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Summary 

Sipoglitazar, is a peroxisome proliferator–activated receptor α, δ and γ agonist. During phase 

I, a wide distribution of clearance between individuals was observed. Hypothesized to result 

from a polymorphism in the uridine 5'-diphospate-glucuronosyltransferase (UGT)2B15 

enzyme, pharmacogenetic samples were collected from each individual for genotyping 

UGT2B15 in a subsequent phase I trial in healthy subjects (n=524) and in two phase II trials 

in type 2 diabetes subjects (n=627), total genotype frequency was: *1/*1 (22%), *1/*2 (51%) 

and *2/*2 (27%). The impact of genotype on exposure was assessed using a pharmacokinetic 

modelling approach, the influence of genotype on efficacy was evaluated using 12-week 

HbA1c change from baseline. Model analysis demonstrated UGT2B15 genotype accounted 

significantly for the variability in sipoglitazar clearance; however, a small fraction of subjects 

had a clearance that could not be explained entirely by genotype. HbA1c-drop increased with 

daily drug dose. When stratified by both dose and genotype, HbA1c-drop was larger in the 

UGT2B15*2/*2 compared with UGT2B15*1/*1 and UGT2B15*1/*2 genotypes (P<.05). In 

summary, UGT2B15 genotype  is a strong predictor for sipoglitazar clearance, a greater 

clinical response observed in the UGT2B15*2/*2 genotype appears to confirm this. However, 

overlap in individual rates of clearance across genotypes remains after accounting for 

genotype. 

 

 

Introduction 

Genetic differences that result in patient variability in drug metabolism, disposition, and 

response, have led a move towards individualized medicine in which doses are set based on 

genotype [1,2]. However, the relative contribution of genetic differences to inter-individual 

variability in exposure varies widely between drugs. In some cases there is too much weight 

placed on the contribution of a single genotype to drug clearance and too little weight on the 

contribution of other factors affecting both clearance and the clinical response, such as age, 

body weight, disease status and environment [3-5]. 

Polymorphic expressed enzymes, such as cytochrome P450 (CYP) 2C9, CYP2C19, and 

CYP2D6, have been extensively studied as a large number of drugs are catalyzed through 

these pathways, including warfarin and metoprolol [6,7]. In addition to the polymorphic CYP 

mediated metabolism, genetic polymorphisms have been identified for glucuronidation by 

uridine 5'-diphospate-glucuronosyltransferases (UGTs). Accounting for approximately 10% 

of the major drug elimination pathways,[4] some of these UGTs have been shown to be 

polymorphic. An example is the UGT2B15 isoform, which is involved in the inactivation of 

lorazapam and oxazepam [8,9]. Genetic polymorphisms for UGT2B15 have been identified 

to result from an amino acid change from aspartic acid (D85) to tyrosine (Y85) at position 85 

[10]. Those subjects that are homozygous (*2/*2) with reduced glucuronidation are classified 

as “poor metabolizers” (PM), compared to those with the wild type (*1/*1) “extensive 

metabolizers” (EM), and those with the heterozygous allele (*1/*2) exhibiting intermediate 

levels of metabolic activity “intermediate metabolizers” (IM). The genotype frequencies 

reported in the Caucasian population for UGT2B15 *1/*1, UGT2B15 *1/*2, and UGT2B15 

*2/*2 are 22%, 46% and 32%, respectively [11]. 

Sipoglitazar, a novel orally-available, peroxisome proliferator–activated receptor (PPAR) 

agonist with activities for PPAR α, δ, and γ, was targeted for type 2 diabetes mellitus 

(T2DM). The compound undergoes phase II biotransformation by conjugation catalyzed by 

UGT [12].  During phase I clinical trials, a bi-or multimodal distribution of 

exposure/clearance appeared to be more likely than a normal distribution; this was later 

evaluated using in vitro data and was found to be related to a polymorphism of the UGT2B15 

enzyme.  Based on this result pharmacogenetic samples for UGT2B15 were collected from 

each individual in a subsequent phase I trial in healthy subjects and in two phase II trials in 
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type 2 diabetes subjects for genotyping UGT2B15 (*1/*1, *1/*2 and *2/*2) polymorphisms. 

The translation of the observed variability in clearance to the pharmacodynamics of the 

compound was explored in context to the expression of the UGT2B15 enzyme and reviewed 

in relation to a pre-determined exposure margin.  

 

 

 

Methods 

Subjects and Data Collection 

A summary of studies used in the analysis, as well as demographic and genotype frequency 

data is given in Table I. One phase I trial in healthy subjects (n=524) and two phase II trials 

in type 2 diabetes subjects (n=627) were included in the analysis. All studies were conducted 

in accordance with the Declaration of Helsinki (Edinburgh 2000). Written approval was 

obtained from the relevant local institutional ethics committee before the start of each study 

and for the amendments made to the protocols. 
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Pharmacogenetic Analysis 

A blood sample was collected during each study for genotyping. The blood sample was 

collected into an EDTA tube and stored at -20°C until shipment, then transported frozen to 

DxS, Manchester, United Kingdom. DNA was prepared from whole blood samples by the 

AGOWA/Hamilton automated extraction system (Bonaduz, Switzerland). Real-time 

polymerase chain reaction methods using the Stratagene Mx4000 (La Jolla, CA, USA) and 

appropriately designed primers allele-specific at the 3′nucleotide end (Amplification 

Refractory Mutation System strategy [13]) were used to determine UGT2B15*2 (D85Y) and 

were analyzed according to their relative capillary electrophoretic mobility using an ABI 

Prism 3100 Genetic Analyzer (Applied Biosystems, Warrington, United Kingdom). 

Bioanalysis 

At each specified time point, plasma samples were collected into sodium heparin–containing 

tubes. The tubes were inverted gently in order to dissolve the heparin and they were placed 

on ice until processing. The plasma was separated in a refrigerated centrifuge, within 60 

minutes of collection, at approximately 1500 g for 10 minutes. Plasma concentrations for 

sipoglitazar were quantified in human plasma using a method previously validated by 

Covance Laboratories Ltd (Harrogate, United Kingdom). This method uses liquid 

chromatography with tandem mass spectrometric detection, with a validated calibration range 

from 0.1 to 250 ng/mL for sipoglitazar in human plasma. 

Population Data Analysis 

Exploratory graphical analysis on the phase I pharmacokinetics of sipoglitazar indicated 

bi-phasic elimination. The phase I and II datasets were combined and a two-compartmental 

model with parallel first- and zero-order absorption into the central compartment and 

first-order elimination was selected as the initial structural model for nonlinear mixed effect 

model development.  

Inter-individual variability (IIV) was explored assuming a log normal distribution of the 

individual parameter estimates. The IIV (η) for the ith pharmacokinetic parameter, where θi 
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modeled using a proportional model for the subject data EQ(2) and a proportional model 

including IIV for the patient data EQ(3) as follows: 

Cij = PRED * (1+ERRij)   EQ(2) 

Cij = PRED * (1+ERRij) * exp(η)  EQ(3) 

Where Cij is the observed concentration, PRED is the predicted concentration, and ERR is the 

proportional residual error the for jth prediction for the ith individual.  

Eta-shrinkage of all random effects on IIV was computed to inform model validation [14].  

In addition to genotype, a covariate analysis was conducted to explore the influence of other 

individual covariates on the pharmacokinetic parameters, with free fat mass (FFM) used to 

assess the influence of body weight [15]. 

All covariates were evaluated in the model using a forward inclusion and backward 

elimination procedure [16]. Covariates were included in the model using the following 

equation:  

P(mean) = θ (i) * (1+θ(f) * (COV-COV(median)))  EQ(4) 

Where P(mean) is the typical value of the population estimate, θ (i) is the individual 

parameter estimate, COV is the value of the covariate and associated median value and θ(f) 

represents magnitude of the covariate effect. 

 

 

 

 

For safety reasons, an upper limit of chronic exposure was previously determined (area under 

the curve (AUC) > 73 mg·hr/L) for sipoglitazar. In order to assess the balance between safety 

and efficacious response, the data are reviewed in context to this level. 

Efficacy Data 

Analysis of the phase II data was performed in patients with T2DM following 12 weeks of 

treatment with sipoglitazar. The primary endpoint was the absolute drop in glycosylated 

hemoglobin (HbA1c) in percentage points observed between day 0 and the last day of dosing, 

which was stratified by dose and genotype. The HbA1c data were analyzed using analysis of 

variance and the experiment-wise type 1 error controlled by a combination of Bonferroni 

correction and Tukey multiple comparison tests. A P < .05 was considered statistically 

significant. 

Data Analysis 

All population analyses were performed using nonlinear mixed effects modeling on 

pharmacokinetic and demographic data in the NONMEM software package (version VII, 

release 1; Icon Development Solutions, Ellicott City, MD, USA) and analyzed using the 

statistical software package S-Plus® for Windows (version 6.2 Professional, Insightful Corp., 

Seattle, WA, USA). The first order conditional estimation method was used for estimation. 

Visual Predictive Check 

Model performance was evaluated using the visual predictive check (VPC), evaluating the 

ability of the model to predict both the central tendency and the variability of the exposure 

[17]. The distribution of simulated concentrations for 1000 subjects (median and 90th 

prediction interval) and the actual individuals, including the median and percentiles was 

compared graphically. Results  

Base Model 

A population pharmacokinetic model was developed, with the pharmacokinetics of 

sipoglitazar being well described using a two-compartmental model with linear kinetics and 

no observed dose or time dependency. The absorption phase was adequately described using 
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ability of the model to predict both the central tendency and the variability of the exposure 

[17]. The distribution of simulated concentrations for 1000 subjects (median and 90th 
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a combined parallel zero- and first-order uptake process. The IIV was described by an 

exponential variance model for clearance (CL), volume of distribution (V) and for the 

duration parameter (D1), which describes the duration of the zero-order process. The residual 

variability was described using a proportional error model with separate residual variability 

for phase I and phase II. The addition of IIV on the residual error for the phase II population 

resulted in a large decrease in the MVOF of -508 points; in addition, the residual error 

decreased from 131% to 24%.  

The median value for CL for the total population was initially estimated at 2.8 L/h.  

Covariate Analysis 

To further investigate the influence of UGT polymorphism, a value for median clearance was 

optimized separately to each individual according to UGT2B15 genotype (Table II). This 

resulted in median clearance for genotype groups UGT2B15 *1/*1 and *1/*2, which were 

respectively, 66% and 53% lower than that of the genotype UGT2B15 *2/*2. Before 

accounting for any covariates (including genotype) IIV on clearance was 60%, however after 

including genotype as a covariate, IIV of clearance was reduced to 40%. No differences in 

degree of variability were observed between UGT2B15 genotype *1/*1, *1/*2 and *2/*2.  

Using this pharmacokinetic model, all other candidate covariates were subsequently tested for 

significance (age, sex, weight, and FFM), separately on V and CL. During forward inclusion 

only sex, weight or FFM on V resulted in a significant decrease in the MVOF (> 6.63). As 

the greatest change in the MVOF was observed with FFM, as this was the only covariate 

retained in the final model after backward deletion, the addition of which resulted in a 

decrease in IIV of 2%. 

Final Model 

The parameter estimates for the final model are shown in Table II. The distribution for the 

post-hoc CL values obtained from the final model are shown in supplemental Figure S1 

without stratification and in Figure 1 including stratification by genotype, demonstrating an 

increasing tendency in CL from UGT2B15 genotype groups *2/*2> *1/*2>*1/*1. 

 

 

 

 

The relationship between dose and AUC (AUC=dose/CL) over the dose interval at steady 

state was explored and stratified by dose and genotype (Figure 2). As indicated from the 

median CL values optimized per genotype a higher AUC value was observed in subjects in 

the UGT2B15 *2/*2 group compared with the other two genotype groups. Although this 

trend is generally observed, several outlier subjects (>1.5*inter quartile range) were observed 

in the UGT2B15 *1/*1 and UGT2B15 *1/*2 genotype groups. Subjects from both these 

genotype groups have overlapping AUC ranges to those values observed for the UGT2B15 

*2/*2 genotype.  

Table II. Summary of parameter estimates for the final model including covariates  

Parameter name Parameter Value (CV%) IIV (%, CV%) 

Clearance population 1a CL (*1/*1) (L/h) 4.46 (2.5) 
40.25 (7.72) Clearance population 2a CL (*1/*2) (L/h) 3.25 (2.2) 

Clearance population 3a CL (*2/*2) (L/h) 1.53 (2.2) 
Central volume of distributiona V (L) 9.03 (2.4) 34.21 (13.0) 
Peripheral volume of 
distributiona,b V2 (L) 0.189 (4.9) -- 

Intercompartmental clearance Q (L/h) 0.313 (6.6) -- 
Absorption rate constant  ka (1/h) 2.07 (4.8) -- 
Duration of zero order process D1 (h) 0.568 (6.81) 78.29 (14.8) 
FFM on central volume of 
distribution (L/kg) 0.00349 (27.2)  

Residual variability Phase I 
(proportional) 2 0.0552 (8.8) -- 

Residual variability Phase II 
(proportional) 2 0.167 (10.2) 76.88 (14.9) 

a  Bioavailability for sipoglitazar is currently unknown, as such clearance and volume were modeled as CL/F 
and V/F, respectively.  

b The peripheral volume of distribution was implemented as a fraction of the central compartment. 

CV% = percent coefficient of variation. 
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Central volume of distributiona V (L) 9.03 (2.4) 34.21 (13.0) 
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Figure 1.  Histogram plot for post-hoc CL values for all subjects included in the analysis 

stratified by genotype. 

 

 

 

 

 

Figure 2.  Box plots (median, 25th and 75th percentiles) for the estimated area under the 

concentration-time curve from 0 to 24 hours (AUC) by genotype and dose. 

Gray line exposure limit 73 mg·hr/L. 

 

Model Validation 

The observed and predicted plasma concentration-time profile following a single 64 mg dose 

in healthy subjects are shown using the VPC (supplemental Figure S2a). The VPC for the 

dose normalized phase II data is shown in supplemental Figure S2b. The model-predicted 

median and 90th prediction interval closely resemble those for the actual data, demonstrating 

the ability of the model to describe the data well. No substantial eta-shrinkage was observed 

for CL (2.3%), V (4.1%) or IIV for omega on sigma (-1.7%); however, for D1, eta-shrinkage 

was fairly high (28.1%), but was considered acceptable for the aims of this analysis. 
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The observed and predicted plasma concentration-time profile following a single 64 mg dose 

in healthy subjects are shown using the VPC (supplemental Figure S2a). The VPC for the 

dose normalized phase II data is shown in supplemental Figure S2b. The model-predicted 

median and 90th prediction interval closely resemble those for the actual data, demonstrating 

the ability of the model to describe the data well. No substantial eta-shrinkage was observed 

for CL (2.3%), V (4.1%) or IIV for omega on sigma (-1.7%); however, for D1, eta-shrinkage 

was fairly high (28.1%), but was considered acceptable for the aims of this analysis. 
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Influence of Genotype and Dose on Efficacy 

Figure 3(a) shows a clear pattern for the dose response relationships based on the median 

12-week change from baseline of HbA1c with total daily dose. For the entire study 

population, doses equal to or greater than 16 mg showed a significant (P < .05) change from 

baseline in HbA1c compared with placebo. However, when stratified by UGT2B15 genotype 

and dose (Figure 3(b)), subjects with the UGT2B15*2/*2 genotype showed a significantly 

larger reduction (P < .05) in HbA1c compared with the UGT2B15*1/*1 and UGT2B15*1/*2 

genotypes at 32 mg and 64 mg. At 32 mg, the median change from baseline in HbA1c for the 

UGT2B15*2/*2 genotype was -0.95% (n=36) compared with -0.6% (n=100) and -0.5% 

(n=50) in the UGT2B15*1/*2 and UGT2B15*1/*1 groups, respectively.  

 

 

 

 

Figure 3.(a) Box plots (median, 25th and 75th percentiles) for the change from baseline in 

HbA1c by dose (placebo (n=111), 8 mg (n=58), 16 mg (n=113), 32 mg 

(n=186), 64 mg (n=125)).  
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Figure 3.(b) Box plots (median, 25th and 75th percentiles) for the change from baseline in 

HbA1c by genotype and dose. **=statistically significant at P < .05. 

 

 

 

 

 

Discussion 

During this analysis the pharmacokinetic and pharmacodynamic data for sipoglitazar in 

healthy subjects and T2DM patients were analyzed in relation to the polymorphic expression 

of the UGT2B15 enzyme. Based on in-vitro metabolism studies, UGT2B15 was expected to 

contribute to the inter-subject variability. Firstly, a population pharmacokinetic model was 

developed for sipoglitazar, evaluating the individual relationship of UGT2B15 genotype to 

clearance. This analysis revealed that genotype significantly accounted for the variability in 

clearance of sipoglitazar. Secondly, the marker for efficacy, HbA1c change from baseline, 

when stratified by dose and genotype revealed that a greater clinical response was observed 

in patients in the UGT2B15*2/*2 group compared with patients in the UGT2B15*1/*1 and 

UGT2B15*1/*2 genotype groups. Thus the UGT2B15 enzyme was found to play an 

important role in the disposition of sipoglitazar, the results of which impacted on the clinical 

efficacy. 

Using the pharmacokinetic model, the influence of genotype on the IIV on clearance was 

explored. By accounting for genotype as a covariate on clearance the IIV was reduced from 

60% to 40%.  Additional covariates were tested on both clearance and volume; however, 

only FFM on volume was found to be significant, reducing the IIV on distribution volume by 

2%. The results of this work showed genotype can indeed explain the variability in clearance 

however only to a certain degree, with 40% IIV on clearance remaining. Thus genotype alone 

cannot explain entirely the observed degree of variation in exposure and various other factors 

are apparently contributing to the variability. Results from the current analysis showed that a 

small fraction of the population of either UGT2B15*1/*1 or *1/*2 groups have widely 

overlapping ranges in individual clearance between genotype groups. To evaluate this further, 

a mixture model was developed in parallel by optimization of individual probabilities to 

estimate the category of metabolism on the basis of apparent clearance, without taking the 

information on the genotype into account (supplementary material). This analysis estimated 

the percentage of subjects in the UGT2B15*1/*1 and *1/*2 groups in whom the phenotype 

was not corresponding with the genotype as 8% (61/744). In other words, in these subjects, 

genotype was not predictive of the actual observed clearance (supplementary Figure S3). 
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60% to 40%.  Additional covariates were tested on both clearance and volume; however, 
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a mixture model was developed in parallel by optimization of individual probabilities to 

estimate the category of metabolism on the basis of apparent clearance, without taking the 

information on the genotype into account (supplementary material). This analysis estimated 

the percentage of subjects in the UGT2B15*1/*1 and *1/*2 groups in whom the phenotype 

was not corresponding with the genotype as 8% (61/744). In other words, in these subjects, 
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These subjects had an apparent clearance value that falls into the range observed for the 

UGT2B15*2/*2 group, resulting in potentially 2-3 times lower clearance than the median 

value for these groups based solely on genotype. 

Phase II results showed a clear dose-dependent reduction in the pharmacodynamic marker, 

HbA1c, with sipoglitazar treatment. When stratified by genotype, this effect was lower in the 

UGT2B15*1/*1 and *1/*2 groups compared with the UGT2B15*2/*2 genotype group, 

confirming the clinical relevance of genotype-based differences in exposure of this drug. For 

various drugs, studies are reported that address the relationship of genotype to phenotype, 

with a primary focus on the mean change in pharmacokinetic parameters when stratified by 

genotype [18-20]. However, these studies often do not address the remaining variability of 

exposure within each genotype at the individual level or the overlap in exposure between 

different genotype groups. Other studies, focus directly on stratification by genotype to 

clinical outcome [21]. Individual differences in pharmacokinetics caused in part by 

polymorphism are not necessarily of clinical relevance [22]. This is generally due to a 

number of factors such as a very large range of overlap in exposure between genotypic 

groups [23], and/or wide safety to efficacy margins that allow a single treatment to be both 

efficacious and safe for all patients irrespective of genotype. Under certain conditions, 

pre-selection of doses based on one of several genotypes could potentially lead to efficacy or 

safety concerns if the phenotype overlap between genotype groups is not adequately 

understood. For example, a subject could be classified as a particular genotype but could still 

receive an inappropriate dose because other structural and/or random factors also contribute 

to the individual exposure. Although there is now a wide interest in the use of genotype-based 

dosing to account for differences in efficacy due to the polymorphic driven changes in 

pharmacokinetics, currently, very few drugs on the market have a specific dose adjustment 

recommendation included in the label [24]. In addition, for some cases the study population 

was too small to confirm the clinical relevance of such polymorphisms [25,26].  

Based on the current results for sipoglitazar, the use of a genotype approach in which doses 

are set for individuals based on a genetic sample was considered as a potential method of 

individualized dose selection. From the results of this analysis, a dose of 32 mg appears to 

 

 

 

 

achieve an optimal reduction in HbA1c in the UGT2B15*2/*2 group with comparability to 

other diabetic agents that achieve reductions in HbA1c of around 0.7%-1% in short term 

trials [27].  Thus, genotype-based dosing would target comparable AUC values to be 

achieved for all UGT2B15 genotype groups. However under such circumstances at this 

exposure level those subjects with disconnect between genotype and clearance may exceed 

the exposure margins, especially in the UGT2B15*1/*1 and UGT2B15*1/*2 genotype 

groups. Given the potential disconnect between individual clearance and genotype and the 

potential in these subjects to exceed exposure limits a more balanced approach may combine 

therapuetic drug monitoring in addition to the pre-selection of doses based on genotype. 

Alternative dosing approaches based on monitoring of individual efficacy directly after the 

start of dosage could also be considered The current anti-diabetic agents requiring dose 

titration can reach the highest dose in 2 to 3 titration steps and usually only requiring 2 visits. 

For sipoglitazar and other PPAR agonists, the longer time to effect equilibration likely 

indicates that monitoring would be required over a longer period than for metformin [28], at 

similar time frames as for rosiglitazone (8 to 12 weeks). This would likely characterize those 

subjects in the UGT2B15*2/*2 group since the higher exposure seems to result in a stronger 

effect; however, longer titration steps and a wider range from the initial starting dose to the 

maximum dose would likely be required in the UGT2B15*1/*1 or UGT2B15*1/*2 genotype 

group.   

In summary, it can be concluded that genotype explains a large part of the observed 

variability in exposure to sipoglitazar, but other factors which remain largely unexplained at 

the moment may cause a level of exposure that is either too low to achieve the desired effect 

or so high that exposure limits will be exceeded. A genotype-based dosing approach alone 

would thus not be a viable strategy for sipoglitazar, however, a combination of therapeutic 

drug monitoring combined with an efficacy-based approach may offer an alternative to 

mitigate the risks in subjects who have disconnect between genotype and drug exposure.  
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UGT2B15*1/*1 and *1/*2 groups compared with the UGT2B15*2/*2 genotype group, 

confirming the clinical relevance of genotype-based differences in exposure of this drug. For 

various drugs, studies are reported that address the relationship of genotype to phenotype, 

with a primary focus on the mean change in pharmacokinetic parameters when stratified by 

genotype [18-20]. However, these studies often do not address the remaining variability of 

exposure within each genotype at the individual level or the overlap in exposure between 

different genotype groups. Other studies, focus directly on stratification by genotype to 

clinical outcome [21]. Individual differences in pharmacokinetics caused in part by 

polymorphism are not necessarily of clinical relevance [22]. This is generally due to a 

number of factors such as a very large range of overlap in exposure between genotypic 

groups [23], and/or wide safety to efficacy margins that allow a single treatment to be both 

efficacious and safe for all patients irrespective of genotype. Under certain conditions, 

pre-selection of doses based on one of several genotypes could potentially lead to efficacy or 

safety concerns if the phenotype overlap between genotype groups is not adequately 

understood. For example, a subject could be classified as a particular genotype but could still 

receive an inappropriate dose because other structural and/or random factors also contribute 

to the individual exposure. Although there is now a wide interest in the use of genotype-based 

dosing to account for differences in efficacy due to the polymorphic driven changes in 

pharmacokinetics, currently, very few drugs on the market have a specific dose adjustment 

recommendation included in the label [24]. In addition, for some cases the study population 

was too small to confirm the clinical relevance of such polymorphisms [25,26].  

Based on the current results for sipoglitazar, the use of a genotype approach in which doses 

are set for individuals based on a genetic sample was considered as a potential method of 

individualized dose selection. From the results of this analysis, a dose of 32 mg appears to 

 

 

 

 

achieve an optimal reduction in HbA1c in the UGT2B15*2/*2 group with comparability to 

other diabetic agents that achieve reductions in HbA1c of around 0.7%-1% in short term 

trials [27].  Thus, genotype-based dosing would target comparable AUC values to be 

achieved for all UGT2B15 genotype groups. However under such circumstances at this 

exposure level those subjects with disconnect between genotype and clearance may exceed 

the exposure margins, especially in the UGT2B15*1/*1 and UGT2B15*1/*2 genotype 

groups. Given the potential disconnect between individual clearance and genotype and the 

potential in these subjects to exceed exposure limits a more balanced approach may combine 

therapuetic drug monitoring in addition to the pre-selection of doses based on genotype. 

Alternative dosing approaches based on monitoring of individual efficacy directly after the 

start of dosage could also be considered The current anti-diabetic agents requiring dose 

titration can reach the highest dose in 2 to 3 titration steps and usually only requiring 2 visits. 

For sipoglitazar and other PPAR agonists, the longer time to effect equilibration likely 

indicates that monitoring would be required over a longer period than for metformin [28], at 

similar time frames as for rosiglitazone (8 to 12 weeks). This would likely characterize those 

subjects in the UGT2B15*2/*2 group since the higher exposure seems to result in a stronger 

effect; however, longer titration steps and a wider range from the initial starting dose to the 

maximum dose would likely be required in the UGT2B15*1/*1 or UGT2B15*1/*2 genotype 

group.   

In summary, it can be concluded that genotype explains a large part of the observed 

variability in exposure to sipoglitazar, but other factors which remain largely unexplained at 

the moment may cause a level of exposure that is either too low to achieve the desired effect 

or so high that exposure limits will be exceeded. A genotype-based dosing approach alone 

would thus not be a viable strategy for sipoglitazar, however, a combination of therapeutic 

drug monitoring combined with an efficacy-based approach may offer an alternative to 

mitigate the risks in subjects who have disconnect between genotype and drug exposure.  
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Supplemental Appendix 

  

 

 

 

 

Figure S1.  Histogram plot for post-hoc clearance (CL) values for all subjects included in 

the analysis.  
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Figure S2.(a) Visual predictive check for observed and predicted single dose (64 mg) data 

for 006.  
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Figure S2.(b) Visual predictive check for dose normalized observed and predicted data from 

the combined phase II trials (EC201 and EC202) 
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Population Data Analysis 

Methods 

Inter-individual variability on the residual error for the patient trial was included using 

NONMEM’s omega-sigma interaction option, since all samples were intended to be collected 

at trough, the actual time after the administration of the dose was not recorded in either of the 

phase II trials. Therefore this helps to account for high fluctuation in trough samples for some 

subjects due to sampling error or apparent non-compliance [1], recognizing that CL estimates 

could potentially be confounded by adherence. However, in this analysis, we assume 

complete compliance. 

Mixture Model Analysis 

Methods 

The relationship between drug clearance and genotype was additionally determined without 

the use of the pertinent information on the UGT2B15 genotype in the model. Without this 

knowledge, the inter-individual variation was described using a probability model 

(NONMEM $MIX) to assign subjects to one of the three populations based on the 

model-estimated parameters [2-4]. The individual probability of belonging to a subpopulation 

was estimated and compared to the actual genotype catagory.2 Subjects assigned to a 

different population than expected based on their genotype may have been misclassified if 

indicated by an individual value of belonging to that population (IPk) close to 0.5. 

Subjects were assigned to one of the three populations (POP1, POP2, and POP3); these were 

expected to approximate the UGT2B15 genotype *1/*1, *1/*2 and *2/*2.  This 

subpopulation assignment was then compared to actual genotype categorization and 

corresponded as follows: 

POP1 (CL1 EM) = UGT2B15*1/*1  

POP2 (CL2 IM) = UGT2B15*1/*2  

POP3 (CL3 PM) = UGT2B15*2/*2  

 

 

 

 

Subjects who were classified as UGT2B15 *1/*1 or *1/*2 based on genotype, but were 

assigned to the PM category (POP 3) by the model are expressed as a percentage of the total 

UGT2B15 *1/*1 and *1/*2 genotype groups. 

Results 

The pharmacokinetic parameter estimates for the mixture model are shown in Table AI. The 

IIV on CL was estimated as 38%. As shown in Figure S3, a total of 61 (8%) subjects with 

genotype UGT2B15 *1/*1 or UGT2B15 *1/*2 were assigned to the PM category (POP3) by 

the mixture model. 
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Figure S3. Clearance (CL) estimates grouped by genotype and assigned population.  The 

number of subjects assigned to a population (nPOP) and actual genotype 

group is shown below the graph. UGT2B15 = uridine 

5'-diphospate-glucuronosyltransferase 2B15. 

 

 

The individual probability of each subject of belonging to the EM (POP1), IM (POP2), or PM 

(POP3) subpopulation was calculated (Figures S4(a), S4(b) and S4(c)). A wide range of 

individual probability values between 0 and 1 was observed for the EM and IM populations 

for genotypes UGT2B15*1/*1 and UGT2B15*1/*2, this range of probabilities indicate that 

assignment to the EM or IM population is associated with uncertainty for these genotypes. 

 

 

 

 

However, the individual probability of belonging to the PM population appears to be 

associated with less uncertainty, since the majority of probabilities by UGT2B15 genotype 

are closer to 0 or 1.   

Figure S4(a) The individual probablity (IP) of beloning to mixture 1 by genotype and 

population.  

 

Chapter 4

98

12475_Stringer_Layout.indd   98 09-12-14   12:19



 

 

 

 

Figure S3. Clearance (CL) estimates grouped by genotype and assigned population.  The 

number of subjects assigned to a population (nPOP) and actual genotype 

group is shown below the graph. UGT2B15 = uridine 

5'-diphospate-glucuronosyltransferase 2B15. 

 

 

The individual probability of each subject of belonging to the EM (POP1), IM (POP2), or PM 

(POP3) subpopulation was calculated (Figures S4(a), S4(b) and S4(c)). A wide range of 

individual probability values between 0 and 1 was observed for the EM and IM populations 

for genotypes UGT2B15*1/*1 and UGT2B15*1/*2, this range of probabilities indicate that 

assignment to the EM or IM population is associated with uncertainty for these genotypes. 

 

 

 

 

However, the individual probability of belonging to the PM population appears to be 

associated with less uncertainty, since the majority of probabilities by UGT2B15 genotype 

are closer to 0 or 1.   

Figure S4(a) The individual probablity (IP) of beloning to mixture 1 by genotype and 

population.  

 

Impact of UGT Polymorphism on the PK-PD of Sipoglitazar

99

4

12475_Stringer_Layout.indd   99 09-12-14   12:19



 

 

 

 

Figure S4(b) The individual probablity (IP) for subjects assigned to mixture 2 by genotype 

and population.  

 

Figure S4(c) The individual probablity (IP) of beloning to mixture 3 by genotype and 

population.  
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Figure S4(b) The individual probablity (IP) for subjects assigned to mixture 2 by genotype 

and population.  

 

Figure S4(c) The individual probablity (IP) of beloning to mixture 3 by genotype and 

population.  
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Table AI. Summary of parameter estimates for the mixture model including 

covariates  

Parameter name Parameter Value (CV%) IIV (%, CV%) 

Clearance population 1a CL POP1 (EM) (L/h) 5.04 (3.85) 
38.21 (10.7) Clearance population 2a CL POP2 (IM) (L/h) 3.35 (2.38) 

Clearance population 3a CL POP3 (PM) (L/h) 1.53 (2.64) 
Central volume of distributiona V (L) 9.06 (2.41) 34.50 (13.4) 
Peripheral volume of distributiona,b V2 (L) 0.188 (4.93) -- 
Intercompartmental clearance Q (L/h) 0.311 (6.72) -- 
Absorption rate constant  ka (1/h) 2.15 (6.19) -- 
Duration of zero order process D1 (h) 0.637 (3.69) 77.20 (16.9) 
FFM on central volume of 
distribution (L/kg) 0.00556 (16.5)  

Probability fractionc PROB 0.367 (3.69)  
Probability of belonging to POP 1c POP 1 0.18 (18.6)  
Probability of belonging to POP 2c POP 2 0.522 -- 

Probability of belonging to POP 3c POP 3 0.30  
Residual variability Phase I 
(proportional) 2 0.05487 (9.23) -- 

Residual variability Phase II 
(proportional) 2 0.167 (10.2) 72.18 (15.6) 

a  Bioavailability for sipoglitazar is currently unknown, as such clearance and volume were modeled as CL/F 
and V/F, respectively.  
b The peripheral volume of distribution was implemented as a fraction of the central compartment 
cThe probability of belonging to the populations 2 and 3 was estimated as: 

POP2 = (1-POP1)*PROB 

POP3= (1-POP1)*(1-PROB) 

CV% = percent coefficient of variation 
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