V /N + E(y) where E(y) describes the

massive excitations which correspond to adding a Cooper pair to the superconduc-
tor. The precise form of E(y) depends on t , but for large enough N we can be
sure that the minimal value will still be found for the maximal possible value of
the quantum number describing total spin in the presence of boundary terms (i.e.
y ∝ N /2). The Hamiltonian in the presence of a symmetry breaking field −Bσ x

tot
then becomes

H SB
coll �

∑
y,M

∣∣y , M
〉 [

E(y)+ V

N
M2

] 〈
y , M

∣∣
− ∣∣y , M ± 1

〉 [1

2
By

] 〈
y , M

∣∣ , (4.35)

where the z-projection of total spin is labelled by M . Clearly this Hamiltonian
can once again be mapped onto a harmonic oscillator and we can apply again our
standard route to finding the maximum coherence time for a superposition of two
different y-states. The result is the same as in the earlier case where we just assumed
εtot to be zero.

If we choose to include the kinetic energy given by equation (4.34) instead of
the boundary term (4.33), then the derivation changes slightly. We will still find
the symmetry broken Hamiltonian of equation (4.35) and the corresponding con-
clusions about the thin spectrum and the decoherence time, but this time the exci-
tations labelled by y are the eigenstates of the ’inverted’ harmonic oscillator given
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by

Hcoll = t
(
Sz

A − Sz
B

) − V

N

[ �Stot · �Stot − Sz
totS

z
tot

]
�

∑
S,M

|S ± 1, M〉 t
N

2
〈S, M | − |S, M〉 V

N

(
M2 − S2) 〈S, M | . (4.36)

The eigenstates of this Hamiltonian can be written out explicitly in terms of Her-
mite polynomials, but the facts that the ground states has y ∝ N /2 and that the
kinetic energy does not couple terms with different M is enough to deduce equa-
tion (4.35) from it.

We thus find that for all the approximations of the kinetic energy term, the thin
spectrum is described as the spectrum of a harmonic oscillator with level spacing
Ethin = √

V By/N, which always leads to a maximum coherence time for the su-
perconducting qubit given by the universal form

tspon = 2π �h
kBT

N . (4.37)
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Chapter 5

Conclusions

All many-body qubits have an intrinsic limit to their maximum coherence times.
This limit to coherence is caused by the thin spectrum. In quantum systems a con-
tinuous symmetry can spontaneously be broken in the thermodynamic limit due
to the thin states, which can be identified with the collective, zero momentum, ex-
citations of the orderparameter. In this part of the thesis I have outlined a general
procedure for finding the thin spectrum states in a quantum system. The states
within the thin spectrum are extremely low in energy and at the same time they are
so few that their contribution to the thermodynamic partition function vanishes.

After introducting a symmetry breaking field, the resulting symmetry broken
groundstate is a superposition of (only) the thin spectrum states. The fact that the
formation of the symmetry broken state occurs spontaneously in the thermody-
namic limit can then easily be checked by considering the non-commuting limits of
disappearing field and sending the number of involved particles to infinity.

This has important consequences for a many-body quantum system which is
brought into a superposition of two different internal states. We have shown that
in that case the thin states will in general participate in the time evolution of the
full many-body system, even if their effect on any thermodynamic quantity van-
ishes. This leads to dephasing and therefore decoherence when the thin states are
integrated out. We have found that the time-scale corresponding to the dephasing
process depends only on the energy scale of the thin spectrum and the energy shifts
induced in the thin spectrum by the superposed initial states. Because the shifts in
energy generally are proportional to the level spacing itself, the decoherence time
in the end depends only on the temperature and size of the system, and not on the
underlying details of the model.

We have shown how such superpositions can be defined and studied in a quan-
tum crystal, in the Lieb-Mattis antiferromagnet, and in different models for su-
perconductivity. In all of these cases we have shown that the presence of the thin
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spectrum states associated with spontaneous symmetry breaking, will lead to de-
coherence of the qubit within the time tspon = 2π �hN /kBT , where N counts the
number of microscopic constituent particles involved in the superposition state.
This timescale is universal in the sense that it does not depend on the underlying
model parameters.

In the relevant experimental systems, the decoherence caused by the thin spec-
trum is at the moment much weaker than that caused by other sources. However
it may well come within experimental reach within the near future, and we thus
present it as a challenge to the experimental community to actually measure the
maximum coherence time that the thin spectrum states give rise to.

The very existence of the thin spectrum and the fact that it can cause the de-
coherence of mesoscopic systems with a broken symmetry shows that even objects
in our everyday world, which we consider for all practical purposes to be classical
objects, can be subtly influenced by their quantum origin. Spontaneous symmetry
breaking provides us with an explanation of why the classical world can look classi-
cal in the first place, but it does not completely rule out the possibility of observing
Quantum Mechanical effects of the Big World.
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Chapter 1

Introduction

Now that we have seen that quantum mechanics can automatically reduce to classi-
cality through the process of spontaneous symmetry breaking [25,124], why should
we still set out to find an additional way of restricting its influence in the everyday
world? Why do we even need a collapse process?

To answer this question we again consider the canonical double-slit experiment
for single electrons which we discussed in the introduction of this thesis [30, 31].
In that experiment each electron produces only one single spot on the screen, even
though the interference pattern formed by a large collection of these spots shows
that just before the electrons hit the screen, their wavefunctions must have been
spread out all over space [35]. The fact that only one spot is produced in a sin-
gle experiment, and not a superposition of spots cannot be due to spontaneous
symmetry breaking. In fact we have already seen a worked out example of such a
situation in the previous part. In equations (3.17) – (3.19) of part III we described
the process of a two-spin singlet state being instantaneously included into the lat-
tice of an N -spin antiferromagnet. The result was a superposition of zero and two
magnon states. It can straightforwardly be checked that this result holds even in the
thermodynamic limit and in the presence of a non-zero symmetry breaking field.
Thus the symmetry breaking field can never force the antiferromagnet to choose
between having either zero or two magnons, just like it could never make the screen
choose to show one particular spot rather than another. The fact that we do observe
only a single spot in experiment demands another explanation: the collapse of the
wavefunction.

1.1 The Collapse Process

An adherent of the statistical interpretation of quantum mechanics might step for-
ward at this point and argue that the appearance of only a single spot on the screen
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is really due to our inability to monitor exactly what is going on in detail within the
microscopic environment of the screen. The fact that we see only a single spot and
not a superposition is then attributed to the decohering effect of the environment
which can diagonalize the reduced density matrix description of the combined sys-
tem of screen and electron [24, 40, 125–128]. The fact remains though that this
diagonal density matrix can only describe an ensemble of measurements, and that
there seems to be no valid description for the behavior of a single electron [18].

A more precise way of formulating the need for a collapse process is to say that
quantum mechanical time evolution is always unitary. In experiments this unitarity
is manifestly broken, as can be easily seen by realizing that the measurement process
does not have time-inversion symmetry. Starting from a single spot on a screen and
letting time run backward it is impossible to find a single electron in front of the
double slits of the exemplary experiment1. So what we need is the introduction of
an extra non-unitary process into the time evolution of quantum mechanics, and
this process we will call the collapse process [39]. By including such a non-unitary
process into the microscopic quantum mechanical theory we should eventually find
a description of the dynamics which define measurement.

The collapse has to possess three defining characteristics. First of all it must be
non-unitary and lead to evolution of quantum states into everyday states, like the
ones that can be observed all around us. In particular the final states of the collapse
process must not include macroscopic superpositions. The proper way to formalize
this requirement is by the introduction of a pointer basis, as was first pointed out by
Zurek [127,130]. The second requirement is that quantum mechanics must survive
unharmed for microscopic particles. In that regime quantum mechanics has been
very thoroughly tested and is certainly correct. One way to effectively make the
collapse process act on macroscopic bodies, but not on microscopic particles would
be to make it act on both, but to let the timescale over which it becomes noticeable
depend on the number of constituent particles or, equivalently, on the total mass
of an object. That way the process would take too long to notice for small systems,
but would be almost instantaneous for classical objects. The final requirement on
the collapse process is that it must reproduce Born’s rule [38]. The probability
for ending up in a certain macroscopic state after doing a measurement must be
equal to the squared amplitude of that part of the microscopic wavefunction that
corresponded to the measured value. This implies the introduction of uncertainty
and stochasticity into the time evolution in one way or another.

1In classical mechanics the fact that measurement can break time inversion symmetry while Newto-
nian mechanics is invariant under time inversion, is solved by introducing the concept of entropy, and
thus defining an arrow of time [129]. In quantum mechanics this is not sufficient, because one can easily
check, using the density matrix language, that one would still be left with macroscopic superpositions
that are not observed in nature [18].



88

Chapter 2

Penrose’s Observation

Many proposals exist for the way that quantum collapse could work in practice [8,
14–16, 26, 27, 40, 46–48, 52–60]. Some of these proposals are really alternative in-
terpretations of the mathematics of quantum mechanics rather than actual new
physical processes [8, 14–16, 40, 46–48], but even discounting those, many other
proposals remain. Most of these introduce some form of a randomly fluctuating
non-unitary term into Schrödinger’s equation in order to make the theory collapse
onto the pointer basis, but still obey Born’s rule [52–59]. In some cases the fluctu-
ating term is linked to gravity, so that the mass of a state can be used to discriminate
the microscopic particles from the macroscopic objects [58–60]. Building on these
ideas, sir Roger Penrose has made a very simple, yet important observation: the
necessary mass at which gravity could begin to have an effect on quantum mechan-
ics lies in a regime that has been out of reach for almost all possible experiments up
to now. With only very few exceptions [28,131], all experiments have been targeted
at either much lower masses, displaying only quantum behavior, or at much larger
masses, which always behave classically [26, 27].

2.1 Superposed Gravitational Fields

The core of the argument lies in the incompatibility of quantum mechanics and
general relativity. Quantum mechanics is a strictly unitary theory while general rel-
ativity is characterized by the covariance of physics under general coordinate trans-
formations (the theory is diffeomorphism invariant). These two properties cannot
be reconciled with one another. A simple way of seeing this is to consider some
lump of mass in a (deep) double well potential [26]. A state in which the lump
is stationary in one of the wells can be labeled |L〉, and analogously the state with
the lump in a neighboring well can be labeled |R〉. The states |L〉 and |R〉 are sta-
ble states in the quantum mechanical description because they are eigenstates of
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the Hamiltonian. Because both states have the same energy quantum mechanics
dictates that the superposition state

|ψ〉 = α |L〉 + β |R〉 , (2.1)

is also a stable eigenstate of the Hamiltonian, carrying the same total energy. Grav-
itationally, each of the states |R〉 and |L〉 individually is also a stable state because
they are eigenstates of their associated time translations as given by the Killing vec-
tor fields (i.e. the states are eigenvectors of the operator ∂/∂ t ). In general relativity
however, there is a problem with deciding whether or not the superposition state is
a stable state. First of all the principle of general covariance forbids us to assign a
coordinate to each individual point in spacetime, and thus there is no meaningful
way of distinguishing between states |L〉 and |R〉. As far as gravity is concerned there
really is only one state. This technicality can be circumvented by introducing some
massive object (say, the earth) at a reasonable distance from the periodic potential
so that |L〉 and |R〉 can be distinguished even in a covariant way by their distance
to the earth. But then the second and more serious problem arises: even if the two
states can be distinguished, then still the gauge freedom of general relativity for-
bids a global pointwise identification of the two different, superposed spacetimes.
The only allowed thing to do is to match the superposed geodesics locally. With-
out a global pointwise identification though, it becomes impossible to discuss the
direction of the Killing vector at a specific point in spacetime, and thus it becomes
impossible to define the time evolution of the superposed states [26, 27].

2.1.1 Approximate Pointwise Identification

The best thing that can be done to describe the superposition of the two states is
to identify the points of one spacetime as closely as possible with the points of the
other, and to use the ill-definedness of the identification as a measure of the corre-
sponding uncertainty in total energy [26]. The ’fuzziness’ in the concept of energy
for the superposed state can be interpreted as an indication that we are dealing
with an unstable configuration, and in accordance with Heisenberg’s uncertainty
principle we can then postulate that an uncertainty in energy �E of this unstable
superposed state should correspond to a lifetime τ = �h/�E of the state |ψ〉. In
other words, the uncertainty in energy (or time translation) introduced by general
relativity will lead to the collapse of |ψ〉 into either the stable state |L〉 or |R〉, within
a collapse time τ .

One way to give a mathematical description of the mismatch between two space-
times is to do the best possible pointwise identification and then to look at the dif-
ference between the force that a free-falling observer feels at a certain point in one
state and the force at the same point in the other state. This basically is a measure
of how well one has succeeded in matching the geodesics of one spacetime to those
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of the other. The definition of the mismatch in terms of these forces is coordinate
independent and invariant under accelerations of the coordinate frame [26].

Figure 2.1: A spacetime diagram in one spatial dimension depicting the mismatch
in geodesics between the two superposed spacetimes. A free falling observer start-
ing out from a position exactly between |L〉 and |R〉 will trace out the thin geodesic,
while the mass at |L〉 or |R〉 will follow the thick world line. The uncertainty in en-
ergy of the superposition of spacetimes follows from comparing the thin geodesics
in the two superposed states.

The uncertainty in energy corresponding to the mismatch in forces is easily
found by integrating the size of the force difference over the space coordinates in a
single time slice [27]:

�E =
∫ (

F − F′) · (F − F′) dx

=
∫ (∇�− ∇�′) · (∇�− ∇�′) dx

= −
∫ (

�−�′) (∇2�− ∇2�′) dx. (2.2)

Here F is the force on a freely falling observer, � is the gravitational potential and
the integration is done over all of space within a single time slice. Unprimed quan-
tities refer to the state |L〉, while primed quantities are to be evaluated in state |R〉.
By using Poisson’s formula and the integral equation for the gravitational potential,
this expression reduces further to

�E = 4πG

∫ (
�−�′) (ρ − ρ ′) dx

= −4πG

∫ ∫ (
ρ(x)− ρ ′(x)

) (
ρ(y)− ρ ′(y)

)∣∣x − y
∣∣ dxdy, (2.3)
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which is just the gravitational self energy of the difference between the two mass
distributions1 [27].

2.1.2 The Collapse Time

The fact that it is impossible to define a Killing vector field for a superposition of
two different spacetimes, makes it plausible that the superposition state is in fact
unstable. In that case an estimate for its mean lifetime is given by Heisenberg’s
uncertainty relation to be

τcoll = �h
�E

. (2.4)

This time can then be interpreted as an effective collapse time. At times greater then
the mean lifetime the superposition state typically will have decayed into one of the
two gravitationally stable component states.

None of the above considerations give us any clue as to how the collapse process
would work in practice, nor do they give us any indication of which direction to
take to even begin looking for a theory that might unite quantum mechanical and
gravitational time evolution. However, if we assume for the moment that such a
collapse process exists, and that it is caused by the incompatibility of superpositions
and general covariance giving rise to an uncertainty in energy, then it is clear that
the timescale at which the collapse should take place is of the order of τcoll.

The main point in Penrose’s observation is that the size of this timescale is rather
special. For microscopic particles it is enormously large. A simple estimate shows
that a single proton can be expected to stay in a superposition state for at least a
few million years, and thus its decay will never be observed. On the other hand
the timescale becomes short for macroscopic bodies. Even a drop of water with a
diameter of only a hundredth of a millimeter will not sustain a superposition for
more than a millionth of a second, and it will thus for all practical purposes always
seem to be in a classical state. The surprising observation is that the regime in
between, where the mass is such that the collapse time becomes measurable, has
not been experimentally explored at all yet and in fact seems to be just beyond the
reach of what can currently be experimentally tested [28, 131]. That region though
is the place to look if one wants to establish whether gravity has anything to do with
wavefunction collapse.

2.2 The Schrödinger-Newton Equation

To theoretically study the possibility of gravitationally induced quantum collapse
any further, one will need to introduce a specific model, which describes exactly

1Notice that this expression also includes an infinite self energy term that comes from the interaction
of each point with itself. This part of the energy �E is neglected in the calculations that follow.
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how gravity alters the usual quantum mechanics. In particular, the model will have
to provide a time evolution for the actual collapse process, and it will have to single
out one specific basis into which classical (or macroscopic) bodies will collapse. In
order to provide just such a basis, Penrose introduced the so called Schrödinger-
Newton equation [26, 27, 29]

− �h2

2m
∇2ψ + Uψ = Eψ

∇2U = 4πGm2 |ψ |2 , (2.5)

where ψ is the quantum mechanical wavefunction, U is the gravitational self energy
which acts as a potential energy, and E is the total energy eigenvalue.

The Schrödinger-Newton equation is a non-linear eigenvalue equation in which
the expectation value of the wavefunction itself serves to generate the potential en-
ergy which helps determine the eigenfunctions of the equation, and thus the stable
wavefunctions of the system. This extended form of the Schrödinger equation has
been studied in the spherically symmetric limit and a set of "bound state" solutions
has been found [29]. What has not been considered yet is what this form of the total
energy operator would imply for the actual time evolution of a microscopic system.

Different forms of a time evolution operator involving gravity have been intro-
duced by others [58–60]. Most of these approaches have the disadvantage that they
need to introduce either a large number of randomly fluctuating fields or, equiv-
alently, a random localization process. Since none of these randomly fluctuating
fields has actually been observed, it is difficult to experimentally test or distinguish
these different theories.

Before we turn to a discussion of the time evolution implied by the Schrödinger-
Newton equation, we will first show in the following chapter that it is possible to
make an experimental prediction based on Penrose’s ideas without invoking any
specific scheme for the description of the exact time evolution.
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Chapter 3

An Experimental Test

Assuming that gravity has something to do with the quantum collapse process, and
assuming that this leads to a timescale τcoll, as proposed by Penrose, it is possible
to make at least some experimental predictions without referring to any underlying
description of the collapse process. In particular, we will consider in this chapter
what the idea of having a gravitationally induced collapse would imply for the su-
perposition state of counter rotating supercurrents in a flux-qubit.

3.1 The Flux Qubit

In recent years there has been an enormous experimental effort to create and con-
trol quantum superposition states [36, 79, 80]. The pursuit is fueled by the hope
that one day we’ll be able to control the quantum world with such accuracy that we
could build a quantum computer. The concept of the quantum computer was con-
ceived by various people already in the 1970’s, and popularized in 1981 by Richard
Feynman [132]. After Peter Shor showed in 1994 that a quantum computer could
be used to factorize large integers and thus potentially break encryption codes used
by conventional computers [133], the race for creating a quantum computer in the
lab broke loose. Many different proposals and realizations of single qubit systems
have been studied since. One of the proposed setups for creating a qubit (i.e. a con-
trollable quantum superposition) is to take a superconducting loop which contains
a Josephson junction, and use a magnetic flux to put it into a superposition of a
clockwise and a counterclockwise rotating supercurrent [78, 80, 81].

Because a supercurrent is a collective, coherent current of a macroscopic num-
ber of electrons, the superposition state that is achieved in the flux qubit is a sort of
macroscopic Schrödinger cat like state [78]. The combined weight of all the elec-
trons in the supercurrent can in principle be made so large that gravitational effects



94 PART IV, CHAPTER 3. AN EXPERIMENTAL TEST

Figure 3.1: An STM image of the superconducting flux qubit used in Delft [80].
Supercurrent circulates both clockwise and anti-clockwise through the central ring.
The ’obstructions’ in the ring are the Josephson junctions.

of the type envisioned by Penrose might become observable. If we have an indica-
tion of the timescale on which to expect the onset of gravitational collapse, and a
way to distinguish gravitational collapse from the usual processes of decoherence,
then the flux qubit could prove to be a window through which we can study the
quantum collapse process.

3.1.1 Trains and Wagons

In the proposal by Penrose the uncertainty in energy due to gravity equals the self
energy of the difference of the mass distributions of the superposed states. If we
were to apply that principle blindly to our scenario, then we would immediately
be faced by an infinite lifetime of the superposition state in the flux qubit. After
all, there may be a macroscopic current which is moving both clockwise and coun-
terclockwise, but the mass distribution associated with that current is the same for
both directions, and constant in time1. Thus, a uniform current would be allowed
to flow in superposition forever. This certainly is not a property that we want to
have in a quantum collapse theory. After all, the exact same reasoning could be
used to argue that a sufficiently smooth soccer ball could be shot at the goal in a su-
perposition of top and bottom spin, or that a sufficiently densely packed passenger
train could ride a circular track in opposite directions at the same time.

The way out of this dilemma is in fact a very simple one: the supercurrents as
a whole may have a vanishing difference of mass distributions, but if we consider

1There may be a relativistic correction to the uniform mass distributions associated with the different
framedraggings induced by the current but since this effect has a prefactor of order v/c , it is neglected
in the present discussion.
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only a part of the current, then the individual part certainly does have a non-zero
gravitational self energy. The reasoning thus comes down to saying that a train can
be brought into a superposition state if and only if all of its wagons individually
could be brought into a superposition state of their own. In other words, if a single
wagon were to collapse under its own gravitational influence then the entire train
must follow, even if the mass distribution of the train as a whole does not necessarily
call for a cessation of the superposed state.

In our case we are allowed to discuss the supercurrent in a flux qubit as if it
were a quantum train built up out of different wagons, as long as we represent the
wagons by large enough patches of supercurrent. If we only consider patches of
supercurrent that are at least large enough for Heisenberg’s uncertainty relation to
allow a relatively well defined local phase (by using�ϕ�N > �h and�ϕ ∝ 1/

√
N)

and thus a well defined local orderparameter, then we can identify a particular spa-
tial region using its local phase and follow it in time as if it were a colored wagon
riding along in a train of patches of supercurrent. To see whether the whole of the
supercurrent can be in a superposition of counter rotating states, we will have to
consider the spatial superpositions of all possible sizes of patches of supercurrent
large enough to be individually identified, and then ensure that none of them will
individually collapse.

3.2 Self Energy

Consider a piece of the superconducting ring which is short enough to approximate
it, for the time being, by a straight strip. At time t = 0 we can identify a piece of
supercurrent of length L, and then follow it along as it starts to flow both to the left
and to the right. In the beginning the two superposed copies of the original piece
will still overlap, and the gravitational self energy of their difference in mass distri-
bution will be due only to the non-overlapping flanks. At a time t = t1, the two
copies will just touch each other, and then start to move apart, thus increasing their
gravitational energy because of a growing distance, rather than because of a growing
amount of non-overlapping mass. The gravitational self energy in both cases t < t1

and t > t1, is easily calculated by evaluating the integral for �E (equation (2.3)),
while keeping in mind that we should throw out the (infinite) contribution to the
self energy caused by the interaction of each flank with itself. In the calculation we
can assume all the mass of the non-overlapping part of the superposed pieces of
supercurrent to be concentrated in their respective centers of mass, so that we can
write the density distribution as |ψ(x)|2 = 1

2 (δ (x − L/2)+ δ (x + L/2)) (see fig-
ure 3.2). The remaining gravitational "interaction" energy between the flanks then
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becomes

�E = 2G

∫ ∫ 1
2 M1δ (x − L/2) 1

2 M2δ
(
y + L/2

)∣∣x − y
∣∣ dx d y

= 1

2
G

M1M2

L
. (3.1)

Here M1 and M2 are the masses of the non-overlapping pieces on the left and right,

Figure 3.2: Schematic depiction of the superposition of two blocks of supercurrent.
Both blocks have length L, and have moved d/2 from their coincidence position.

while L is the distance between them, as in figure 3.2. Clearly the energy �E is just
the usual Newtonian gravitational energy of the masses M1 and M2. If the width
of the non-overlapping piece is d then M1 = M2 = d

L M , with M the mass of the
total piece of supercurrent under consideration. The gravitational self energy then
becomes

�E = 1

2
GM2 d2

L3
. (3.2)

3.2.1 Alternative Approaches

Although the calculation of the self energy using the integral equation (3.1) is very
straightforward in the case of straight strip of material, it can become rather cum-
bersome if we consider different geometries for the superconducting device, es-
pecially in the regime where there still is a finite overlap between the superposed
copies. It will therefore be good to consider two alternative ways of identifying the
gravitational self energy in that regime. Of course both of these alternative methods
will in the end be precisely equivalent to the formal integration of equation (3.1).
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The Gravitational Plasmon

One possible approach is to see the current setup as a gravitational analogue of the
k = 0 plasmon. In electrodynamics such a plasmon is formed by displacing the
negatively charged particles in a piece of material while keeping the compensating
positively charged background fixed [64]. The two oppositely charged surfaces at
the flanks of the material then create a constant electrical field throughout the ma-
terial. All charges within the material consequently feel a constant force which pulls
the displaced piece back in line with the background. The acceleration caused by
these forces is exactly that of a harmonic oscillator, and thus the piece of displaced
material starts to oscillate with a finite frequency (and a finite energy) [64].

Our case is a bit different because gravity is uniformly attractive, and because
we would like to consider only the centers of mass of the non overlapping pieces
instead of an infinitely wide surface charge. Nevertheless the moral of the story
remains unchanged. The two displaced pieces of mass (as depicted in figure 3.2)
act on each other via a gravitational force between the flanks. This force field does
not have any effect on the overlapping pieces of mass, because of the symmetry
of the setup. However the motion that results from the applied force on the flank
influences the whole of the displaced mass, since it does form a rigid body. Thus
the mass that is accelerated by the force on the left flank is M , and not just M1.
Putting all of these ingredients together, it is clear that the force which M2 exerts on
a (test)mass m1 located at the center of mass of M1 will be

Fm1 = G
m1M2

L2
. (3.3)

The resulting acceleration is independent of the mass of m1, and given by

a1 = G
M2

L2
. (3.4)

This acceleration is shared by the entire left block of mass M . After parametrization
of the position of the leftmost side of that block with x0, the mass of the right
flank becomes M2 = 2ρAx0, with ρ the mass density and A the area of the strip
perpendicular to its length L (see figure 3.2). We can then write

ẍ0 = a1

= −GρA
2x0

L2

⇒ x0 = −d

2
cos

(√
GρA

2

L2
t

)
, (3.5)

where in the last line we have used the boundary conditions x0(0) = − d
2 and

ẋ0(0) = 0. The gravitational self energy that we are after is the same as the po-
tential energy of the gravitational plasmon, which in turn equals the total kinetic
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energy of both of the superposed pieces at the moment that x0 = 0. This energy is
now easily found to be

Ekin = 2
1

2
M

(
ẋ0|x0=0

)2

= 1

2
G (ρA)2

d2

L

= 1

2
GM2 d2

L3
, (3.6)

which equals (3.2), as anticipated.

The Work of Separation

The second possible way to arrive at the same result is to consider the work done
in pulling apart the two copies of our piece of supercurrent. If we always pull with
equal force to the left and to the right, then at each point along the way the force to
be overcome on, say, the left piece is

FM1 = G
M1M2

L2
. (3.7)

However, the mass that we are moving is not only M1, but in fact the full mass M
of the entire piece of current under consideration2. The work done on the left piece
of supercurrent is thus

W1 = G

∫
M M2

L2
dx. (3.8)

Writing everything again in terms of d and x0, the total work done on both copies
of the supercurrent during the separation process turns out to be

W = 2G
M2

L3

∫ L
2

L+d
2

(2x0 − L) dx0

= 1

2
GM2 d2

L3
. (3.9)

Again of course this equals the result (3.2). In more complicated situations calculat-
ing the work done will turn out be easier than evaluating the formal integral (3.1).

2This situation is precisely analogous to the one for the gravitational plasmon, where ẍ0 was propor-
tional to M2, while the kinetic energy was written as 1/2M ẋ0

2.
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3.2.2 The Collapse Time

Having found the gravitational self energy of the superposition state of a linear piece
of current within a string of superconducting material, we can now evaluate the
time at which that superposition must collapse because of the instability induced
by gravity. If the current velocity is v, and the two copies start moving apart at
t = 0, then the gravitational self energy can be written as

�E =
⎧⎨
⎩

1
2 GM2 (2vt )2

L3 if vt ≤ L
2

GM2
(

1
L − 1

4vt

)
if vt ≥ L

2

�E =

⎧⎪⎨
⎪⎩

1
2 G (ρA)2 (2vt )2

L if vt ≤ L
2

G (ρA)2
(

L − L2

4vt

)
if vt ≥ L

2

. (3.10)

In the last line we have used M = ρAL to write everything in terms of the length of
the piece of current under consideration. Notice that the velocity v of the patch of
current is directly proportional to the strength of the current I . The initial increase
of the gravitational self energy (3.10) is caused by the increasing amount of non-
overlapping mass at the flanks, while after t = L/2v the growth in energy is purely
due to the growing distance between the superposed copies. A sketch of the function
�E is given in figure 3.3.

The timescale τ associated with the uncertainty in energy due to gravity is given
by Heisenberg’s uncertainty relation (2.4). The collapse of the separating pieces of
supercurrent can be expected to occur as soon as the lifetime according to Heisen-
berg’s uncertainty relation equals the actual time that the superposition has existed.
For the case of the linear strip of supercurrent this amounts to

tcoll = τ (tcoll) = �h
�E (tcoll)

tcoll =

⎧⎪⎨
⎪⎩

�hL
2G(ρAvtcoll)

2 if vtcoll ≤ L
2

4�hvtcoll

G(ρA)2L(4vtcoll−L)
if vtcoll ≥ L

2

⇒ tcoll =

⎧⎪⎨
⎪⎩

3
√

�hL
2G(ρAv)2 if tcoll ≤ L

2v

�h
G(ρA)2L

+ L
4v if tcoll ≥ L

2v

. (3.11)

For large enough L the collapse time in fact increases with increasing size of the
piece of current under consideration. This may seem rather counter-intuitive at
first sight, but it is simply due to the form of the self energy (3.2). The self energy for
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Figure 3.3: Sketch of the gravitational self energy of the difference in mass distri-
bution of two separating copies of a block of supercurrent in a linear chain. The
different curves represent different sizes of the block of supercurrent under consid-
eration. The line with the lowest final energy describes the smallest block of current.

a large block displaced over a distance d = vt is less then the self energy of a smaller
block displaced by the same amount. This can easily be understood by considering
the work done in creating the superposition. Only the non-overlapping flanks exert
a force on each other (see figure 3.2). The force depends on the masses of the non-
overlapping parts, which is always just ρAd, and on the distance between them.
Because the separation of the flanks is larger for a larger piece of current, the self
energy stored in the superposition is smaller. If we compare a small and larger block
displaced over their respective body sizes however, then of course the energy in the
larger piece is higher.

To now find the actual collapse time of the entire flow through a linear super-
conducting strip, we apply the train-and-wagon reasoning discussed in the begin-
ning of this chapter, and consider all possible sizes of separating blocks of current.
We should then find out which of these collapses first, and conclude that that col-
lapsing piece of current will cause the entire flow to come to a halt. The minimum
collapse time with respect to the block size L, streaming at a given velocity v, is
easily found to be

t min
coll =

√
�h

G (ρA)2 v
. (3.12)
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So we conclude that even though an infinitely long strip of supercurrent flowing
both left and right represents a superposition state involving an infinite amount of
superposed mass, it does not collapse within an infinitely short time. In fact, it can
remain in that superposition state for the finite time t min

coll . On the other hand, even
though the mass distribution of the superposed states as a whole is exactly the same,
the superposition state will also not be able to exist for an infinitely long amount of
time. Indeed, it will have to collapse after the finite lifetime given by t min

coll .
If one could actually construct an infinitely long superconducting wire with

a cross section comparable to those used in the flux qubits, and one could then
somehow create a current of, say, about 1 µA running both up and down the wire,
then this superposed current could exist according to (3.12) for just about one hour.
In comparison, a human moving into a superposition state with a speed of 1 m/s
would collapse after 10−14 seconds, and reach a maximum separation of superposed
copies of only 10−14 m.

3.3 The Flux Qubit Collapse

Having worked out the simple case for a straight, infinitely long superconductor,
we can now turn to the actual flux qubit. In the end the main experimental diffi-
culty will be to distinguish the gravitationally induced collapse from the different
environmental decoherence processes [24]. One possible way to shed light on that
matter would be to see if the collapse time depends on the exact geometry of the
qubit, since decoherence effects in general do not [134]. Let’s therefore consider
a superconducting ring that consists of two parts with different cross sections, as
shown in 3.4. By independently varying the areas of the two regions we can then
study the dependence of the collapse time on the geometry of the qubit. To simplify
the calculation we will assume that the volumes of both parts are equal, and we will
only consider a superposed flow of blocks of supercurrent which start at t = 0 with
their centers of mass exactly at the transition point between large and small cross
sections.

3.3.1 The Gravitational Self Energy

In analogy with the previous section we will first consider the self energy due to the
non-overlapping flanks of the superposed pieces of supercurrent. The distance be-
tween the center of mass coordinates of the two copies, measured along the perime-
ter of the circularly shaped qubit depicted in 3.4 and 3.5, can straightforwardly be
written as

Larc = 1

2

[(
A1

A2
− 1

)
x1 +

(
1 − A2

A1

)
x2 + A1 + A2

A1A2

M

ρ

]
, (3.13)
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Figure 3.4: Schematic picture of the proposed flux qubit geometry. By indepen-
dently varying the areas of the two regions it is possible to study the dependence of
the collapse time on the geometry of the qubit.

where M is the mass of the block that is to be superposed, and A1 and A2 are the
cross sections perpendicular to the current flow in the different parts of the qubit.
The gravitational force between the two flanks does not act along the perimeter

Figure 3.5: Left: schematic representation of the separating blocks of current. The
left and right side of block 1 are X L

1 and X R
1 respectively, and its centre of mass is at

X1. Right: diagram showing the orientation of forces in the flanks of the block of
current.

of the circle, but rather along the chord connecting the centers of the flanks. The
part of the force along the tangent to the circle will contribute to the work done
in creating the superposition state, while the part of the force perpendicular to the
circle will not contribute anything and can be discarded (see figure 3.5). These
quantities can be expressed in terms of the arc length Larc and the (mean) radius of



3.3. THE FLUX QUBIT COLLAPSE 103

the flux qubit R as

Lchord = 2R sin

(
Larc

2R

)

Ftan = F cos

(
Larc

2R

)
. (3.14)

From geometric considerations it is clear that if the strengths of the currents moving
in opposite directions are equal, then so are the masses of the flanks. Additionally,
the centers of mass of the superposed blocks of current must then obey the relation
x1 = − A2

A1
x2. We can now simply calculate the work done on for example block 1

in creating the superposition state, and find it to be

W1 =
∫ v1t

0
GMρ (A2x2 − A1x1) cos

(
Larc

2R

)
/L2

chord dx1

= GM
ρA1

4R2

cos
(

Larc
2R

)
sin2

(
Larc
2R

) (v1t )2 . (3.15)

If we combine the work done on both of the copies and write everything in terms of
dimensionless quantities then the total gravitational self energy of the superposition
reduces to

Y = 1

4πN

cos
(
π
N

)
sin2

(
π
N

)X2 for 0 ≤ X ≤ π

N
, (3.16)

where we have defined X ≡ t I
ρe R

A1+A2
2A1A2

and Y ≡ E R
GM2

tot

A1+A2
2A1 A2

, with ρe the charge

density of the supercurrent, Mtot the total mass of the supercurrent around the full
ring and N ≡ Mtot/M the number of patches of supercurrent needed to cover the
whole ring.

After the two copies of the block of current have been completely detached from
one another, the energy added to them during further separation is just the normal
Newtonian self energy of two separated masses E = GM2 (1/L0 − 1/L). Express-
ing this in terms of dimensionless units as well, and realizing that after the blocks
have rounded a quarter of the ring they will start coming together again, we can
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write the full expression for the self energy during half a revolution as

Y = 1

4πN

cos
(
π
N

)
sin2

(
π
N

)X2 for 0 ≤ X ≤ π

N

Y = π

4N 3

cos
(
π
N

)
sin2

(
π
N

)
+ 1

2N 2

[
1

sin
(
π
N

) − 1

sin (X)

]
for

π

N
≤ X ≤ π

2

Y (X) = Y (π − X) for
π

2
≤ X ≤ π . (3.17)

This form of the gravitational self energy has been plotted in figure 3.6 for different
values of N .

If the current has not collapsed after half a revolution then the superposed
blocks will be exactly on top of each other again, and thus stable with respect to
gravity. We therefore only need to consider the current up to X = π , because if it
has not collapsed by then, the supercurrent will be able to outrun the gravitational
collapse process forever.

Figure 3.6: The dimensionless energy Y ≡ E R
GM2

tot

A1+A2
2A1A2

as a function of the di-

mensionless time X ≡ t I
ρe R

A1+A2
2A1 A2

. As in figure 3.3, the different curves represent

different sizes of the block of supercurrent under consideration (parametrized by
N ). The curve with the lowest maximum has the highest value for N .
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3.3.2 The Qubit Collapse Time

Having found the gravitational self energy of a piece of current within the flux qubit,
we can again use Heisenberg’s uncertainty relation to construct the maximum life-
time for that piece. The collapse time of the counter rotating currents as a whole
must then correspond to the shortest possible collapse time of any of the current’s
building blocks.

Using the definition for the gravitational self energy (3.17), we can define Y max

as the maximum Y with respect to N for a given X . The condition for the collapse
time to equal the inverse of the gravitational energy then becomes, in dimensionless
units

XY = Z , (3.18)

with Z ≡ I
�h

GM2
totρe

A1+A2
2A1A2

. We can then use a simple computer program to trace

out the collapse ’time’ Xcoll as a function of the ’current’ Z . The curve thus found
is depicted in figure 3.7. As it turns out there is a very good and simple fit of the
curve, given by

Z = b
[

1 − cos
(π

a
Xcoll

)]
. (3.19)

with the fitting parameters a = 2.17 and b = 0.029.
To come to the final expression for the collapse time in terms of the applied

current and the geometrical parameters of the flux qubit, we reinsert dimensionful
units, and invert the expression for Z (Xcoll) to find

tcoll = a

π

ρe

I

2A1A2

A1 + A2
R ·

arccos

[
1 − 1

b

�h
Gm2

e

(
qe

2πρe

)2 I

ρe

(
A1 + A2

2A1A2

)3 1

R2

]
. (3.20)

Here qe and me are the charge and mass of an electron. Notice that in the limit R →
∞ the functional form of this expression reduces to that of equation (3.12)3. From
this expression it is immediately clear that if the current becomes large enough to
make the argument of the arccosine smaller than −1, then there will be no collapse
time. This signifies the point at which the current moves so fast that it can move a
block of current of any size all the way around the (half) loop of the qubit before
its gravitationally induced energy uncertainty has had a chance to collapse it. If I is
smaller than that, then collapse is inevitable, and the collapse time is given by tcoll.

3To be precise, the limit R → ∞ yields tcoll = a/(
√

2b π 2
√

�h/G(ρA)2 v = 0.91
√

�h/G(ρA)2 v. The
difference in the prefactor from the earlier result is due to the fact that in the ring the collapse can also
occur as the two copies of a piece of supercurrent are moving toward each other. If we consider only the
self energy for pieces of supercurrent in one half of the ring, then the prefactor would indeed come out
to be one.
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Figure 3.7: The dimensionless collapse time Xcoll as a function of the dimensionless
current Z . The fit is the line defined by equation (3.19).

Practical Implications

In order to be able to measure the collapse time tcoll in the lab, we’ll need to make
it as small as possible. After all, the gravitational collapse must occur before any of
the normal processes of decoherence has had a chance to destroy the superposition
state. The difference between A1 and A2 does not seem very useful in that regard.
We might as well have taken just a uniform cross section. However, the dependence
of tcoll on (A1 + A2) /2A1A2 does provide an additional test to see if we really are
dealing with gravitationally induced collapse. To make the lifetime tcoll as small as
possible, one should stick with just one cross section A, make the current as large
as allowed, and then further tune the system by making A larger while keeping RA
fixed. In the end this will lead to a very narrow, very long cylinder of superconduct-
ing material, with a slit etched out along its length to allow for the placement of a
Josephson junction. The superposition state is the created by piercing exactly half a
flux quantum through the inside of the superconducting tube.

Looking at state of the art experimental setups like the ones used in the flux
qubit experiments in Delft [80, 81], the maximum possible current in a qubit turns
out to be of the order of a microamp with a qubit radius of around a micrometer.
Using these values, the condition for the current not to outrun its own collapse
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process reduces to

I

R2A3
≤ 1027

A ≥ 10−7, (3.21)

satisfying this condition with A as small as possible, the collapse time becomes ap-
proximately

tcoll � 108 AR

I
tcoll � 10 sec. (3.22)

So, in the end we need to create a flux tube with a cross section of its wall of about
10−7 m2, and then still the collapse time is of the order of 10 seconds. Measuring
the gravitationally induced collapse in a flux qubit thus seems to be a rather tough
experimental challenge indeed! Especially since normal environmental sources of
decoherence tend to increase with system size [134].

But with the present sharp rise in experimental know-how regarding the ma-
nipulation of nano-sized objects and the fabrication of this kind of flux tube, the
experimental test of the idea that gravity might lead to the instability of quantum
superpositions and consequently to quantum collapse, may come within reach in
the future.
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Chapter 4

Time Evolution

As we have seen in the previous chapter, the assumption that gravity induces some
uncertainty in the total energy of a quantum superposition state and thus allows
quantum superpositions only a finite lifetime given by the inverse of that energy
uncertainty can in principle lead to testable predictions about the timescale at which
collapse is expected to occur. On the other hand, it does not tell us anything about
the dynamics of the collapse process itself [26]. The equations that are supposed to
lead from a well defined microscopic superposition state to a collapsed macroscopic
measuring apparatus remain completely unknown.

In addition to describing the incompatibility of quantum mechanics’ unitarity
and gravity’s general covariance, Penrose also proposed to use the so called Schrö-
dinger-Newton equation as the defining equation for which states could be sta-
ble under gravitationally induced collapse, and which could not [29]. This Schrö-
dinger-Newton equation is a non linear set of equation defined as

− �h2

2m
∇2ψ + Uψ = Eψ

∇2U = 4πGm2 |ψ |2 . (4.1)

Because the total energy operator is the generator for time translations, we should
in principle also be able to use these equations to describe the dynamical collapse
of a quantum superposition. In this chapter we will take the Schrödinger-Newton
equation (4.1) not as a simple Ansatz which is meant to hint at the final shape of
gravitationally collapsed states, but rather as a literal replacement for the Hamilto-
nian which can give us both the total energy and the time evolution of a quantum
mechanical superposition state.
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4.1 A Two State Measurement

The very simplest possible experiment that any description of a collapse process
should be able to describe is the reduction of a macroscopic superposition over two
distinct states to just one of these states. One can imagine the macroscopic superpo-
sition to be formed in a process akin to the one used in the previous part to describe
the interaction between a two spin singlet and an antiferromagnet (3.17)-(3.19).
The general idea is thus that we start out with some microscopic superposition of
two different quantum states. The difference between these states might give rise
to a gravitational self energy, but the mass involved is supposed to be so small that
the microscopic matter will not collapse by itself. At some point in time a cou-
pling between the microscopic state and a macroscopic measuring machine will be
instantaneously turned on. In general this will yield a macroscopic superposition
and the difference between the superposed states will in general also have a finite
gravitational self energy. Now the macroscopic mass involved in this self energy
is expected to make the collapse process very fast, and as a result it will seem as if
an instantaneous measurement has yielded only one of the two possible outcomes.
Optimally the distribution between the two outcomes found in many repetitions of
the experiment would mirror the squared wavefunction of the microscopic super-
position that we started out with, in accordance with Born’s rule [38].

4.1.1 The General Two State Time Evolution

To see whether the Schrödinger-Newton equation can indeed lead to the collapse of
a two state measurement, we will first write down the generic time evolution of a
superposition of two states. The most general superposition state over a basis with
two elements is given by

|ψ0〉 = nei χ2
[

ei ϕ2 cos (θ /2) |0〉 + e−i ϕ2 sin (θ /2) |1〉
]

, (4.2)

where n is the norm of the wavefunction, which is usually set to 1, and where χ
is the total phase which is usually ignored because it cannot be measured by any
quantum mechanical process. To define the time evolution of this wavefunction we
introduce a generator for time translations G [62]. In its most general form, this
generator is just a complex 2x2 matrix in the basis {|0〉 , |1〉}, with eight independent
real entries:

G =
(
αR + iαI βR + iβI

γR + iγI δR + iδI

)
. (4.3)

The Hermitian part of this generator will coincide with the usual Hermitian quan-
tum mechanical Hamiltonian H , while the remaining non-Hermitian (and possibly
even non-linear) part should lead to the non-unitary collapse dynamics. The time
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evolution of the wavefunction can be generated from the definition of G by looking
at the infinitesimal time translation of |ψ0〉

|ψε〉 = eiεG |ψ0〉
= (

1 + iεG + O
(
ε2)) |ψ0〉

≡ N ei X
2

[
ei Φ2 cos (�/2) |0〉 + e−i Φ2 sin (�/2) |0〉

]
. (4.4)

Here ε is an infinitesimally small parameter that measures time. The parameters N ,
X , Φ and � defining the new wavefunction at time t = ε are written in terms of
the old parameters n, χ , ϕ and θ at time t = 0, and are defined to first order in ε . It
is now easy to extract the time evolution of these parameters using the definition of
the time derivative. The time derivative of for example n is given by the limit ε → 0
of (N − n) /ε . After some algebra this implies that

θ̇ = (αI − δI ) sin (θ )+ 2 (βI cos (ϕ)− βR sin (ϕ)) sin2 (θ /2)

−2 (γI cos (ϕ)+ γR sin (ϕ)) cos2 (θ /2)

ϕ̇ = (αR − δR)+ (βR cos (ϕ)+ βI sin (ϕ)) tan (θ /2)

− (γR cos (ϕ)− γI sin (ϕ)) cot (θ /2)

χ̇ = (αR + δR)+ (βR cos (ϕ)+ βI sin (ϕ)) tan (θ /2)

+ (γR cos (ϕ)− γI sin (ϕ)) cot (θ /2)

ṅ = −αI cos2 (θ /2)− δI sin2 (θ /2)+ 1/2 (βR − γR) sin (ϕ) sin (θ )

−1/2 (βI + γI ) cos (ϕ) sin (θ ) . (4.5)

Notice that in the case of purely unitary time evolution, generated by a purely
Hermitian generator G, the derivatives simplify considerably, and become identical
to the usual quantum mechanical time evolution

θ̇ = 2 (βI cos (ϕ)− βR sin (ϕ))

ϕ̇ = (αR − δR)− 2 (βR cos (ϕ)+ βI sin (ϕ)) / tan (θ )

χ̇ = (αR + δR)+ 2 (βR cos (ϕ)+ βI sin (ϕ)) / sin (θ )

ṅ = 0. (4.6)

4.1.2 Specific Time Evolutions

It is clear from the time derivatives (4.5) that the total phase and norm variables do
not influence the time evolution of the superposition state as long as the generator
G does not explicitly depend on them. We can thus study the time evolution by
considering only the variables ϕ and θ . Their time evolution can be visualized as a
flow on the Bloch sphere (see figure 4.1). Each flowline on the sphere then repre-
sents the path traced out by the time evolution of an initial state somewhere along
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the path. As long as the time evolution is purely unitary, and the generator G thus
purely Hermitian, the flow pattern is in fact always the same: it consists of rotations
around an axis spanned by the two eigenstates of the Hamiltonian, as depicted in
figure 4.2. These eigenstates are always on opposite poles, and their rotation away
from the north and south pole depends on the rotation of the Hamiltonian away
from being a diagonal operator.

Figure 4.1: The Bloch sphere. The line m is a line of constant θ , while l has constant
ϕ . The states |±〉 are defined as

√
1/2 [|0〉 ± |1〉].

Hamiltonian Flow

As an example, let’s consider the Hamiltonian with βR = γR = t and all other
entries zero. Notice that t represents a mixing parameter here, not time. The time
derivatives (4.5) in this case reduce to

θ̇ = −2t sin (ϕ)

ϕ̇ = −2t cos (ϕ) / tan (θ )

χ̇ = 2t cos (ϕ) / sin (θ )

ṅ = 0. (4.7)

As mentioned before, we are really only interested in the explicit time evolution of
ϕ and θ . To find a closed form for the description of the flowlines it is useful to
notice that ∂θ

[
θ̇ sin (θ )

] = −∂ϕ [ϕ̇ sin (θ )]. This implies that the set of differential
equations that we’re trying to solve is a so called exact set of ordinary differential
equations [135], and that we can solve it by looking for a potential V which obeys

−∂θV = ϕ̇ sin (θ )

∂ϕV = θ̇ sin (θ ) . (4.8)
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This set of equations is easily solved, and yields the potential V = 2t cos(ϕ) sin(θ ).
The streamlines describing the flow on the Bloch sphere are lines of constant po-
tential V , which are given by

cos (ϕ) sin (θ ) = constant. (4.9)

The flow therefore is a rotation around the axis through the north and south poles
at

√
1/2 [|0〉 ± |1〉], as seen in figure 4.2. These are of course also precisely the

eigenstates of the Hamiltonian. The flow in circles around the poles (for example
the one starting out at |0〉) is what we usually refer to as Rabbi oscillations.

Figure 4.2: Left: the flow as described by equations (4.7). Right: the flow pattern of
some general Hamiltonian generator of time evolution.

General Non-Hermitian Terms

In addition to the Hamiltonian part of G we could also include non-Hermitian
terms in the definition of the generator of time evolution. In general these terms
can lead to many different possible flow patterns on the Bloch sphere. However, if
we leave out the Hamiltonian part of G and only consider the non-unitary time
evolution for a moment, then we can identify three main types of behavior for
simple non-Hermitian terms in the time evolution generator.

Terms of the type αI = δI �= 0, add nothing to the time evolution of the su-
perposed state, and only influence the norm of the wavefunction. Terms of the type
αI = −δI �= 0 and rotations thereof (like βR = −γR or βI = γI ) cause a flow
from one pole to the opposite pole. That is, one the poles becomes a source and the
opposite a sink for the flowlines. Finally, asymmetric terms like βR �= 0, γR = 0,
give rise to asymmetric flows through a saddle point with flowlines both emerging
from them and disappearing into them, as shown in figure 4.3.

All of these types of flow can of course be combined with one another, and
with the usual Hermitian flow patterns. We find that usually a simple addition of
the involved velocity vectors tangent to the Bloch sphere gives a good indication of
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Figure 4.3: Left: the flow of the type αI = −δI �= 0. Right: the flow of the type
βR �= 0, γR = 0.

what the flow will then look like. Many much more complicated flow patterns can
be formed if we allow the matrix elements of G to be non-linear as well as non-
Hermitian.

Schrödinger-Newton

One such a non-linear term which we would like to consider is the one given by
the Schrödinger-Newton equation (4.1) [29]. The total energy operator introduced
in the Schrödinger-Newton equation for a superposition of mass over two distinct
positions |x = 0〉 and |x = 1〉 is

G =
(

U (x = 0) t
t U (x = 1)

)
, (4.10)

where the gravitational potential U (x) is given by ∇2U (x)= γ |〈ψ |x〉|2. For sim-
plicity we will absorb the constant γ into the norm of the wavefunction, and again
ignore the dynamics of that norm. We will also take out the normal Hamiltonian
part of G by setting t = 0. After all, the collapse process should be caused by the
non-unitary part of the time evolution.

To solve for the gravitational potential while avoiding the infinite self energy of
a point particle, we will consider the states labeled by x to represent a mass distribu-
tion stretched out over an infinite sheet in the y , z-plane, but completely localized
in the x-direction1. The superposition thus achieved should be a good descrip-
tion of for example a large block of mass which is superposed over a distance small
compared to its own length, such as the one shown in figure 3.2. Using appro-
priate boundary conditions for the gravitational potential and completely ignoring

1For a description of the spacetime metric associated with such an infinite plane, see the Appendix F.
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Figure 4.4: Left: the flow as defined by the generator G of equation (4.10), with t
set to zero. Right: the flow defined by the Schrödinger-Newton equation, including
the kinetic energy.

the norm of the wavefunction, the essential part of the time evolution generator
reduces to

G =
( − cos (θ ) 0

0 cos (θ )

)
. (4.11)

Clearly the matrix G is a non-linear operator, because it depends on the value of
the parameter θ which defines the state on which G acts. On the other hand G is
still akin to a Hermitian matrix in the sense that its transpose equals its complex
conjugate. The flow pattern associated with this generator is easily found to consist
of circular flowlines around the north and south pole. In contrast with the usual
Hamiltonian flow though, the circulation on the northern hemisphere is in the op-
posite direction of its southern counterpart (see figure 4.4). The gravitational term
has thus introduced a division between the northern and the southern hemisphere,
but it has not caused any sinks or sources to appear on the Bloch sphere, and it is
thus inadequate as a dynamical description of the quantum collapse model. Even
if we reintroduce the mixing parameter t , this will only distort the flow lines from
their perfectly circular orbits and produce some sort of a tennis ball flow pattern
as depicted in figure 4.4. However, it does not introduce any sources or sinks that
would represent the final states in a collapse process.

Alternative Gravitational Terms

The lack of sources and, more importantly, sinks in the flow pattern associated with
the Schrödinger-Newton equation implies that it cannot be used as a description of
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the dynamical process of wavefunction collapse. We can however, use the knowl-
edge of the types of patterns caused by non-Hermitian terms to try and introduce
sinks into the dynamics by slightly altering the Schrödinger-Newton equation. The
simplest way to do so would be to turn the gravitational self energy term into an
imaginary energy. What the exact physical meaning of such a term would be is
unclear at the moment, but its form suggests that it could be a dissipation term
induced into quantum mechanics by gravity. For now we will not consider the jus-
tification of the non-unitary dynamics, but merely study the implications of having
a generator of time evolution given by

G ′ =
( −i cos (θ ) 0

0 i cos (θ )

)
. (4.12)

The flowlines generated by this matrix all lie along the meridian and the flow goes
north on the northern hemisphere, while it goes south on the southern hemisphere
(see figure 4.5). Thus all states starting out above the equator will eventually col-
lapse onto the north pole, and all states south of the equator find their destination
on the south pole. If we introduce a normal, real quantum mechanical energy into
the dynamics as well, then these straight flowlines will turn into spirals which flow
around the north-south axis as well as toward one of the poles. The dynamics thus
has two of the three properties expected of a working model for the quantum col-
lapse process. It identifies the states into which a superposition can collapse (the
poles) by making sure that spatial superpositions disappear. At the same time it ex-
plains why microscopic superpositions can exist while macroscopic superpositions
are never seen: the spiraling motion for microscopic particles is extremely close to
perfect circular motion because the mass of the particles is small compared to their
usual quantum mechanical potential and kinetic energy. On the other hand the
gravitational term dominates for macroscopic objects, and thus their superposition
states will be destroyed in a very short time.

As it is, the time evolution defined by G ′ cannot be used to reproduce Born’s
rule. A state on the northern hemisphere will always collapse onto the north pole
and never onto the south pole. The only way to cure this problem is to introduce
a random variable into the dynamics. Because the total phase of a quantum me-
chanical state can never be measured it seems natural to take its value as a random
variable. We introduce it into the altered Schrödinger-Newton equation so that the
time evolution generator becomes

G ′′ =
( −i [cos (θ )+ f (χ )] 0

0 i [cos (θ )+ f (χ )]

)
. (4.13)

Here f (χ ) is some function of the total phase that will be chosen to make the dy-
namics agree with Born’s rule. The flow pattern of this adjusted G ′′ is the same as
the flow pattern we found before for G ′, only now the seperatrix between stream-
ing northward and streaming southward lies not at the equator but at the line
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Figure 4.5: Left: the flow as defined by the generator G ′ of equation (4.12). Right:
the flow defined by the adjusted generator G ′′ of equation (4.13).

cos (θ ) = − f (χ ) (see figure 4.5). If we assume χ to be taken at random from
a flat distribution between 0 and 2π , then it is easily checked that the dynamics
agrees perfectly with Born’s rule if we set f (χ ) = χ/π − 1.

We have thus found a model that describes the collapse of a quantum mechan-
ical superposition over two different states; that distinguishes between microscopic
and macroscopic superpositions; and that results in the emergence of Born’s rule if
it is repeated many times with the same initial conditions, but a random total phase
variable.

4.2 A Three State Measurement

Although the model seems to work very well for describing the collapse of a two-
state measurement, it cannot truly be adopted as a possible scenario for the solution
of the measurement problem unless it also works for general superpositions. The
first step toward testing the model for such a general quantum collapse is to ensure
that it works for a wavefunction superposed over three states instead of just two.
To do so we can simply repeat the analysis of the previous section, but now use the
initial state

|ψ0〉 = nei χ2
[

ei ϕ+φ
2 cos (θ /2) cos (η/2) |0〉 + ei ϕ−φ

2 cos (θ /2) sin (η/2) |1〉
+ e−i φ−ϕ

2 sin (θ /2) |2〉
]

. (4.14)

If we also use a 3x3 matrix for the time evolution generator, then the computation
of the time derivatives of θ , η and so on is exactly analogous to the two state case.
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To see what the effect of our modified Schrödinger-Newton time evolution G ′′ is in
this case, we consider the states |0〉, |1〉 and |2〉 to represent infinitely high columns
of mass, positioned on the vertices of an equilateral triangle in the x, y-plane. That
way we find that the gravitational potential, up to constant prefactor, is given by

∇2U (|x〉) ∝ |〈ψ | x〉|2
⇒ U (|0〉) ∝ 1 − 3 cos2 (θ /2) cos2 (η/2)

U (|1〉) ∝ 1 − 3 cos2 (θ /2) sin2 (η/2)

U (|2〉) ∝ 1 − 3 sin2 (θ /2) . (4.15)

Using these values we can then define the 3x3 generator of time evolution G ′′ in
analogy with equation (4.13) by setting 〈x| G ′′ |x〉 = i

(
U (|x〉)+ fx (χ )

)
. In anal-

ogy to the two state time evolution, we have introduced a function f which depends
on the total phase variable and which is designed to generate the randomness we
need to be able to agree with Born’s rule. The time derivatives which describe the
flow of the state vector through configuration space during the time evolution de-
fined by this G ′′ turn out to be

θ̇ = sin (θ )

[
a cos2 (η/2)+ b − cos (θ )+ 1

2
cos2 (θ /2) sin2 (η)

]
η̇ = sin (η)

[
a − cos2 (θ /2) cos (η)

]
, (4.16)

with a ≡ f0 − f1 and b ≡ f1 − f2. The total phase and norm of the wavefunction
cannot be measured and we will thus ignore their time evolutions. The relative
phases ϕ and φ turn out to be constant in time, and are therefore irrelevant for
the collapse process. To visualize the flow we can use the surface of one octant of a
sphere on which θ measures altitude and η latitude, so that the states |0〉, |1〉 and |2〉
are at the vertices of the surface, as shown in figure 4.6. The generic flow diagram
of the equations (4.16) has a central source from which all flowlines emanate. The
flowlines end either at the sinks located at the vertices of the octant or at a saddle
point on one of the edges of the surface. From the saddle point the flow continues
to the vertices again (see figure 4.6).

Changing the values of a and b corresponds to moving the position of the cen-
tral source over the entire surface and at the same time shifting the saddle points
along the edges. To be precise, the position of the fixed points are given terms of
(η, θ ) coordinates as

PC =
(

arccos

(
3a

a + 2b + 2

)
, arccos

(
1 + 2a + 4b

3

))
P0−1 = (arccos (a) , 0)

P1−2 = (π , arccos (b))

P2−0 = (0, arccos (a + b)) . (4.17)
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Figure 4.6: Left: the quarter of a sphere on which the three-state time evolution can
be depicted. The line m is a line of constant θ while l has constant η. Right: the
generic flow pattern for the flow defined by equations (4.16).

Here PC is the central source and Pi− j is the saddle point on the edge connecting
|i〉 with

∣∣ j
〉
. Clearly the flow pattern for the three state superposition fulfills the first

two requirements for being considered as a collapse process. The stable points (the
sinks) in the flow represent precisely the three possible wavefunctions that do not
involve a superposition over gravitationally distinct states, and that are therefore
acceptable as possible outcomes of a quantum measurement. The time involved in
getting to such a stable state is again governed by the ratio between gravitational
and kinetic energy. The microscopic superpositions will thus be able to avoid col-
lapse for a very long time, while macroscopic superpositions are doomed to collapse
within moments after their creation.

4.2.1 Born’s Rule

The only thing left to do is to choose the function f in such a way that repeated
application of the measurement model (4.16) will yield Born’s rule. As before the
introduction of some random variable cannot be avoided, and again we will try and
use the one random variable that quantum mechanics automatically gives us: the
total phase of the wavefunction.

While writing down an Ansatz for f we should keep in mind that the three-state
time evolution must reduce to the two-state time evolution which we found before
in the case that the initial state happens to be on one of the edges of configuration
space. This in fact implies that the saddle points on the edges must move along
the edges for varying χ just like the seperatrix moved along the meridian on the
two-state Bloch sphere. In addition we ought to demand that the collection of all
possible flow patterns posses a 3-fold rotational symmetry in the sense that for every
flow pattern in the collection there must be two more flow patterns which coincide
with the original one if the vertices are interchanged in a cyclic fashion. In the end
there is just one possible choice for the function f (or equivalently, for a and b) that
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satisfies all of these conditions and depends only on one random variable χ . This
choice is given by

a =
{ −1 + 3χ

2π if χ < 4π
3

5 − 3χ
π

if χ ≥ 4π
3

b =
{

1 − 3χ
π

if χ < 2π
3

−2 + 3χ
2π if χ ≥ 2π

3

. (4.18)

This choice for a and b implies that as a function of χ the central source moves all
around the perimeter of configuration space, while the saddle points move up and
down their respective edges, as depicted in figure 4.7.

Figure 4.7: Part of the flow diagrams that are encountered as χ moves from 0 to 2π
in equations (4.18).

This way we are certain that Born’s rule will hold on the edges of configuration
space, just like it did in the two-state superposition scenario. Whether or not it
holds away from the edges is difficult to prove analytically in this case because an
equation for the flow lines connecting the central source to the saddle points is
not easily found. Numerically however it is rather straightforward to just do the
simulated collapse many times and compare the result with the expected result of
Born’s rule.

As it turns out the proposed dynamics, including the definitions (4.18), do not
agree with Born’s rule. The difference is shown in figure 4.8. To fix the mismatch
one could try other ways to define f . We could look for a different scheme in which
f satisfies all necessary conditions but differs from (4.18); we could introduce a de-
pendence of f on η or θ ; or we could introduce additional random variables. We
find that none of these approaches seems to work. Even the simulated solution in
which we force the central source to be at a random position in configuration space
for every new experiment does not yield the desired result (see figure 4.9). More-
over, the introduction of more random variables would be a rather undesirable el-
ement in the theory, because they should physically emerge from some fluctuating
field for whose existence there is no experimental indication.
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Figure 4.8: The probability for finding outcome |0〉 using the measurement scheme
defined by equations (4.18). The horizontal axis consists of points in the (η, θ )-
plane. Starting from θ = π we traverse all values of η and then move on to a
lower value of θ . Iterating this procedure we display the data for all points consid-
ered sequentially on the horizontal axis. Each point in the upper part of the plot
then represents the probability for ending up at |0〉, starting from some initial point
(η, θ ), and averaged over many values of χ (the different lines thus represent lines
of constant initial θ and differing initial η). The lower plot shows the difference
between the probabilities found in our model and the ones defined by Born’s rule.

4.3 The Requirement of Statistics

The results discussed in this chapter clearly show that the Schrödinger-Newton
equation (4.1) which was proposed by Penrose as a replacement for the quantum
mechanical Hamiltonian [29] can hardly serve as a description of the dynamics
of wavefunction collapse. On the other hand, a slight modification of the equa-
tion, i.e. making the gravitational potential energy appear as an imaginary term,
causes the associated dynamics to show at least two of the three characteristics nec-
essary for being considered as a possible model for quantum collapse. The modified
equation causes the system to evolve toward states which are not superposed over
gravitationally different positions, and thus selects the correct Pointer basis for the
quantum system to collapse into. On top of this the equation naturally provides a
reason for the observed difference between microscopic and macroscopic objects.
Microscopic systems have a very small gravitational potential energy as compared
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Figure 4.9: A probability plot like figure 4.8, but now for the measurement scheme
in which we force the centre of the flow to be in a completely random position for
each value of χ .

to their internal quantum mechanical potential and kinetic energy. The collapse
process will therefore be so slow that it cannot be noticed on human timescales.
On the other hand the gravitational term will dominate in the dynamics of macro-
scopic superposition states, and these will thus collapse before their existence can
be noticed.

If the wavefunction is a sum of only two distinct states then the addition of
a random variable into the dynamics rather straightforwardly leads to the desired
statistics for the outcomes of measurements. As a physical source for the random
variable the total phase of the wavefunction could be considered. However, as soon
as the wavefunction represents a superposition over more then two states, it im-
mediately becomes impossible to force the dynamics of the collapse model to agree
with Born’s rule using only one random variable. Even apart from the fact that
there is no physical ground for introducing them, more than one random variable
does not automatically solve the problem. At least the obvious choices of how to
implement them into the theory do not yield the desired outcome.

In the end the Schrödinger-Newton equation, even in its modified forms, is thus
still not fit as a complete description of the dynamical collapse process of quantum
superpositions, because it seems to be impossible to make it agree with Born’s rule
under all circumstances.
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Chapter 5

Conclusions and Outlook

The unitary time evolution dictated by quantum mechanics must break down if
we do an experiment involving the interaction between a microscopic system and a
macroscopic measurement device [39]. This crucial point has been recognized and
emphasized by many different physicists ever since the first formulations of quan-
tum mechanics emerged. The popular assertion that decoherence could serve as a
substitute for a truly non-unitary process does not sufficiently explain the experi-
ments on single particles, most notable of which is the Young’s slits experiment with
single electrons [30, 31, 35].

5.1 Penrose’s Idea

It is also clear that there is a serious challenge in trying to unite quantum mechan-
ics with the theory of general relativity. This has lead Penrose to the suggestion
that gravity might introduce an instability into quantum mechanical superposition
states which could perhaps be used as an explanation of the collapse process [26,27].
In this part of the thesis we have seen that the idea of gravity introducing a finite
lifetime for quantum superposition should have measurable implications in princi-
ple. The practical experiments that are necessary to confirm this influence of gravity
however, are out of reach of the present day experimental possibilities [28].

If gravity does cause the elusive quantum collapse process, then there should
also be a dynamical description of the collapse which combines the gravitational
influence with the quantum mechanical effect. As a first try for such a dynam-
ical model we have studied the Schrödinger-Newton equation proposed by Pen-
rose [29]. This equation, in its original form, turns out not to collapse quantum
superposition states. With a slight modification we introduced collapse dynamics
so that the equation singles out the correct states to collapse into. With this modi-
fication we are able to explain the difference in collapse time between microscopic
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and macroscopic superpositions. We also found a simple case in which the dy-
namics reproduces Born’s rule, but we did not find a way to generalise that result.
Because of the inability to comply with Born’s rule under all circumstances, the
Schrödinger-Newton equation, even in its modified forms, is still not a complete
model for quantum collapse.

5.2 Combining Ideas

Although the attempted combination of gravity and quantum mechanics did not
immediately result in the resolution of the quantum measurement problem, it did
give us some insight into the possibilities for such a description. In future research
we should definitely keep on looking for possible implications of gravity’s influence
on quantum mechanics in different experimental setups. Perhaps with the advance
of both theoretical and experimental work in that direction we could at some point
measure the gravitationally induced lifetime of a quantum superposition.

At the same time we should also keep on looking for a dynamical description
of the quantum collapse process. At this point an approach based on gravity seems
to be an unlikely candidate for such a description, but perhaps we can combine
the lessons of this part of the thesis with those of the previous part. It might very
well be that quantum collapse is really a symmetry breaking effect in which an in-
finitesimally small non-unitary field is still able to cause the collapse of a quantum
superposition as long as the involved number of particles is close to the thermody-
namic limit. One could for example study the time evolution generated by

G = H + iB 〈X〉 , (5.1)

where H is a quantum Hamiltonian which can spontaneously break some continu-
ous symmetry, X is the operator measuring the associated order parameter, and B
the field conjugate to the order parameter. If the time evolution G reduces quantum
superpositions to pointer states instantaneously in the limit limB→0 limN→∞, then
it could be seen as a description of ’spontaneous collapse’.

This setup naturally provides a distinction between the microscopic and the
macroscopic world. It also provides a natural way of introducing some randomness
because the orientation of X can be chosen randomly, and independently of the
symmetry breaking field in H itself. Whether this randomness is enough to lead to
Born’s rule, and even whether G can select the right set of pointer states in the first
place, remains to be investigated.
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Chapter 1

Summary

Quantum Mechanics is arguably the must successful physical theory of the last cen-
tury. Using quantum mechanics we can explain physical phenomena all the way
from the behavior of elemental particles to the bulk properties of macroscopic ob-
jects [13, 62]. Despite this apparent triumph the theory still is seen by many people
as a mysterious theory, shrouded in clouds of unexplainable effects. All of these
feelings of unease eventually turn out to be based on the simple fact that although
the world around us is supposed to be built up out of quantum mechanical build-
ing blocks, the classical world itself does not seem to follow the rules of quantum
mechanics.

In this thesis I have discussed both some examples of how Quantum Mechanics
influences the properties of the Big World, and an idea of how quantum mechanics
could eventually be forced to break down

1.1 Quantum Mechanics in the Big World

As an example of the necessity to use quantum mechanics in order to be able to
describe bulk material properties, I have chosen to take a closer look at the titanium
pyroxene compound N aT iSi2O6 [19, 20]. Experimentally it has been shown that
this material undergoes a magnetic transition at 210 K [21]. At the same temper-
ature there is also evidence that something happens to the crystal structure of the
material: the phonon properties undergo a sudden change and X-ray diffraction
experiments show that some form of dimerization must occur. Soon after these
experimental results were published it was already suggested that the interplay be-
tween the orbital and magnetic degrees of freedom of the titanium atoms could ex-
plain the coupled magnetic and structural transitions [22]. Numerical simulations
however showed that the orbitals might be severely restricted by the surrounding
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crystal field, which would strongly suppress the possibility of a coupled transition
to occur [71–73].

In our study of the material we have used three different theoretical approaches
to show that the orbital-assisted Peierls transition could occur in N aT iSi2O6, de-
spite the presence of a sizable crystal field [19]. The orbital-assisted Peierls tran-
sition is a transition in which the spins on the one dimensional zig-zag chains of
titanium atoms start to pair up and form magnetic singlet states precisely at the
temperature at which the orbital degrees of freedom start to uniformly align. The
transition is shown to be driven by combined quantum fluctuations of the orbital
and the spin sector. Using our results we are able to explain all of the observed ef-
fects in the material, and we can distill a prediction for the actual size of the crystal
field splitting in N aT iSi2O6 [19, 20].

We have thus shown that the novel orbital-assisted Peierls transition is not only
still a feasible scenario for the titanium pyroxene compound, but in fact the only
way in which all of the available experimental and numerical data can be combined
and explained. This also shows that indeed the quantum mechanical properties of
the constituent particles (the orbital and spin degrees of freedom and their quan-
tum fluctuations) are a necessary ingredient to explain the bulk thermodynamical
properties of the macroscopic material. It is therefore one of the many, many ways
in which Quantum Mechanics manifests itself in the Big World.

1.2 Quantum Mechanics of the Big World

Having firmly established that quantum mechanics is the correct way to describe
microscopic particles, and having seen that the quantum properties of their con-
stituent particles dictate the behavior of macroscopic materials in the Big World,
one may begin to wonder why our everyday world does not look more quantum
mechanical. One of the defining properties of quantum mechanics is the extremely
powerful role of symmetry. If space is homogeneous and isotropic, then a quantum
object in that space can see no reason to value one place over another, and thus
it will spread out into a superposition state that covers all the equivalent points in
space. Extending this type of reasoning to the world around us, it could be argued
that because a classical object (say a chair) is made entirely out of quantum me-
chanical building blocks, the chair itself should obey the basic laws of the quantum
theory as well. Thus a chair in a homogeneous room should spread out all over the
available empty space. Clearly this does not happen in reality.

The way out of this paradoxical situation is the process of spontaneous sym-
metry breaking [51]. It can be shown that the symmetric wavefunction of a body
becomes increasingly unstable as the number of constituent particles grows. The
chair with its wavefunction spread out all over the room is therefore extremely un-
stable, and even only an infinitesimally small symmetry breaking field will suffice to
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localize it [124]. Thus the very fact that the chair seems to be classical and can avoid
the power that quantum mechanics gives to symmetry, is really a quantum effect.

The implication of this way of spontaneously breaking a continuous symmetry
is that there is a remnant of the quantum origin left over in all classical objects.
This remnant, the so called thin spectrum, consists of a set of eigenstates which
are extremely close to the groundstate. Such a dense set of low lying states can
in principle be very dangerous to the coherence of qubits [24]. We have shown
that the symmetry breaking in crystals and antiferromagnets indeed gives rise to a
decoherence effect if these systems are used as qubits. The resulting decoherence
time turns out to be a universal timescale that is completely independent of the
details of the underlying microscopic model [23, 25].

It is often thought that because Elitzur’s theorem forbids the spontaneous break-
ing of local gauge [107] symmetry, the superconducting state should not be char-
acterized by a spontaneously broken symmetry. We have shown that in fact a su-
perconductor has a spontaneously broken global symmetry in its classically realized
state. The breaking of this total phase symmetry again requires the existence of a
thin spectrum in superconductors. The decoherence time associated with the thin
spectrum of superconducting qubits coincides with the universal timescale that we
found before for antiferromagnets and crystals. The expected decoherence time for
the superconducting Cooper box qubits that are used in contemporary experiments
however, is still well above the decoherence time that is caused by the usual thermal
environment of the qubits [79, 83].

With the advance of technology and the improvements of the thermal isolation
of superconducting qubits it is well possible that the decoherence effects caused by
the thin spectrum will be observable in the foreseeable future. The demonstration
of this type of decoherence would also be a clear demonstration of the quantum
mechanical behavior of an object which we would normally call classical. It is thus
a way to probe the Quantum Mechanics of the Big World itself.

1.3 Quantum Mechanics or the Big World

Even though quantum mechanics reduces itself to classical physics in the thermody-
namic limit by the process of spontaneous symmetry breaking, there is still a need
for an additional process that can reduce macroscopic superpositions to the more
usual states which we see in the everyday world. This quantum collapse process is
an absolutely necessary addition to quantum mechanics because the unitarity of the
quantum theory clearly contradicts the experimental observations during the act of
measurement. Spontaneous symmetry breaking cannot cure this problem [25], and
neither can the popular invocation of decoherence [18].

There have been many proposals for what physical phenomenon can cause the
onset of the quantum collapse process [15, 52–60]. None of these have yet resulted
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in a measurable prediction that could validate or falsify the theory. There is how-
ever one recent idea due to Roger Penrose who suggested that general relativity
could cause spatial quantum superpositions to become unstable [26, 27]. Based on
some very general arguments, Penrose showed that this gravitationally induced in-
stability should manifest itself in a maximum lifetime for these superposition states
that is of the order of the inverse gravitational self energy of the difference between
the superposed mass distributions [26]. The typical collapse time thus calculated
turns out to be extremely large for all quantum mechanical systems that have been
studied experimentally, and extremely small for all macroscopic objects in physical
experiments. The mass size at which the collapse process would take place within a
measurable time has not been targeted by any experiments yet [27, 28].

As an example of a system which could in principle have a measurable collapse
time according to Penrose’s idea, we have studied the flux qubit. In this setup there
is a superposition of a supercurrent which flows both clockwise and counterclock-
wise [78, 80, 81]. After taking into account the additional condition that the entire
flow must collapse as soon as one of its constituent parts decides to collapse, we
found that the collapse time for this particular setup would come into the mea-
surable range only for some rather extreme specifications of the device. It is not
inherently impossible to measure the gravitationally induced collapse this way, but
it will be a tough experimental challenge to do so.

Apart form the issue of whether or not the gravitationally induced collapse can
take place within a measurable time, we are also faced by the remaining question
of what exact mechanism will direct the quantum collapse process. In his proposal
Penrose has suggested that the so called Schrödinger-Newton equation could be
used to find the stable states into which quantum superpositions can collapse [29].
If we take this equation for the total energy at face value and try to use it as a genera-
tor for the time evolution of a macroscopic superposition, then we have shown that
it could never lead to collapse. With some slight modifications however, the dynam-
ics can lead to the reduction of macroscopic superposition states to localized, clas-
sical states while leaving microscopic superpositions intact for all observable times.
Unfortunately the theory cannot reproduce Born’s rule which predicts the statistics
of the possible outcomes of measurement. It therefore seems impossible to use the
Schrödinger-Newton equation as a model for the quantum collapse process.

Despite this setback the study of the dynamics involved does suggest that per-
haps it is possible to come up with a way to combine the story of spontaneous
symmetry breaking with that of quantum collapse. Using the insights gained in
this study of the subjects it may be possible to construct a process in which some
unitarity-breaking field could lead to the spontaneous collapse of quantum states
in the thermodynamic limit. This spontaneous collapse process is thus envisaged as
the ultimate umpire in the choice between Quantum Mechanics or the Big World.
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Appendices

A: The Relation between Decoherence and the Quantum
Measurement Problem

Having seen the interaction between the Lieb-Mattis antiferromagnet and a two
spin singlet, and the subsequent decoherence, one could be tempted to claim that
what we found is a description of a quantum measurement process. Indeed we
started out with a macroscopic, symmetry broken, classical state (the antiferromag-
net) and coupled it to a microscopic spin state. The classical mixed state that we
end up with at times t > tspon seemed to consist only of states with either zero or
two magnons, since the off-diagonal matrix elements which mix the two states had
disappeared. It should be noted however, that this is not enough to constitute a
description of quantum measurement. If we consider the coupling of a single two-
spin singlet to the antiferromagnet, then the calculations imply that the resulting
state is a macroscopic superposition of zero and two magnon states, which in fact
remains coherent forever. The apparent reduction to a classical mixture of states is
due to the fact that we choose to trace away a certain portion of the available Hilbert
space (i.e., the thin spectrum). This leads to decoherence. If we were to wait long
enough, the unitarity of quantum mechanical time evolution guarantees that after
a time trec the original quantum superposition of zero and two magnons shows up
again. Since trec turns out to be a very long time, one could be tempted to make
the case that for all practical purposes our description gives the same result as a
true measurement process would give. This is not so. It should always be kept in
mind that decoherence of states, as we have here, is very different from a projection
of states. Projections are non-unitary. A single quantum measurement is a projec-
tion of the wave function. The statistical interpretation of quantum mechanics of
course circumvents this problem: ensembles of our decohered states and ensembles
of measured states have exactly the same density matrix. However, if one aims to
describe a single measurement then decoherence cannot explain the projection of
states that is seen to take place experimentally.
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B: The Thermodynamic Weight of Thin Spectrum States

It is easy to show that the contribution of the thin spectrum of the symmetric N -
spin Lieb-Mattis Hamiltonian to the free energy density is proportional to ln N

N and
thus vanishing in the thermodynamic limit. The energy of a state with total spin S
is Ethin = J S(S + 1)/N and its degeneracy is 2S + 1, so that the contribution of the
thin states to the partition function is

Zthin =
N∑

S=0

(2S + 1) e−βEthin

≈
∫ N

0
(2S + 1) e− β J

N S(S+1)dS ≈ N

β J
, (B-1)

in the limit of large N . Therefore its total contribution to the free energy is Fthin =
−T ln Zthin ∝ − ln N and for large N its contribution to the free energy per spin
–and the free energy density– is proportional to ln N

N .

C: The Orderparameter in the Symmetry Broken State

Consider the symmetry broken Lieb-Mattis Hamiltonian:

H = 2J

N
SA · SB − B

(
Sz

A − Sz
B

)
. (C-1)

If the number of spins N is large, then the eigenfunctions |n〉 of this Hamiltonian
are to a very good approximation given by the eigenfunctions of (half of) a har-
monic oscillator:

|n〉 =
∑

S

un
S |S〉

=
∑

S

√ √
ω√

π2n−1n!
e− 1

2ωS2
Hn

(√
ωS

) |S〉 , (C-2)

where |S〉 are the total spin eigenstates, Hn are the Hermite polynomials, ω equals
2
N

√
J
B , and n can only be an odd integer number. Using this exact expression to

calculate the ground state expectation value of the order parameter, we find:〈
Sz

A − Sz
B

〉 = ∑
S,S′

u1
Su1

S′
〈
S′∣∣ Sz

A − Sz
B |S〉

= 2
∑

S

u1
Su1

S−1

√(
(N /2 + 1)2 − S2

)
S2

4S2 − 1
. (C-3)
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The shape of the function u1
S guarantees that S � N , so that for large N the expec-

tation value is approximately given by:

N

2

∫ ∞

1

√
16

π
ω3/2Se− 1

2ωS2
(S − 1) e− 1

2ω(S−1)2
dS

= N

2

[
e− 1

4ω

(
1 − 1

2
ω

)(
1 − erf

(√
ω

4

))
+

√
ω

4
e− 1

2ω

]

= N

2
e−

√
J
B

1
2N + O(1), (C-4)

which reduces to the classically expected order parameter in the thermodynamic
limit. Note that in this expression it is immediately clear that the limit of vanishing
symmetry breaking field does not commute with the limit of infinitely many spins:
they form a singular limit.

D: Sublattice Spin Matrix Elements

By expressing the matrix elements of all components of the spin operators SA and
SB in terms of Clebsch-Gordon coefficients, one can evaluate them by performing
the appropriate summations. The resulting matrix elements are:

〈
S′

AS′
BS′M ′ ∣∣S±

A

∣∣ SASBSM
〉 =

δS′
A ,SA

δS′
B ,SB

δM ′,M±1 ·[
∓δS′,S+1

√
(S′2−(SA−SB )

2)((SA+SB +1)2−S′2)(S′±M)(S′±M+1)
4(4S′2−1)S′2

+δS′,S
((SA−SB )(SA+SB+1)+S(S+1))

√
(S±M+1)(S∓M)

2S(S+1)

±δS′ ,S−1

√
(S2−(SA−SB )

2)((SA+SB+1)2−S2)(S∓M)(S∓M−1)
4(4S2−1)S2

]
(D-1)

〈
S′

AS′
BS′M ′ ∣∣Sz

A

∣∣ SASBSM
〉 =

δS′
A ,SA

δS′
B ,SB

δM ′,M

[
δS′ ,S+1

√
(S′2−(SA−SB )

2)((SA+SB+1)2−S′2)(S′2−M2)
4(4S′2−1)S′2

+ δS′,S
((SA−SB )(SA+SB +1)+S(S+1))M

2S(S+1)

+δS′ ,S−1

√
(S2−(SA−SB )

2)((SA+SB+1)2−S2)(S2−M2)
4(4S2−1)S2

]
(D-2)
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〈
S′

AS′
BS′M ′ ∣∣S±

B

∣∣ SASBSM
〉 =

− 〈
S′

AS′
BS′M ′ ∣∣S±

A

∣∣ SASBSM
〉+ δS′ ,S

√
(S ± M + 1) (S ∓ M) (D-3)

〈
S′

AS′
BS′M ′ ∣∣Sz

B

∣∣ SASB SM
〉 =

− 〈
S′

AS′
BS′M ′ ∣∣Sz

A

∣∣ SASBSM
〉+ MδS′ ,S . (D-4)

E: The Bogoliubov Transformation

We have used a Bogoliubov transformation to diagonalize bosonic bilinear Hamil-
tonians of the form

H =
∑

k

Akb†
k bk + Bk

2

(
bk b−k + b†

k b†
−k

)
, (E-1)

where A−k = Ak and B−k = Bk . The relevant transformed bosons β†
k are defined

through

b†
k = cosh(uk )β

†
−k − sinh(uk)βk ,

b−k = cosh(uk)βk − sinh(uk)β
†
−k . (E-2)

The parameters uk obey uk = u−k and are chosen such that the Hamiltonian re-
duces to diagonal form. This implies that

cosh(2uk) = Ak√
A2

k − B2
k

,

sinh(2uk) = Bk√
A2

k − B2
k

and

H =
∑

k

√
A2

k − B2
k

(
β

†
k βk + 1

2

)
− 1

2
Ak . (E-3)

We can also use the exact same definition of uk to diagonalize the Hamiltonian

H =
∑

k

Ak

(
a†

k ak + b†
k bk

)
+ Bk

(
ak b−k + a†

k b†
−k

)
. (E-4)
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In that case the transformed bosons and Hamiltonian are given by

a†
k = cosh(uk)β

†
−k − sinh(uk)αk ,

b†
k = cosh(uk)α

†
−k − sinh(uk)βk and

H =
∑

k

√
A2

k − B2
k

(
α

†
kαk + β

†
kβk + 1

)
− Ak . (E-5)

F: The Metric of an Infinite Plane

Because we have been discussing a possible effect of general relativity on a quan-
tum superposition of infinite planes, one might be interested in the metric which
describes such an infinite plane.

In analogy with the construction of the Schwarzschild metric [136, 137], we
can construct the metric for this case by demanding that a freely falling observer
will measure an equation of motion for himself that coincides with the expected
Newtonian dynamics for the mass distribution of the infinite plane ρ = ρ0δ(x). As
an Ansatz, let’s consider the Schwarzschild-like metric given through

ds2 = γ |x| dt 2 − 1

γ |x|dx2 − d y2 − dz2. (F-1)

Here we have used c = 1 and γ is some constant with dimension m−1, which
will be fixed later on. From this definition of ds2 we can immediately deduce both
the metric gµν and the Lagrangian L. The geodesics in turn are then given by the
equation [137]

d

dσ

(
∂ L

∂ ẋµ

)
− ∂ L

∂ xµ
= 0, (F-2)

where σ is an affine parameter along the geodesic. Solving these equations for the
null-geodesics yields the light ray paths

γ t = ± ln (|x|)+ t0, (F-3)

while solving them for the world lines of an inertial observer yields

x = sgn(x)
A

γ
cosh−2 (γ (t − t0) /2)

= −sgn(x)
γ

4
σ 2 + Bσ − sgn(x)

γ

(
B2 − A2) . (F-4)

Here A, B and t0 are constants that can be adjusted to meet the appropriate initial
conditions. A schematic depiction of some of these worldlines is shown in fig-
ure 1.1.
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Figure 1.1: Left: the worldline followed by an inertial observer, as measured with
its own eigentime σ . Right: The worldlines of inertial objects, as seen from a fixed
position and using the coordinate time t . The dashed lines form the worldlines of
light rays as seen by the same observer. The crossing incoming and outgoing light
ray define a light cone in this spacetime.

To pin down the actual value of γ we can compare the equation of motion
of an inertial observer with the one in standard Newtonian dynamics. The force
exerted on a test mass m by an infinite plane in Newton’s theory can be found
by using Poisson’s equation on the mass distribution. The resulting force is F =
−sgn(x)2πGmρ0. This should coincide with the acceleration experienced by the
free-falling observer multiplied my its mass

F = mẍ = −sgn(x)γ /2

⇒ γ ≡ 4πGρ0. (F-5)

Reincluding the speed of light, γ ≡ 4πGρ0/c2.
From here on it is easy to construct a conformal map which allows us to draw

the Penrose diagram of the spacetime associated with an infinite sheet [136]. We
can even analytically extent the diagram beyond x = 0 if we assume for a moment
that it would be possible to travel through the sheet of mass (see figure 1.2). Taking
a closer look at the geodesics and the Penrose diagram, it becomes clear that the
sheet x = 0 really corresponds to a singular sheet in spacetime. For a free-falling
observer it seems as if he is always in a perfectly harmless oscillation around the sin-
gular sheet, but for an outside observer the infalling mass seems never to actually
reach the singularity. It is in a sense like a Schwarzschild black hole with its horizon
exactly at the singularity. The sheet-like singularity however is a naked singularity
since one can always escape it if sufficient acceleration is applied. In fact the singu-
larity is very much like a conical singularity in the sense that its influence extents
all the way to y , z → ±∞, while the curvature tensor Rµνρσ is identically zero ev-
erywhere. This absence of curvature incidentally also implies that the tidal tensor
is zero everywhere, so that no ill effects will be experienced by an extended object
anywhere along its geodesic path.
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Figure 1.2: Left: the Penrose diagram for the metric given by (F-1). Right: the
maximal analytic extension of the Penrose diagram.

In conclusion, the metric of an infinite plane seems to represent a conical, naked
singularity in an otherwise perfectly flat spacetime.
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Nederlandse Samenvatting

De Quantum Mechanica is mogelijkerwijs de meest succesvolle natuurkundige the-
orie van de vorige eeuw. Met behulp van de quantum mechanica kunnen we na-
tuurkundige verschijnselen verklaren die variëren van het gedrag van de elementaire
deeltjes tot de eigenschappen van macroscopische objecten [13, 62]. Ondanks deze
triomf, wordt de quantum mechanica door veel mensen nog steeds gezien als een
mysterieuze theorie, die gehuld wordt in een mist van onverklaarbare verschijnse-
len. Al deze onrustige gevoelens blijken uiteindelijk gestoeld te zijn op de eenvou-
dige waarneming dat ondanks het feit dat de wereld om ons heen opgebouwd is
uit quantum mechanische bouwstenen, diezelfde klassieke wereld om ons heen de
regels van de quantum mechanica niet lijkt te volgen.

In dit proefschrift heb ik enige voorbeelden laten zien van hoe de Quantum
Mechanica invloed heeft op de eigenschappen van de Grote Wereld, en ik heb een
een idee besproken over hoe de quantum theorie uiteindelijk zijn geldigheid zou
kunnen verliezen.

Quantum Mechanica in de Grote Wereld

Als een voorbeeld van de onontkoombare noodzakelijkheid van het gebruik van
de quantum mechanica in de beschrijving van alledaagse materiaaleigenschappen,
heb ik het titanium pyroxeen N aT iSi2O6 nader bestudeerd [19, 20]. Het is ex-
perimenteel vastgesteld dat deze stof een magnetische fase overgang ondergaat bij
210 K [21]. Er is ook bewijs dat er bij precies dezelfde temperatuur iets gebeurd met
de kristalstructuur van het materiaal: de phonon eigenschappen veranderen dan
plotseling en uit Röntgen-diffractie experimenten blijkt dat er een vorm van dime-
risatie optreedt. Al snel na de publicatie van deze resultaten werd geopperd dat het
samenspel van de orbitale en magnetische vrijheidsgraden van de titanium atomen
verantwoordelijk zou kunnen zijn voor de gekoppelde magnetische en structure-
le overgang [22]. Numerieke simulaties lieten echter zien dat de orbitalen ernstig
beperkt zouden kunnen zijn in hun vrijheid door het omringende kristalveld. Die
beperking zou de waarschijnlijkheid van een gekoppelde overgang aanzienlijk ver-
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kleinen [71–73].
In onze studie van N aT iSi2O6 hebben we drie verschillende theoretische me-

thoden gebruikt om aan te tonen dat de zogenaamde ’orbitaal-ondersteunde Pei-
erls overgang’ er wel degelijk kan plaatsvinden, ondanks de aanwezigheid van een
aanzienlijk kristalveld [19]. De orbitaal-ondersteunde Peierls overgang is een fase
overgang waarbij de spins in de één-dimensionale zigzag ketens van titanium ato-
men paren van magnetische singlet-toestanden beginnen te vormen bij precies die
temperatuur waarbij de orbitaal vrijheidsgraden zich in een parallel patroon begin-
nen te ordenen. We hebben laten zien dat de gekoppelde overgang mogelijk wordt
gemaakt door de gecombineerde quantum fluctuaties van zowel de spins als de or-
bitalen. Met behulp van onze resultaten kunnen we alle geobserveerde effecten in
het materiaal verklaren, en we kunnen een voorspelling doen van de daadwerkelijke
grootte van het kristalveld in N aT iSi2O6 [19, 20].

We hebben dus gedemonstreerd dat de nieuwe orbitaal-ondersteunde Peierls
overgang niet alleen nog altijd een mogelijke beschrijving vormt van het titanium
pyroxeen, maar ook dat het in feite de enige manier is waarop alle beschikbare ex-
perimentele en numerieke observaties kunnen worden gecombineerd en verklaard.
Dit houdt ook in dat de quantum mechanische eigenschappen van de elementaire
deeltjes (de orbitaal en spin vrijheidsgraden en hun quantum fluctuaties) inderdaad
een noodzakelijk ingrediënt zijn in de verklaring van de materiaaleigenschappen
van het macroscopische materiaal. Het is daarmee één van de vele, vele manieren
waarop de Quantum Mechanica zichzelf laat zien in de Grote Wereld.

Quantum Mechanica van de Grote Wereld

Omdat duidelijk is aangetoond dat de quantum mechanica de correcte theorie is
om microscopische deeltjes te beschrijven, en nu we hebben gezien dat de quantum
mechanische eigenschappen van de elementaire deeltjes het gedrag van macroscopi-
sche materialen in de Grote Wereld bepalen, zou men zich kunnen afvragen waar-
om onze dagelijkse wereld er niet méér quantum mechanisch uitziet. Eén van de
meest essentiële eigenschappen van de quantum mechanica is de extreem krachti-
ge rol van symmetrie in de theorie. Als de ruimte homogeen en isotroop is, dan
kan een quantum mechanisch object in die ruimte geen enkele positie bevoorde-
len boven een andere, en dus zal het zich uitspreiden in een quantum superpositie
die alle equivalente punten in de ruimte bestrijkt. Als we deze manier van redene-
ren doorvoeren op de wereld om ons heen, dan zou je kunnen denken dat omdat
een bepaald klassiek object, bijvoorbeeld een stoel, geheel is opgebouwd uit quan-
tum mechanische bouwstenen, de stoel zelf de wetten van de quantum mechanica
ook zou moeten naleven. Een stoel in een homogene kamer zou zich dus moeten
uitspreiden over alle beschikbare lege ruimte. Dit is overduidelijk niet wat er in
werkelijkheid gebeurd.
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De manier om aan deze paradoxale situatie te ontkomen, is het proces van spon-
tane symmetrie breking [51]. Het is mogelijk om aan te tonen dat de symmetrische
golffunctie van een quantum object instabieler wordt naarmate het aantal deeltjes
waaruit het object is opgebouwd groter wordt. De stoel met zijn over de hele kamer
uitgespreide golffunctie is dus extreem onstabiel, en zelfs een infinitesimaal klein
symmetrie brekend veld is genoeg om hem te lokaliseren [124]. Zelfs het feit dat
de stoel er klassiek uitziet en klaarblijkelijk de kracht van symmetrie in de quantum
mechanica kan ontlopen, is dus eigenlijk een quantum mechanisch effect.

Deze manier van spontane symmetrie breking impliceert het bestaan in alle
klassieke objecten van een overblijfsel van hun quantum mechanische oorsprong.
Dit overblijfsel, het zogenaamde dunne spectrum, bestaat uit een verzameling ei-
gentoestanden die allemaal dicht tegen de grondtoestand aanliggen. Zo’n dichte
verzameling laag liggende toestanden kan in principe erg gevaarlijk zijn voor de
coherentie van qubits [24]. Wij hebben laten zien dat de symmetrie breking in kris-
tallen en antiferromagneten inderdaad leidt tot decoherentie als deze systemen ge-
bruikt worden als qubits. De hieruit volgende decoherentietijd blijkt een universele
tijdschaal te zijn, die compleet onafhankelijk is van de details van het onderliggende
microscopische model [23, 25].

Er wordt vaak gedacht dat het verbod van Elitzur’s theorie op het spontaan bre-
ken van een lokale ijk-symmetrie [107], impliceert dat de supergeleidende toestand
niet gekenmerkt kan worden door een spontaan gebroken symmetrie. Wij hebben
laten zien dat een supergeleider een spontaan gebroken globale symmetrie heeft in
zijn klassieke toestand. Dit breken van de totale fase symmetrie vereist wederom het
bestaan van een dun spectrum in supergeleiders. De decoherentietijd die het dunne
spectrum induceert in supergeleidende qubits komt overeen met de universele tijd-
schaal die we gevonden hadden voor kristallen en antiferromagneten. De verwachte
decoherentietijd voor de Cooperpaar-doos qubits die in hedendaagse experimenten
gebruikt worden is echter nog altijd veel groter dan de decoherentietijd die veroor-
zaakt wordt door de thermische omgeving van het qubit [79, 83].

Met de huidige vooruitgang van de technologie en de verbetering van de ther-
mische isolatie van supergeleidende qubits is het zeker niet onmogelijk dat de de-
coherentie effecten veroorzaakt door het dunne spectrum binnen afzienbare tijd
zullen worden waargenomen. Het aantonen van dit soort decoherentie zou ook een
duidelijke demonstratie inhouden van het quantum mechanische gedrag van een
object dat we normaal gesproken als klassiek zouden beschouwen. Het is dus een
manier om te kijken naar de Quantum Mechanica van de Grote Wereld zelf.

Quantum Mechanica of de Grote Wereld

Ondanks het feit dat quantum mechanica zichzelf tot klassieke fysica terugbrengt in
de thermodynamische limiet door middel van spontane symmetrie breking, is het
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nog altijd noodzakelijk ook een dynamisch mechanisme te vinden dat macroscopi-
sche superposities terug kan brengen tot de meer alledaagse toestanden die we in
de wereld om ons heen zien. Dit quantum mechanische ineenstortings effect is een
absoluut noodzakelijke toevoeging aan de quantum fysica omdat de unitariteit van
de quantum theorie duidelijk niet in overeenstemming gebracht kan worden met
de experimentele observaties die tijdens een meetproces gedaan worden. Sponta-
ne symmetrie breking noch het populaire beroep op decoherentie bieden hier enig
soelaas [18, 25].

Er zijn vele voorstellen gedaan voor een kandidaat fysisch fenomeen om het
quantum ineenstortings proces te verklaren [15, 52–60]. Geen van alle hebben zij
tot nog toe geleid tot een toetsbare voorspelling die de theorie zou kunnen on-
derbouwen of ondermijnen. Er is echter een recent idee, geopperd door Roger
Penrose, waarin gesuggereerd wordt dat de algemene relativiteitstheorie er voor
zou kunnen zorgen dat quantum mechanische superposities in de ruimte onsta-
biel worden [26, 27]. Met een redenatie gebaseerd op hele algemene argumenten
toont Penrose aan dat zo’n gravitationele instabiliteit zou leiden tot een maximum
levensduur van een superpositie van de orde van de inverse van de gravitationele
zelf-energie van het verschil tussen de gesuperponeerde massa distributies [26]. De
typische ineenstortings tijd wordt op die manier enorm groot voor alle quantum
mechanische systemen die experimenteel bestudeerd zijn, en enorm klein voor alle
macroscopische objecten in natuurkundige experimenten. De typische massa die
zou leiden tot een ineenstortings proces dat plaats vindt binnen een meetbare tijd
blijkt echter nog nooit experimenteel te zijn onderzocht [27, 28].

Als een voorbeeld van een systeem dat in principe een meetbare ineenstortings-
tijd zou kunnen hebben volgens het idee van Penrose, hebben wij de flux qubit
bestudeerd. In zo’n qubit is er een superstroom die zowel linksom als rechtsom
door een supergeleidende ring stroomt [78, 80, 81]. Als we ook de extra conditie
in ogenschouw nemen dat de gehele stroom moet instorten zodra een deel van de
stroom besluit in te storten, vinden we een ineenstortingstijd die alleen binnen het
meetbare domein blijkt te vallen voor nogal extravagante geometrische specificaties
van de qubit. Het is niet inherent onmogelijk om op deze manier de gravitatione-
le ineenstorting van de golffunctie te meten, maar het zal een flinke experimentele
uitdaging zijn om het ook daadwerkelijk voor elkaar te krijgen.

Niet alleen de vraag of de gravitationele ineenstorting plaats kan vinden binnen
een meetbare tijd, maar ook de vraag op welke manier die ineenstorting dan pre-
cies zal gebeuren behoeft nog een antwoord. In zijn voorstel suggereerde Penrose
dat de zogenaamde Schrödinger-Newton vergelijking gebruikt zou kunnen worden
om te bepalen in welke toestanden een quantum superpositie terecht zou kunnen
komen [29]. Als we deze vergelijking letterlijk nemen en hem gebruiken als de ge-
nerator van de tijdsevolutie van een macroscopische superpositie, dan hebben we
laten zien dat dit nooit kan leiden tot een ineenstorting. Met een paar minimale
aanpassingen echter, kan de dynamica er wel voor zorgen dat macroscopische su-
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perposities gelokaliseerd worden, terwijl microscopische quantum toestanden ge-
durende alle observeerbare tijden intact blijven. Jammer genoeg kan de theorie niet
Born’s vuistregel reproduceren, die de statistiek van de mogelijke uitkomsten van
een meting voorspelt. Het lijkt dan ook onmogelijk om de Schrödinger-Newton
vergelijking te gebruiken als een model voor het quantum ineenstortings proces.

Ondanks deze tegenslag lijkt de studie van de dynamica wel te suggereren dat
het wellicht mogelijk is om het verhaal van spontane symmetrie breking te com-
bineren met dat van het ineenstortings proces. Gebruik makend van de inzichten
die verkregen zijn gedurende dit onderzoek zouden we misschien een proces kun-
nen construeren waarin een unitariteit-brekend veld leidt tot de ineenstorting van
quantum mechanische superposities in de thermodynamische limiet. Deze sponta-
ne ineenstorting zou dan de ultieme scheidsrechter zijn in de keuze tussen Quantum
Mechanica of de Grote Wereld.
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