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Conclusions and Perspectives

 

 

 

 

Figure S7.  Simulated Pioglitazone HbA1c time profile for HbA1c dependent on FPG 

only and HbA1c dependent on both FPG and PPG 
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The investigation described in this thesis focused on assessing the role of genotype 

differences in explaining inter-individual variability in drug metabolism and the impact of 

these differences on both the clinical response and the selection of the appropriate dosing 

scheme.  

The impact of genotype resulting from differences in the rate of metabolism between 

individuals has been found to vary widely between drugs [1]. Primarily this appears to result 

from factors which include the relative role of the polymorphic enzyme(s) to the clearance of 

the drug and the type of enzyme or transporter that is involved [2,3]. Furthermore the extent 

of the influence of these changes is also dependent on where the therapeutic dose is in 

relation to the exposure response relationships for both efficacy and safety [1]. PK-PD model 

based approaches to evaluate the impact of these differences including clinical response or 

surrogate biomarkers, has not been routinely implemented. Model based applications can be 

used to quantify the differences in drug exposure resulting from genetic differences between 

individuals whilst also incorporating other factors which may contribute to the 

inter-individual variably [4-6]. Furthermore the development of a PK-PD model can provide 

a more comprehensive link between differences in drug exposure and the magnitude of its 

effect(s) on clinical response.  

The focus of this thesis was to apply a PK-PD model based approach in Type 2 Diabetes 

(T2D), to assess both the short and the long term implications of Pharmacogenomics (PGx) in 

drug development. The aim was to specifically investigate enzymes that were contributing to 

the inter-individual variability, to quantify the resulting exposure differences between 

genotypes, to evaluate the predictability of genotype for exposure and to assess the influence 

of these differences on the clinical response of efficacy and safety.  

Clinical relevance of genetic variants in pharmacokinetic properties 

Exploratory preliminary evaluation of genotype during Phase I 

In vitro assessment can be used to determine the involvement of specific isoforms of drug 

metabolizing enzymes responsible for metabolism of a drug candidate; however since in-vitro 

 

 

 

 

studies are not always quantitatively predictive, confirmation of the relative role of the 

enzyme in vivo is required [7]. In Chapter 3 the approach to quantify the contribution of the 

enzymes responsible for the metabolism of the drug sipoglitazar is described. In vitro studies 

conducted prior to human dosing had predicted a central role for glucuronidation by uridine 

5'-diphospate-glucuronosyltransferases (UGTs) in the in vivo biological transformation of 

sipoglitazar [8,9]. The results of these metabolism studies indicated that multiple UGT 

isoforms were potentially involved in the metabolism of the drug [8]. Since pharmacogenetic 

variation has been identified for UGTs [10], the aim of this analysis was to identify which 

UGTs were potentially correlated with sipoglitazar exposure and then to evaluate the extent 

of variability explained in part due to genotype.  

The results of three preliminary phase I studies of sipoglitazar in healthy volunteers were 

combined for analysis of the data. There was a total of 82 subjects enrolled for whom both 

PK and UGT genotype information was available (Chapter 3, Table 1). The dose range 

included in the studies was 0.2-64mg for sipoglitazar and statistical analysis of area under the 

plasma concentration–time curve from time 0 to infinity (AUC) revealed dose proportionality 

across the dose range, with a slope and 95 % confidence interval of 0.99 and 0.92–1.05, 

respectively (Chapter 3). 

As a first step in the investigation the contribution of each genotype was assessed using 

Analysis of variance (ANOVA) models on dose normalized AUC. Results of this 

investigation revealed that variation in UGT2B15 accounted for approximately two-thirds of 

the variability in sipoglitazar plasma exposure, while no relationship between sipoglitazar 

plasma exposure and variants of the other UGT enzymes could be identified. This 

relationship between UGT2B15 genotype and sipoglitazar dose normalized AUC is shown in 

Figure 1. Considerable overlap was observed between genotype groups, particularly between 

the UGT2B15*1/*1 and UGT2B15*1/*2 genotypes (Figure 1). 
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Figure 1.  Dose normalized (1mg) histogram for sipoglitazar AUC by UGT2B15 

genotype in healthy volunteers (n=82). 

 

The principle metabolite of sipoglitazar is the dealkylated derivative M-I. The metabolite is 

formed in vitro predominantly by the action of cytochrome P450 (CYP) 2C8 on glucuronide 

intermediates [8]. Based on in-vitro results the metabolic pathway from sipoglitazar to M-I is 

one in which sipoglitazar is initially metabolized to sipoglitazar-G1 by 

UDP-glucuronosyltransferase and then sipoglitazar-G1 is metabolized to M-I by 

O-dealkylation by CYP2C8 and deconjugation [9]. The proposed metabolic pathway is 

shown in Figure 2. 

121 221 321 421 521 621 721 821 921
Dose normalized AUC (ng.hr/mL)

0.000
0.004
0.008
0.012
0.016

0.000
0.004
0.008
0.012
0.016

0.000
0.004
0.008
0.012
0.016

UGT2B15*2/*2

UGT2B15*1/*2

UGT2B15*1/*1

R
el

at
iv

e 
fr

eq
ue

nc
y

 

 

 

 

Figure 2.  Postulated metabolic pathways of sipoglitazar. M-I-G, glucuronide of M-I 

(Reproduced with permission from ref. [9]). 

 

The M-I metabolite also undergoes subsequent conjugation to M-I-G and since a high 

concentration of M-I-G was present in the urine in monkey studies, it is presumed that the 

glucuronidation of M-I would also occur in humans [11]. Due to its unique metabolic 

formation, the metabolite M-I was considered to be a potential marker for the level of 

metabolic activity of UGT.  

Furthermore since sipoglitazar-G1 is deethylated by CYP-2C8 to form M-I, CYP2C8 

genotype samples were also collected in one phase I study (n=24) to exclude any influence of 

CYP-2C8 variants on exposure to sipoglitazar. Following graphical analysis, no relationship 

was evident between sipoglitazar exposure and CYP2C8 genotypes *1/*1, *1/*3, or *3/*3 

(Chapter 3). 

Parent to metabolite ratios for AUC were calculated to evaluate if there was a change in the 

metabolic activity relative to the UGT2B15 genotype. As shown in Figure 3, a reduction 

could be observed in the metabolite ratio across UGT2B15 genotypes, with the lowest value 

observed for UGT2B15*2/*2. Consistent with the observed increase in exposure for the 

UGT2B15*2/*2 genotype, these reductions in metabolite ratios indicate that reduced 

metabolic activity is associated with UGT2B15*2/*2, supporting the in vitro findings.  
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Figure 3.  Parent to metabolite ratio for area under the plasma concentration–time curve 

from time 0 to infinity for sipoglitazar by UGT2B15 genotype in healthy 

volunteers 

 

During the analysis of the early phase I studies two subjects, who were genotyped as 

UGT2B15*1/*1 and UGT2B15*1/*2 had considerably higher exposure than expected based 

on their genotype (approximately 2.5-4 fold higher than the mean AUC for the genotype). 

The metabolic ratios for these two subjects were then compared to the average ratio for the 

genotype. One of the subjects identified as an outlier had a metabolite ratio consistent with 

their genotype, indicating that other variables contribute to the disconnect between genotype 

and exposure. Since rates of glucuronidation are also affected by other factors such as age, 

diet or disease [10], further extension of this preliminary evaluation was performed through 

the development of a population PK model to characterize the pharmacokinetic profile and 

explore other potential sources of variability between individuals.  

Initial population PK model development  

A population PK model was developed based on the early phase I studies that are described in 

Chapter 3. The aim was to quantitatively evaluate the differences in clearance (CL) between 

UGT2B15 genotype and to evaluate other potential covariates that may contribute to 

explaining the inter subject variability for sipoglitazar.  
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The data were described using a 2-compartment model with a combined zero and first order 

uptake process. UGT2B15 genotype was included as a categorical covariate on CL. Figure 4 

shows the visual predictive check (VPC) for the observed and predicted data and key 

parameter estimates are shown in Table 1. 

All parameters could be estimated with good precision and the VPC shows that the median 

trend and variability can be well described in all three genotype groups. ETA shrinkage for 

clearance and V2 was estimated at 1.6 and 15%, respectively.  

Table 1. Key pharmacokinetic parameter estimates from small phase I study (n=82) in 

healthy volunteers 

Parameter Parameter 
(CV%) 

IIV (%, CV%) 

Clearance population, UGT2B15*1/*1 (L/hr) 4.9 (9.8) 

30.2 (26.4) Clearance population, UGT2B15*1/*2 (L/hr) 3.98 (4.2) 
Clearance population, UGT2B15*2/*2 (L/hr) 2.2 (5.1) 

Volume of central distribution (V2) (L) 10.5 (3.6) 15.7 (24.7) 

Peripheral volume of distribution (L) 1.2 (5.4)  
Residual error (proportional) 0.08 (17.8)  

Based on this preliminary evaluation there was approximately a 2.3 fold decrease in CL 

between the UGT2B15*1/*1 and UGT2B15*2/*2 genotype groups. Before accounting for 

UGT2B15 as a covariate on CL, inter individual variability (IIV) was estimated at 49%. After 

accounting for UGT2B15 genotype as a covariate, IIV on CL was reduced from 49 to 30%. 
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Figure 4.  Visual predictive check for dose normalized (64mg) plasma concentration data 

in 82 subjects from phase I data in healthy volunteers by genotype group. 

UGT2B15*1/*1 (n=19), UGT2B15*1/*2 (n=41), UGT2B15*2/*2 (n=22) 

 

Potential effects of the demographic covariates age, weight and gender were evaluated in the 

model using a forward inclusion procedure [12]. Based on the data in this healthy volunteer 

population none of the tested covariates at this stage were found to be significant. However as 

the distribution volume for body weight would be expected to be higher in diabetes patients 

and 96% of subjects enrolled in this study were Caucasian, a further covariate analysis was 

undertaken during the Phase II population PK analysis described in Chapter 4. 
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Pharmacokinetic studies in healthy volunteers 

During the early development phase, an important consideration is the characterization of the 

relationship between genotype and drug exposure. Pharmacogenomic guidelines from both 

the EMA and FDA highlight that conventional pharmacokinetic approaches (frequent blood 

sample collections), should be performed to evaluate the role of genotype on the disposition 

and recommend that these studies follow a similar approach to the evaluation in organ 

impairment where subjects are matched between groups for intrinsic factors such as age or 

body weight which may influence the PK of the drug [7, 13]. Evaluating genotype during 

phase I should be used in an exploratory context and for generating hypotheses that can be 

tested during the later development phase [13].  

To this end in addition to the preliminary phase I studies described in Chapter 3, an additional 

large phase I study for sipoglitazar was conducted in healthy volunteers (study overview 

presented in Chapter 4). The aim of this study was to the further investigate the correlation 

between UGT2B15 genotype and sipoglitazar metabolic phenotype in the context of all other 

potential sources of variation, in a diverse study population of approximately 500 healthy 

male and female subjects. As such five hundred and twenty-four subjects (mean age of 29.8 

years), including 220 male, 304 female, 108 Black or African American, and 104 Hispanic 

subjects were enrolled into the study.  

It was evaluated if the PK model that had been developed only on the preliminary phase I 

studies could then predict the mean and variability in such a large, diverse population. This 

was performed using an external VPC, where the median and variability simulated from the 

small population PK model are overlaid with the individual, median and observed variability 

from this large phase I trial. The results of this external VPC are shown in Figure 5.  
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Figure 5.  External visual predictive check (observed data from large phase I study in 

healthy volunteers n=524) and simulated median and prediction interval using 

the model developed on preliminary phase I data in healthy volunteers (n=82). 

 

 

Although the median and the extent of the variability can be well described for the 

UGT2B15*1/*1 genotype, there appears to be a modest under prediction of the extent of 

absorption and of the elimination phase for the typical subject in the UGT2B15*2/*2 group. 

There may be a number of explanations for this difference based on differences in the 

population characteristics of the subjects enrolled. To evaluate these covariate differences 

further, a visual inspection of the demographic data and the CL from the small phase I study 
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and CL from the model developed on the large phase I dataset (Chapter 4) was performed. 

The results of this are shown in Figures 6 and 7.  
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Figure 6. Plots for age vs CL. Individual (triangle 

– large phase I, circles – small phase I) and 

smoothing spline (solid line – large phase I, 

dashed line – small phase I). Color by genotype 

UGT2B15*1/*1 (blue), UGT2B15*1/*2 (red), 

UGT2B15*2/*2 (green) 
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Figure 7. Plots for body weight vs CL. 

Individual (triangle – large phase I, circles – 

small phase I) and smoothing spline (solid line 

– large phase I, dashed line – small phase I). 

Color by genotype UGT2B15*1/*1 (blue), 

UGT2B15*1/*2 (red), UGT2B15*2/*2 (green) 

Based on this graphical analysis, the relationship between age and CL appears to be 

comparable between the two datasets but some differences appear to be present in the 

relationship between body weight and CL. This is likely resulting from the larger body 

weight range in the large phase I trial that creates a higher sensitivity for the existence of an 

inter-relationship. One of the major differences in the large phase I trial is the enrollment of a 

diverse ethnic population. A summary of the data for CL by race is shown in Figure 8 for the 

large phase I study. Of the 122 subjects that were enrolled in the UGT2B15*2/*2 genotype 

group, 70% were non-hispanic white, 18% were Hispanic and 12% were Black or African 

American. In the UGT2B15*2/*2 genotype in the small phase I trial only Caucasian subjects 

were enrolled in this genotype group. Furthermore in the UGT2B15*2/*2 genotype group in 
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Figure 5.  External visual predictive check (observed data from large phase I study in 

healthy volunteers n=524) and simulated median and prediction interval using 

the model developed on preliminary phase I data in healthy volunteers (n=82). 
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and CL from the model developed on the large phase I dataset (Chapter 4) was performed. 

The results of this are shown in Figures 6 and 7.  
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Figure 6. Plots for age vs CL. Individual (triangle 

– large phase I, circles – small phase I) and 

smoothing spline (solid line – large phase I, 

dashed line – small phase I). Color by genotype 

UGT2B15*1/*1 (blue), UGT2B15*1/*2 (red), 

UGT2B15*2/*2 (green) 
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small phase I) and smoothing spline (solid line 
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Based on this graphical analysis, the relationship between age and CL appears to be 

comparable between the two datasets but some differences appear to be present in the 

relationship between body weight and CL. This is likely resulting from the larger body 

weight range in the large phase I trial that creates a higher sensitivity for the existence of an 

inter-relationship. One of the major differences in the large phase I trial is the enrollment of a 

diverse ethnic population. A summary of the data for CL by race is shown in Figure 8 for the 

large phase I study. Of the 122 subjects that were enrolled in the UGT2B15*2/*2 genotype 

group, 70% were non-hispanic white, 18% were Hispanic and 12% were Black or African 

American. In the UGT2B15*2/*2 genotype in the small phase I trial only Caucasian subjects 

were enrolled in this genotype group. Furthermore in the UGT2B15*2/*2 genotype group in 
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the small phase I studies, 73% of subjects were male as compared to only 39% in the large 

phase I trial (Figure 9). 

Figure 8.  Box plot for CL by ethnicity and UGT2B15 genotype for large phase 1 study 

in healthy volunteers. 1=American Indian or Alaskan native, 2=Asian, 

3=Black or African American, 4=Native Hawaiian or Other Pacific Islander 5= 

non-hispanic white, 6= Multiracial 
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Figure 9.  Box plot for CL and gender for large phase I study in healthy volunteers. 

Scatter plot of CL (triangles) for small phase I in healthy volunteers by gender. 

 

 

The differences in CL by genotype between the studies are summarized in Table 2. 

Approximately a 1.4-fold difference is observed between the CL estimates for the 

UGT2B15*2/*2 genotype between the studies.  
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Figure 9.  Box plot for CL and gender for large phase I study in healthy volunteers. 

Scatter plot of CL (triangles) for small phase I in healthy volunteers by gender. 
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Table 2.  Model estimated CL values by genotype for small (n=82) and large phase I 

(n=524) models in healthy volunteers 

Genotype Small phase I model estimated 
population CL (CV%) 

Large phase I model estimated 
population CL (CV%) 

UGT2B15*1/*1 (L/hr) 4.9 (9.8) 4.82 (2.5) 
UGT2B15*2/*1 (L/hr) 3.98 (4.2) 3.29 (9.2) 
UGT2B15*2/*2 (L/hr) 2.2 (5.1) 1.55 (2.0) 

A combination of the differences in body weight, gender or ethnicity may contribute to 

explaining the difference that is observed between studies in the UGT2B15*2/*2 genotype 

group. Some limitations may have been observed in the predictability of these small phase I 

studies to a more diverse population, but the value of this early preliminary work is shown as 

the general trends in the genotype-exposure relationship can already be identified and this 

information can then be used to inform the design of future trials to appropriately characterize 

these relationships in the target population.  

Evaluating the clinical relevance of genotype differences in exposure 

As a result of the preliminary evaluation described in Chapter 3, genotype analysis was 

carried out for the UGT2B15 polymorphism in all subjects enrolled in the subsequent phase 

II trials (n=627). The aim of the work described in Chapters 4 and 5 was to develop a 

population PK-PD model to describe the relationship between changes in exposure and 

clinical response and to evaluate the necessity of genotype-based dosing in relation to current 

dosing practice in T2D.  

Development of a population PK model for sipoglitazar in T2D patients 

Phase II clinical studies provide the opportunity to assess the exposure of a drug in the target 

patient population and to evaluate the effect of genotype relative to other intrinsic or extrinsic 

factors. Diabetes may have the potential to alter the PK of a drug due to its effects on protein 

levels, lipids and carbohydrate metabolism [14]. These factors may result in changes in 

absorption due to decreased gastric emptying, distribution changes related to non-enzymatic 

glycation of albumin and biotransformation or excretion changes due to regulation of 

enzymes or nephropathy [14]. 

 

 

 

 

In Chapter 4 a population PK analysis was conducted with the aim to quantify the differences 

in exposure in the target population between UGT2B15 genotype, to evaluate other potential 

sources of variability and to derive exposure values by dose for comparison to the safety 

margin. The model estimated median clearance values for UGT2B15*2/*2 genotype were 

found to be approximately 2-fold and 3-fold higher than those subjects with the 

UGT2B15*2/*1 or UGT2B15*1/*1 genotypes, respectively.  

Before accounting for any covariates (including genotype), IIV on clearance was 60%; 

however, after including genotype as a covariate, the IIV of clearance was reduced to 40%. 

Only one other covariate (Free fat mass) was found to be significant during the covariate 

analysis and accounted for an additional 2% of the IIV. This analysis confirmed the earlier 

findings of the relationship of UGT2B15 genotype to sipoglitazar exposure in the target 

population. Although, during the analysis of the small phase I studies a somewhat lower 

(2.3-fold) difference in CL was observed between the UGT2B15*1/*1 and UGT2B15*2/*2 

genotypes.  

Post-hoc CL values were then used to determine individual exposure over the dose interval at 

steady state (AUC24). These exposure values were then compared to the safety margin for 

the therapeutic dose and were used as the input into the PK-PD model to evaluate the 

exposure response relationship.  

Predictability of the genotype-phenotype relationship 

Once a relationship has been established between genotype and exposure, a key question is 

the determination of not only the magnitude of the variability between genotypes but also 

how predictable the genotype-phenotype relationship is. This becomes important if dosing 

based on genotype were to be considered. If subjects have a higher exposure than predicted 

based on their genotype, a genotype-based dosing approach may unintentionally result in 

several fold higher exposure than expected and could exceed safety margins depending on the 

therapeutic window of the drug.  

An approach to evaluate the predictability of the genotype-phenotype relationship is 

described in Chapter 4. The predictive strength of genotype for apparent drug clearance was 
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population. Although, during the analysis of the small phase I studies a somewhat lower 

(2.3-fold) difference in CL was observed between the UGT2B15*1/*1 and UGT2B15*2/*2 

genotypes.  

Post-hoc CL values were then used to determine individual exposure over the dose interval at 

steady state (AUC24). These exposure values were then compared to the safety margin for 

the therapeutic dose and were used as the input into the PK-PD model to evaluate the 

exposure response relationship.  

Predictability of the genotype-phenotype relationship 

Once a relationship has been established between genotype and exposure, a key question is 

the determination of not only the magnitude of the variability between genotypes but also 

how predictable the genotype-phenotype relationship is. This becomes important if dosing 

based on genotype were to be considered. If subjects have a higher exposure than predicted 

based on their genotype, a genotype-based dosing approach may unintentionally result in 

several fold higher exposure than expected and could exceed safety margins depending on the 
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investigated by analyzing the data without a priori consideration of UGT2B15 genotype in 

the model. Without this knowledge, the individual value of CL was assigned over one of three 

distributions using a probability model (NONMEM $MIX) to assign subjects to one of three 

subpopulations having either a low, intermediate or high CL, based on the joint 

model-optimization of probability and population parameters [15]. These three populations 

(POP1, POP2, and POP3) were generated for post-hoc evaluation against the actual 

UGT2B15 genotype *1/*1, *1/*2 and *2/*2 and the difference in subject assignment between 

categories was then compared (appendix Chapter 4).  

From the results of the comparison between actual assignment of genotype and assignment to 

a population based on the model parameters, in total, 27% (278/1023) of all subjects had been 

assigned to a different population category than expected based on their genotype. The 

highest number of subjects misclassified was for the UGT2B15*1/*1 genotype. This is likely 

due to the large overlap in CL distribution between UGT2B15*1/*1 and UGT2B15*1/*2 

subjects; 62% of the UGT2B15*1/*1 subjects had been assigned to the POP2 (intermediate 

CL) category. However the consequence of this depends on the specific type of 

genotype-based dosing approach that would be applied clinically. For example, the biggest 

impact of a misspecification of CL class based on genotype would occur if a subject who was 

genotyped as an extensive metabolizer actually appeared to have a clearance within the range 

associated with that in the poor metabolism group. That subject would then receive a dose 

that could result in the exposure for that subject being several fold greater than expected. For 

a drug with a wide therapeutic index this may not be of clinical relevance but for a drug of 

which the top dose is close to the exposure margin, the risks of overdosing subjects should be 

considered on balance to the risk/benefit profile.  

Evaluating the influence of genotype on clinical response 

A quantitative and descriptive analysis of the influence of genotype on the pharmacokinetic 

properties of sipoglitazar was described in Chapters 3 and 4. The question for the clinical 

development program now focuses on evaluation of the relationship between changes in the 

exposure due to genotype and its magnitude of effect on the clinical response. In Chapter 5, it 

was addressed if the relationship between changes in the PK due to genotype would result in 

 

 

 

 

clinically relevant change in response using fasting plasma glucose (FPG) and glycosylated 

hemoglobin (HbA1c) as surrogate biomarkers for clinical response. 

The approach was taken to develop a population PK-PD model to describe the changes in 

FPG and HbA1c as a function of individual exposure, whilst PD response data from 

rosiglitazone at a therapeutic dose of 8mg QD were incorporated into the analysis as 

reference data. The model could describe the individual and median profiles for all dose 

levels (8-64 mg total daily dose of sipoglitazar) and no differences in the shape of the 

exposure response relationship were found between genotypes. The model derived median 

exposure response relationship for the typical patient between AUC and change from baseline 

in HbA1c is shown in Figure 10 in relation to the actual observed data from the Phase II 

trials. As outlined in Chapter 2, the therapeutic dose should be considered relative to the 

exposure response relationship and evaluated in context to the safety margin. For sipoglitazar, 

AUC at steady state achieving half the maximal response (AUC50) and the established 

exposure limit are shown in Figure 10. The median exposure range between UGT2B15*1/*1 

and UGT2B15*2/*2 genotypes for a dose of 32mg are shown on Figure 10. At this dose level 

the response in HbA1c is different by genotype as the exposure range between genotypes sits 

in the middle of the dose response curve (Table 3). If the dose was closer to the Emax for 

glycemic control, i.e. exposure for all genotypes was above the exposure limit of 73 mg.hr/L 

(corresponding to a dose of approximately 400mg for all subjects), changes in exposure 

caused by genotype would have less of an impact on the predicted/expected change in HbA1c 

(Figure 10, Table 3). However if higher exposure levels were to be achieved for all subjects, 

the exposure would then exceed the safety margin for a substantial fraction of the population. 

The current exposure limit is based on mean data from non-clinical studies; however this 

margin also includes a degree of uncertainty on clinical relevance and as well as on 

variability within the patient population. Significantly exceeding this would require 

additional insight in clinical safety and tolerability. 
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Figure 10.  Observed change from baseline in HbA1c (%), observed AUC for all 

sipoglitazar dose levels in the Phase II trials (3 months) and simulated median 

exposure response relationship between HbA1c and AUC. (  median 

exposure range between UGT2B15*1/*1 and UGT2B15*2/*2 genotypes for a 

dose of 32 mg,  median exposure range between UGT2B15*1/*1 and 

UGT2B15*2/*2 genotypes for a dose of 400 mg). 

 

 

The developed PK-PD model was used to simulate the expected FPG and HbA1c change 

from baseline at 6 months (duration of a Phase III trial). The simulation showed that for 

 

 

 

 

sipoglitazar, a dose of 32 mg in the UGT2B15*2/*2 genotype would be expected to provide 

an equivalent result to the reference treatment rosiglitazone (Table 3). The results of the 

simulation also show that for a dose of 32 mg, a less than proportional change in HbA1c was 

observed relative to the changes in drug exposure across genotypes. In the phase II 

population, approximately a 3.3-fold difference in CL is observed between UGT2B15*1/*1 

and UGT2B15*2/*2 genotypes, however this results in only a 1.8-fold difference in HbA1c 

drop relative to the baseline. Although a dose of 32 mg in the UGT2B15*2/*2 subjects can 

achieve reductions in HbA1c equivalent to rosiglitazone, a clinically significant difference 

(0.5% change from baseline in HbA1c [16]) is observed between the UGT2B15*2/*2 and 

UGT2B15*1/*1 genotypes as a result of the differences in drug exposure. It was therefore 

postulated that genotyped based dosing could contribute to the normalization of response 

across individuals by achieving comparable exposure levels across genotype groups.  

Table 3.  Simulated median change from baseline in HbA1c at 6 months by genotype 

for sipoglitazar at a dose of 32 and 400 mg and difference in CL between 

UGT2B15 genotypes (T2D subjects) 

Genotype/Treatment CL 
(L/hr) 

Change from baseline HbA1c at 
6 months for 32 mg (%) 

(Exposure range 6-21 mg.hr/L) 

Change from baseline HbA1c at 6 
months for 400 mg (%) 

(Exposure range 79-261 mg.hr/L) 

UGT2B15*1/*1  5.04 -0.6 -1.7 

UGT2B15*1/*2  3.35 -0.8 -1.8 

UGT2B15*2/*2  1.53 -1.1 -1.9 

Rosiglitazone 8mg  -1.2 

Evaluating genotyped-based dosing approaches 

When genetically determined differences in exposure have been observed, there are specific 

approaches recommended by the regulatory authorities to determine the appropriate dosing 

adjustment [7]. These include dose titration, optional gene base dosing or dosing based on 

genotype. The PK-PD model developed in Chapter 5 was then used to simulate these various 

scenarios and evaluate the most efficient dosing strategy to achieve optimal therapeutic 

response for all genetic subgroups for sipoglitazar. 
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for sipoglitazar at a dose of 32 and 400 mg and difference in CL between 

UGT2B15 genotypes (T2D subjects) 

Genotype/Treatment CL 
(L/hr) 

Change from baseline HbA1c at 
6 months for 32 mg (%) 

(Exposure range 6-21 mg.hr/L) 

Change from baseline HbA1c at 6 
months for 400 mg (%) 

(Exposure range 79-261 mg.hr/L) 

UGT2B15*1/*1  5.04 -0.6 -1.7 

UGT2B15*1/*2  3.35 -0.8 -1.8 

UGT2B15*2/*2  1.53 -1.1 -1.9 

Rosiglitazone 8mg  -1.2 

Evaluating genotyped-based dosing approaches 

When genetically determined differences in exposure have been observed, there are specific 

approaches recommended by the regulatory authorities to determine the appropriate dosing 

adjustment [7]. These include dose titration, optional gene base dosing or dosing based on 

genotype. The PK-PD model developed in Chapter 5 was then used to simulate these various 

scenarios and evaluate the most efficient dosing strategy to achieve optimal therapeutic 

response for all genetic subgroups for sipoglitazar. 
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Simulations were performed evaluating three different approaches, (1) a single dose level for 

all subjects, (2) genotype-based dose adjustment (where genotype is used to estimate the 

starting dose) or (3), titration based on therapeutic response. Based on the simulation at 6 

months, using a single dose level for all subjects, a dose of 96mg would be expected to 

provide a comparable result to the rosiglitazone treatment arm in all genotype groups. 

However a dose of 96mg would be expected to exceed the currently defined safety margin, 

particularly for subjects in the UGT2B15*2/*2 genotype and would be a dose higher than had 

previously been administered during either Phase I or Phase II. If such an approach was to be 

taken, additional safety evaluation and/or TDM of plasma levels in an early stage of the study 

would be needed at these higher exposures. The use of TDM may be an alternative approach 

to prevent over exposure of subjects [17,18]. This could be of particular value if there was a 

disconnect between the genotype-exposure relationship. TDM has been routinely used as tool 

to individualize drug dosage in many therapeutic areas and further discussion of this 

approach is out of scope of this thesis [18,19,20].  

As shown from the simulation of a genotype based dosing approach in Chapter 5, a result 

equivalent to the rosiglitazone reference dose could (also) be achieved for all genotypes by 

administering lower doses to the UGT2B15*2/*2 and UGT2B15*1/*2 genotype groups. The 

optimal genotype-based approach would have the following fixed dosing scheme: 

UGT2B15*1/*1=96 mg, UGT2B15*1/*2=64 mg, and UGT2B15*2/*2=32 mg. The design of 

the Phase III study would then include pre-selection of dose based on genotype for all 

subjects enrolled in the trial. Such an approach would also require the development of an 

assay for UGT2B15 genotype for the relevant genetic testing to be performed in the clinic if 

genotyped-based dosing was then included in the label [21].  

Although a genotype-based dosing approach could be used to normalize response between 

the genetic subgroups, in T2D a titration approach based on efficacy/safety is routinely 

applied. A comparison was therefore simulated between genotyped-based dosing and titration 

based approaches, with all subjects in the titration group starting at 32mg. Subjects in the 

UGT2B15*2/*2 group would not need to undergo dose titration as 32mg appears to be the 

optimal dose for this genotype group. The results of this simulation highlight two key points. 

 

 

 

 

The magnitude of reduction in FPG or HbA1c between the genotype and titration approaches 

would be expected to be the same but the time taken to eventually achieve that maximum 

response would be shorter when pre-selection of dose was based on genotype. The 

differences between genotyped and titration approaches in the time to maximum effect was 

estimated at 2 and 3 months for the UGT2B15*1/*2 and UGT2B15*1/*1 genotypes 

respectively (Chapter 5, Figure 4a and 4b). Since there is a causal link established between 

hyperglycemia and diabetic complications, earlier reduction in glycemic markers through the 

use of genotyped-based dosing may offer additional clinical benefit in specific cases or 

patient populations [22]. 

The frequency of the UGT2B15*2/*2 genotype is approximately 22% in the Caucasian 

population, but in Japanese American subjects, in a sample size of 77, there were no subjects 

reported as UGT2B15*2/*2 genotype [10]. This is an import consideration for comparing 

genotype-based dosing and titration approaches since the benefit of genotype-based dosing 

would affect a lower number of subjects if there was a higher proportion of UGT2B15*2/*2 

genotype subjects as they would already start treatment at the most efficacious dose without 

the need for genotyping. If the frequency of the UGT2B15*1/*1 and UGT2B15*1/*2 

genotypes was higher, genotyped-based dosing may be advantageous as these subjects would 

start at the correct dose and would not require additional titration steps. Therefore, the 

frequency of the genotype in different ethnic populations should also be considered in 

evaluating the most appropriate dosing scheme.  

Genotype influences on model based approaches in disease progression analysis 

Analysis conducted using Genome Wide Association Studies (GWAS) in T2D have identified 

significant associations for more than 35 independent loci [23]. These studies are conducted 

not only to identify new disease genes but also to evaluate the mechanisms behind the 

disease, with initial studies identifying loci that impact directly on beta cell function [24]. In 

type 1 diabetes (T1D) the concept that candidate genes may affect disease progression by 

modulating survival and function of the β-cells has already been evaluated for the gene 

cathepsin H [27]. Results in children with T1D showed that carriers of the T allele required a 

significantly higher insulin dose to maintain glycemic control and carriers of this genotype 
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had faster disease progression, leading to a more prominent β-cell dysfunction [27]. The 

application of disease progression models incorporating drug and genetic information may 

offer further insight into these interesting findings on disease differences by genotype. 

The aim of the work described in Chapter 6 was to evaluate the drug and disease effects on 

FPG and HbA1c over a long term period in treatment experienced Japanese T2D subjects 

receiving the current standard of care. Using the model developed on this long term data 

(>2years) it can be hypothesized how PGx in T2D may influence drug response through both 

symptomatic and disease modifying effects. 

In Chapter 5 it was demonstrated that pre-selection of an optimal dose based on genotype 

would result in a decrease in the time to reach maximum effect as compared to using titration 

based on efficacy. However T2D is a slowly progressing disease and the symptomatic 

benefits of this early optimization of dose should also be evaluated considering the influence 

of disease progression [25]. It could be postulated that through genotyping a subject a more 

efficacious starting dose could be selected that would reduce the time taken for titration. A 

simulation was therefore performed to evaluate how reducing the time taken to reach the 

maximal dose during titration would influence the FPG profile over a period of 5 years.  

Simulation for a range of ET50 values was performed (0-150 days); where ET50 represents 

the time taken to achieve half the maximal dosage for a subject undergoing titration. Results 

in Figure 11 show that decreasing titration time has several consequences on the long term. 

As the time to maximal effect is reduced greater symptomatic benefit of FPG reduction can 

be obtained, however as there is no change in the underlying disease rate symptomatic 

benefits observed early in the treatment period have almost disappeared after 5 years. This is 

consistent with the profile for a disease independent symptomatic effect [26]. 

In Figure 12, the effects of differences in the disease progression rate for the FPG profile are 

shown. This may be as a result of a treatment that directly targets a novel disease pathway 

identified from GWAS or that a subject's disease progression rate, as observed in T1D, can be 

different depending on the genotype. Interestingly, this simulation shows that changes in 

disease progression rate would only appear to have a substantial influence on FPG levels in 

 

 

 

 

this treatment experienced patient population approximately 1.5 years from the start of 

treatment.   

 

Figure 11. Simulation of median FPG change 

over time for a range of ET50 values (all 

simulations performed using a DPRC value in 

the model of 0.013 year-1). 

 

Figure 12. Simulation of median FPG change 

over time for a range of disease progression rate 

(DPRC) values (all simulations performed using 

an ET50 value in the model of 75 days). 

As shown in Figures 11 and 12, the advantages of symptomatic and disease modifying 

benefits occur on different timescales. Early symptomatic improvements would generate a 

short-term improvement that decreases over time. In contrast, the disease modifying effects 

on FPG propagate over time. An optimized treatment approach in T2D would therefore not 

only have symptomatic improvement but could also interact with the disease progression rate. 

It may therefore be that the most optimal PGx driven treatment approaches come from a 

range of different studies involving genes that target different pathways. 

Perspectives on approaches to evaluate the impact of genotype in clinical development 

During the non-clinical stage if a polymorphic gene is identified to play a central role in the 

metabolism of the drug, consideration should be given to this during the design of the first in 

human trial (FIH) [28]. A key component of this is the prediction of the influence of genotype 
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differences from non-clinical data. As proposed by Zhou et al, a predict, learn and confirm 

approach towards clinical development should be implemented [29]. Physiologically-based 

pharmacokinetic (PBPK) models are built mainly from drug-independent “system” 

information and incorporate both intrinsic and extrinsic factors [30]. These models can be 

used to assess the influence of genotype on human drug exposure before the conduct of the 

FIH trial by utilizing the non-clinical animal and in vitro data. This is an important 

consideration for making predictions on genotype effects on exposure as PBPK models can 

incorporate metabolic intrinsic clearance values for multiple CYP enzymes and information 

on the frequency and activity of different allelic forms [31,32]. The influence of genotype can 

then be assessed relative to the contribution of enzymes and transporters on intestinal and 

hepatic availability, with the aim to fully understand the impact of these variables on the 

bioavailability in vivo [33]. 

If the frequency of the genotype for the enzyme is already known, subjects can be enrolled 

into the phase I trials to evaluate the differences in exposure between these genetic subgroups 

using a stratified approach. These early phase I studies can then be used to further validate or 

challenge the PBPK model assumptions. Such an approach would also enable simulations to 

be performed to evaluate potential differences by genotype in drug-interaction and organ 

impairment studies [33]. Lower doses in subjects with organ impairment maybe required for 

subjects who are poor metabolizers of a drug and the application of PBPK simulations could 

be used to assess the exposure changes by genotype relative to the changes in hepatic 

function or protein binding. This information can be used to appropriately plan and prioritize 

studies in special populations in the clinical development program and inform patient 

inclusion/exclusion criteria in phase II.  

Population PK analysis of clinical data, including maximum likelihood or Bayesian 

methodology can be used in combination with bottom-up PBPK approaches [31]. PBPK 

models can be combined with population PK approaches to evaluate PK sample collection 

and optimal design for the phase II or III trials [31,34,35]. Virtual populations can be 

simulated using the PBPK models and these simulations can be evaluated by population PK 

methods. This combined approach has already been demonstrated to assess co-medication as 

 

 

 

 

a covariate, and further extension of this approach would include genotype as an additional 

covariate in the analysis [34,35]. It would also be of value to use PBPK models for trial 

simulation if only limited subjects from a particular genotype subgroup have been enrolled in 

the phase I studies or if the phase II studies are expanded into subjects of a different ethnic 

background as such information can be incorporated into the simulation.  

Following the phase II studies, a population PK approach would be applied to evaluate the 

influence of genotype as a covariate on exposure data relative to the other intrinsic and 

extrinsic factors which may also contribute to the variability both within and between 

subjects in the target patient population. The data from this population PK approach can then 

be compared to the earlier derived PBPK model forecast to validate the model assumptions in 

special populations. 

Understanding the dose-exposure-response relationship is a key component in evaluating how 

genotype differences in exposure may result in a different clinical response. This should be 

evaluated relative to any appropriate safety margins, whilst the magnitude of influence of 

genotype should be considered relative to the other covariates identified. The development of 

a PK-PD or PBPK-PD model incorporating safety and/or efficacy can be used to understand 

the shape of this dose response relationship. One of the advantages of implementing PBPK 

models is the ability to predict the impact of specific mechanistic processes and determinants 

on the tissue dose [36]. Further extension of these models by linking PBPK to PD response 

can be considered in the simulation, and the relationships between drug exposure and efficacy 

or toxicity can be evaluated [37]. An additional advantage of linking PBPK models to PD 

response is that the local concentration at the effect site can be determined and used as the 

input for the PD response, rather than plasma concentration. This is particularly important 

when transporters are involved in drug disposition at the effect site, as there may be 

disconnect between the plasma concentration and the concentration at the site of action [38]. 

The development of models linking exposure with clinical response would then be used for 

clinical trial simulation evaluating different dosing scenarios such as genotype-based dosing 

or TDM approaches to appropriately design further studies. As clinical trials expand into 

other regions, the frequency of the genotype should then be considered relative to ethnicity 

Chapter 7

196

12475_Stringer_Layout.indd   196 09-12-14   12:20



 

 

 

 

differences from non-clinical data. As proposed by Zhou et al, a predict, learn and confirm 

approach towards clinical development should be implemented [29]. Physiologically-based 

pharmacokinetic (PBPK) models are built mainly from drug-independent “system” 

information and incorporate both intrinsic and extrinsic factors [30]. These models can be 

used to assess the influence of genotype on human drug exposure before the conduct of the 

FIH trial by utilizing the non-clinical animal and in vitro data. This is an important 

consideration for making predictions on genotype effects on exposure as PBPK models can 

incorporate metabolic intrinsic clearance values for multiple CYP enzymes and information 

on the frequency and activity of different allelic forms [31,32]. The influence of genotype can 

then be assessed relative to the contribution of enzymes and transporters on intestinal and 

hepatic availability, with the aim to fully understand the impact of these variables on the 

bioavailability in vivo [33]. 

If the frequency of the genotype for the enzyme is already known, subjects can be enrolled 

into the phase I trials to evaluate the differences in exposure between these genetic subgroups 

using a stratified approach. These early phase I studies can then be used to further validate or 

challenge the PBPK model assumptions. Such an approach would also enable simulations to 

be performed to evaluate potential differences by genotype in drug-interaction and organ 

impairment studies [33]. Lower doses in subjects with organ impairment maybe required for 

subjects who are poor metabolizers of a drug and the application of PBPK simulations could 

be used to assess the exposure changes by genotype relative to the changes in hepatic 

function or protein binding. This information can be used to appropriately plan and prioritize 

studies in special populations in the clinical development program and inform patient 

inclusion/exclusion criteria in phase II.  

Population PK analysis of clinical data, including maximum likelihood or Bayesian 

methodology can be used in combination with bottom-up PBPK approaches [31]. PBPK 

models can be combined with population PK approaches to evaluate PK sample collection 

and optimal design for the phase II or III trials [31,34,35]. Virtual populations can be 

simulated using the PBPK models and these simulations can be evaluated by population PK 

methods. This combined approach has already been demonstrated to assess co-medication as 

 

 

 

 

a covariate, and further extension of this approach would include genotype as an additional 

covariate in the analysis [34,35]. It would also be of value to use PBPK models for trial 

simulation if only limited subjects from a particular genotype subgroup have been enrolled in 

the phase I studies or if the phase II studies are expanded into subjects of a different ethnic 

background as such information can be incorporated into the simulation.  

Following the phase II studies, a population PK approach would be applied to evaluate the 

influence of genotype as a covariate on exposure data relative to the other intrinsic and 

extrinsic factors which may also contribute to the variability both within and between 

subjects in the target patient population. The data from this population PK approach can then 

be compared to the earlier derived PBPK model forecast to validate the model assumptions in 

special populations. 

Understanding the dose-exposure-response relationship is a key component in evaluating how 

genotype differences in exposure may result in a different clinical response. This should be 

evaluated relative to any appropriate safety margins, whilst the magnitude of influence of 

genotype should be considered relative to the other covariates identified. The development of 

a PK-PD or PBPK-PD model incorporating safety and/or efficacy can be used to understand 

the shape of this dose response relationship. One of the advantages of implementing PBPK 

models is the ability to predict the impact of specific mechanistic processes and determinants 

on the tissue dose [36]. Further extension of these models by linking PBPK to PD response 

can be considered in the simulation, and the relationships between drug exposure and efficacy 

or toxicity can be evaluated [37]. An additional advantage of linking PBPK models to PD 

response is that the local concentration at the effect site can be determined and used as the 

input for the PD response, rather than plasma concentration. This is particularly important 

when transporters are involved in drug disposition at the effect site, as there may be 

disconnect between the plasma concentration and the concentration at the site of action [38]. 
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and regional lifestyle differences. The necessity of genotype-based dosing approaches may 

also depend on the frequency of the genetic subgroups enrolled.  

Less progress has been made in understanding the role of PGx differences directly 

influencing PD response. In oncology there are several examples where drugs are 

administered only in certain genetic subpopulations, for example genetic testing for K-Ras 

mutation and EGFR-expression are required prior to initiating treatment for cetuximab and 

panitumumab [39]. As shown for warfarin, a genotype-based dosing approach is not only 

limited to genetic differences which influence the PK, but also including genetic differences 

that directly affect the PD response. Further expansion of the current model based approaches 

for warfarin would link PBPK models with PD response and incorporate the differences due 

to VKORC1 genotypes [40]. When evaluating the variability between individuals in PD 

response consideration should not be limited to the multiple CYP enzymes or transporters 

that are involved in the metabolism or uptake of the drug, but also to the possibility that 

genetic subgroups in the PD may also contribute to the variability observed in the response.  

Conclusions 

The applications of PGx across the clinical development paradigm are starting to change the 

approach to evaluating clinical response between individuals. As PGx sample collection 

becomes routine in clinical studies, the possibility to integrate this into our understanding of 

drug effects should only increase. Model based approaches integrating physiological based 

parameters or linking exposure with response are powerful tools to quantify and evaluate the 

impact of genetic differences resulting from either change in drug exposure or directly related 

to clinical response. Evaluating this impact early in the development phase is important to 

appropriately design future clinical studies and to ensure that the exposure response 

relationship can be appropriately determined for all genetic subgroups. Such a comprehensive 

approach should only improve study design and patient outcomes and ultimately help to 

reduce drug attrition across the pharmaceutical industry.  
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administered only in certain genetic subpopulations, for example genetic testing for K-Ras 

mutation and EGFR-expression are required prior to initiating treatment for cetuximab and 

panitumumab [39]. As shown for warfarin, a genotype-based dosing approach is not only 

limited to genetic differences which influence the PK, but also including genetic differences 

that directly affect the PD response. Further expansion of the current model based approaches 

for warfarin would link PBPK models with PD response and incorporate the differences due 

to VKORC1 genotypes [40]. When evaluating the variability between individuals in PD 

response consideration should not be limited to the multiple CYP enzymes or transporters 

that are involved in the metabolism or uptake of the drug, but also to the possibility that 

genetic subgroups in the PD may also contribute to the variability observed in the response.  

Conclusions 

The applications of PGx across the clinical development paradigm are starting to change the 

approach to evaluating clinical response between individuals. As PGx sample collection 

becomes routine in clinical studies, the possibility to integrate this into our understanding of 

drug effects should only increase. Model based approaches integrating physiological based 

parameters or linking exposure with response are powerful tools to quantify and evaluate the 

impact of genetic differences resulting from either change in drug exposure or directly related 

to clinical response. Evaluating this impact early in the development phase is important to 

appropriately design future clinical studies and to ensure that the exposure response 

relationship can be appropriately determined for all genetic subgroups. Such a comprehensive 

approach should only improve study design and patient outcomes and ultimately help to 

reduce drug attrition across the pharmaceutical industry.  
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