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Introduction 

Phase I studies conducted early in the clinical development program provide the first 

opportunity to assess not only the pharmacokinetic (PK) profile of a drug but also to evaluate 

the extent of differences between individuals. Evaluating the basis for differences between 

individuals considers a range of factors including, routes and rates of elimination, 

permeability/solubility data or covariates such as age or gender. Identification of the enzymes 

catalyzing the in-vitro-metabolism is a key component in determining the source and possible 

clinical relevance of this variation. For drugs in which in-vitro studies show that a 

polymorphic gene is central to the metabolism of the drug (in vitro data predict >50% of the 

drug be cleared by a single polymorphic enzyme) [1], it is important to consider the role of 

this enzyme to the PK variability. The implementation of genetic factors into the 

development program has three key aims 1) to understand how genetic factors contribute to 

inter-individual variability in PK and PD 2) to inform the optimal design of phase 2/3 studies 

3) to provide evidence/information to support the labeling [2]. 

Application of model based approaches in PK 

The role of polymorphic changes in variability of drug exposure should be considered 

relative to the other intrinsic or extrinsic factors. The understanding of specific covariates 

(e.g., age and race) and gene-covariate interactions on the variability in drug response is 

useful in understanding the relative impact of genetics, versus other nongenetic factors on the 

both the PK and safety/efficacy of the drug [3]. This is important to consider when evaluating 

if dose individualization and/or therapeutic drug monitoring (TDM) could actually be used to 

improve patient outcomes. Population PK models are a powerful tool to quantify and identify 

sources of variability both within and between subjects [4]. By implementing a model based 

approach, differentiation between variability both within and between subjects can enhance 

the statistical power to identify the different factors influencing the pharmacokinetic profile 

[5]. The value of a applying a model based approach was demonstrated for tacrolimus where 

studies investigating the effect of CYP3A4*22 genotype on tacrolimus PK had been limited 

in their approach by only considering the trough concentrations and not fully evaluating the 

use of co-medication [5]. Moes et al quantified the effect of CYP3A4*22 genotype for 

cyclosporine, everolimus, and tacrolimus clearance and found that the effect was a reduction 

 

 

in clearance of less than 20%. They therefore concluded that dose adjustments based on 

CYP-3A4*22 were not required. The study further confirmed the role of CYP-3A5*3 

genotype and found this was a suitable predictive marker for tacrolimus clearance, but close 

TDM remains essential due to the remaining variability between patients within the same 

genotype group. 

Other sources of variability were also incorporated into the population PK analysis of the 

HIV-1 protease inhibitor, Atazanavir [6]. The drug exhibits high inter- and intrapatient 

variability and sources of variation between individuals were attributed to a number of 

sources not only related to pharmacogenetic (CYP3A5) factors but also including the effect 

of food on the bioavailability and adherence to therapy. An integrated population PK analysis 

revealed that a 28% increase in clearance was observed in subjects with at least one 

CYP3A5*1 allele, however the between subject variability decreased by an additional 40% 

when adherence was also considered in the model.  This approach was able to delineate the 

effects resulting from genotype whilst considering the other components contributing to the 

variability in exposure. Such a comprehensive model based approach can then be used to 

further evaluate the necessity of individualized dosing.  

Application of model based approaches in PK-PD 

Whilst population PK models can be used to characterize the PK properties of a drug, they 

can also be linked either directly or indirectly with pharmacodynamic (PD) response. 

Through the use of a PK-PD model based approach to evaluate the influence of genotype a 

more comprehensive link between changes in the PK and its influence on the magnitude of 

response can be established. This is an important consideration to assess the clinical 

relevance of these changes in exposure as a direct result of genotype since overall variability 

in the PD, which appears random until relevant covariates have been identified, can be much 

greater than that observed in the PK [7]. Currently, the application of a model based approach 

to evaluate the influence of different genotypes, by linking pharmacokinetic changes with 

response seems limited to only a few drugs. Many studies have evaluated the effect of 

pharmacogenetics for warfarin and several models have been published describing the 

relationship between PK and the PD marker, International Normalized Ratio (INR) [8]. The 

application of a PK-PD model based approach for warfarin has not only been limited to 

adults where both age and CYP-2C9/VKORC1 genotypes were included as covariates for 
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clinical response (INR), but this was recently extended to evaluate if the same relationships 

could be identified in children [9]. Hamberg et al applied a PK-PD model based approach to a 

data set on 163 children. They evaluated if another genetic covariate (CYP-4F2 genotype), 

which had recently been shown to influence warfarin dose requirement should be included in 

the current pharmacogenetic dosing algorithms. The PK-PD analysis showed that variability 

in children was found to be comparable with that reported in adults and that CYP-2C9 

genotype could explain up to a four-fold difference in dose with VKORC1 genotype 

explaining up to a two-fold difference in dose. The analysis also found that bodyweight, age, 

baseline and target INR, time since initiation of therapy, but not CYP-4F2 genotype, were 

found to influence significantly typical warfarin dose requirements in children. This model 

based approach can now be further utilized to improve the improving efficacy and safety of 

warfarin therapy in children. 

Furthermore physiologically based pharmacokinetic (PBPK) models have been linked to PD 

response integrated to estimate the drug concentration at the site of action. This may offer a 

better understanding of true PD variability vs. variability resulting from drug disposition at 

the site of action [10]. Through the development of a PBPK-PD model, Rose et al 

demonstrated that by using the local concentration at the effect site to drive the PD response 

they were able to explain why there was a disconnect observed between the effect of (organic 

anion-transporting polypeptide) OATP1B1 polymorphism on rosuvastatin plasma 

concentration and the lack of impact observed on the PD response. They show that plasma 

concentration is different between individuals due to genotype, but a significant proportional 

reduction in the PD marker (mevalonic acid) does not occur as the concentration at the effect 

site has already reached Emax. Such an approach is able to describe the physiological 

implications behind these differences and enhance the understanding of the eventual impact 

of genotype on clinical response. 

Genotype influences on model based approaches in disease progression analysis 

Disease progression analysis is a model based approach applied to describe and explain 

changes in disease status as a function of time and drug therapy [11]. The advantage of 

implementing a model based approach being the key characterization of the relationship 

between treatment and the physiology of the disease over time. Many of the published 

 

 

models evaluating disease progression have focused in the areas of Type 2 Diabetes (T2D), 

Parkinson's and Alzheimer's disease [12, 13]. Recently the application of the genome wide 

association study (GWAS) has emerged as a powerful tool for identifying disease-related 

genes for many common human disorders. The application of these studies have identified 

eleven new susceptibility loci for late-onset Alzheimer's disease, in T2D significant 

associations were identified for more than 35 independent loci and in Parkinson's disease 

many GWAS are currently on-going to evaluate susceptibility to the disease [14, 15, 16]. 

Data from these GWAS could also be an important covariate as an extension of the current 

model based approaches applied in these disease areas. Such an approach would enable 

treatment specific effects to be evaluated on the time course of the disease profile and enable 

evaluation of disease modifying drug effects in the different genetic populations. This 

comprehensive approach could then be used to evaluate if specific genetic sub-populations 

respond differently to drug treatment.  

Understanding the dose response relationship relative to genotype 

Genotype difference should be considered relative to the dose response relationship [3]. For 

example, for a drug which has a steep dose response curve, small changes in exposure 

resulting from genotype differences will have a greater impact depending on where the 

therapeutic dose sits on the curve. Whilst for a drug at which the therapeutic dose is given 

close to the Emax these differences resulting from genotype will be less apparent. Figure 1 

shows how these changes in exposure can be related to the drug response and how the 

therapeutic dose should be evaluated relative to the exposure response relationship. The 

magnitude of the influence of exposure changes on response (i.e. decrease from baseline in 

HbA1c) is different depending on the drug exposure.  
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Figure 1 Exposure response relationship for the decrease from baseline in HbA1c (%) 

at 3 months, light grade shade shows exposure range between EM and PM 

subjects at 64mg, dark grey shade shows exposure range for EM and PM at 

400mg  

 

When the drug exposure is close to the EC50, greater changes in HbA1c between different 

genotypes would be observed. The influence of this is illustrated in Figure 2a and Figure 2b.  
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Figure 2a. HbA1c simulation over time for a 

dose of 64mg 

  

Figure 2b. HbA1c simulation over time for a 

dose of 400mg 

 

When the genotype influence is simulated for a dose close to the EC50 (light graded shaded 

area on Figure 1), the difference in the change from baseline in HbA1c between extensive 

(EM) and poor metabolizers (PM) is -0.6%. However, when a higher dose is given (dark gray 

shaded area on Figure 1), a large change in exposure results in a less than proportional 

change in the clinical response. The difference in the change from baseline in HbA1c 

between EM and PM subjects is now only -0.2%. Therefore this genotype difference would 

not be clinically relevant when a higher dose was given. Whilst increasing the exposure can 

negate the influence of genotype, this should routinely be considered on balance to the 

safety/efficacy margin. A comprehensive model based approach would incorporate not only 

PD response related to efficacy but also including safety. Often in clinical development the 

relationship between drug exposures and efficacy can be well defined, but the relationship 

between drug exposure and safety may only be defined as linear as dose escalation would be 

limited by exposure margins or would be stopped before the maximum effects are reached. 

This could have an influence for subjects who are poor metabolizers as these subjects would 

be expected to have higher exposure than the average population. Additional studies at higher 

doses than previously studied in Phase I may be needed to cover the exposure range for the 

Chapter 2

40

12475_Stringer_Layout.indd   40 09-12-14   12:19



 

 

Figure 1 Exposure response relationship for the decrease from baseline in HbA1c (%) 

at 3 months, light grade shade shows exposure range between EM and PM 

subjects at 64mg, dark grey shade shows exposure range for EM and PM at 

400mg  

 

When the drug exposure is close to the EC50, greater changes in HbA1c between different 

genotypes would be observed. The influence of this is illustrated in Figure 2a and Figure 2b.  

0.1 1.0 10.0
Exposure (mg.hr/L)

0.0

0.5

1.0

1.5

2.0

D
ec

re
as

e 
fr

om
 b

as
el

in
e 

in
 H

bA
1c

 (%
)

EC50

 

 

 

Figure 2a. HbA1c simulation over time for a 

dose of 64mg 

  

Figure 2b. HbA1c simulation over time for a 

dose of 400mg 

 

When the genotype influence is simulated for a dose close to the EC50 (light graded shaded 

area on Figure 1), the difference in the change from baseline in HbA1c between extensive 

(EM) and poor metabolizers (PM) is -0.6%. However, when a higher dose is given (dark gray 

shaded area on Figure 1), a large change in exposure results in a less than proportional 

change in the clinical response. The difference in the change from baseline in HbA1c 

between EM and PM subjects is now only -0.2%. Therefore this genotype difference would 

not be clinically relevant when a higher dose was given. Whilst increasing the exposure can 

negate the influence of genotype, this should routinely be considered on balance to the 

safety/efficacy margin. A comprehensive model based approach would incorporate not only 

PD response related to efficacy but also including safety. Often in clinical development the 

relationship between drug exposures and efficacy can be well defined, but the relationship 

between drug exposure and safety may only be defined as linear as dose escalation would be 

limited by exposure margins or would be stopped before the maximum effects are reached. 

This could have an influence for subjects who are poor metabolizers as these subjects would 

be expected to have higher exposure than the average population. Additional studies at higher 

doses than previously studied in Phase I may be needed to cover the exposure range for the 

PKPD Modeling of Pharmacogenomics

41

2

12475_Stringer_Layout.indd   41 09-12-14   12:19



 

 

subjects who are poor metabolizers. This may be the case if the frequency distribution/ratio 

of genotypes for EM/PM is highly unbalanced and no poor metabolizers had been enrolled at 

the top dose level in phase I or II.  

Evaluating the clinical consequence of genetic differences 

Dosing recommendations should ensure that a patient receives a drug that is both safe and 

effective [1]. Genotype based dosing recommendations are expected to follow the same 

expected level of evidence as other adjustments made for subpopulations where dose 

adjustment are made based on renal function or weight. Different routes for dose 

recommendations may include dose titration, optional gene based dosing or dosing based on 

genotype [1]. Since dose titration approaches are widely applied in many therapeutic areas, 

for existing therapies dose titration approaches should be compared with genotype based 

dosing to evaluate the additional utility of implementing a genetic dosing algorithm. As such 

the application of a model based approach can be used to simulate different scenarios and 

address clinical questions such as the time to reach maximum effect or the % of subjects 

achieving a certain target for both genotyped-based dosing vs. titration-based approaches. 

Clinical trial simulation can also be used to look at clinical outcomes in each of the genotype 

sub-populations for upcoming pivotal studies.  

Conclusions 

The application of model based approaches to evaluate the influence of genotype, have 

primarily focused on the use of genotype as a covariate on drug exposure. These models 

should preferably also be extended during the drug development program to include clinical 

response, evaluating safety or efficacy markers to design the appropriate genetic based dosing 

algorithms or compare different study designs i.e. genotype-based dosing vs. a single dose 

level for all subjects. Further extension has focused on the use of PB-PK models which can 

be developed during the non-clinical stage and combined with PD models for safety or 

efficacy. Ultimately these model based approaches can be used to determine if 

covariate-based dose individualization would be required to normalize exposure and 

minimize variability in clinical outcomes across population subgroups and inform label 

recommendations that can improve individual patient outcomes [17]. 

 

 

Outline of the investigations in this thesis 

This thesis starts with an overview of the current applications of Pharmacogenomics (PGx) 

across drug development with an emphasis on the implications of polymorphism in drug 

metabolizing enzymes and transporters. The second section (Chapter 2) focuses on the 

application of model based approaches to evaluate differences in drug exposure and response 

as a result of these genetic differences between individuals.  

In Chapters 3, 4 and 5 the focus for this thesis is on a clinical example for the T2D drug, 

sipoglitazar. Sipoglitazar undergoes phase II biotransformation by conjugation catalyzed by 

UDP-glucuronosyltransferase (UGT) [18]. Clinical data from four phase I studies in healthy 

volunteers and two phase II trials in T2D subjects were utilized in the analysis. PGx samples 

for determination of UGT genotype were collected for all subjects enrolled in the trials. The 

objectives of the investigation in Chapters 3-5 was to evaluate the role of UGT genotype 

differences in explaining inter-individual variability for sipoglitazar and to then investigate 

the impact of these differences on both the clinical response and the selection of the 

appropriate dosing scheme for future trials.  

In Chapter 3, an investigation was conducted to evaluate the enzymes that were contributing 

to the inter-individual variability of sipoglitazar and to then quantify the resulting exposure 

differences between genotype. Here the importance of considering genotype relative to other 

intrinsic and extrinsic factors is investigated and discussed. The analysis in Chapter 3 was 

conducted using data from a trio of phase I clinical pharmacology studies in healthy 

volunteers. The studies included a single ascending dose (n=39), multiple ascending dose 

(n=19) and a single dose age/gender study (n=30). The dose range for sipoglitazar was 

0.2-64mg.  

The investigation and analysis conducted in Chapter 4 was then focused on evaluating 

genotype influences in the target population, T2D patients. In this chapter data from two 

phase II randomized, double-blind studies (sipoglitazar once daily: 8, 16, 32, or 64 mg; 

sipoglitazar twice daily: 16 or 32 mg; rosiglitazone 8 mg once daily and placebo for 13 

weeks; n = 780) were included in the analysis. For evaluation of the exposure data the phase 

II trials were combined with a large phase I single dose (64mg) study in a diverse ethnic 

study population of 524 healthy male and female subjects.  The magnitude of exposure 
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differences resulting from polymorphic differences in the UGT2B15 enzyme were quantified 

and considered relative to other covariates in the target population using pharmacokinetic 

modelling. The predictability of the genotype-exposure relationship was investigated and an 

approach to evaluate the predictability of this relationship is then described. The 

consequences of disconnect between genotype and exposure are discussed. In addition, a 

preliminary analysis was conducted to evaluate the relationship between genotype and 

efficacy, using change from baseline in HbA1c at 3 months by dose and genotype as a 

pharmacodynamic endpoint. Exposure data were then reviewed relative to the safety margin 

and discussed in context to the therapeutic dose. 

This analysis was extended in Chapter 5 and a population PK-PD model was implemented to 

evaluate the relationship between exposure differences resulting from genotype and its 

magnitude of impact on the clinical response (FPG and HbA1c). This analysis showed how 

the development of PK-PD model can be used to test different dosing scenarios to 

appropriately plan future clinical studies and to evaluate the impact of genotype on dosing 

relative to current dosing practices in T2D.  

The next section (Chapter 6) focusses on PD model based approaches in T2D over a much 

longer time period (>2.5 years). Since T2D is a slowly progressing disease, the importance of 

considering both the drug and disease effects on the time course of the relevant biomarkers is 

investigated. A phase IV study that was conducted in Japanese T2D subjects was used for the 

analysis. In this study (n=587) subjects received pioglitazone in combination with other oral 

glucose-lowering drugs or oral glucose-lowering drugs excluding thiazolidinedione (control 

group). Treatment was adjusted to achieve HbA1c<6.9% following the standard treatment 

guidelines for T2D in Japan. In the control group, either the dosage of the current therapy was 

increased, or a concomitant oral glucose-lowering drug was added. In the pioglitazone group, 

the preferred adjustment was to increase the dose of pioglitazone. The study was conducted 

over a period of 2.5-4 years and all subjects included in the trial were treatment experienced. 

Throughout the study biomarker samples for FPG and HbA1c were collected. A population 

PD model simultaneously incorporating FPG and HbA1c was developed to describe the time 

course of the drug and disease effects in both treatment groups. The aim of this analysis was 

to further enhance the understanding of the treatment and time course effects on FPG and 

 

 

HbA1c and the development of the PD model enabled simulations to be performed to 

compare the longer term glycemic durability between treatment groups. 

In Chapter 7 the investigations are reviewed and discussed with a focus on the application of 

model based approaches across clinical drug development to evaluate and understand 

genotype differences in enzymes and transporters. Furthermore the applications of PGx in 

treatment approaches to T2D over the long term are hypothesized. The future perspectives on 

the applications of model based approaches to evaluate the impact of genotype in clinical 

development are presented. The focus for discussion is on the utilization of PBPK models 

throughout clinical development in understanding the role of genotype relative to the other 

intrinsic and extrinsic factors and for considerations in study design. 
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