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Introduction 

Pharmacogenomics (PGx) is defined as ‘the study of variations of DNA and RNA 

characteristics as related to drug response’[1]. To date there are several key areas within 

clinical development to which PGx has contributed with the greatest impact. These primarily 

focus on the relationship between the pharmacokinetics/pharmacodynamics in genes 

encoding the drug metabolizing enzymes. However recent advances in technologies and 

decreasing costs have broadened the scope of PGx across drug development. Regulatory 

guidance has recently categorized the scope of impact into four main areas: 1) genes relevant 

to changes in the pharmacokinetics (PK) 2) genes that code for intended or unintended drug 

targets and other pathways related to the drug’s pharmacologic effect; 3) genes not directly 

related to a drug’s pharmacology that can predispose to toxicities such as immune reactions; 

and 4) genes that influence disease susceptibility or progression [2]. The goal for the 

implementation of pharmacogenomics across drug development is to elucidate the genetic 

basis for inter individual differences in drug response and ultimately utilize this genetic 

information to predict the safety, toxicity, and efficacy of drugs in specific individuals or 

subgroups of patients and as the scientific basis for individualized dosing [3]. 

PGx exploratory study for target selection and toxicity 

The genome wide association study (GWAS) has emerged as a powerful tool for identifying 

disease-related genes for many common human disorders [4]. These studies also have the 

potential to identify novel drug targets or pathways directly related to the disease [5]. GWAS 

evaluates DNA sequence variations from across the human genome to identify potential 

genetic risk factors for diseases that are common in the population [6]. Through the 

application of GWAS, Complement Factor H gene was identified as a major risk factor for 

age-related macular degeneration [7]. Furthermore the finding that CYP-2C8 polymorphism 

is a predictor in multiple myeloma patients to develop bisphosphonate-related oxteonecrosis 

of the jaw, would not have emerged without GWAS [8]. This was an interesting finding as 

CYP-2C8, which is expressed in a range of tissues other than the liver, may have a role in the 

metabolism of inflammatory mediators [9]. In addition to identifying novel associations, 

GWAS have also been used to evaluate susceptibility to disease across a range of therapeutic 

areas [10]. GWAS have identified four susceptibility loci for epithelial ovarian cancer and 

 

 

recently eleven new susceptibility loci for late-onset Alzheimer's disease were identified in a 

population of approximately 74,000 subjects [11,12]. In other disease areas 50 novel loci are 

now known to modify individual risk of type 2 diabetes and cardiovascular disease [13].  

The rapid increase in the number of GWAS has created an unprecedented opportunity to 

elucidate the role of common genetic variants in the cause of cancer and other diseases. 

Statistical designs and methodologies have become increasingly uniform, resulting in more 

meaningful meta-analysis [10,14]. However there are challenges as GWAS moves into the 

next phase. The clinical translation of these results also requires substantial efforts in 

biochemistry and cell biology to confirm the relevance of and elucidate the mechanisms of 

these findings [10]. The clinical implications of the results also require more efficient genetic 

testing and improvement in the prediction models [15].  

PGx in Early Clinical Development 

Early phase implementation of PGx is critical to future clinical study design and development 

planning since it represents the first exposure of the drug to humans [16]. The potential for 

pharmacogenetic variation can be predicted from in-vitro data prior to the first in human 

(FIH) studies [17]. For a drug primarily metabolized by CYP, the isoforms responsible for the 

metabolism can be identified from in-vitro studies such as recombinant CYP isoforms and 

correlation analysis [18]. The same principles can also be applied for drugs in which 

glucuronidation by uridine 5'-diphospate-glucuronosyltransferases (UGTs) are central to the 

biotransformation. In such circumstances in vitro–in vivo (IVIVE) extrapolation can be 

implemented to evaluate the impact of any potential polymorphism at the earliest stage. Such 

an approach can characterize and enhance the understanding of the biological processes 

directly influencing the PK [19]. The development of a physiologically based PK model to 

describe these processes can be further utilized in the development paradigm to clarify any 

requirement for dose reductions by genotype including those in special populations such as 

hepatic impairment or drug-drug interactions [20,21]. The early identification of the 

relationship between genetic polymorphism and PK/PD response can also help to guide the 

future direction of development considering how differences in drug exposure between 

individuals relates to the safety/efficacy margin.   
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PGx has been routinely been used in the identification and quantification of inter-individual 

variability in drug response resulting from differences in the metabolic transformation of a 

drug. The regulatory authorities have advocated the routine collection of PGx samples in all 

clinical studies to enable prospective and efficient retrospective evaluation of relationships 

between genetic polymorphisms and PK/PD response [2,21]. As a result of the increasing 

evaluation of the relationships between polymorphisms and drug response, the FDA 

maintains a list of FDA-approved drugs with pharmacogenomic information in their labeling 

[22].  

Clinical relevance of genetic variants in pharmacokinetic properties 

There has been extensive evaluation of polymorphic expressed enzymes such as cytochrome 

P450 (CYP), since more than 80% of drugs in use today are metabolized through this 

pathway [23]. In addition to the polymorphic CYP mediated metabolism, genetic 

polymorphisms have been identified for glucuronidation by UGTs [24]. These account for 

approximately 10% of the major drug elimination pathways. With an increasing number of 

transporters being identified in drug uptake and disposition, studies have also evaluated 

relationships between genetic polymorphisms and transporters such as organic 

anion-transporting polypeptide (OATP) [25]. 

CYP P450  

The most widely described polymorphisms in the P450 (CYP) subfamily have been identified 

for CYP-2C9, CYP-2C19, and CYP-2D6. A summary of some of the successful examples for 

the application of pharmacogenomics for CYP-2C9, CYP-2C19 and CYP-2D6 are shown in 

Table 1. 

CYP-2C9 constitutes approximately 20% of the human hepatic P450. Approximately 15% of 

all clinically used drugs are metabolized by CYP-2C9 including tolbutamide, losartan, 

diclofenac, celecoxib and several drugs with a narrow therapeutic index, warfarin and 

phenytoin [26]. There have been several important SNPs identified for CYP-2C9. The 

genotype, CYP-2C9*3, and to a lesser extent CYP-2C9*2, have shown the most clinical 

relevance [27].  

There are currently three drugs listed in the FDA Table of Pharmacogenomic Biomarkers in 

Drug Labeling which include specific information on 2C9 genotype, Celecoxib, Flurbiprofen 

 

 

and Warfarin [22]. For the nonsteroidal anti-inflammatory drug celecoxib, there is a specific 

dose adjustment included in the drug label for poor metabolizers (i.e. CYP2C9*3/*3) [28]. 

Flurbiprofen is also a nonsteroidal anti-inflammatory that is indicated for rheumatology. 

Patients who are known poor metabolizers of CYP-2C9 should be administered Flurbiprofen 

with caution due to increased plasma levels [29]. Warfarin has two different polymorphic 

subgroups identified; CYP-2C9 which influences the PK and the PD related genomic variant 

vitamin K 143 epoxide reductase (VKORC1). The drug label describes a specific dose 

individualization matrix for 6 different CYP-2C9 genotypes (*1/*1, *1/*2, *1/*3, *2/*2, 

*2/*3 and *3/*3) and 3 VKORC1 genotypes (GG, AG and AA). The dose range varies from 

0.5-7mg dependent on both the subjects VKORC1 and 2C9 genotype [30].  

CYP-2C19 is involved in the metabolism of many drugs across therapeutic areas and is 

estimated to be involved in the metabolic clearance of approximately 15% of all prescription 

drugs [31]. There have been several polymorphisms of the gene identified that are known to 

be associated with reduced enzyme activity, CYP-2C19*2, CYP-2C19*3 and CYP-2C19*17 

[32].  

The frequency of these poor metabolizers also varies with race. Approximately 1–8% of 

Caucasians and 13–23% of the Asian populations being poor metabolizers with reduced 

CYP-2C19 function [33]. Therefore the clinical impact of any polymorphism for this enzyme 

should be evaluated in context to race differences.  

The impact of this polymorphism for clopidogrel, a second-generation thienopyridine that 

inhibits platelet aggregation has been widely described [34]. Clopidogrel is a pro-drug that 

requires biotransformation to the active metabolite by CYP-2C19 in order to inhibit platelet 

aggregation. It was therefore hypothesized that subjects with reduced enzyme function would 

also be at risk of higher ischemic events due to the lower plasma levels of this active 

metabolite [34]. The clinical relevance of this was confirmed between carriers of a 

reduced-function CYP-2C19 allele and a higher rate of major adverse cardiovascular events 

in the Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet 

Inhibition with Prasugrel– Thrombolysis in Myocardial Infarction (TRITON–TIMI) 38. As a 

result of accumulating evidence the drug label was updated in 2010 to include a “boxed 

warning” for diminished effectiveness in poor metabolizers of CYP-2C19 [35].  
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CYP-2C19 is the major metabolic pathway involved in the biotransformation of the proton 

pump inhibitors (PPI) omeprazole, pantoprazole, lansoprazole, esomeprazole, and 

rabeprazole [36]. However differences have been identified in the proportional role of 

CYP-2C19 for each PPI [37]. A study evaluating the relationship between genotype and AUC 

for omeprazole, lansoprazole, pantoprazole and esomeprazole, identified a 3-10 fold higher 

exposure range in the poor metabolizers of these drugs (CYP-2C19*3) as compared to 

subjects in the extensive metabolizer group [38]. Furthermore a relationship was identified 

between plasma AUC and the observed degree of inhibition of acid secretion for omeprazole 

[39]. As a result of this the exposure of the drug could be directly related to clinical efficacy 

[40]. In the drug label for omeprazole, esomeprazole and pantoprazole despite the increase in 

AUC observed in the poor metabolizers there are no specific dose adjustment requirements 

based on genotype. However several meta-analysis investigating the relationship between 

genotype and clinical outcome show potential for improved outcomes with the use of 

genotyped-based dosing in PPIs [39,41,42]. 

There are many cardiovascular and central nervous system (CNS) drugs for which CYP-2D6 

is central to the biotransformation [43]. It is estimated that CYP-2D6 is involved in the 

metabolism of approximately 25% of all clinically used medications [44]. CYP-2D6 was first 

reported to display large inter individual variability following analysis of data from the 

antihypertensive agent debrisoquine in the mid-1970s [45]. There are currently 4 major 

subpopulations identified for CYP-2D6, ultrarapid metabolizers (UM), extensive 

metabolizers (EM), intermediate metabolizers (IM) and poor metabolizers (PM) [46]. The 

frequency for these allele was also found to vary across different ethnicities. PMs are found 

in 5-10% of Caucasians however they are rarely found in Asian or African-Americans 

[47,48].  

Metoprolol, used in the treatment of heart failure (HF) and hypertension undergoes 

O-demethylation catalyzed by CYP-2D6 [49]. Clinical studies have shown that PM subjects 

have 4- to 6-fold higher plasma concentrations after administration of metoprolol than EM 

[50]. However in HF patients an evaluation of dose–response association of CYP-2D6 

genotype with steady-state metoprolol pharmacokinetics, pharmacodynamics, therapeutic 

efficacy, and clinical outcome confirmed the association of genotype to PK/PD but found no 

modulation of treatment efficacy by genotype [51]. An individualized dosing approach is 

 

 

applied for metoprolol and upward titration that is based on clinical response is recommended 

for all patients, regardless of CYP-2D6 genotype. There are currently no requirements for 

dose adjustment based on genotype in the FDA drug label [52]. 

The opiate Codeine is primarily a pro-drug and its activity is dependent on its conversion to 

morphine by CYP-2D6. Between PM and UM subjects more than a 30-fold difference in 

morphine AUCs was found and between EM and UM genotypes a 1.5 fold difference in 

AUCs was observed [53]. These differences in exposure due to genotype may result in toxic 

systemic concentrations of morphine even at low codeine doses [54]. The clinical impact of 

these genotype differences has resulted in a black box warning for CYP-2D6 Ultra-rapid 

metabolizers for use of the drug for anesthesia in children [55].The Clinical 

Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP-2D6, provides an 

outline of a genotyped-based dosing approach for morphine and recommends alternative 

analgesics to codeine in patients who are CYP-2D6 poor or ultrarapid metabolizers [54]. 
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modulation of treatment efficacy by genotype [51]. An individualized dosing approach is 

 

 

applied for metoprolol and upward titration that is based on clinical response is recommended 

for all patients, regardless of CYP-2D6 genotype. There are currently no requirements for 

dose adjustment based on genotype in the FDA drug label [52]. 

The opiate Codeine is primarily a pro-drug and its activity is dependent on its conversion to 

morphine by CYP-2D6. Between PM and UM subjects more than a 30-fold difference in 

morphine AUCs was found and between EM and UM genotypes a 1.5 fold difference in 

AUCs was observed [53]. These differences in exposure due to genotype may result in toxic 

systemic concentrations of morphine even at low codeine doses [54]. The clinical impact of 

these genotype differences has resulted in a black box warning for CYP-2D6 Ultra-rapid 

metabolizers for use of the drug for anesthesia in children [55].The Clinical 

Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP-2D6, provides an 

outline of a genotyped-based dosing approach for morphine and recommends alternative 

analgesics to codeine in patients who are CYP-2D6 poor or ultrarapid metabolizers [54]. 
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Table 1 Examples of the application of pharmacogenomics for CYP-2C9, 

CYP-2C19 and CYP-2D6 

Drug Therapeutic 
area 

Year of 
approval 

Year 
PGx 

informat
ion first 
included 
in label 

Bio- 
marker 

Genotype recommendation 
(FDA drug label) 

Approx. 
difference 

in exposure 
between 
PM and 

EM 

Celecoxib Rheumatology 1998 2008 CYP-2C9 50% dose reduction in 
CYP2C9 poor metabolizers 

7 fold [56] 

Flurbiprofen Rheumatology 1988 2010 CYP-2C9 In poor CYP2C9 metabolizers 
the drug should be 

administered with caution 

3 fold [57] 

Warfarin Cardiology or 
Hematology 

1954 2007 CYP-2C9/ 
VKORC1 

Matrix for dose adjustment by 
genotype 

3 fold [58] 

Clopidogrel Cardiology 1997 2010 CYP-2C19 Boxed warning for diminished 
effectiveness in poor 

metabolizers 

3 fold [59] 

Omeprazole Gastroenterology 2008 - CYP-2C19 - 7.5 fold [38] 

Pantoprazole Gastroenterology 2000 2009 CYP-2C19 For known pediatric poor 
metabolizers, a dose reduction 

should be considered. 

10 fold [38] 

Lansoprazole Gastroenterology 1995 - CYP-2C19 - 4.5 fold [38] 

Esomeprazole Gastroenterology 2008 - CYP-2C19 - 3-4 
fold [38] 

Rabeprazole Gastroenterology 1999 - CYP-2C19 - 3 fold [60] 

Metoprolol Cardiology 1992 - CYP-2D6 - 4-6 fold [50] 

Codeine Anesthesiology 1984 2013 CYP-2D6 Boxed warning for death 
related to ultra-rapid 

metabolism of codeine to 
morphine 

30 fold (UM 
and PM 

subjects) [53] 

 

Phase II enzymes 

Many drugs are subject to phase II biotransformation processes, by which the parent 

compound or its intermediate metabolites are conjugated and subsequently excreted from the 

body as water soluble products such as glucuronides [24]. In the United States, 

glucuronidation is a clearance mechanism that is listed for 1 in 10 of the top 200 prescribed 

drugs [61]. Pharmacogenetic variation has been identified for UGTs, specifically for the 

isoforms UGT1A1, UGT1A7, UGT1A9, UGT2B7, and UGT2B15 [24]. However, clinical 

relevance for polymorphism in UGTs has currently only been identified for a few drugs, 

primarily catalyzed by UGT1A1 [62]. Examples for the application of PGx for UGT-1A1 are 

 

 

shown in Table 2. The anti-cancer drug irinotecan, was one of the first drugs to receive 

pharmacogenomically guided label requirements in 2005 [63,64]. Nilotinib, a tyrosine kinase 

inhibitor includes information in the label relating to the increased risk of hyperbilirubinemia 

for subjects genotyped as UGT1A1*28 [65]. UGT1A1 is known to catalyze glucuronidation 

of hepatic bilirubin in humans [65]. Nilotinib was found to be a potent inhibitor of UGT1A1 

in-vitro at clinically relevant concentrations and nilotinib induced-hyperbilirubinemia has 

been hypothesized to occur as a result of this UGT1A1 inhibition [66].  

In addition to UGTs, polymorphism has also been described for other Phase II enzymes such 

as N-acetyltransferase-2 (NAT2) [21]. Hydralazine is a direct acting arterial vasodilator that 

is used in the treatment of resistant hypertension. The drug is metabolized by an acetylation 

reaction mediated by NAT-2 and its activity has been shown to be dependent on NAT2 

polymorphism [67]. The FDA drug label for Isosorbide and Hydralazine includes information 

on the frequency of fast acetylators (approximately 50% of patients are fast acetylators and 

have lower exposure) but no specific recommendations on dose adjustment are described 

[68]. Isoniazid is a drug prescribed for the treatment of tuberculosis. It is metabolized 

primarily in the liver by N-acetyltransferase [69]. Studies evaluating the influence of 

genotype on efficacy have shown in general that slow and rapid acetylators respond equally 

well to treatment, however it has been well established that slow acetylators are more likely 

to develop polyneuropathy during isoniazid therapy [70]. The FDA drug label for Isoniazid 

includes references to both the efficacy and the safety in slow acetylators but no dose 

adjustments or genotype based approaches are recommended [71]. 
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Phase II enzymes 

Many drugs are subject to phase II biotransformation processes, by which the parent 

compound or its intermediate metabolites are conjugated and subsequently excreted from the 

body as water soluble products such as glucuronides [24]. In the United States, 

glucuronidation is a clearance mechanism that is listed for 1 in 10 of the top 200 prescribed 

drugs [61]. Pharmacogenetic variation has been identified for UGTs, specifically for the 

isoforms UGT1A1, UGT1A7, UGT1A9, UGT2B7, and UGT2B15 [24]. However, clinical 

relevance for polymorphism in UGTs has currently only been identified for a few drugs, 

primarily catalyzed by UGT1A1 [62]. Examples for the application of PGx for UGT-1A1 are 

 

 

shown in Table 2. The anti-cancer drug irinotecan, was one of the first drugs to receive 

pharmacogenomically guided label requirements in 2005 [63,64]. Nilotinib, a tyrosine kinase 

inhibitor includes information in the label relating to the increased risk of hyperbilirubinemia 

for subjects genotyped as UGT1A1*28 [65]. UGT1A1 is known to catalyze glucuronidation 

of hepatic bilirubin in humans [65]. Nilotinib was found to be a potent inhibitor of UGT1A1 

in-vitro at clinically relevant concentrations and nilotinib induced-hyperbilirubinemia has 

been hypothesized to occur as a result of this UGT1A1 inhibition [66].  

In addition to UGTs, polymorphism has also been described for other Phase II enzymes such 

as N-acetyltransferase-2 (NAT2) [21]. Hydralazine is a direct acting arterial vasodilator that 

is used in the treatment of resistant hypertension. The drug is metabolized by an acetylation 

reaction mediated by NAT-2 and its activity has been shown to be dependent on NAT2 

polymorphism [67]. The FDA drug label for Isosorbide and Hydralazine includes information 

on the frequency of fast acetylators (approximately 50% of patients are fast acetylators and 

have lower exposure) but no specific recommendations on dose adjustment are described 

[68]. Isoniazid is a drug prescribed for the treatment of tuberculosis. It is metabolized 

primarily in the liver by N-acetyltransferase [69]. Studies evaluating the influence of 

genotype on efficacy have shown in general that slow and rapid acetylators respond equally 

well to treatment, however it has been well established that slow acetylators are more likely 

to develop polyneuropathy during isoniazid therapy [70]. The FDA drug label for Isoniazid 

includes references to both the efficacy and the safety in slow acetylators but no dose 

adjustments or genotype based approaches are recommended [71]. 
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Table 2 Examples of the application of pharmacogenomics for Phase II enzymes 

Drug Therapeutic 
area 

Year of 
approval 

Year  
PGx 
information 
first included in 
label 

Biomarker Genotype 
recommendation 
(FDA drug label) 

Approx. 
difference 
in exposure 
between PM 
and EM 

Irinotecan Oncology 1996 2005 UGT1A1 Reduction in the 
starting dose for 
UGT1A1*28 allele 

2-4 fold [64] 

Nilotinib Oncology 2007 - UGT1A1 - inhibitor of 
UGT1A1 
in-vitro [72] 

Hydralazine  Cardiology 2005 - NAT1-2 - 2 fold [68] 

Isoniazid 
 

Infections 
diseases 

1994  NAT1-2  4-6 fold [69] 

 

Transporters 

In addition to drug metabolizing enzymes, transporters are also major determinants of drug 

absorption, distribution and elimination with important implications for both safety and 

toxicity. Based on current knowledge there are genetic polymorphisms identified for 14 

transporters important for drug disposition [73]. These include both the influx (e.g. multidrug 

toxin extrusion proteins (MATEs)) and efflux transporters (e.g. OATP and organic cation 

transporters (OCTs)) [74]. However the clinical relevance of polymorphism for the different 

transporters has been found to vary widely between drugs. 

The organic anion–transporting polypeptide 1B1 (OATP1B1) transporter facilitates the 

hepatic uptake of statins. SLCO1B1 is a gene that encodes the protein OATP1B1, expressed 

on the basolateral membrane of human hepatocytes [75]. Many statins are known to be 

substrates of OATP1B1 and the effects of polymorphism in SLCO1B1 differ depending on 

the specific statin that is used [76, 77]. Studies have been conducted evaluating the 

relationship between the variants of the gene SLCO1B1 and the pharmacokinetics of different 

statins on the market [78]. The largest influence of this polymorphism was found for 

simvastatin with exposure of simvastatin acid 120 and 221% higher in participants with the 

SLCO1B1 c.521CC genotype than in those with the c.521TC and c.521TT genotypes, 

respectively [79]. An increase in the plasma exposure of simvastatin acid was also found to 

contribute to an increased risk of myopathy [80]. Further evaluation of this relationship was 

 

 

performed using GWAS. The study found that common variants of SLCO1B1 were strongly 

associated with an increased risk of statin-induced myopathy [81]. The FDA label was 

updated in 2011, limiting the top dose of 80mg to patients only if they have been taking this 

dose for 12 or more months without evidence of muscle toxicity [82]. There is currently no 

specific recommendation in the label for genotyped-based dosing as shown in Table 3. 

However, the Clinical Pharmacogenetics Implementation Consortium Guideline for 

simvastatin released in 2014, does make recommendations for genotyped-based dosing for 

subjects with variants of the SLCO1B1 gene [83]. 

Table 3 Example of the application of pharmacogenomics for OATP1B1 

Drug Therapeutic area Year of 
approval 

Year  
PGx 
information 
first 
included in 
label 

Biomarker Genotype 
recommendation 
(FDA drug label) 

Range in 
exposure 
between 
genotypes 

Simvastatin Antihyperlipidemic 1991 - OATP1B1 - 2-3 fold [79] 

 

Clinical relevance of genetic variants in drug targets 

Genetic variation in drug targets can have a profound effect on the efficacy of a drug [84]. 

There have been over 25 examples identified in which genetic polymorphisms in drug target 

genes can influence drug response [84]. The clinical application for these genetic differences 

in biomarkers seems to have had the most profound effect in the area of oncology and a 

summary of successful examples is provided in Table 4. In oncology, 20 PGx markers have 

been included into the package inserts of 30 FDA-approved anticancer agents to date [5], 

albeit that the direct clinical application of these PGx markers varies widely across the 

approved drugs. Specific PGx biomarkers that are known to be present in tumors could 

potentially be used by the physician to pre-select and tailor a patient's treatment. Such a target 

approach has the potential to be more selective for cancer cells than normal cells, which may 

result in improved prognosis and could potentially decrease the toxic effect of anticancer 

drugs on normal cells [3].  
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substrates of OATP1B1 and the effects of polymorphism in SLCO1B1 differ depending on 
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respectively [79]. An increase in the plasma exposure of simvastatin acid was also found to 

contribute to an increased risk of myopathy [80]. Further evaluation of this relationship was 

 

 

performed using GWAS. The study found that common variants of SLCO1B1 were strongly 

associated with an increased risk of statin-induced myopathy [81]. The FDA label was 

updated in 2011, limiting the top dose of 80mg to patients only if they have been taking this 

dose for 12 or more months without evidence of muscle toxicity [82]. There is currently no 

specific recommendation in the label for genotyped-based dosing as shown in Table 3. 

However, the Clinical Pharmacogenetics Implementation Consortium Guideline for 

simvastatin released in 2014, does make recommendations for genotyped-based dosing for 

subjects with variants of the SLCO1B1 gene [83]. 
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Clinical relevance of genetic variants in drug targets 

Genetic variation in drug targets can have a profound effect on the efficacy of a drug [84]. 

There have been over 25 examples identified in which genetic polymorphisms in drug target 

genes can influence drug response [84]. The clinical application for these genetic differences 

in biomarkers seems to have had the most profound effect in the area of oncology and a 

summary of successful examples is provided in Table 4. In oncology, 20 PGx markers have 

been included into the package inserts of 30 FDA-approved anticancer agents to date [5], 

albeit that the direct clinical application of these PGx markers varies widely across the 

approved drugs. Specific PGx biomarkers that are known to be present in tumors could 

potentially be used by the physician to pre-select and tailor a patient's treatment. Such a target 

approach has the potential to be more selective for cancer cells than normal cells, which may 

result in improved prognosis and could potentially decrease the toxic effect of anticancer 

drugs on normal cells [3].  
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The monoclonal antibodies, cetuximab and panitumumab are designed to inhibit the growth 

and survival of tumor cells with overexpressed epidermal growth factor receptor (EGFR) and 

are approved for metastatic colorectal cancer (CRC) [85,86]. Following the approval of these 

drugs, several research teams identified an association between the resistance for both these 

drugs and K-ras mutations. Studies found that approximately 40% of these cancer patients 

contain these mutations [87]. As a result of this, the patients with these mutations are now 

contraindicated for anti-EGFR therapy and testing for K-ras mutations has been 

recommended by the FDA before prescribing cetuximab or panitumumab [88]. 

The leading example of the implementation of PGx in oncology is for the breast cancer drug 

Herceptin (trastuzumab). The drug is only prescribed for patients, whose tumors overexpress 

the human epidermal growth factor receptor (HER2) protein, making up approximately 

20-30% of breast cancer patients [89]. Early research studies from UCLA had identified 

relationships between HER2 and the aggressive cancer found in 25% of breast cancer 

patients. Based on this research Genentech developed Herceptin by humanizing the 4D5 

mouse antibody directed at HER2 and subsequently started clinical development of the drug. 

The Phase III clinical trials were then performed only in subjects who overexpressed HER2 

as such the indication for Heceptin in breast cancer was specifically limited for those patients 

who overexpressed HER2 [90]. The subsequent approval of Herceptin by the FDA was 

completed simultaneously with Herceptest®, a commercially available test to identify 

patients who overexpress the HER2 gene [91,92]. 

 

 

Table 4 Examples of the application of pharmacogenomics in oncology 

Drug Therapeutic 
area 

Year of 
approval 

Year  
PGx 
information 
first included 
in label 

Biomarker Genotype 
recommendation (FDA 
drug label) 

Cetuximab Oncology 2004 2012 K-Ras/EGFR Determine K-Ras 
mutation and 
EGFR-expression status 
prior to initiating 
treatment 

Panitumumab Oncology 2006 2009 K-Ras/EGFR Determine K-Ras 
mutation and 
EGFR-expression status 
prior to initiating 
treatment 

Trastuzumab 
(Herceptin) 

Oncology 1998 1998 HER2 Detection of HER2 
protein overexpression is 
required prior to initiating 
treatment 

 

PGx for Adverse Drug Reactions 

Adverse drug reactions (ADR) that occur during clinical development or post approval are an 

important factor in drug attrition [9]. This remains a major concern for the pharmaceutical 

industry, between the years 1990 and 2012 there were 43 drugs withdrawn from the market 

due to ADR [93]. Identifying the genetic contributions to ADR risk may lead to a better 

understanding of the underlying mechanisms and identification of patients at risk which could 

ultimately lead to a decrease in the ADR incidence [94]. Studies have evaluated if genetic 

factors can be used to determine a subject's susceptibility to an ADR and successful examples 

are presented in Table 5. This has generally involved the use of a case control approach 

which compares the frequency of the putative PGx predictor in patients with and without the 

adverse reaction [2].  

Drug hypersensitivity reactions (DHRs) are ADR for drugs that occur at a dose tolerated by 

typical subjects and clinically resemble allergy [95]. The Human leukocyte antigen (HLA) 

was to found to have a strong association with an increase of drug-induced hypersensitivity 

[96]. There are two primary examples evaluating the relationship between HLA and ADR, 

both of which have resulted in the clinical application of genotype-based dosing 

recommendations. For the drug abacavir, hyper sensitivity was found to be associated with 
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important factor in drug attrition [9]. This remains a major concern for the pharmaceutical 

industry, between the years 1990 and 2012 there were 43 drugs withdrawn from the market 

due to ADR [93]. Identifying the genetic contributions to ADR risk may lead to a better 

understanding of the underlying mechanisms and identification of patients at risk which could 

ultimately lead to a decrease in the ADR incidence [94]. Studies have evaluated if genetic 

factors can be used to determine a subject's susceptibility to an ADR and successful examples 

are presented in Table 5. This has generally involved the use of a case control approach 

which compares the frequency of the putative PGx predictor in patients with and without the 

adverse reaction [2].  

Drug hypersensitivity reactions (DHRs) are ADR for drugs that occur at a dose tolerated by 

typical subjects and clinically resemble allergy [95]. The Human leukocyte antigen (HLA) 

was to found to have a strong association with an increase of drug-induced hypersensitivity 

[96]. There are two primary examples evaluating the relationship between HLA and ADR, 

both of which have resulted in the clinical application of genotype-based dosing 

recommendations. For the drug abacavir, hyper sensitivity was found to be associated with 
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the HLA-B*5701 allele [97]. As a result, screening for the HLA-B*5701 allele should be 

performed to assist clinicians in identifying patients who are at risk of developing a 

hypersensitivity reaction to abacavir [98].  

Carbamazepine is an anticonvulsant primarily used in the treatment of epilepsy; however the 

drug may cause life-threatening allergic reactions such as Stevens-Johnson syndrome (SJS) 

or toxic epidermal necrolysis. Recently the HLA-B*1502 allele was shown to be strongly 

correlated with carbamazepine-induced SJS and toxic epidermal necrolysis in the Han 

Chinese and other Asian populations [99]. In 2007, the FDA formally recommended testing 

for the HLA-B*1502 allele in patients of Asian ancestry, including South Asian Indians, 

before starting carbamazepine therapy [100].  

Drug induced liver injury (DILI) is the most common cause of clinical trial termination of 

new drugs (approximately 33%) [101]. There have been several drugs withdrawn from the 

market due to DILI, including Troglitazone, Ximelagatran and Lumiracoxib. Although the 

pathogenesis of most DILI is unclear, genetic association of individual susceptibility to DILI 

have been evaluated in several studies [101]. The drug Lumiracoxib, was a selective 

cyclooxygenase-2 (COX-2) inhibitor, that was withdrawn from the market in 2005 due to 

concerns over hepatotoxicity [102]. A retrospective GWAS analysis found a strong 

association between HLA-DQ allelic variants and lumiracoxib-related liver injury. However 

despite this finding and the potential for pre-selection of subjects based on genotype the drug 

remains withdrawn from the market and the clinical application of genotyping these subjects 

was never implemented as an approach to improve patient safety. 

Many of the studies evaluating ADR with the use of a PGx approach have used data in 

patients post approval. At this stage not only has the drug has been exposed to a large number 

of patients but it also represents the highest risk for the drug company since the maximum 

investment in any drug has already occurred. The key challenge for PGx is the 

implementation during the development stage where this would have the greatest potential to 

improve attrition rates. However there are currently several limitations to this early 

implementation including the sensitivity and specificity of genetic biomarker tests and the 

predictive value of these tests as screening tools to predict drug efficacy and prevent ADRs 

[93].  

 

 

Table 5 Examples of the application of pharmacogenomics for ADR 

Drug Therapeutic 
area 

Year of 
approval 

Year  
PGx 
information 
first included 
in label 

Biomarker Genotype 
recommendation 
(FDA drug label) 

Carbamazepine Neurology 1968 2007 HLA-B Screening is required 
for the presence of 
HLA-B*1502 prior 
to initiating treatment 

Abacavir Infectious 
Diseases 

1998 2008 HLA-B Prior to initiating 
therapy, screening for 
the HLA-B*5701 
allele is recommended 

Conclusions 

The applications of PGx throughout the drug development paradigm have increased over the 

last few years, as the technology improves and becomes cheaper to implement. For many 

drugs however, despite the explanation of the large inter-individual variability in the PK 

through the use of genotyping, the clinical application and information in the label directly 

related to dosing remains limited. Critically most of the information that is currently 

described in the drug label is based on research conducted after the drug has been approved 

[103]. Of those approved drug labels in 2012 there are only 14 cases in which labels direct 

clinicians to utilize PGx testing prior to prescribing, clearly falling short of the intended 

impact of PGx in the clinic [104].  

There appears to be a range of factors that have contributed to this, for drugs in which the 

polymorphism was reported post-approval many of the studies involve low subject numbers 

or have inferred the clinical relevance based on the magnitude of change in drug exposure. 

Some clinical studies address the relationship of genotype to phenotype but primarily focus 

on the changes observed in mean drug exposure. These studies often do not address the 

remaining variability of exposure within each genotype or the overlap in exposure between 

the different genotype groups. Overlap in exposure between genotype is an important 

consideration if genotype based dosing was to be evaluated. For example, a subject could be 

classified as a particular genotype but could still receive an inappropriate dose because the 

predictability of the genotype-phenotype relationship was not fully understood.  
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performed to assist clinicians in identifying patients who are at risk of developing a 

hypersensitivity reaction to abacavir [98].  

Carbamazepine is an anticonvulsant primarily used in the treatment of epilepsy; however the 

drug may cause life-threatening allergic reactions such as Stevens-Johnson syndrome (SJS) 

or toxic epidermal necrolysis. Recently the HLA-B*1502 allele was shown to be strongly 

correlated with carbamazepine-induced SJS and toxic epidermal necrolysis in the Han 

Chinese and other Asian populations [99]. In 2007, the FDA formally recommended testing 

for the HLA-B*1502 allele in patients of Asian ancestry, including South Asian Indians, 

before starting carbamazepine therapy [100].  

Drug induced liver injury (DILI) is the most common cause of clinical trial termination of 

new drugs (approximately 33%) [101]. There have been several drugs withdrawn from the 

market due to DILI, including Troglitazone, Ximelagatran and Lumiracoxib. Although the 

pathogenesis of most DILI is unclear, genetic association of individual susceptibility to DILI 

have been evaluated in several studies [101]. The drug Lumiracoxib, was a selective 

cyclooxygenase-2 (COX-2) inhibitor, that was withdrawn from the market in 2005 due to 

concerns over hepatotoxicity [102]. A retrospective GWAS analysis found a strong 

association between HLA-DQ allelic variants and lumiracoxib-related liver injury. However 

despite this finding and the potential for pre-selection of subjects based on genotype the drug 

remains withdrawn from the market and the clinical application of genotyping these subjects 

was never implemented as an approach to improve patient safety. 

Many of the studies evaluating ADR with the use of a PGx approach have used data in 

patients post approval. At this stage not only has the drug has been exposed to a large number 

of patients but it also represents the highest risk for the drug company since the maximum 

investment in any drug has already occurred. The key challenge for PGx is the 

implementation during the development stage where this would have the greatest potential to 

improve attrition rates. However there are currently several limitations to this early 

implementation including the sensitivity and specificity of genetic biomarker tests and the 

predictive value of these tests as screening tools to predict drug efficacy and prevent ADRs 

[93].  

 

 

Table 5 Examples of the application of pharmacogenomics for ADR 

Drug Therapeutic 
area 

Year of 
approval 

Year  
PGx 
information 
first included 
in label 

Biomarker Genotype 
recommendation 
(FDA drug label) 

Carbamazepine Neurology 1968 2007 HLA-B Screening is required 
for the presence of 
HLA-B*1502 prior 
to initiating treatment 

Abacavir Infectious 
Diseases 

1998 2008 HLA-B Prior to initiating 
therapy, screening for 
the HLA-B*5701 
allele is recommended 

Conclusions 

The applications of PGx throughout the drug development paradigm have increased over the 

last few years, as the technology improves and becomes cheaper to implement. For many 

drugs however, despite the explanation of the large inter-individual variability in the PK 

through the use of genotyping, the clinical application and information in the label directly 

related to dosing remains limited. Critically most of the information that is currently 

described in the drug label is based on research conducted after the drug has been approved 

[103]. Of those approved drug labels in 2012 there are only 14 cases in which labels direct 

clinicians to utilize PGx testing prior to prescribing, clearly falling short of the intended 

impact of PGx in the clinic [104].  

There appears to be a range of factors that have contributed to this, for drugs in which the 

polymorphism was reported post-approval many of the studies involve low subject numbers 

or have inferred the clinical relevance based on the magnitude of change in drug exposure. 

Some clinical studies address the relationship of genotype to phenotype but primarily focus 

on the changes observed in mean drug exposure. These studies often do not address the 

remaining variability of exposure within each genotype or the overlap in exposure between 

the different genotype groups. Overlap in exposure between genotype is an important 

consideration if genotype based dosing was to be evaluated. For example, a subject could be 

classified as a particular genotype but could still receive an inappropriate dose because the 

predictability of the genotype-phenotype relationship was not fully understood.  
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Genotype should be considered as an additional covariate for drug exposure with other 

factors also included during the analysis stage such as age, gender and race. The advantages 

of such an integrated approach have been clearly demonstrated for warfarin, where both age 

and CYP-2C9/VKORC1 genotypes were included as covariates for clinical response [58]. A 

key consideration in such analysis is not only the relationship between genotype and PK, but 

also including clinical response. The implementation of a population PK-PD model based 

approach to evaluate the influence of genotype can provide a more comprehensive link 

between the observed changes in the pharmacokinetics and its influence on the magnitude of 

response. Thus enabling a comparison of the differences observed between the magnitude of 

change in the PK and the magnitude of this change on clinical response. For example does a 

3-fold increase in plasma exposure by genotype result in a proportional change to the clinical 

endpoint. To fully evaluate the impact of genotype on clinical response, a comprehensive 

analysis should be conducted using this approach. 

Dose individualization is routinely applied in a range of disease areas from diabetes to CNS, 

where the patient's phenotype is not determined directly from the exposure of the drug but 

indirectly measured using a clinical endpoint, i.e. change in HbA1c. In such case, the clinical 

utility of genotyped-based dosing should be assessed in comparison to the currently applied 

titration approaches or included as an additional covariate to dose selection. Genotype 

information could be used at the start of treatment if time to maximal response was important 

and if the therapeutic window is narrow. However for more chronic dosing approaches where 

titration is routinely applied, genotype may not offer additional clinical benefit if the 

variability in the response is high or if clinical biomarkers can be directly related to changes 

in dose adjustment. This is particularly the case if the biomarker is well established, is low 

cost and is easily measured. 

For new drugs currently in development there remains the possibility to prospectively plan 

and analyze the data as it emerges from clinical studies. Early implementation allows 

discussion with the regulators with a focus on the relevance of genotype and the planning of 

future study design to appropriately characterize the response by genotype. Early 

consideration of this approach also provides the possibility to develop diagnostic tools that 

can be used in a clinical setting. As both the drug regulators and industry routinely adopt 

 

 

these approaches the possibly to enhance patient care and individual patients outcome should 

only improve. 
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Introduction 

Phase I studies conducted early in the clinical development program provide the first 

opportunity to assess not only the pharmacokinetic (PK) profile of a drug but also to evaluate 

the extent of differences between individuals. Evaluating the basis for differences between 

individuals considers a range of factors including, routes and rates of elimination, 

permeability/solubility data or covariates such as age or gender. Identification of the enzymes 

catalyzing the in-vitro-metabolism is a key component in determining the source and possible 

clinical relevance of this variation. For drugs in which in-vitro studies show that a 

polymorphic gene is central to the metabolism of the drug (in vitro data predict >50% of the 

drug be cleared by a single polymorphic enzyme) [1], it is important to consider the role of 

this enzyme to the PK variability. The implementation of genetic factors into the 

development program has three key aims 1) to understand how genetic factors contribute to 

inter-individual variability in PK and PD 2) to inform the optimal design of phase 2/3 studies 

3) to provide evidence/information to support the labeling [2]. 

Application of model based approaches in PK 

The role of polymorphic changes in variability of drug exposure should be considered 

relative to the other intrinsic or extrinsic factors. The understanding of specific covariates 

(e.g., age and race) and gene-covariate interactions on the variability in drug response is 

useful in understanding the relative impact of genetics, versus other nongenetic factors on the 

both the PK and safety/efficacy of the drug [3]. This is important to consider when evaluating 

if dose individualization and/or therapeutic drug monitoring (TDM) could actually be used to 

improve patient outcomes. Population PK models are a powerful tool to quantify and identify 

sources of variability both within and between subjects [4]. By implementing a model based 

approach, differentiation between variability both within and between subjects can enhance 

the statistical power to identify the different factors influencing the pharmacokinetic profile 

[5]. The value of a applying a model based approach was demonstrated for tacrolimus where 

studies investigating the effect of CYP3A4*22 genotype on tacrolimus PK had been limited 

in their approach by only considering the trough concentrations and not fully evaluating the 

use of co-medication [5]. Moes et al quantified the effect of CYP3A4*22 genotype for 

cyclosporine, everolimus, and tacrolimus clearance and found that the effect was a reduction 

 

 

in clearance of less than 20%. They therefore concluded that dose adjustments based on 

CYP-3A4*22 were not required. The study further confirmed the role of CYP-3A5*3 

genotype and found this was a suitable predictive marker for tacrolimus clearance, but close 

TDM remains essential due to the remaining variability between patients within the same 

genotype group. 

Other sources of variability were also incorporated into the population PK analysis of the 

HIV-1 protease inhibitor, Atazanavir [6]. The drug exhibits high inter- and intrapatient 

variability and sources of variation between individuals were attributed to a number of 

sources not only related to pharmacogenetic (CYP3A5) factors but also including the effect 

of food on the bioavailability and adherence to therapy. An integrated population PK analysis 

revealed that a 28% increase in clearance was observed in subjects with at least one 

CYP3A5*1 allele, however the between subject variability decreased by an additional 40% 

when adherence was also considered in the model.  This approach was able to delineate the 

effects resulting from genotype whilst considering the other components contributing to the 

variability in exposure. Such a comprehensive model based approach can then be used to 

further evaluate the necessity of individualized dosing.  

Application of model based approaches in PK-PD 

Whilst population PK models can be used to characterize the PK properties of a drug, they 

can also be linked either directly or indirectly with pharmacodynamic (PD) response. 

Through the use of a PK-PD model based approach to evaluate the influence of genotype a 

more comprehensive link between changes in the PK and its influence on the magnitude of 

response can be established. This is an important consideration to assess the clinical 

relevance of these changes in exposure as a direct result of genotype since overall variability 

in the PD, which appears random until relevant covariates have been identified, can be much 

greater than that observed in the PK [7]. Currently, the application of a model based approach 

to evaluate the influence of different genotypes, by linking pharmacokinetic changes with 

response seems limited to only a few drugs. Many studies have evaluated the effect of 

pharmacogenetics for warfarin and several models have been published describing the 

relationship between PK and the PD marker, International Normalized Ratio (INR) [8]. The 

application of a PK-PD model based approach for warfarin has not only been limited to 

adults where both age and CYP-2C9/VKORC1 genotypes were included as covariates for 
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Introduction 

Phase I studies conducted early in the clinical development program provide the first 

opportunity to assess not only the pharmacokinetic (PK) profile of a drug but also to evaluate 

the extent of differences between individuals. Evaluating the basis for differences between 
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this enzyme to the PK variability. The implementation of genetic factors into the 

development program has three key aims 1) to understand how genetic factors contribute to 

inter-individual variability in PK and PD 2) to inform the optimal design of phase 2/3 studies 
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if dose individualization and/or therapeutic drug monitoring (TDM) could actually be used to 

improve patient outcomes. Population PK models are a powerful tool to quantify and identify 

sources of variability both within and between subjects [4]. By implementing a model based 

approach, differentiation between variability both within and between subjects can enhance 

the statistical power to identify the different factors influencing the pharmacokinetic profile 

[5]. The value of a applying a model based approach was demonstrated for tacrolimus where 

studies investigating the effect of CYP3A4*22 genotype on tacrolimus PK had been limited 

in their approach by only considering the trough concentrations and not fully evaluating the 

use of co-medication [5]. Moes et al quantified the effect of CYP3A4*22 genotype for 

cyclosporine, everolimus, and tacrolimus clearance and found that the effect was a reduction 

 

 

in clearance of less than 20%. They therefore concluded that dose adjustments based on 

CYP-3A4*22 were not required. The study further confirmed the role of CYP-3A5*3 

genotype and found this was a suitable predictive marker for tacrolimus clearance, but close 

TDM remains essential due to the remaining variability between patients within the same 

genotype group. 

Other sources of variability were also incorporated into the population PK analysis of the 

HIV-1 protease inhibitor, Atazanavir [6]. The drug exhibits high inter- and intrapatient 

variability and sources of variation between individuals were attributed to a number of 

sources not only related to pharmacogenetic (CYP3A5) factors but also including the effect 

of food on the bioavailability and adherence to therapy. An integrated population PK analysis 

revealed that a 28% increase in clearance was observed in subjects with at least one 

CYP3A5*1 allele, however the between subject variability decreased by an additional 40% 

when adherence was also considered in the model.  This approach was able to delineate the 

effects resulting from genotype whilst considering the other components contributing to the 

variability in exposure. Such a comprehensive model based approach can then be used to 

further evaluate the necessity of individualized dosing.  

Application of model based approaches in PK-PD 

Whilst population PK models can be used to characterize the PK properties of a drug, they 

can also be linked either directly or indirectly with pharmacodynamic (PD) response. 

Through the use of a PK-PD model based approach to evaluate the influence of genotype a 

more comprehensive link between changes in the PK and its influence on the magnitude of 

response can be established. This is an important consideration to assess the clinical 

relevance of these changes in exposure as a direct result of genotype since overall variability 

in the PD, which appears random until relevant covariates have been identified, can be much 

greater than that observed in the PK [7]. Currently, the application of a model based approach 

to evaluate the influence of different genotypes, by linking pharmacokinetic changes with 

response seems limited to only a few drugs. Many studies have evaluated the effect of 

pharmacogenetics for warfarin and several models have been published describing the 

relationship between PK and the PD marker, International Normalized Ratio (INR) [8]. The 

application of a PK-PD model based approach for warfarin has not only been limited to 

adults where both age and CYP-2C9/VKORC1 genotypes were included as covariates for 
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clinical response (INR), but this was recently extended to evaluate if the same relationships 

could be identified in children [9]. Hamberg et al applied a PK-PD model based approach to a 

data set on 163 children. They evaluated if another genetic covariate (CYP-4F2 genotype), 

which had recently been shown to influence warfarin dose requirement should be included in 

the current pharmacogenetic dosing algorithms. The PK-PD analysis showed that variability 

in children was found to be comparable with that reported in adults and that CYP-2C9 

genotype could explain up to a four-fold difference in dose with VKORC1 genotype 

explaining up to a two-fold difference in dose. The analysis also found that bodyweight, age, 

baseline and target INR, time since initiation of therapy, but not CYP-4F2 genotype, were 

found to influence significantly typical warfarin dose requirements in children. This model 

based approach can now be further utilized to improve the improving efficacy and safety of 

warfarin therapy in children. 

Furthermore physiologically based pharmacokinetic (PBPK) models have been linked to PD 

response integrated to estimate the drug concentration at the site of action. This may offer a 

better understanding of true PD variability vs. variability resulting from drug disposition at 

the site of action [10]. Through the development of a PBPK-PD model, Rose et al 

demonstrated that by using the local concentration at the effect site to drive the PD response 

they were able to explain why there was a disconnect observed between the effect of (organic 

anion-transporting polypeptide) OATP1B1 polymorphism on rosuvastatin plasma 

concentration and the lack of impact observed on the PD response. They show that plasma 

concentration is different between individuals due to genotype, but a significant proportional 

reduction in the PD marker (mevalonic acid) does not occur as the concentration at the effect 

site has already reached Emax. Such an approach is able to describe the physiological 

implications behind these differences and enhance the understanding of the eventual impact 

of genotype on clinical response. 

Genotype influences on model based approaches in disease progression analysis 

Disease progression analysis is a model based approach applied to describe and explain 

changes in disease status as a function of time and drug therapy [11]. The advantage of 

implementing a model based approach being the key characterization of the relationship 

between treatment and the physiology of the disease over time. Many of the published 

 

 

models evaluating disease progression have focused in the areas of Type 2 Diabetes (T2D), 

Parkinson's and Alzheimer's disease [12, 13]. Recently the application of the genome wide 

association study (GWAS) has emerged as a powerful tool for identifying disease-related 

genes for many common human disorders. The application of these studies have identified 

eleven new susceptibility loci for late-onset Alzheimer's disease, in T2D significant 

associations were identified for more than 35 independent loci and in Parkinson's disease 

many GWAS are currently on-going to evaluate susceptibility to the disease [14, 15, 16]. 

Data from these GWAS could also be an important covariate as an extension of the current 

model based approaches applied in these disease areas. Such an approach would enable 

treatment specific effects to be evaluated on the time course of the disease profile and enable 

evaluation of disease modifying drug effects in the different genetic populations. This 

comprehensive approach could then be used to evaluate if specific genetic sub-populations 

respond differently to drug treatment.  

Understanding the dose response relationship relative to genotype 

Genotype difference should be considered relative to the dose response relationship [3]. For 

example, for a drug which has a steep dose response curve, small changes in exposure 

resulting from genotype differences will have a greater impact depending on where the 

therapeutic dose sits on the curve. Whilst for a drug at which the therapeutic dose is given 

close to the Emax these differences resulting from genotype will be less apparent. Figure 1 

shows how these changes in exposure can be related to the drug response and how the 

therapeutic dose should be evaluated relative to the exposure response relationship. The 

magnitude of the influence of exposure changes on response (i.e. decrease from baseline in 

HbA1c) is different depending on the drug exposure.  
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response integrated to estimate the drug concentration at the site of action. This may offer a 
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demonstrated that by using the local concentration at the effect site to drive the PD response 

they were able to explain why there was a disconnect observed between the effect of (organic 

anion-transporting polypeptide) OATP1B1 polymorphism on rosuvastatin plasma 

concentration and the lack of impact observed on the PD response. They show that plasma 

concentration is different between individuals due to genotype, but a significant proportional 
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site has already reached Emax. Such an approach is able to describe the physiological 

implications behind these differences and enhance the understanding of the eventual impact 
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Genotype influences on model based approaches in disease progression analysis 

Disease progression analysis is a model based approach applied to describe and explain 

changes in disease status as a function of time and drug therapy [11]. The advantage of 

implementing a model based approach being the key characterization of the relationship 

between treatment and the physiology of the disease over time. Many of the published 

 

 

models evaluating disease progression have focused in the areas of Type 2 Diabetes (T2D), 

Parkinson's and Alzheimer's disease [12, 13]. Recently the application of the genome wide 

association study (GWAS) has emerged as a powerful tool for identifying disease-related 

genes for many common human disorders. The application of these studies have identified 

eleven new susceptibility loci for late-onset Alzheimer's disease, in T2D significant 

associations were identified for more than 35 independent loci and in Parkinson's disease 

many GWAS are currently on-going to evaluate susceptibility to the disease [14, 15, 16]. 

Data from these GWAS could also be an important covariate as an extension of the current 

model based approaches applied in these disease areas. Such an approach would enable 

treatment specific effects to be evaluated on the time course of the disease profile and enable 

evaluation of disease modifying drug effects in the different genetic populations. This 

comprehensive approach could then be used to evaluate if specific genetic sub-populations 

respond differently to drug treatment.  

Understanding the dose response relationship relative to genotype 

Genotype difference should be considered relative to the dose response relationship [3]. For 

example, for a drug which has a steep dose response curve, small changes in exposure 

resulting from genotype differences will have a greater impact depending on where the 

therapeutic dose sits on the curve. Whilst for a drug at which the therapeutic dose is given 

close to the Emax these differences resulting from genotype will be less apparent. Figure 1 

shows how these changes in exposure can be related to the drug response and how the 

therapeutic dose should be evaluated relative to the exposure response relationship. The 

magnitude of the influence of exposure changes on response (i.e. decrease from baseline in 

HbA1c) is different depending on the drug exposure.  
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Figure 1 Exposure response relationship for the decrease from baseline in HbA1c (%) 

at 3 months, light grade shade shows exposure range between EM and PM 

subjects at 64mg, dark grey shade shows exposure range for EM and PM at 

400mg  

 

When the drug exposure is close to the EC50, greater changes in HbA1c between different 

genotypes would be observed. The influence of this is illustrated in Figure 2a and Figure 2b.  
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Figure 2a. HbA1c simulation over time for a 

dose of 64mg 

  

Figure 2b. HbA1c simulation over time for a 

dose of 400mg 

 

When the genotype influence is simulated for a dose close to the EC50 (light graded shaded 

area on Figure 1), the difference in the change from baseline in HbA1c between extensive 

(EM) and poor metabolizers (PM) is -0.6%. However, when a higher dose is given (dark gray 

shaded area on Figure 1), a large change in exposure results in a less than proportional 

change in the clinical response. The difference in the change from baseline in HbA1c 

between EM and PM subjects is now only -0.2%. Therefore this genotype difference would 

not be clinically relevant when a higher dose was given. Whilst increasing the exposure can 

negate the influence of genotype, this should routinely be considered on balance to the 

safety/efficacy margin. A comprehensive model based approach would incorporate not only 

PD response related to efficacy but also including safety. Often in clinical development the 

relationship between drug exposures and efficacy can be well defined, but the relationship 

between drug exposure and safety may only be defined as linear as dose escalation would be 

limited by exposure margins or would be stopped before the maximum effects are reached. 

This could have an influence for subjects who are poor metabolizers as these subjects would 

be expected to have higher exposure than the average population. Additional studies at higher 

doses than previously studied in Phase I may be needed to cover the exposure range for the 
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Figure 2a. HbA1c simulation over time for a 

dose of 64mg 

  

Figure 2b. HbA1c simulation over time for a 

dose of 400mg 

 

When the genotype influence is simulated for a dose close to the EC50 (light graded shaded 

area on Figure 1), the difference in the change from baseline in HbA1c between extensive 

(EM) and poor metabolizers (PM) is -0.6%. However, when a higher dose is given (dark gray 

shaded area on Figure 1), a large change in exposure results in a less than proportional 

change in the clinical response. The difference in the change from baseline in HbA1c 

between EM and PM subjects is now only -0.2%. Therefore this genotype difference would 

not be clinically relevant when a higher dose was given. Whilst increasing the exposure can 

negate the influence of genotype, this should routinely be considered on balance to the 

safety/efficacy margin. A comprehensive model based approach would incorporate not only 

PD response related to efficacy but also including safety. Often in clinical development the 

relationship between drug exposures and efficacy can be well defined, but the relationship 

between drug exposure and safety may only be defined as linear as dose escalation would be 

limited by exposure margins or would be stopped before the maximum effects are reached. 

This could have an influence for subjects who are poor metabolizers as these subjects would 

be expected to have higher exposure than the average population. Additional studies at higher 

doses than previously studied in Phase I may be needed to cover the exposure range for the 
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subjects who are poor metabolizers. This may be the case if the frequency distribution/ratio 

of genotypes for EM/PM is highly unbalanced and no poor metabolizers had been enrolled at 

the top dose level in phase I or II.  

Evaluating the clinical consequence of genetic differences 

Dosing recommendations should ensure that a patient receives a drug that is both safe and 

effective [1]. Genotype based dosing recommendations are expected to follow the same 

expected level of evidence as other adjustments made for subpopulations where dose 

adjustment are made based on renal function or weight. Different routes for dose 

recommendations may include dose titration, optional gene based dosing or dosing based on 

genotype [1]. Since dose titration approaches are widely applied in many therapeutic areas, 

for existing therapies dose titration approaches should be compared with genotype based 

dosing to evaluate the additional utility of implementing a genetic dosing algorithm. As such 

the application of a model based approach can be used to simulate different scenarios and 

address clinical questions such as the time to reach maximum effect or the % of subjects 

achieving a certain target for both genotyped-based dosing vs. titration-based approaches. 

Clinical trial simulation can also be used to look at clinical outcomes in each of the genotype 

sub-populations for upcoming pivotal studies.  

Conclusions 

The application of model based approaches to evaluate the influence of genotype, have 

primarily focused on the use of genotype as a covariate on drug exposure. These models 

should preferably also be extended during the drug development program to include clinical 

response, evaluating safety or efficacy markers to design the appropriate genetic based dosing 

algorithms or compare different study designs i.e. genotype-based dosing vs. a single dose 

level for all subjects. Further extension has focused on the use of PB-PK models which can 

be developed during the non-clinical stage and combined with PD models for safety or 

efficacy. Ultimately these model based approaches can be used to determine if 

covariate-based dose individualization would be required to normalize exposure and 

minimize variability in clinical outcomes across population subgroups and inform label 

recommendations that can improve individual patient outcomes [17]. 

 

 

Outline of the investigations in this thesis 

This thesis starts with an overview of the current applications of Pharmacogenomics (PGx) 

across drug development with an emphasis on the implications of polymorphism in drug 

metabolizing enzymes and transporters. The second section (Chapter 2) focuses on the 

application of model based approaches to evaluate differences in drug exposure and response 

as a result of these genetic differences between individuals.  

In Chapters 3, 4 and 5 the focus for this thesis is on a clinical example for the T2D drug, 

sipoglitazar. Sipoglitazar undergoes phase II biotransformation by conjugation catalyzed by 

UDP-glucuronosyltransferase (UGT) [18]. Clinical data from four phase I studies in healthy 

volunteers and two phase II trials in T2D subjects were utilized in the analysis. PGx samples 

for determination of UGT genotype were collected for all subjects enrolled in the trials. The 

objectives of the investigation in Chapters 3-5 was to evaluate the role of UGT genotype 

differences in explaining inter-individual variability for sipoglitazar and to then investigate 

the impact of these differences on both the clinical response and the selection of the 

appropriate dosing scheme for future trials.  

In Chapter 3, an investigation was conducted to evaluate the enzymes that were contributing 

to the inter-individual variability of sipoglitazar and to then quantify the resulting exposure 

differences between genotype. Here the importance of considering genotype relative to other 

intrinsic and extrinsic factors is investigated and discussed. The analysis in Chapter 3 was 

conducted using data from a trio of phase I clinical pharmacology studies in healthy 

volunteers. The studies included a single ascending dose (n=39), multiple ascending dose 

(n=19) and a single dose age/gender study (n=30). The dose range for sipoglitazar was 

0.2-64mg.  

The investigation and analysis conducted in Chapter 4 was then focused on evaluating 

genotype influences in the target population, T2D patients. In this chapter data from two 

phase II randomized, double-blind studies (sipoglitazar once daily: 8, 16, 32, or 64 mg; 

sipoglitazar twice daily: 16 or 32 mg; rosiglitazone 8 mg once daily and placebo for 13 

weeks; n = 780) were included in the analysis. For evaluation of the exposure data the phase 

II trials were combined with a large phase I single dose (64mg) study in a diverse ethnic 

study population of 524 healthy male and female subjects.  The magnitude of exposure 
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subjects who are poor metabolizers. This may be the case if the frequency distribution/ratio 

of genotypes for EM/PM is highly unbalanced and no poor metabolizers had been enrolled at 

the top dose level in phase I or II.  

Evaluating the clinical consequence of genetic differences 

Dosing recommendations should ensure that a patient receives a drug that is both safe and 

effective [1]. Genotype based dosing recommendations are expected to follow the same 

expected level of evidence as other adjustments made for subpopulations where dose 

adjustment are made based on renal function or weight. Different routes for dose 

recommendations may include dose titration, optional gene based dosing or dosing based on 

genotype [1]. Since dose titration approaches are widely applied in many therapeutic areas, 

for existing therapies dose titration approaches should be compared with genotype based 

dosing to evaluate the additional utility of implementing a genetic dosing algorithm. As such 

the application of a model based approach can be used to simulate different scenarios and 

address clinical questions such as the time to reach maximum effect or the % of subjects 

achieving a certain target for both genotyped-based dosing vs. titration-based approaches. 

Clinical trial simulation can also be used to look at clinical outcomes in each of the genotype 

sub-populations for upcoming pivotal studies.  

Conclusions 

The application of model based approaches to evaluate the influence of genotype, have 

primarily focused on the use of genotype as a covariate on drug exposure. These models 

should preferably also be extended during the drug development program to include clinical 

response, evaluating safety or efficacy markers to design the appropriate genetic based dosing 

algorithms or compare different study designs i.e. genotype-based dosing vs. a single dose 

level for all subjects. Further extension has focused on the use of PB-PK models which can 

be developed during the non-clinical stage and combined with PD models for safety or 

efficacy. Ultimately these model based approaches can be used to determine if 

covariate-based dose individualization would be required to normalize exposure and 

minimize variability in clinical outcomes across population subgroups and inform label 

recommendations that can improve individual patient outcomes [17]. 
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In Chapters 3, 4 and 5 the focus for this thesis is on a clinical example for the T2D drug, 

sipoglitazar. Sipoglitazar undergoes phase II biotransformation by conjugation catalyzed by 

UDP-glucuronosyltransferase (UGT) [18]. Clinical data from four phase I studies in healthy 

volunteers and two phase II trials in T2D subjects were utilized in the analysis. PGx samples 

for determination of UGT genotype were collected for all subjects enrolled in the trials. The 

objectives of the investigation in Chapters 3-5 was to evaluate the role of UGT genotype 

differences in explaining inter-individual variability for sipoglitazar and to then investigate 

the impact of these differences on both the clinical response and the selection of the 

appropriate dosing scheme for future trials.  

In Chapter 3, an investigation was conducted to evaluate the enzymes that were contributing 

to the inter-individual variability of sipoglitazar and to then quantify the resulting exposure 

differences between genotype. Here the importance of considering genotype relative to other 

intrinsic and extrinsic factors is investigated and discussed. The analysis in Chapter 3 was 

conducted using data from a trio of phase I clinical pharmacology studies in healthy 

volunteers. The studies included a single ascending dose (n=39), multiple ascending dose 

(n=19) and a single dose age/gender study (n=30). The dose range for sipoglitazar was 

0.2-64mg.  

The investigation and analysis conducted in Chapter 4 was then focused on evaluating 

genotype influences in the target population, T2D patients. In this chapter data from two 

phase II randomized, double-blind studies (sipoglitazar once daily: 8, 16, 32, or 64 mg; 

sipoglitazar twice daily: 16 or 32 mg; rosiglitazone 8 mg once daily and placebo for 13 

weeks; n = 780) were included in the analysis. For evaluation of the exposure data the phase 

II trials were combined with a large phase I single dose (64mg) study in a diverse ethnic 

study population of 524 healthy male and female subjects.  The magnitude of exposure 
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differences resulting from polymorphic differences in the UGT2B15 enzyme were quantified 

and considered relative to other covariates in the target population using pharmacokinetic 

modelling. The predictability of the genotype-exposure relationship was investigated and an 

approach to evaluate the predictability of this relationship is then described. The 

consequences of disconnect between genotype and exposure are discussed. In addition, a 

preliminary analysis was conducted to evaluate the relationship between genotype and 

efficacy, using change from baseline in HbA1c at 3 months by dose and genotype as a 

pharmacodynamic endpoint. Exposure data were then reviewed relative to the safety margin 

and discussed in context to the therapeutic dose. 

This analysis was extended in Chapter 5 and a population PK-PD model was implemented to 

evaluate the relationship between exposure differences resulting from genotype and its 

magnitude of impact on the clinical response (FPG and HbA1c). This analysis showed how 

the development of PK-PD model can be used to test different dosing scenarios to 

appropriately plan future clinical studies and to evaluate the impact of genotype on dosing 

relative to current dosing practices in T2D.  

The next section (Chapter 6) focusses on PD model based approaches in T2D over a much 

longer time period (>2.5 years). Since T2D is a slowly progressing disease, the importance of 

considering both the drug and disease effects on the time course of the relevant biomarkers is 

investigated. A phase IV study that was conducted in Japanese T2D subjects was used for the 

analysis. In this study (n=587) subjects received pioglitazone in combination with other oral 

glucose-lowering drugs or oral glucose-lowering drugs excluding thiazolidinedione (control 

group). Treatment was adjusted to achieve HbA1c<6.9% following the standard treatment 

guidelines for T2D in Japan. In the control group, either the dosage of the current therapy was 

increased, or a concomitant oral glucose-lowering drug was added. In the pioglitazone group, 

the preferred adjustment was to increase the dose of pioglitazone. The study was conducted 

over a period of 2.5-4 years and all subjects included in the trial were treatment experienced. 

Throughout the study biomarker samples for FPG and HbA1c were collected. A population 

PD model simultaneously incorporating FPG and HbA1c was developed to describe the time 

course of the drug and disease effects in both treatment groups. The aim of this analysis was 

to further enhance the understanding of the treatment and time course effects on FPG and 

 

 

HbA1c and the development of the PD model enabled simulations to be performed to 

compare the longer term glycemic durability between treatment groups. 

In Chapter 7 the investigations are reviewed and discussed with a focus on the application of 

model based approaches across clinical drug development to evaluate and understand 

genotype differences in enzymes and transporters. Furthermore the applications of PGx in 

treatment approaches to T2D over the long term are hypothesized. The future perspectives on 

the applications of model based approaches to evaluate the impact of genotype in clinical 

development are presented. The focus for discussion is on the utilization of PBPK models 

throughout clinical development in understanding the role of genotype relative to the other 

intrinsic and extrinsic factors and for considerations in study design. 
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Summary 

Purpose 

Sipoglitazar was a novel, azolealkanoic acid derivative that possesses selective activity for 

the peroxisome proliferator-activated receptors (PPAR) PPARγ, PPARα, and PPARδ.  The 

compound undergoes phase II biotransformation by conjugation catalyzed by 

UDP-glucuronosyltransferase (UGT); the aim of this analysis was to explore the influence of 

genetic polymorphism in UGT on the pharmacokinetics of sipoglitazar. 

Methods 

Three preliminary phase I clinical pharmacology studies were conducted in tandem in healthy 

human subjects. Genotyping was undertaken in a total of 82 subjects in the phase I program 

for the purpose of genotyping UGT polymorphisms. Plasma samples were collected for up to 

48 hours post dose to characterize the pharmacokinetic profile following a single oral dose of 

the drug. 

Results 

Plasma concentrations of sipoglitazar and the distribution of dose-normalized individual 

values for area under the plasma concentration-time curve from time 0 to infinity (AUC0-∞) 

before any stratification were considerably skewed with a multi-modal distribution. The 

proportion of variability in AUC0-∞ explained by UGT2B15 was 66.7% (P<0.0001); the 

addition of other genetic or demographic factors was not statistically significant. Subjects 

homozygous for the UGT2B15 D85Y variant (UGT2B15 *2/*2) were exposed to greater 

plasma concentrations of sipoglitazar compared with subjects homozygous for the wild-type 

allele UGT2B15 *1/*1 (3.26 times higher) or heterozygous allele UGT2B15 *1/*2 (2.16 

times higher). 

Conclusions 

These results indicate that sipoglitazar clearance is substantially modified by UGT2B15 

enzyme variants, with higher exposure observed in the UGT2B15 *2/*2 genotype group. 

 

 

Introduction 

Sipoglitazar, a novel, orally-available, azolealkanoic acid derivative, has selective 

peroxisome proliferator-activated receptor (PPAR) agonist activities for PPARγ, PPARα, and 

PPARδ. As such, sipoglitazar was developed to improve peripheral insulin sensitivity, 

normalize circulating lipid profiles, and reduce body weight in patients with metabolic 

syndrome and type 2 diabetes mellitus (T2DM). A preliminary phase I program of clinical 

pharmacology studies was conducted in healthy human subjects to examine the 

pharmacokinetics, safety, and tolerability of sipoglitazar as single and multiple doses. 

Many drugs are subject to phase II biotransformation processes, by which the parent 

compound or its intermediate metabolites are conjugated and subsequently excreted from the 

body as water soluble products such as glucuronides [1]. Pharmacogenetic variation has been 

identified for glucuronidation by uridine 5'-diphospate-glucuronosyltransferases (UGTs), 

specifically for the isoforms, UGT1A1, UGT1A7, UGT1A9, UGT2B7, and UGT2B15 [1]. 

However, clinical relevance for polymorphism in UGTs has currently only been identified for 

a few drugs, primarily catalyzed by UGT1A1. The anticancer drug, irinotecan, includes a 

label recommendation to lower the starting dose for subjects with the homozygous allele 

UGT1A1*28/*28 and nilotinib, carrying a label warning of increased risk of 

hyperbilirubinemia for subjects genotyped as UGT1A1*28 [2].  

Preclinical studies of sipoglitazar metabolism conducted in vitro using human and animal 

liver microsome preparations suggest that enzymatic glucuronidation is central to its 

biotransformation [3]. Sipoglitazar is relatively stable in the absence of the UGT co-substrate, 

uridine diphosphoglucuronic acid (UDP), whereas the parent compound is susceptible to 

conjugation by the active enzymes UGT1A1, UGT1A3, UGT1A6, and UGT2B15. The 

principal metabolite of sipoglitazar is the the dealkylated derivative M-I. The potency of 

metabolite M-I relative to that of the parent sipoglitazar was 33%, 37%, and 17% for PPAR, 

PPAR, and PPAR, respectively. The metabolite is generated in vitro by the action 

predominantly of cytochrome P450 (CYP) 2C8 on the glucuronide intermediates. It is 

therefore hypothesized that initially sipoglitazar is metabolized to the glucuronide conjugate, 

sipoglitazar-Glu, by UDP glucuronyl transferase and secondly sipoglitazar-Glu is 

metabolized to M-I by dealkylation by CYP2C8 and deconjugation. Therefore, due to its 
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unique metabolic formation, the metabolite M-I was considered to be a marker for the level 

of metabolic activity of UGT. 

On the basis of the in vitro findings, UGTs are hypothesized to play an important role in the 

disposition of sipoglitazar, and it is therefore postulated that abnormalities in the gene 

encoding UDP-glucuronosyl transferase may alter the rate of clearance of sipoglitazar from 

the body. Therefore, during the first human studies of sipoglitazar, pharmacogenetic 

investigation of relevant drug metabolizing enzymes was focused on UGT genetic 

polymorphisms. 

 

 

Methods 

Subjects 

Three phase I studies, referred to as Studies EC001, EC002, and EC003, were undertaken, all 

in the United Kingdom. A summary of the demographic and genotype information across the 

studies is described in Table 1.  

Table 1 Demographic and genotype information for subjects with known 

UGT2B15 genotype included in the phase I trials (n=82) 

Genotype UGT2B15*1/*1 UGT2B15*1/*2 UGT2B15*2/*2 
Number of subjects 19 41 22 
Proportion 23% 50% 27% 
Age (years) mean  SDa 34.1  12.9 31.6  9.7 32.6  11.0 
Age elderly cohort (years) mean  
SD 

72  5.7b 71.7  3.8c 77d 

Height (cm) mean  SD 173.7  7.3 171.9  11.3 172.8  8.4 
Weight (kg) mean  SD 71.4  6.5 70.0  10.1 72.4  12.3 
BMI (kg/m2) mean  SD 23.7  2.3 23.7  3.0 25.0  2.8 
Sex (male/female) 15/4 25/16 15/7 
Race (Caucasian/Asian/Mixed race) 17/1/1 40/1/0 22/0//0 
a Excluding elderly cohort. b n=2. c n=9. d n=1. 
BMI=body mass index. 

Table 2 shows the genotype information by dose group for all studies. 

Table 2 Genotype information for UGT2B15 by dose group for all studies 

Dose (mg) 0.2 
(n=5) 

0.4  
 (n=3) 

1  
(n=5) 

2a 
(n=3) 

4 a   
(n=3) 

8 a 
(n=4) 

16 a 
(n=16) 

32 a 
(n=8) 

64 a 
(n=35) 

Total  
(n=82) 

Genotype           
UGT2B15*1/*1 1 1 2 0 1 2 5 0 7 19 
UGT2B15*1/*2 3 2 2 2 0 0 5 5 22 41 

UGT2B15*2/*2 1 0 1 1 2 2 6 3 6 22 
a In EC001 the same subjects received two different doses of sipoglitazar, the number included in each dose 
represents the first dose received for all subjects 

Study EC001 was a double-blind, placebo-controlled, cross-over study. A total of 60 healthy 

male and female subjects aged 18 to 55 years took part, of whom, 58 completed the 

investigation. In the ascending dose part of the study, 48 subjects received one dose of 

placebo and two single doses of sipoglitazar 
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(3-(3-ethoxy-1-{4-[(2-phenyl-1,3-thiazol-4-yl)methoxy]benzyl}-1H-pyrazol-4-yl)propanoic 

acid, also known as TAK-654), Takeda Pharmaceutical Company Limited, Osaka, Japan, at 

doses of 0.2, 0.4, 1, 2, 4, 8, 16, 32 and 64 mg.  Study EC002 was a double-blind, 

placebo-controlled, parallel groups study. A total of 32 healthy male and female subjects 

aged 18 to 55 years took part, of whom, 30 completed the investigation. An equal number of 

male and female subjects who had been allocated to the active treatment received either a 

single dose 32 or 64 mg of sipoglitazar.  Study EC003 was a double-blind, 

placebo-controlled, parallel groups study. A total of 30 healthy male and female subjects took 

part; 15 subjects aged 18 to 45 years (young cohort) and 15 subjects aged ≥65 years (elderly 

cohort), received a single 64mg dose of sipoglitazar.  

Samples were collected for PK at the following time points in all studies: pre-dose, 0.25, 0.5, 

0.75, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 16, 24, 36 and 48 h postdose.  

Figure 1 shows the disposition of subjects who were included in the analysis. The total 

number of subjects who received an active dose of sipoglitazar and for whom genotype 

information was collected, was 82 (EC001 n=39, EC002 n=19, and EC003 n=24). 

 

 

Figure 1 Flow chart of subjects included in the analysis, EC001, EC002, EC003 

Phase 1 double-blind, placebo controlled studies (see Subjects section for details) 

 

Ethical Considerations 

All three studies were conducted in accordance with the Declaration of Helsinki (Edinburgh 

2000). Written approval was obtained from the relevant local independent ethics committee 

before the start of each study and for the amendments made to the protocol. 

In the case of Study EC001, 39 subjects were traced retrospectively and provided consent so 

that samples might be taken for genotyping. In Study EC002, consent was prospectively 

obtained for limited CYP genotyping only: 23 subjects (19 who received sipoglitazar and 4 

who received placebo) were later traced and provided consent to allow UGT genotyping also. 

In study EC003, CYP2C8 and UGT2B15 genotyping were incorporated into the original 

protocol, and consent for all study procedures and analyses was obtained from every subject 

prospectively. 
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Analytical methods 

At each specified time point, plasma samples were collected into sodium heparin–containing 

tubes. The tubes were inverted gently in order to dissolve the heparin and they were placed 

on ice until processing. The plasma was separated in a refrigerated centrifuge within 60 

minutes of collection at approximately 1500 g for 10 minutes.  

Sipoglitazar was analyzed in plasma by a validated liquid chromatography method with 

tandem mass spectrometry (HPLC/MS/MS) in selected reaction monitoring mode using turbo 

ionspray. The method was validated by Covance Laboratories Ltd (Harrogate, United 

Kingdom). 

Briefly, plasma (0.25 mL), was mixed with internal standard (25 μL, 1 µg/ml sipoglitazar-d5, 

5 µg/mL M-I-d5), 0.05 M phosphate buffer (0.75 mL, pH 3) and diethyl ether (3 mL). The 

organic layer was evaporated under nitrogen at 40°C and reconstituted in 

methanol:water:acetic acid (50:50:0.4 v/v/v). Following mixing and centrifugation, the 

supernatant fraction (5 μ L) was injected onto a Xetarra RP18, 5 μm, 150 x 2.1 mm (i.d.) 

HPLC column (Waters, Milford, MA) at 40°C. The mobile phase was water:acetic acid 

(100:0.2 v/v) and methanol:acetic acid (100:0.2 v/v) at a gradient of 40/60 from 0 to 3 min 

after injection, 20:80 from 3 to 4.5 min and 40:60 for 0.1 min. The mass spectrometer was 

operated under the following conditions: ionspray voltage; 5200V, heated capillary 

temperature; 425°C, auxillary gas flow; 8000 cc/min and nebuliser pressure; 15 psi. 

The validated calibration range for sipoglitazar in human plasma was from 1 to 2500 ng/mL. 

Quality control samples were prepared in control human plasma with concentrations of 

sipoglitazar as follows: 3 (low), 50 (mid), and 1750 (high) ng/mL. For samples with 

concentrations higher than the assay range, a validated dilution (with human plasma) 

procedure was adopted. In study EC001, EC002 and EC003 assay precision for sipoglitazar 

was ≤9.1%, ≤9.4%, ≤7.1% and accuracy was 94.0-110.0%, 93.6-106.0% and 96.4-105.9%, 

respectively. 

Pharmacokinetic analysis 

Pharmacokinetic parameters were determined study-by-study using noncompartmental 

analysis at Covance Clinical Research Unit Limited, Harrogate, United Kingdom, using 

WinNonlin Version 3.2 (Study EC001), at Medeval Limited, Manchester, United Kingdom, 

 

 

using WinNonlin Version 4.0 (Study EC002), and at Data Magik Limited, Salisbury, United 

Kingdom, using procedures implemented in SAS Version 8.2 (Study EC003). 

Genotyping 

Venous blood for genotyping was taken into an EDTA tube and the whole blood sample (4 

ml) stored at -20°C pending shipping in the frozen state (-20°C) to the site of analysis. 

Genotyping was performed by DxS, Manchester, United Kingdom. DNA was prepared from 

whole blood samples by the AGOWA/Hamilton automated extraction system (Bonaduz, 

Switzerland). Real time polymerase chain reaction (PCR) methods using the Stratagene 

Mx4000 (La Jolla, California, USA) and appropriately designed primers allele-specific at the 

3′nucleotide end (Amplification Refractory Mutation System strategy [4]) were used to 

determine UGT1A6*2 (T181A, R184S), UGT1A7*2 (N129K, R131K), UGT1A7*3 (N129K, 

R131K, W208R), and UGT2B15*2 (D85Y), and the products of UGT1A1*28 (promoter 

A(TA)6TAA to A(TA)7TAA) were analyzed according to their relative capillary 

electrophoretic mobility using an ABI Prism 3100 Genetic Analyzer (Applied Biosystems, 

Warrington, United Kingdom). Similar real time PCR methods were used to determine 

CYP2C8*3 and CYP2C8*4 (A1196G and C792G, respectively). 

To confirm the results in the two subjects in whom there appeared to be disconnect between 

genotype and sipoglitazar pharmacokinetic phenotype, all six exons plus nearby intronic 

regions of UGT2B15 were amplified and the fragments sequenced in forward and reverse 

directions using Big-Dye Terminators (Applied Biosystems). The reaction products were 

purified by gel exclusion chromatography and analyzed using an ABI Prism 3100 Genetic 

Analyzer. 

Statistical methods 

A dose proportionality assessment was performed on area under the plasma 

concentration-time curve from time 0 to infinity (AUC0-∞) by combining data from all three 

studies. The analysis was performed on the log transformed parameter, AUC0-∞ (dose range 

0.2 to 64mg). For subjects who received two different doses of sipoglitazar, the AUC0-∞ from 

both doses was included in the analysis. The power model was used for analysis, ln(AUC0-∞) 

= a + b*ln(dose) + error where a is the intercept and b is the dose-proportionality coefficient. 

For dose proportionality the slope of the regression line (b) = 1 and for dose independence b 

Chapter 3

56

12475_Stringer_Layout.indd   56 09-12-14   12:19



 

 

Analytical methods 

At each specified time point, plasma samples were collected into sodium heparin–containing 

tubes. The tubes were inverted gently in order to dissolve the heparin and they were placed 

on ice until processing. The plasma was separated in a refrigerated centrifuge within 60 

minutes of collection at approximately 1500 g for 10 minutes.  

Sipoglitazar was analyzed in plasma by a validated liquid chromatography method with 

tandem mass spectrometry (HPLC/MS/MS) in selected reaction monitoring mode using turbo 

ionspray. The method was validated by Covance Laboratories Ltd (Harrogate, United 

Kingdom). 

Briefly, plasma (0.25 mL), was mixed with internal standard (25 μL, 1 µg/ml sipoglitazar-d5, 

5 µg/mL M-I-d5), 0.05 M phosphate buffer (0.75 mL, pH 3) and diethyl ether (3 mL). The 

organic layer was evaporated under nitrogen at 40°C and reconstituted in 

methanol:water:acetic acid (50:50:0.4 v/v/v). Following mixing and centrifugation, the 

supernatant fraction (5 μ L) was injected onto a Xetarra RP18, 5 μm, 150 x 2.1 mm (i.d.) 

HPLC column (Waters, Milford, MA) at 40°C. The mobile phase was water:acetic acid 

(100:0.2 v/v) and methanol:acetic acid (100:0.2 v/v) at a gradient of 40/60 from 0 to 3 min 

after injection, 20:80 from 3 to 4.5 min and 40:60 for 0.1 min. The mass spectrometer was 

operated under the following conditions: ionspray voltage; 5200V, heated capillary 

temperature; 425°C, auxillary gas flow; 8000 cc/min and nebuliser pressure; 15 psi. 

The validated calibration range for sipoglitazar in human plasma was from 1 to 2500 ng/mL. 

Quality control samples were prepared in control human plasma with concentrations of 

sipoglitazar as follows: 3 (low), 50 (mid), and 1750 (high) ng/mL. For samples with 

concentrations higher than the assay range, a validated dilution (with human plasma) 

procedure was adopted. In study EC001, EC002 and EC003 assay precision for sipoglitazar 

was ≤9.1%, ≤9.4%, ≤7.1% and accuracy was 94.0-110.0%, 93.6-106.0% and 96.4-105.9%, 

respectively. 

Pharmacokinetic analysis 

Pharmacokinetic parameters were determined study-by-study using noncompartmental 

analysis at Covance Clinical Research Unit Limited, Harrogate, United Kingdom, using 

WinNonlin Version 3.2 (Study EC001), at Medeval Limited, Manchester, United Kingdom, 

 

 

using WinNonlin Version 4.0 (Study EC002), and at Data Magik Limited, Salisbury, United 

Kingdom, using procedures implemented in SAS Version 8.2 (Study EC003). 

Genotyping 

Venous blood for genotyping was taken into an EDTA tube and the whole blood sample (4 

ml) stored at -20°C pending shipping in the frozen state (-20°C) to the site of analysis. 

Genotyping was performed by DxS, Manchester, United Kingdom. DNA was prepared from 

whole blood samples by the AGOWA/Hamilton automated extraction system (Bonaduz, 

Switzerland). Real time polymerase chain reaction (PCR) methods using the Stratagene 

Mx4000 (La Jolla, California, USA) and appropriately designed primers allele-specific at the 

3′nucleotide end (Amplification Refractory Mutation System strategy [4]) were used to 

determine UGT1A6*2 (T181A, R184S), UGT1A7*2 (N129K, R131K), UGT1A7*3 (N129K, 

R131K, W208R), and UGT2B15*2 (D85Y), and the products of UGT1A1*28 (promoter 

A(TA)6TAA to A(TA)7TAA) were analyzed according to their relative capillary 

electrophoretic mobility using an ABI Prism 3100 Genetic Analyzer (Applied Biosystems, 

Warrington, United Kingdom). Similar real time PCR methods were used to determine 

CYP2C8*3 and CYP2C8*4 (A1196G and C792G, respectively). 

To confirm the results in the two subjects in whom there appeared to be disconnect between 

genotype and sipoglitazar pharmacokinetic phenotype, all six exons plus nearby intronic 

regions of UGT2B15 were amplified and the fragments sequenced in forward and reverse 

directions using Big-Dye Terminators (Applied Biosystems). The reaction products were 

purified by gel exclusion chromatography and analyzed using an ABI Prism 3100 Genetic 

Analyzer. 

Statistical methods 

A dose proportionality assessment was performed on area under the plasma 

concentration-time curve from time 0 to infinity (AUC0-∞) by combining data from all three 

studies. The analysis was performed on the log transformed parameter, AUC0-∞ (dose range 

0.2 to 64mg). For subjects who received two different doses of sipoglitazar, the AUC0-∞ from 

both doses was included in the analysis. The power model was used for analysis, ln(AUC0-∞) 

= a + b*ln(dose) + error where a is the intercept and b is the dose-proportionality coefficient. 

For dose proportionality the slope of the regression line (b) = 1 and for dose independence b 

The Effect of UGT2B15 on the PK Profile of Sipoglitazar

57

3

12475_Stringer_Layout.indd   57 09-12-14   12:19



 

 

= 0. The degree of proportionality was assessed using the value of b and the associated 95% 

confidence interval (CI). If the 95% CI for the slope of the regression line was close to unity, 

the relationship between dose and the pharmacokinetic parameter was concluded to be dose 

proportional for the dose range studied. 

Analysis of variance (ANOVA) models were used to explore the effects on dose-normalized 

AUC0-∞ using log transformed data. For each UGT enzyme, a one-way ANOVA model with 

the genotype enzyme as a fixed effect factor was used to evaluate differences between levels 

of each UGT enzyme. Then separate ANOVA models, including UGT2B15 as a fixed effect 

factor and other covariates, were also produced. The coefficient of determination (R-square) 

from these models was used to estimate the proportion of variance accounted for by each 

statistical model. SAS version 9.1.3 (SAS Institute Inc. Cary, NC, USA) was used to produce 

all the analyses. 

Results 

Pharmacokinetic results 

A program of three phase I clinical pharmacology studies was undertaken in tandem to 

investigate the pharmacokinetics of single and repeated oral doses of sipoglitazar 

administered to male and female healthy subjects. In male subjects, single oral doses of 

sipoglitazar, 0.2 to 64 mg, were well tolerated, as were single oral doses of 16 to 64 mg in 

female subjects. Sipoglitazar was rapidly absorbed with a maximum observed plasma 

concentration occurring 0.6 to 1 h postdose across the dose levels investigated. Plasma 

concentrations of sipoglitazar declined with bi-phasic kinetics and with a terminal elimination 

half-life (T1/2) of approximately 3 to 5 h. Statistical analysis of AUC0-∞, revealed dose 

proportionality across the dose range with a slope and 95% CI of 0.99 (0.92 - 1.05). The 

plasma exposure of the major metabolite M-I was approximately 10% of the parent, with a 

T1/2 of approximately 6 to 7 h. After correcting for body weight, plasma concentrations of 

sipoglitazar were only slightly greater in female (n=27) subjects than in male subjects (n=55). 

Exposures to sipoglitazar and M-I metabolite were somewhat increased in elderly subjects 

(>65 years) compared with younger subjects. 

The distribution of sipoglitazar plasma AUC0-∞ values for all subjects who took at least one 

dose of sipoglitazar (n=82) in the phase I program, normalized to a dose of 64 mg, is shown 

 

 

in Figure 2. The distribution of AUC0-∞ values was notably skewed with an apparently 

multi-modal disposition suggesting the existence of a number of potential subpopulations. 

Figure 2 Histogram plot of dose-normalized AUC0-∞ values for sipoglitazar in all 

phase I studies. AUC0-∞ Area under the plasma concentration– time curve 

from time 0 to infinity 

 

Impact of UGT polymorphisms on pharmacokinetic parameters  

In vitro studies conducted prior to human dosing predicted a central role for glucuronidation 

in the in vivo biological transformation of sipoglitazar. Following the analysis of the results 

from the first two phase I studies and the potential existence of subpopulations, a total of 62 

subjects who took part in these studies (Studies EC001 and EC002) were retrospectively 

traced for variants of UGT1A1, UGT1A6, UGT1A7, and UGT2B15. Fifty-eight of these 

subjects had taken active drug. Based on the results, subjects who took part in the third phase 

I study (Study EC003) gave consent prospectively for genotyping for UGT2B15 and 

CYP2C8 only.  

The majority of the subjects who took part in these studies were classified as Caucasians 

(Table 1). The proportion of participants shown to have UGT2B15*1/*1, UGT2B15*1/*2, 
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and UGT2B15*2/*2 genotypes was consistent with the literature for subjects having this 

ethnic background [5].  

ANOVA was used to examine the influence of the four UGT enzymes on sipoglitazar 

AUC0-∞. Initially, separate one-way ANOVAs were performed for each enzyme in turn for 

subjects taking part in the first two studies (in whom all four enzymes were genotyped). The 

proportion of AUC0-∞ variance explained by UGT2B15 was 71% (P < 0.0001). Addition of 

the other genotype enzymes in turn, to this model, achieved no increase in the proportion of 

AUC0-∞ variance explained in the model (Table 3).  The proportion of AUC0-∞ variance 

explained by UGT2B15 when this was tested across all three studies was 66.7% (P < 0.0001). 

Addition of demographic factors age, gender, and body weight did not explain additional 

AUC0-∞ variance with statistical significance (Table 3). No relationship between sipoglitazar 

AUC0-∞ and variants of glucuronosyltransferase genes other than UGT2B15 was evident on 

inspection. 

Table 3 ANOVA results for sipoglitazar to determine the effect of UGT2B15 on 

dose-normalized AUC0-∞ (log transformed) 

Effect of UGT2B15 and other genotypes (Studies EC001 and EC002; n=58) 
Source df P value R-square 
Model UGT2B15 alone 
UGT2B15 2 <0.0001 0.709 
Model with UGT2B15 plus 
+UGT1A6 3 0.6505 0.718 
+UGT1A1 3 0.8458 0.713 
+UGT1A7 5 0.5438 0.731 
+UGT1A6+UGT1A1+UGT1A7 - - 0.737 
Effect of UGT2B15 and demographic factors (Studies EC001, EC002, EC003; n=82) 
Source df P value R-square 
Model UGT2B15 alone 
UGT2B15 2 <0.0001 0.666 
Model with UGT2B15 plus 
+Gender 3 0.0464 0.683 
+Age 3 0.0703 0.680 
+BMI 5 0.8737 0.666 
ANOVA, analysis of variance; AUC0-∞, area under the plasma concentration-time curve from time 0 to infinity; 
BMI=body mass index. 

 

 

Impact of UGT2B15 polymorphisms on pharmacokinetic parameters  

The summary of pharmacokinetic parameters by UGT2B15 genotype for sipoglitazar and its 

main metabolite M-I are shown in Table 4. Figure 3 shows the corresponding plasma 

concentration-time profiles of sipoglitazar for the three UGT2B15 genotypes. Sipoglitazar 

AUC0-∞ was increased by approximately two- to three-fold in subjects with UGT2B15*2/*2 

genotype as compared with subjects with genotype UGT2B15*1/*2 or UGT2B15*1/*1.  

Parent to metabolite ratios for AUC (AUC-MR) were calculated with respect to UGT2B15 

genotype and were found to vary across the UGT2B15*1/*1 (22%) and UGT2B15*1/*2 

(13%) or UGT2B15*2/*2 (5%) genotype groups. The geometric mean AUC for sipoglitazar 

increased by approximately 51% from UGT2B15*1/*1 to UGT2B15*1/*2 groups. 

Figure 3 Plasma concentration–time profile dose-normalized (sipoglitazar, single 64 mg 

dose) by genotype group 

T1/2 values were comparable between the genotype groups for both sipoglitazar and M-I; 

however, the concentration 24 h postdose (C24) for sipoglitazar was approximately 52 and 21 

times higher in UGT2B15*2/*2 as compared with that of UGT2B15*1/*2 or 

UGT2B15*1/*1, respectively. The M-I C24 in UGT2B15*2/*2 was approximately double 

that of UGT2B15*1/*2 or UGT2B15*1/*1.  
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T1/2 values were comparable between the genotype groups for both sipoglitazar and M-I; 

however, the concentration 24 h postdose (C24) for sipoglitazar was approximately 52 and 21 

times higher in UGT2B15*2/*2 as compared with that of UGT2B15*1/*2 or 

UGT2B15*1/*1, respectively. The M-I C24 in UGT2B15*2/*2 was approximately double 

that of UGT2B15*1/*2 or UGT2B15*1/*1.  
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The 25th and 75th percentile distributions show overlap between the UGT2B15*1/*1 and 

UGT2B15*1/*2 genotype (Figure 4); however, two outlier subjects (>1.5 times the 

interquartile range) were observed in the UGT2B15*1/*2 and UGT2B15*1/*1 groups. The 

UGT2B15*1/*2 and UGT2B15*1/*1 status of the outliers was later confirmed by direct gene 

sequencing.  

Figure 4 Box plot of relationship between genotype and exposure for sipoglitazar. UGT 

Uridine 5′-diphosphate-glucuronosyltransferase 

 

Based on the results of the two outlier subjects, it was thought probable, then, that variations 

in CYP2C8 activity could contribute to the variation in sipoglitazar exposure observed in 

these subjects. To formally exclude an important influence of CYP2C8 variants on exposure 

to sipoglitazar, CYP2C8 genotype samples were collected in subjects who received active 

compound in the third clinical study (EC003). Exposure values for sipoglitazar were clearly 

correlated with UGT2B15 genotypes when data from all three studies were combined (Figure 

 

 

4, n=82); however, no relationship was observed between sipoglitazar exposure and CYP2C8 

genotypes *1/*1, *1/*3, or *3/*3 when this data was explored in study EC003 (Figure 5, 

n=24). In addition, the two outlier subjects observed in Figure 4 did not correlate with the 

outlier subjects observed in Figure 5. 

Figure. 5 Box plot of relationship between the cytochrome P450 2C8 (CYP2C8) 

genotype and exposure for sipoglitazar (study EC003 only) 
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Table 4 Dose-normalized pharmacokinetic parameters (GM (%CV)) of sipoglitazar 

and metabolite M-I  

Genotype UGT2B15*1/*1 
(n=19) 

UGT2B15*1/*2 
(n=41) 

UGT2B15*2/*2 
(n=22) 

GM ratio 
90% CI 

*2/*2 vs *1/*1 

GM ratio 
90% CI 

*2/*2 vs *1/*2 
Sipoglitazar 

Cmax 
(ng/mL) 

4,695 (39.5) 6,283 (30.1) 7,169 (24.0) 1.53 (1.30, 1.79) 1.14 (0.99, 
1.30) 

C24 (ng/mL)a 2.52 (0–29.3) 6.37 (0–275) 131.6 (48–354) - - 

AUC0-∞ 
(ng∙h/mL) 

11,194 (30.7) 16,910 (36.9) 36,476 (20.9) 3.26 (2.77, 3.83) 2.16 (1.88, 
2.47) 

T1/2 (h)b 3.82 (52.6) 3.29 (36.6) 5.05 (11.0) 1.32 (1.10, 1.59) 1.53 (1.31, 
1.79) 

AUC0-∞ MR 0.22 (27.5) 0.13 (35.2) 0.05 (19.4) 0.25 (0.21, 0.29) 0.41 (0.36, 
0.47) 

M-I 
Cmax 
(ng/mL) 

591.4 (29.4) 468.2 (27.1) 233.5 (24.1) 0.39 (0.34, 0.45) 0.50 (0.44, 
0.56) 

C24 (ng/mL)a 8.08 (0–24.5) 7.48 (0–25.6) 15.9 (0–34.72) - - 

AUC0-∞ 
(ng∙h/mL) 

2,484 (24.5) 2,223 (26.6) 1,986 (27.1) 0.80 (0.70, 0.92) 0.89 (0.80, 
1.00) 

T1/2 (h)b 7.30 (51.8) 6.42 (36.5) 7.85 (17.7) 1.08 (0.89, 1.29) 1.22 (1.05, 
1.43) 

AUC0-∞, area under the plasma concentration-time curve from time 0 to infinity; C24, concentration at 24 hours; 
CI, confidence interval; Cmax, maximum observed plasma concentration; CV, coefficient of variation; GM, 
geometric mean; T1/2, terminal elimination half-life; MR, metabolite ratio. 
a median and range. b not dose normalised. 

 

 

Discussion 

The investigation we report here of UGT genetic polymorphisms in human subjects dosed 

with the novel, nonthiazolidinedione, insulin-sensitizing agent sipoglitazar was prompted by 

observing considerable inter-subject variability in drug plasma concentration profiles as data 

emerged from an on-going trio of clinical pharmacology studies. Further inspection of the 

skewed distribution of sipoglitazar AUC0-∞ values suggested the presence of subpopulations. 

The results presented show a strong correlation between the genetic variants of UGT2B15 

and the sipoglitazar exposure. Approximately two-thirds of the inter-subject variability in 

sipoglitazar plasma exposure is explained by UGT2B15 genetic variation and no relationship 

between sipoglitazar plasma exposure and variants of the other UGT enzymes was found. 

UGTs, together with acetyltransferases, glutathione-S-transferases, and sulfotransferases, are 

responsible for the phase II biotransformation of many drugs. Amongst these enzyme 

families, UGTs are considered to show the most profound effects on drug elimination [5].  

Examples where inter-patient differences in drug elimination may result from differences in 

glucuronidation rates and underlying UGT allelic variation include lorazepam [6], the toxic 

irinotecan metabolite SN-38 [7,8], and mycophenolic acid [9]. For S-oxazepam [10] and 

rofecoxib [11], provocative in vitro data show, respectively, that polymorphisms of 

UGT2B15 and UGT2B7/UGT2B15 differ in their activity with respect to drug and have not 

as yet been shown to cause inter-patient differences in drug exposure. Polymorphisms of 

UGT1A6 appear to exert little effect in practice on the rate of paracetamol elimination 

[12,13]. However, glururonides have been relatively under studied compared with the CYP 

mediated metabolism; the literature is divided upon the impact of this variant on enzyme 

function and further in vivo studies are necessary to evaluate the clinical significance [14]. 

Although the exposure was approximately two- to three-fold higher in the UGT2B15*2/*2 

genotype than either UGT2B15*1/*1 or UGT2B15*1/*2, two outlier subjects genotyped as 

UGT2B15*1/*1 and UGT2B15*1/*2 were observed. These subjects genotyped as 

UGT2B15*1/*1 and UGT2B15*1/*2, but had considerably higher exposure than expected 

based on their genotype. Gene sequencing confirmed that heterozygosity for the D85Y 

mutation had been correctly identified on initial investigation and revealed no alternative 

unexpected genetic mutations. Our analysis showed that across the population UGT2B15 

genotype could explain 66% of the variability of sipoglitazar exposure as determined by 
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Although the exposure was approximately two- to three-fold higher in the UGT2B15*2/*2 

genotype than either UGT2B15*1/*1 or UGT2B15*1/*2, two outlier subjects genotyped as 

UGT2B15*1/*1 and UGT2B15*1/*2 were observed. These subjects genotyped as 

UGT2B15*1/*1 and UGT2B15*1/*2, but had considerably higher exposure than expected 
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mutation had been correctly identified on initial investigation and revealed no alternative 

unexpected genetic mutations. Our analysis showed that across the population UGT2B15 

genotype could explain 66% of the variability of sipoglitazar exposure as determined by 
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AUC0-∞. Other factors such as age, body mass index or sex appeared to contribute little to 

explaining the additional variability or outlying subjects. This experience suggests that 

analysis of UGT2B15 genotype alone may not invariably predict the extent of individual 

exposure to sipoglitazar and as yet other unidentified factors may affect the clearance of 

sipoglitazar in subjects. In addition, the rates of glucuronidation are affected not only by 

genetically determined variation but also by age, gender, disease, diet, and other 

environmental influences [5]. The relationship between exposure to sipoglitazar and 

UGT2B15 genotype in phase I trials significantly accounts for the variability. The extensive 

sipoglitazar metabolizer phenotype associated with UGT2B15*1/*1 and the relatively poor 

metabolizer phenotype associated with UGT2B15*2/*2 genotype can be inferred from the 

results presented. Rates of drug metabolism were not directly measured; however, there was a 

significant decrease in the AUC metabolite ratios of UGT2B15*1/*1 or UGT2B15*1/*2 as 

compared with UGT2B15*2/*2, indicating reduced levels of metabolic activity associated 

with UGT2B15*2/*2. The conclusion that subjects with UGT2B15*2/*2 genotype 

metabolize sipoglitazar poorly is nonetheless consistent with the results of others who, using 

S-oxazepam as a substrate, have shown that the UGT2B15 D85Y variant is less active than 

the wild-type enzyme [10]. Potentially, the UGT2B15 D85Y variant could have a significant 

impact because of its high population frequency (approximately 50% of all alleles) [15]. Due 

to this frequency, approximately 22% of the Caucasian population is homozygous for this 

allele with a potentially significant impact on their ability to metabolize drugs and other 

chemicals by this pathway [5].  

As predicted from the mechanism of action and from its pharmacological profile in animal 

models, sipoglitazar exerts little effect over blood glucose levels in healthy, nonobese human 

subjects with normal insulin sensitivity. However, following completion of the phase I 

clinical pharmacology studies described here, studies of sipoglitazar have been completed in 

patients with T2DM. All patients taking part in these studies were genotyped for UGT2B15 

prospectively to assess the clinical relevance of variants of this enzyme [16]. 

In summary, it is clear that the activity of UGT2B15 transferase is important for the 

elimination of sipoglitazar, and that individual exposure to sipoglitazar is dependent on the 

differential activity of naturally occurring enzyme variants.  
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Summary 

Sipoglitazar, is a peroxisome proliferator–activated receptor α, δ and γ agonist. During phase 

I, a wide distribution of clearance between individuals was observed. Hypothesized to result 

from a polymorphism in the uridine 5'-diphospate-glucuronosyltransferase (UGT)2B15 

enzyme, pharmacogenetic samples were collected from each individual for genotyping 

UGT2B15 in a subsequent phase I trial in healthy subjects (n=524) and in two phase II trials 

in type 2 diabetes subjects (n=627), total genotype frequency was: *1/*1 (22%), *1/*2 (51%) 

and *2/*2 (27%). The impact of genotype on exposure was assessed using a pharmacokinetic 

modelling approach, the influence of genotype on efficacy was evaluated using 12-week 

HbA1c change from baseline. Model analysis demonstrated UGT2B15 genotype accounted 

significantly for the variability in sipoglitazar clearance; however, a small fraction of subjects 

had a clearance that could not be explained entirely by genotype. HbA1c-drop increased with 

daily drug dose. When stratified by both dose and genotype, HbA1c-drop was larger in the 

UGT2B15*2/*2 compared with UGT2B15*1/*1 and UGT2B15*1/*2 genotypes (P<.05). In 

summary, UGT2B15 genotype  is a strong predictor for sipoglitazar clearance, a greater 

clinical response observed in the UGT2B15*2/*2 genotype appears to confirm this. However, 

overlap in individual rates of clearance across genotypes remains after accounting for 

genotype. 

 

 

Introduction 

Genetic differences that result in patient variability in drug metabolism, disposition, and 

response, have led a move towards individualized medicine in which doses are set based on 

genotype [1,2]. However, the relative contribution of genetic differences to inter-individual 

variability in exposure varies widely between drugs. In some cases there is too much weight 

placed on the contribution of a single genotype to drug clearance and too little weight on the 

contribution of other factors affecting both clearance and the clinical response, such as age, 

body weight, disease status and environment [3-5]. 

Polymorphic expressed enzymes, such as cytochrome P450 (CYP) 2C9, CYP2C19, and 

CYP2D6, have been extensively studied as a large number of drugs are catalyzed through 

these pathways, including warfarin and metoprolol [6,7]. In addition to the polymorphic CYP 

mediated metabolism, genetic polymorphisms have been identified for glucuronidation by 

uridine 5'-diphospate-glucuronosyltransferases (UGTs). Accounting for approximately 10% 

of the major drug elimination pathways,[4] some of these UGTs have been shown to be 

polymorphic. An example is the UGT2B15 isoform, which is involved in the inactivation of 

lorazapam and oxazepam [8,9]. Genetic polymorphisms for UGT2B15 have been identified 

to result from an amino acid change from aspartic acid (D85) to tyrosine (Y85) at position 85 

[10]. Those subjects that are homozygous (*2/*2) with reduced glucuronidation are classified 

as “poor metabolizers” (PM), compared to those with the wild type (*1/*1) “extensive 

metabolizers” (EM), and those with the heterozygous allele (*1/*2) exhibiting intermediate 

levels of metabolic activity “intermediate metabolizers” (IM). The genotype frequencies 

reported in the Caucasian population for UGT2B15 *1/*1, UGT2B15 *1/*2, and UGT2B15 

*2/*2 are 22%, 46% and 32%, respectively [11]. 

Sipoglitazar, a novel orally-available, peroxisome proliferator–activated receptor (PPAR) 

agonist with activities for PPAR α, δ, and γ, was targeted for type 2 diabetes mellitus 

(T2DM). The compound undergoes phase II biotransformation by conjugation catalyzed by 

UGT [12].  During phase I clinical trials, a bi-or multimodal distribution of 

exposure/clearance appeared to be more likely than a normal distribution; this was later 

evaluated using in vitro data and was found to be related to a polymorphism of the UGT2B15 

enzyme.  Based on this result pharmacogenetic samples for UGT2B15 were collected from 

each individual in a subsequent phase I trial in healthy subjects and in two phase II trials in 
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Sipoglitazar, a novel orally-available, peroxisome proliferator–activated receptor (PPAR) 

agonist with activities for PPAR α, δ, and γ, was targeted for type 2 diabetes mellitus 

(T2DM). The compound undergoes phase II biotransformation by conjugation catalyzed by 

UGT [12].  During phase I clinical trials, a bi-or multimodal distribution of 

exposure/clearance appeared to be more likely than a normal distribution; this was later 
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type 2 diabetes subjects for genotyping UGT2B15 (*1/*1, *1/*2 and *2/*2) polymorphisms. 

The translation of the observed variability in clearance to the pharmacodynamics of the 

compound was explored in context to the expression of the UGT2B15 enzyme and reviewed 

in relation to a pre-determined exposure margin.  

 

 

 

Methods 

Subjects and Data Collection 

A summary of studies used in the analysis, as well as demographic and genotype frequency 

data is given in Table I. One phase I trial in healthy subjects (n=524) and two phase II trials 

in type 2 diabetes subjects (n=627) were included in the analysis. All studies were conducted 

in accordance with the Declaration of Helsinki (Edinburgh 2000). Written approval was 

obtained from the relevant local institutional ethics committee before the start of each study 

and for the amendments made to the protocols. 
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Pharmacogenetic Analysis 

A blood sample was collected during each study for genotyping. The blood sample was 

collected into an EDTA tube and stored at -20°C until shipment, then transported frozen to 

DxS, Manchester, United Kingdom. DNA was prepared from whole blood samples by the 

AGOWA/Hamilton automated extraction system (Bonaduz, Switzerland). Real-time 

polymerase chain reaction methods using the Stratagene Mx4000 (La Jolla, CA, USA) and 

appropriately designed primers allele-specific at the 3′nucleotide end (Amplification 

Refractory Mutation System strategy [13]) were used to determine UGT2B15*2 (D85Y) and 

were analyzed according to their relative capillary electrophoretic mobility using an ABI 

Prism 3100 Genetic Analyzer (Applied Biosystems, Warrington, United Kingdom). 

Bioanalysis 

At each specified time point, plasma samples were collected into sodium heparin–containing 

tubes. The tubes were inverted gently in order to dissolve the heparin and they were placed 

on ice until processing. The plasma was separated in a refrigerated centrifuge, within 60 

minutes of collection, at approximately 1500 g for 10 minutes. Plasma concentrations for 

sipoglitazar were quantified in human plasma using a method previously validated by 

Covance Laboratories Ltd (Harrogate, United Kingdom). This method uses liquid 

chromatography with tandem mass spectrometric detection, with a validated calibration range 

from 0.1 to 250 ng/mL for sipoglitazar in human plasma. 

Population Data Analysis 

Exploratory graphical analysis on the phase I pharmacokinetics of sipoglitazar indicated 

bi-phasic elimination. The phase I and II datasets were combined and a two-compartmental 

model with parallel first- and zero-order absorption into the central compartment and 

first-order elimination was selected as the initial structural model for nonlinear mixed effect 

model development.  

Inter-individual variability (IIV) was explored assuming a log normal distribution of the 

individual parameter estimates. The IIV (η) for the ith pharmacokinetic parameter, where θi 
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Pharmacogenetic Analysis 

A blood sample was collected during each study for genotyping. The blood sample was 

collected into an EDTA tube and stored at -20°C until shipment, then transported frozen to 

DxS, Manchester, United Kingdom. DNA was prepared from whole blood samples by the 

AGOWA/Hamilton automated extraction system (Bonaduz, Switzerland). Real-time 

polymerase chain reaction methods using the Stratagene Mx4000 (La Jolla, CA, USA) and 

appropriately designed primers allele-specific at the 3′nucleotide end (Amplification 

Refractory Mutation System strategy [13]) were used to determine UGT2B15*2 (D85Y) and 

were analyzed according to their relative capillary electrophoretic mobility using an ABI 

Prism 3100 Genetic Analyzer (Applied Biosystems, Warrington, United Kingdom). 

Bioanalysis 

At each specified time point, plasma samples were collected into sodium heparin–containing 

tubes. The tubes were inverted gently in order to dissolve the heparin and they were placed 

on ice until processing. The plasma was separated in a refrigerated centrifuge, within 60 

minutes of collection, at approximately 1500 g for 10 minutes. Plasma concentrations for 

sipoglitazar were quantified in human plasma using a method previously validated by 

Covance Laboratories Ltd (Harrogate, United Kingdom). This method uses liquid 

chromatography with tandem mass spectrometric detection, with a validated calibration range 

from 0.1 to 250 ng/mL for sipoglitazar in human plasma. 

Population Data Analysis 

Exploratory graphical analysis on the phase I pharmacokinetics of sipoglitazar indicated 

bi-phasic elimination. The phase I and II datasets were combined and a two-compartmental 

model with parallel first- and zero-order absorption into the central compartment and 

first-order elimination was selected as the initial structural model for nonlinear mixed effect 

model development.  

Inter-individual variability (IIV) was explored assuming a log normal distribution of the 

individual parameter estimates. The IIV (η) for the ith pharmacokinetic parameter, where θi 
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is the individual pharmacokinetic parameter and θ (mean) is the population predicted mean as 

shown in the following equation: 

θ (i) = θ (mean) * exp(η) EQ(1) 

The data included in this analysis are taken from a single dose healthy subject study with 

dense sampling (0 hours and 1, 2, 3, 4, 6, 8, 12, 16, and 24 hours post dose) and two dose 

ranging patient studies with 3 trough samples per patient (collected at weeks 4, 6, and 8 of the 

12-week phase II trials). The residual error was not expected to be uniform between the two 

populations. As such different residual errors were applied between the healthy subjects and 

patient studies (supplemental methods). The IIV for the absorption phase and volume of 

distribution (V) were only estimated in the healthy subject study. Residual variability was 

modeled using a proportional model for the subject data EQ(2) and a proportional model 

including IIV for the patient data EQ(3) as follows: 

Cij = PRED * (1+ERRij)   EQ(2) 

Cij = PRED * (1+ERRij) * exp(η)  EQ(3) 

Where Cij is the observed concentration, PRED is the predicted concentration, and ERR is the 

proportional residual error the for jth prediction for the ith individual.  

Eta-shrinkage of all random effects on IIV was computed to inform model validation [14].  

In addition to genotype, a covariate analysis was conducted to explore the influence of other 

individual covariates on the pharmacokinetic parameters, with free fat mass (FFM) used to 

assess the influence of body weight [15]. 

All covariates were evaluated in the model using a forward inclusion and backward 

elimination procedure [16]. Covariates were included in the model using the following 

equation:  

P(mean) = θ (i) * (1+θ(f) * (COV-COV(median)))  EQ(4) 

Where P(mean) is the typical value of the population estimate, θ (i) is the individual 

parameter estimate, COV is the value of the covariate and associated median value and θ(f) 

represents magnitude of the covariate effect. 

 

 

 

 

For safety reasons, an upper limit of chronic exposure was previously determined (area under 

the curve (AUC) > 73 mg·hr/L) for sipoglitazar. In order to assess the balance between safety 

and efficacious response, the data are reviewed in context to this level. 

Efficacy Data 

Analysis of the phase II data was performed in patients with T2DM following 12 weeks of 

treatment with sipoglitazar. The primary endpoint was the absolute drop in glycosylated 

hemoglobin (HbA1c) in percentage points observed between day 0 and the last day of dosing, 

which was stratified by dose and genotype. The HbA1c data were analyzed using analysis of 

variance and the experiment-wise type 1 error controlled by a combination of Bonferroni 

correction and Tukey multiple comparison tests. A P < .05 was considered statistically 

significant. 

Data Analysis 

All population analyses were performed using nonlinear mixed effects modeling on 

pharmacokinetic and demographic data in the NONMEM software package (version VII, 

release 1; Icon Development Solutions, Ellicott City, MD, USA) and analyzed using the 

statistical software package S-Plus® for Windows (version 6.2 Professional, Insightful Corp., 

Seattle, WA, USA). The first order conditional estimation method was used for estimation. 

Visual Predictive Check 

Model performance was evaluated using the visual predictive check (VPC), evaluating the 

ability of the model to predict both the central tendency and the variability of the exposure 

[17]. The distribution of simulated concentrations for 1000 subjects (median and 90th 

prediction interval) and the actual individuals, including the median and percentiles was 

compared graphically. Results  

Base Model 

A population pharmacokinetic model was developed, with the pharmacokinetics of 

sipoglitazar being well described using a two-compartmental model with linear kinetics and 

no observed dose or time dependency. The absorption phase was adequately described using 
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is the individual pharmacokinetic parameter and θ (mean) is the population predicted mean as 

shown in the following equation: 

θ (i) = θ (mean) * exp(η) EQ(1) 

The data included in this analysis are taken from a single dose healthy subject study with 

dense sampling (0 hours and 1, 2, 3, 4, 6, 8, 12, 16, and 24 hours post dose) and two dose 
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distribution (V) were only estimated in the healthy subject study. Residual variability was 
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Cij = PRED * (1+ERRij)   EQ(2) 

Cij = PRED * (1+ERRij) * exp(η)  EQ(3) 

Where Cij is the observed concentration, PRED is the predicted concentration, and ERR is the 
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Where P(mean) is the typical value of the population estimate, θ (i) is the individual 

parameter estimate, COV is the value of the covariate and associated median value and θ(f) 

represents magnitude of the covariate effect. 
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significant. 
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Seattle, WA, USA). The first order conditional estimation method was used for estimation. 

Visual Predictive Check 

Model performance was evaluated using the visual predictive check (VPC), evaluating the 

ability of the model to predict both the central tendency and the variability of the exposure 

[17]. The distribution of simulated concentrations for 1000 subjects (median and 90th 

prediction interval) and the actual individuals, including the median and percentiles was 

compared graphically. Results  

Base Model 

A population pharmacokinetic model was developed, with the pharmacokinetics of 

sipoglitazar being well described using a two-compartmental model with linear kinetics and 

no observed dose or time dependency. The absorption phase was adequately described using 
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a combined parallel zero- and first-order uptake process. The IIV was described by an 

exponential variance model for clearance (CL), volume of distribution (V) and for the 

duration parameter (D1), which describes the duration of the zero-order process. The residual 

variability was described using a proportional error model with separate residual variability 

for phase I and phase II. The addition of IIV on the residual error for the phase II population 

resulted in a large decrease in the MVOF of -508 points; in addition, the residual error 

decreased from 131% to 24%.  

The median value for CL for the total population was initially estimated at 2.8 L/h.  

Covariate Analysis 

To further investigate the influence of UGT polymorphism, a value for median clearance was 

optimized separately to each individual according to UGT2B15 genotype (Table II). This 

resulted in median clearance for genotype groups UGT2B15 *1/*1 and *1/*2, which were 

respectively, 66% and 53% lower than that of the genotype UGT2B15 *2/*2. Before 

accounting for any covariates (including genotype) IIV on clearance was 60%, however after 

including genotype as a covariate, IIV of clearance was reduced to 40%. No differences in 

degree of variability were observed between UGT2B15 genotype *1/*1, *1/*2 and *2/*2.  

Using this pharmacokinetic model, all other candidate covariates were subsequently tested for 

significance (age, sex, weight, and FFM), separately on V and CL. During forward inclusion 

only sex, weight or FFM on V resulted in a significant decrease in the MVOF (> 6.63). As 

the greatest change in the MVOF was observed with FFM, as this was the only covariate 

retained in the final model after backward deletion, the addition of which resulted in a 

decrease in IIV of 2%. 

Final Model 

The parameter estimates for the final model are shown in Table II. The distribution for the 

post-hoc CL values obtained from the final model are shown in supplemental Figure S1 

without stratification and in Figure 1 including stratification by genotype, demonstrating an 

increasing tendency in CL from UGT2B15 genotype groups *2/*2> *1/*2>*1/*1. 

 

 

 

 

The relationship between dose and AUC (AUC=dose/CL) over the dose interval at steady 

state was explored and stratified by dose and genotype (Figure 2). As indicated from the 

median CL values optimized per genotype a higher AUC value was observed in subjects in 

the UGT2B15 *2/*2 group compared with the other two genotype groups. Although this 

trend is generally observed, several outlier subjects (>1.5*inter quartile range) were observed 

in the UGT2B15 *1/*1 and UGT2B15 *1/*2 genotype groups. Subjects from both these 

genotype groups have overlapping AUC ranges to those values observed for the UGT2B15 

*2/*2 genotype.  

Table II. Summary of parameter estimates for the final model including covariates  

Parameter name Parameter Value (CV%) IIV (%, CV%) 

Clearance population 1a CL (*1/*1) (L/h) 4.46 (2.5) 
40.25 (7.72) Clearance population 2a CL (*1/*2) (L/h) 3.25 (2.2) 

Clearance population 3a CL (*2/*2) (L/h) 1.53 (2.2) 
Central volume of distributiona V (L) 9.03 (2.4) 34.21 (13.0) 
Peripheral volume of 
distributiona,b V2 (L) 0.189 (4.9) -- 

Intercompartmental clearance Q (L/h) 0.313 (6.6) -- 
Absorption rate constant  ka (1/h) 2.07 (4.8) -- 
Duration of zero order process D1 (h) 0.568 (6.81) 78.29 (14.8) 
FFM on central volume of 
distribution (L/kg) 0.00349 (27.2)  

Residual variability Phase I 
(proportional) 2 0.0552 (8.8) -- 

Residual variability Phase II 
(proportional) 2 0.167 (10.2) 76.88 (14.9) 

a  Bioavailability for sipoglitazar is currently unknown, as such clearance and volume were modeled as CL/F 
and V/F, respectively.  

b The peripheral volume of distribution was implemented as a fraction of the central compartment. 

CV% = percent coefficient of variation. 
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genotype groups have overlapping AUC ranges to those values observed for the UGT2B15 
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Parameter name Parameter Value (CV%) IIV (%, CV%) 

Clearance population 1a CL (*1/*1) (L/h) 4.46 (2.5) 
40.25 (7.72) Clearance population 2a CL (*1/*2) (L/h) 3.25 (2.2) 

Clearance population 3a CL (*2/*2) (L/h) 1.53 (2.2) 
Central volume of distributiona V (L) 9.03 (2.4) 34.21 (13.0) 
Peripheral volume of 
distributiona,b V2 (L) 0.189 (4.9) -- 
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Absorption rate constant  ka (1/h) 2.07 (4.8) -- 
Duration of zero order process D1 (h) 0.568 (6.81) 78.29 (14.8) 
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(proportional) 2 0.0552 (8.8) -- 

Residual variability Phase II 
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and V/F, respectively.  
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Figure 1.  Histogram plot for post-hoc CL values for all subjects included in the analysis 

stratified by genotype. 

 

 

 

 

 

Figure 2.  Box plots (median, 25th and 75th percentiles) for the estimated area under the 

concentration-time curve from 0 to 24 hours (AUC) by genotype and dose. 

Gray line exposure limit 73 mg·hr/L. 

 

Model Validation 

The observed and predicted plasma concentration-time profile following a single 64 mg dose 

in healthy subjects are shown using the VPC (supplemental Figure S2a). The VPC for the 

dose normalized phase II data is shown in supplemental Figure S2b. The model-predicted 

median and 90th prediction interval closely resemble those for the actual data, demonstrating 

the ability of the model to describe the data well. No substantial eta-shrinkage was observed 

for CL (2.3%), V (4.1%) or IIV for omega on sigma (-1.7%); however, for D1, eta-shrinkage 

was fairly high (28.1%), but was considered acceptable for the aims of this analysis. 
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Model Validation 

The observed and predicted plasma concentration-time profile following a single 64 mg dose 

in healthy subjects are shown using the VPC (supplemental Figure S2a). The VPC for the 

dose normalized phase II data is shown in supplemental Figure S2b. The model-predicted 

median and 90th prediction interval closely resemble those for the actual data, demonstrating 

the ability of the model to describe the data well. No substantial eta-shrinkage was observed 

for CL (2.3%), V (4.1%) or IIV for omega on sigma (-1.7%); however, for D1, eta-shrinkage 

was fairly high (28.1%), but was considered acceptable for the aims of this analysis. 
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Influence of Genotype and Dose on Efficacy 

Figure 3(a) shows a clear pattern for the dose response relationships based on the median 

12-week change from baseline of HbA1c with total daily dose. For the entire study 

population, doses equal to or greater than 16 mg showed a significant (P < .05) change from 

baseline in HbA1c compared with placebo. However, when stratified by UGT2B15 genotype 

and dose (Figure 3(b)), subjects with the UGT2B15*2/*2 genotype showed a significantly 

larger reduction (P < .05) in HbA1c compared with the UGT2B15*1/*1 and UGT2B15*1/*2 

genotypes at 32 mg and 64 mg. At 32 mg, the median change from baseline in HbA1c for the 

UGT2B15*2/*2 genotype was -0.95% (n=36) compared with -0.6% (n=100) and -0.5% 

(n=50) in the UGT2B15*1/*2 and UGT2B15*1/*1 groups, respectively.  

 

 

 

 

Figure 3.(a) Box plots (median, 25th and 75th percentiles) for the change from baseline in 

HbA1c by dose (placebo (n=111), 8 mg (n=58), 16 mg (n=113), 32 mg 

(n=186), 64 mg (n=125)).  
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Figure 3.(b) Box plots (median, 25th and 75th percentiles) for the change from baseline in 

HbA1c by genotype and dose. **=statistically significant at P < .05. 

 

 

 

 

 

Discussion 

During this analysis the pharmacokinetic and pharmacodynamic data for sipoglitazar in 

healthy subjects and T2DM patients were analyzed in relation to the polymorphic expression 

of the UGT2B15 enzyme. Based on in-vitro metabolism studies, UGT2B15 was expected to 

contribute to the inter-subject variability. Firstly, a population pharmacokinetic model was 

developed for sipoglitazar, evaluating the individual relationship of UGT2B15 genotype to 

clearance. This analysis revealed that genotype significantly accounted for the variability in 

clearance of sipoglitazar. Secondly, the marker for efficacy, HbA1c change from baseline, 

when stratified by dose and genotype revealed that a greater clinical response was observed 

in patients in the UGT2B15*2/*2 group compared with patients in the UGT2B15*1/*1 and 

UGT2B15*1/*2 genotype groups. Thus the UGT2B15 enzyme was found to play an 

important role in the disposition of sipoglitazar, the results of which impacted on the clinical 

efficacy. 

Using the pharmacokinetic model, the influence of genotype on the IIV on clearance was 

explored. By accounting for genotype as a covariate on clearance the IIV was reduced from 

60% to 40%.  Additional covariates were tested on both clearance and volume; however, 

only FFM on volume was found to be significant, reducing the IIV on distribution volume by 

2%. The results of this work showed genotype can indeed explain the variability in clearance 

however only to a certain degree, with 40% IIV on clearance remaining. Thus genotype alone 

cannot explain entirely the observed degree of variation in exposure and various other factors 

are apparently contributing to the variability. Results from the current analysis showed that a 

small fraction of the population of either UGT2B15*1/*1 or *1/*2 groups have widely 

overlapping ranges in individual clearance between genotype groups. To evaluate this further, 

a mixture model was developed in parallel by optimization of individual probabilities to 

estimate the category of metabolism on the basis of apparent clearance, without taking the 

information on the genotype into account (supplementary material). This analysis estimated 

the percentage of subjects in the UGT2B15*1/*1 and *1/*2 groups in whom the phenotype 

was not corresponding with the genotype as 8% (61/744). In other words, in these subjects, 

genotype was not predictive of the actual observed clearance (supplementary Figure S3). 
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UGT2B15*1/*2 genotype groups. Thus the UGT2B15 enzyme was found to play an 

important role in the disposition of sipoglitazar, the results of which impacted on the clinical 

efficacy. 

Using the pharmacokinetic model, the influence of genotype on the IIV on clearance was 

explored. By accounting for genotype as a covariate on clearance the IIV was reduced from 

60% to 40%.  Additional covariates were tested on both clearance and volume; however, 

only FFM on volume was found to be significant, reducing the IIV on distribution volume by 

2%. The results of this work showed genotype can indeed explain the variability in clearance 

however only to a certain degree, with 40% IIV on clearance remaining. Thus genotype alone 

cannot explain entirely the observed degree of variation in exposure and various other factors 

are apparently contributing to the variability. Results from the current analysis showed that a 

small fraction of the population of either UGT2B15*1/*1 or *1/*2 groups have widely 

overlapping ranges in individual clearance between genotype groups. To evaluate this further, 

a mixture model was developed in parallel by optimization of individual probabilities to 

estimate the category of metabolism on the basis of apparent clearance, without taking the 

information on the genotype into account (supplementary material). This analysis estimated 

the percentage of subjects in the UGT2B15*1/*1 and *1/*2 groups in whom the phenotype 

was not corresponding with the genotype as 8% (61/744). In other words, in these subjects, 

genotype was not predictive of the actual observed clearance (supplementary Figure S3). 
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These subjects had an apparent clearance value that falls into the range observed for the 

UGT2B15*2/*2 group, resulting in potentially 2-3 times lower clearance than the median 

value for these groups based solely on genotype. 

Phase II results showed a clear dose-dependent reduction in the pharmacodynamic marker, 

HbA1c, with sipoglitazar treatment. When stratified by genotype, this effect was lower in the 

UGT2B15*1/*1 and *1/*2 groups compared with the UGT2B15*2/*2 genotype group, 

confirming the clinical relevance of genotype-based differences in exposure of this drug. For 

various drugs, studies are reported that address the relationship of genotype to phenotype, 

with a primary focus on the mean change in pharmacokinetic parameters when stratified by 

genotype [18-20]. However, these studies often do not address the remaining variability of 

exposure within each genotype at the individual level or the overlap in exposure between 

different genotype groups. Other studies, focus directly on stratification by genotype to 

clinical outcome [21]. Individual differences in pharmacokinetics caused in part by 

polymorphism are not necessarily of clinical relevance [22]. This is generally due to a 

number of factors such as a very large range of overlap in exposure between genotypic 

groups [23], and/or wide safety to efficacy margins that allow a single treatment to be both 

efficacious and safe for all patients irrespective of genotype. Under certain conditions, 

pre-selection of doses based on one of several genotypes could potentially lead to efficacy or 

safety concerns if the phenotype overlap between genotype groups is not adequately 

understood. For example, a subject could be classified as a particular genotype but could still 

receive an inappropriate dose because other structural and/or random factors also contribute 

to the individual exposure. Although there is now a wide interest in the use of genotype-based 

dosing to account for differences in efficacy due to the polymorphic driven changes in 

pharmacokinetics, currently, very few drugs on the market have a specific dose adjustment 

recommendation included in the label [24]. In addition, for some cases the study population 

was too small to confirm the clinical relevance of such polymorphisms [25,26].  

Based on the current results for sipoglitazar, the use of a genotype approach in which doses 

are set for individuals based on a genetic sample was considered as a potential method of 

individualized dose selection. From the results of this analysis, a dose of 32 mg appears to 

 

 

 

 

achieve an optimal reduction in HbA1c in the UGT2B15*2/*2 group with comparability to 

other diabetic agents that achieve reductions in HbA1c of around 0.7%-1% in short term 

trials [27].  Thus, genotype-based dosing would target comparable AUC values to be 

achieved for all UGT2B15 genotype groups. However under such circumstances at this 

exposure level those subjects with disconnect between genotype and clearance may exceed 

the exposure margins, especially in the UGT2B15*1/*1 and UGT2B15*1/*2 genotype 

groups. Given the potential disconnect between individual clearance and genotype and the 

potential in these subjects to exceed exposure limits a more balanced approach may combine 

therapuetic drug monitoring in addition to the pre-selection of doses based on genotype. 

Alternative dosing approaches based on monitoring of individual efficacy directly after the 

start of dosage could also be considered The current anti-diabetic agents requiring dose 

titration can reach the highest dose in 2 to 3 titration steps and usually only requiring 2 visits. 

For sipoglitazar and other PPAR agonists, the longer time to effect equilibration likely 

indicates that monitoring would be required over a longer period than for metformin [28], at 

similar time frames as for rosiglitazone (8 to 12 weeks). This would likely characterize those 

subjects in the UGT2B15*2/*2 group since the higher exposure seems to result in a stronger 

effect; however, longer titration steps and a wider range from the initial starting dose to the 

maximum dose would likely be required in the UGT2B15*1/*1 or UGT2B15*1/*2 genotype 

group.   

In summary, it can be concluded that genotype explains a large part of the observed 

variability in exposure to sipoglitazar, but other factors which remain largely unexplained at 

the moment may cause a level of exposure that is either too low to achieve the desired effect 

or so high that exposure limits will be exceeded. A genotype-based dosing approach alone 

would thus not be a viable strategy for sipoglitazar, however, a combination of therapeutic 

drug monitoring combined with an efficacy-based approach may offer an alternative to 

mitigate the risks in subjects who have disconnect between genotype and drug exposure.  
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other diabetic agents that achieve reductions in HbA1c of around 0.7%-1% in short term 

trials [27].  Thus, genotype-based dosing would target comparable AUC values to be 

achieved for all UGT2B15 genotype groups. However under such circumstances at this 

exposure level those subjects with disconnect between genotype and clearance may exceed 
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Alternative dosing approaches based on monitoring of individual efficacy directly after the 

start of dosage could also be considered The current anti-diabetic agents requiring dose 

titration can reach the highest dose in 2 to 3 titration steps and usually only requiring 2 visits. 

For sipoglitazar and other PPAR agonists, the longer time to effect equilibration likely 

indicates that monitoring would be required over a longer period than for metformin [28], at 

similar time frames as for rosiglitazone (8 to 12 weeks). This would likely characterize those 

subjects in the UGT2B15*2/*2 group since the higher exposure seems to result in a stronger 

effect; however, longer titration steps and a wider range from the initial starting dose to the 

maximum dose would likely be required in the UGT2B15*1/*1 or UGT2B15*1/*2 genotype 

group.   

In summary, it can be concluded that genotype explains a large part of the observed 

variability in exposure to sipoglitazar, but other factors which remain largely unexplained at 

the moment may cause a level of exposure that is either too low to achieve the desired effect 

or so high that exposure limits will be exceeded. A genotype-based dosing approach alone 

would thus not be a viable strategy for sipoglitazar, however, a combination of therapeutic 

drug monitoring combined with an efficacy-based approach may offer an alternative to 

mitigate the risks in subjects who have disconnect between genotype and drug exposure.  
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Supplemental Appendix 

  

 

 

 

 

Figure S1.  Histogram plot for post-hoc clearance (CL) values for all subjects included in 

the analysis.  

 

Chapter 4

92

12475_Stringer_Layout.indd   92 09-12-14   12:19



 

 

 

 

Supplemental Appendix 

  

 

 

 

 

Figure S1.  Histogram plot for post-hoc clearance (CL) values for all subjects included in 

the analysis.  

 

Impact of UGT Polymorphism on the PK-PD of Sipoglitazar

93

4

12475_Stringer_Layout.indd   93 09-12-14   12:19



 

 

 

 

Figure S2.(a) Visual predictive check for observed and predicted single dose (64 mg) data 

for 006.  
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Figure S2.(b) Visual predictive check for dose normalized observed and predicted data from 

the combined phase II trials (EC201 and EC202) 
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Population Data Analysis 

Methods 

Inter-individual variability on the residual error for the patient trial was included using 

NONMEM’s omega-sigma interaction option, since all samples were intended to be collected 

at trough, the actual time after the administration of the dose was not recorded in either of the 

phase II trials. Therefore this helps to account for high fluctuation in trough samples for some 

subjects due to sampling error or apparent non-compliance [1], recognizing that CL estimates 

could potentially be confounded by adherence. However, in this analysis, we assume 

complete compliance. 

Mixture Model Analysis 

Methods 

The relationship between drug clearance and genotype was additionally determined without 

the use of the pertinent information on the UGT2B15 genotype in the model. Without this 

knowledge, the inter-individual variation was described using a probability model 

(NONMEM $MIX) to assign subjects to one of the three populations based on the 

model-estimated parameters [2-4]. The individual probability of belonging to a subpopulation 

was estimated and compared to the actual genotype catagory.2 Subjects assigned to a 

different population than expected based on their genotype may have been misclassified if 

indicated by an individual value of belonging to that population (IPk) close to 0.5. 

Subjects were assigned to one of the three populations (POP1, POP2, and POP3); these were 

expected to approximate the UGT2B15 genotype *1/*1, *1/*2 and *2/*2.  This 

subpopulation assignment was then compared to actual genotype categorization and 

corresponded as follows: 

POP1 (CL1 EM) = UGT2B15*1/*1  

POP2 (CL2 IM) = UGT2B15*1/*2  

POP3 (CL3 PM) = UGT2B15*2/*2  

 

 

 

 

Subjects who were classified as UGT2B15 *1/*1 or *1/*2 based on genotype, but were 

assigned to the PM category (POP 3) by the model are expressed as a percentage of the total 

UGT2B15 *1/*1 and *1/*2 genotype groups. 

Results 

The pharmacokinetic parameter estimates for the mixture model are shown in Table AI. The 

IIV on CL was estimated as 38%. As shown in Figure S3, a total of 61 (8%) subjects with 

genotype UGT2B15 *1/*1 or UGT2B15 *1/*2 were assigned to the PM category (POP3) by 

the mixture model. 
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Figure S3. Clearance (CL) estimates grouped by genotype and assigned population.  The 

number of subjects assigned to a population (nPOP) and actual genotype 

group is shown below the graph. UGT2B15 = uridine 

5'-diphospate-glucuronosyltransferase 2B15. 

 

 

The individual probability of each subject of belonging to the EM (POP1), IM (POP2), or PM 

(POP3) subpopulation was calculated (Figures S4(a), S4(b) and S4(c)). A wide range of 

individual probability values between 0 and 1 was observed for the EM and IM populations 

for genotypes UGT2B15*1/*1 and UGT2B15*1/*2, this range of probabilities indicate that 

assignment to the EM or IM population is associated with uncertainty for these genotypes. 

 

 

 

 

However, the individual probability of belonging to the PM population appears to be 

associated with less uncertainty, since the majority of probabilities by UGT2B15 genotype 

are closer to 0 or 1.   

Figure S4(a) The individual probablity (IP) of beloning to mixture 1 by genotype and 

population.  
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Figure S4(b) The individual probablity (IP) for subjects assigned to mixture 2 by genotype 

and population.  

 

Figure S4(c) The individual probablity (IP) of beloning to mixture 3 by genotype and 

population.  
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Table AI. Summary of parameter estimates for the mixture model including 

covariates  

Parameter name Parameter Value (CV%) IIV (%, CV%) 

Clearance population 1a CL POP1 (EM) (L/h) 5.04 (3.85) 
38.21 (10.7) Clearance population 2a CL POP2 (IM) (L/h) 3.35 (2.38) 

Clearance population 3a CL POP3 (PM) (L/h) 1.53 (2.64) 
Central volume of distributiona V (L) 9.06 (2.41) 34.50 (13.4) 
Peripheral volume of distributiona,b V2 (L) 0.188 (4.93) -- 
Intercompartmental clearance Q (L/h) 0.311 (6.72) -- 
Absorption rate constant  ka (1/h) 2.15 (6.19) -- 
Duration of zero order process D1 (h) 0.637 (3.69) 77.20 (16.9) 
FFM on central volume of 
distribution (L/kg) 0.00556 (16.5)  

Probability fractionc PROB 0.367 (3.69)  
Probability of belonging to POP 1c POP 1 0.18 (18.6)  
Probability of belonging to POP 2c POP 2 0.522 -- 

Probability of belonging to POP 3c POP 3 0.30  
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(proportional) 2 0.05487 (9.23) -- 

Residual variability Phase II 
(proportional) 2 0.167 (10.2) 72.18 (15.6) 

a  Bioavailability for sipoglitazar is currently unknown, as such clearance and volume were modeled as CL/F 
and V/F, respectively.  
b The peripheral volume of distribution was implemented as a fraction of the central compartment 
cThe probability of belonging to the populations 2 and 3 was estimated as: 

POP2 = (1-POP1)*PROB 

POP3= (1-POP1)*(1-PROB) 

CV% = percent coefficient of variation 
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Abstract 

The pharmacokinetics of sipoglitazar, a peroxisome proliferator activated receptor agonist, 

are subject to high inter-individual variability resulting from a polymorphism of the 

UGT2B15 genotype. The aim of the current analysis was to apply a PK-PD model-based 

approach to evaluate the influence of UGT2B15 driven pharmacokinetic differences on the 

clinical response. Efficacy and safety of sipoglitazar compared to placebo were assessed in 

Type 2 Diabetes Mellitus patients in two Phase II randomized, double-blind studies 

(sipoglitazar QD: 8, 16, 32 or 64 mg; sipoglitazar BID: 16 or 32 mg; rosiglitazone 8mg QD 

and placebo for 13 weeks) (n=780). Changes in fasting plasma glucose (FPG) and 

glycosylated hemoglobin (HbA1c) levels over time were described as a function of individual 

drug exposure using a simultaneous, cascading indirect response model structure. The effects 

on FPG and HbA1c could successfully be described for placebo, rosiglitazone and 

sipoglitazar treated groups in all three UGT2B15 genotypes. Differences in drug effects 

between genotypes were fully explained by differences in drug exposure. The current PK-PD 

analysis confirms that UGT2B15 genotype is a major determinant for differences in FPG and 

HbA1c response to sipoglitazar treatment between Type 2 Diabetes mellitus patients, due to 

related differences in drug exposure. 

 

 

 

 

Introduction 

Sipoglitazar, a novel orally available peroxisome proliferator activated receptor (PPAR) 

agonist with activities for PPAR α, δ and γ, was targeted for Type 2 Diabetes Mellitus 

(T2DM) as a next generation insulin sensitizer. The compound undergoes Phase II 

biotransformation by conjugation through UDP-glucuronosyltransferase (UGT) [1]. 

Following a population pharmacokinetic analysis, UGT2B15 genotype was found to be a 

covariate for the clearance (CL) of sipoglitazar both in healthy subjects and T2DM patients 

[2]. Higher plasma exposure of sipoglitazar was observed in the UGT2B15*2/*2 genotype 

than subjects homozygous for the wild-type allele UGT2B15*1/*1 (3.3-fold higher) or 

heterozygous allele UGT2B15*1/*2 (2.2-fold higher) [3].  

T2DM is a complex multi-factorial disease and current therapies target a range of disease 

pathways, promoting insulin secretion or improving insulin sensitivity [4]. Many of these 

drugs involve upward titration to effect, based on glycemic targets and/or the addition of 

combination therapy [5]. Titration based approaches are also applied to limit adverse events 

such as hypoglycemia or weight gain [6]. Individualized dosing is widely applied and 

responder rates to treatment may depend on factors such as the duration of the disease or 

prior anti-diabetic medication, although response rates can be variable and difficult to predict 

[7]. Consideration should be given not only to factors directly affecting the pathology of the 

disease but also to those which influence the plasma exposure of these drugs such as genetic 

polymorphisms which may be additional covariates for clinical response [8]. Genetic 

polymorphisms in the enzyme responsible for the metabolism of several glucose lowering 

drugs including rosiglitazone (CYP-2C8) and glimepiride (CYP-2C9) have been identified 

[9]. For rosiglitzone, 1.5 fold higher clearance was observed in the CYP2C8*3/*3 subjects 

compared with wild-type (CYP2C8*1/*1) carriers [10]. Whilst in healthy Korean subjects 

clearance of glimepiride was 1.6 fold higher in CYP2C9*1/*1 subjects than in CYP2C9*1/*3 

subjects [11]. However the clinical relevance of these differences in pharmacokinetics has not 

resulted in specific genotype based dosing recommendations [12].  

The implementation of a PK-PD model-based approach to evaluate the influence of genotype 

provides a more comprehensive link between changes in the pharmacokinetics and its 
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influence on the magnitude of response [13,14]. In vitro–in vivo extrapolation may also be 

useful when considering the impact of any potential polymorphism and to help define the 

exposure response relationships [15]. Currently the application of a model-based approach to 

evaluate the influence of different genotypes, by linking pharmacokinetic changes with 

response seems limited to only a few drugs. Warfarin has been extensively studied due to its 

wide use, narrow therapeutic range and large inter patient variability, all making response 

unpredictable [16]. However genetic data are now an integral part of the drug development 

program and a model-based approach can aid in addressing the complex nature of the 

relationship not only between genotype and PK but also including clinical response.  

The present population PK-PD analysis was performed to evaluate the role of UGT 

(UGT2B15*1/*1, UGT2B15*1/*2, and UGT2B15*2/*2) driven exposure differences on the 

pharmacodynamic response for sipoglitazar in both fasting plasma glucose (FPG) and 

glycosylated hemoglobin (HbA1c). 

Methods 

Subjects and Data Collection 

Data from 2 Phase II trials conducted over 13 weeks in T2DM patients were included in this 

analysis. The baseline patient characteristics are summarised in Table S1. Patients were 

treated with sipoglitazar, rosiglitazone or placebo: sipoglitazar 8mg QD, 16mg QD, 16mg 

BID, 32mg QD, 32mg BID and 64mg QD, placebo or rosiglitazone 8mg QD. Serial blood 

samples for FPG and HbA1c were collected throughout the study (-1, 0, 2, 4, 6, 8, 10 and 12 

weeks). The disposition of subjects was as follows: Sipoglitazar n=572, rosiglitazone n=72 

and placebo n=136 (total = 780). All subjects were provided with dietary advice for the entire 

duration of the trial. The three main inclusion criteria were drug naïve patients with a 

diagnosis of type 2 diabetes, an HbA1c of >7.0% and <10.0% at Screening and age >35 years 

and <75 years.  

An accredited central laboratory (Medical Research Laboratories International, Brussels, 

Belgium) was responsible for the analysis of samples for FPG and HbA1c. All studies were 

conducted in accordance with the Declaration of Helsinki (Edinburgh 2000). Written 

 

 

 

 

approval was obtained from the relevant local institutional ethics committee before the start 

of each study and for the amendments made to the protocols. 

Population Data Analysis 

Changes in FPG and HbA1c levels over time were described as a function of individual drug 

exposure using a simultaneous, cascading indirect response model structure. The model was 

parameterised in terms of a zero order rate constant for the production of FPG (KinG) and a 

first-order rate constant for the removal of FPG (KoutG). Changes in HbA1c were modelled 

as secondary changes to FPG, with a first order rate constant (KinH) and a first order HbA1c 

degradation rate constant, KoutH. As reported by Hamren et al, the relationship between FPG 

and HbA1c was found to be non-linear, and HbA1c was described as a function of FPG using 

a power function (FPG) [17]. 

A lower FPG baseline value was observed in the 32mg BID sipoglitazar group compared to 

all other treatment groups. The addition of a separate FPG baseline for this group was 

included in the model. 

The drug effect (DEF) was incorporated using an Emax model driven by AUC, where Emax 

is the maximal effect and AUC50 is the AUC0-24h at steady state achieving half the maximal 

response, implemented with the following equation:  

AUC AUC/AUC50EmaxDEF     EQ(1) 

The individual PK parameters derived from a previous analysis were used to calculate 

individual exposure, AUC (AUC=dose/CL) over the dose interval at steady state [2]. The 

drug effect was evaluated for FPG on both KinG and KoutG.  

In the rosiglitazone group, no plasma concentration data were collected during the treatment 

period and as such the treatment effect for rosiglitazone (ROTE) was included using a 

stimulatory step function on KoutG. The FPG data in the placebo group on average showed 

no change over time. However at the individual level a lifestyle effect in both placebo and 

actively treated subjects for FPG (LEFPG) was observed. This effect was described by an 

additive random effect, capturing both the positive effects of intervention due to diet or 
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exercise and the negative effects in subjects who showed a loss of glycemic control. HbA1c 

in the placebo group however, showed on average a gradual decease in HbA1c over time. 

This reduction in HbA1c was found to be independent of the lifestyle effect identified on 

FPG and a step function directly inhibiting KinH could be identified for this direct lifestyle 

effect on HbA1c (LEHB). A difference was also found in LEHB between active and placebo 

arms. For the active groups this was described relative to the placebo group as shown in 

EQ(2). 

LEHBfactoroLEHBplacebLEHBactive  EQ(2) 

The overall model structure for FPG and HbA1c is shown in EQ(3) and EQ(4) respectively. 

 
FPGSTEFDEFKoutGLEFPG)(KinG

dt
dFPG

 )1(1
  EQ(3) 

cHbAKoutHFPGLEHB)(KinH
dt

cdHbA 111
 

  EQ(4) 

In EQ(3) LEFPG is included as a additive random effect with the structural parameter fixed 

at zero. 

To explore any potential differences between daily dosing regimens a different AUC50 value 

was tested between the BID and QD groups. 

Intra-individual Variability and Residual Error 

Intra-individual variability (IIV) on FPG baseline was explored assuming a log normal 

distribution of the individual parameter estimates. However IIV on the baseline for HbA1c 

was evaluated using a Box-Cox transformation model, which was applied to account for the 

skewness observed in the individual data [18]. Residual variability was included using a 

proportional model. The correlation between IIV on baselines was included using the 

OMEGA BLOCK option. Genotype information was not collected in 10% of the population 

however these subjects were included in the analysis using an average clearance value for the 

population. 

 

 

 

 

Covariate Analysis 

Potential covariates (Age, sex, weight and duration of disease) were evaluated in the model 

using a forward inclusion and backward elimination procedure [19].  

Data Analysis 

All population analyses were performed using nonlinear mixed effects modeling on 

pharmacodynamic data in the NONMEM software package (version 7, release 1; Icon 

Development Solutions, Ellicott City, Maryland) and analyzed using the statistical software 

package S-Plus for Windows (version 6.2 Professional, Insightful Corp, Seattle, 

Washington). The first-order conditional estimation method with interaction was used with 

ADVAN6 (general nonlinear model). Berkeley Madonna version 8.3.13 (Macey & Oster, 

University of California, Berkeley) was used to perform simulations of the time profile for 

FPG and HbA1c. 

Model Qualification 

The visual predictive check (VPC) was used to evaluate the ability of the model to predict 

both the central tendency and the variability of FPG and HbA1c (median and 90th prediction 

interval) [20]. The VPC for the sipoglitazar treatment groups was performed using the overall 

proportion of subjects in each genotype (UGT2B15*1/*1=21%, UGT2B15*1/*2=51%, and 

UGT2B15*2/*2=28%). The clearance values used for each genotype are shown in Table 1. 

The stability of the model was tested by using 500 bootstrap replicates of the original dataset. 

To further inform model validation ETA shrinkage was estimated for all the random effects 

[21].  

Model Selection 

No further improvement in the model was considered by a change in objective function of 

less than 10.8 (P≤0.001) [19]. In addition to this graphical analysis enabled assessment of 

bias and the biologically plausibility of the parameter estimates was evaluated. 
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Evaluation of the Influence of Genotype on FPG and HbA1c Treatment Effects 

Simulation of FPG and HbA1c Time Course 

To evaluate the influence of genotype on the time profiles for both FPG and HbA1c these 

data were simulated over a one year time period. Using this data the change from baseline in 

FPG and HbA1c at 6 months was determined since this could be the primary endpoint for a 

Phase III trial. Rosiglitazone 8mg QD and sipoglitazar 64mg for all three genotypes were 

simulated.  

Simulation of Clinical Response at 6 months 

The model was used for clinical trial simulation to evaluate the impact of genotype on 

glycemic responder rates, an additional endpoint to allow further appreciation of response to 

treatment. Two approaches were compared using either pre-selection of dose based on 

genotype or a single dose level for all subjects. For genotype driven dose selection, three 

dosing approaches were compared. The doses were selected to target comparable drug 

exposure levels in each genotype group. Dose assignment was based on the population 

estimated CL values for each genotype. The dose levels and CL values are shown in Table 1. 

Clinical response was defined as the % of subjects achieving a HbA1c reduction >0.7% at 6 

months [22]. 100 subjects were simulated for each genotype and 300 subjects for the single 

treatment. For reference, rosiglitazone 8mg QD (n=300 subjects) response was simulated. 

Evaluation of genotyped-based and titration-based dosing approaches 

The potential differences between genotyped-based dosing, in which subjects already begin 

their treatment at the optimal dose and titration-based dosing, in which subjects start at a 

fixed dose and are subsequently titrated to effect was evaluated through simulation. For 

genotyped-based dosing, Design C (UGT2B15*1/*1=96mg, UGT2B15*1/*2=64mg and 

UGT2B15*2/*2=32mg) was used and subjects would begin treatment at each of the dose 

levels depending on their UGT2B15 genotype.  

For titration based dosing, all subjects would receive the same 32mg dose level at the start of 

treatment. Subjects could be titrated up to a maximum of 96mg using 32mg and 64mg tablets. 

The FPG value was assessed every two months. For those subjects in the UGT2B15*2/*2 

 

 

 

 

genotype, 32mg already represents the optimal dose for this group based on the low drug 

clearance. Therefore simulations using only the UGT2B15*1/*1 and UGT2B15*1/*2 

genotype were performed 
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FPG and HbA1c at 6 months was determined since this could be the primary endpoint for a 

Phase III trial. Rosiglitazone 8mg QD and sipoglitazar 64mg for all three genotypes were 

simulated.  

Simulation of Clinical Response at 6 months 

The model was used for clinical trial simulation to evaluate the impact of genotype on 

glycemic responder rates, an additional endpoint to allow further appreciation of response to 

treatment. Two approaches were compared using either pre-selection of dose based on 

genotype or a single dose level for all subjects. For genotype driven dose selection, three 

dosing approaches were compared. The doses were selected to target comparable drug 

exposure levels in each genotype group. Dose assignment was based on the population 

estimated CL values for each genotype. The dose levels and CL values are shown in Table 1. 

Clinical response was defined as the % of subjects achieving a HbA1c reduction >0.7% at 6 

months [22]. 100 subjects were simulated for each genotype and 300 subjects for the single 

treatment. For reference, rosiglitazone 8mg QD (n=300 subjects) response was simulated. 

Evaluation of genotyped-based and titration-based dosing approaches 

The potential differences between genotyped-based dosing, in which subjects already begin 

their treatment at the optimal dose and titration-based dosing, in which subjects start at a 

fixed dose and are subsequently titrated to effect was evaluated through simulation. For 

genotyped-based dosing, Design C (UGT2B15*1/*1=96mg, UGT2B15*1/*2=64mg and 

UGT2B15*2/*2=32mg) was used and subjects would begin treatment at each of the dose 

levels depending on their UGT2B15 genotype.  

For titration based dosing, all subjects would receive the same 32mg dose level at the start of 

treatment. Subjects could be titrated up to a maximum of 96mg using 32mg and 64mg tablets. 

The FPG value was assessed every two months. For those subjects in the UGT2B15*2/*2 

 

 

 

 

genotype, 32mg already represents the optimal dose for this group based on the low drug 

clearance. Therefore simulations using only the UGT2B15*1/*1 and UGT2B15*1/*2 

genotype were performed 
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Results 

PK-PD model 

The developed indirect response model adequately described the change in FPG and HbA1c 

over time for all treatment groups (Figure 1a and Figure 1b). The model parameters are 

shown in Table 2 along with the bootstrap estimate. During conduct of the bootstrap, 92.6 % 

of runs minimized successfully. The parameter estimates from the model were consistent 

with those estimated from the bootstrap and all of the parameters from the final model were 

within the 95% confidence interval of the bootstrap estimate supporting the robustness and 

stability of the model. No substantial ETA shrinkage was observed (<12%), and all CV% for 

each parameter was less than 35%.  

 

 

 

 

Figure 1.  (a) Visual predictive check for observed and predicted FPG data. 
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Figure 1.  (b) Visual predictive check for observed and predicted HbA1c data. 

 

 

The inclusion of the Box-Cox transformation on IIV for the baseline on HbA1c (BSLH) 

resulted in a significant (P≤0.001) change in the objective function. The inclusion of the 

Box-Cox transformation on the baseline for FPG (BSLG) did not result in a significant 

improvement in the model; this is likely a result of the screening criteria (HbA1c>7%) being 

based solely on HbA1c levels. 

Histogram plot for FPG and HbA1c showing the model fitted baseline distributions are 

presented in supplemental Figures S1 and S2, respectively.  

 

 

 

 

No bias was observed in the diagnostic plots by genotype for HbA1c or FPG. These are 

shown in supplemental Figures S4-S6 and S7-S9, respectively.  

Drug effect model 

The effect of sipoglitazar was included as a stimulatory effect acting on KoutG. The Emax of 

this effect was estimated at 49% and AUC50 was 1.2 mg.day/L. This Emax is similar to that 

reported from other PPAR agonists, 41% and 43% [17,23]. Treatment effect (ROTE) for 

rosiglitazone was also included as a stimulatory effect on KoutG with a population mean 

value of 28% at the studied dose level. The relationship between FPG and HbA1c could be 

described using a power function with an estimated slope of 0.7. The estimated Kout value 

for both FPG and HbA1c was 0.027 days-1 and 0.031 days-1 respectively, this is consistent 

with the values reported by other studies [24].  

Using the model, the overall effect of sipoglitazar treatment (Drug + placebo) at 3 months 

was derived and is shown in comparison to the rosiglitazone group in Figure S3. The median 

value and associated 25th and 75th percentiles for the 8mg QD rosiglitazone treatment effect 

relative to the sipoglitazar groups shows that a total daily dose of at least 64mg for 

sipoglitazar (for all genotypes) would be needed to achieve comparable treatment response. 

For the different genotype groups the treatment effect was found to increase in the order 

UGT2B15*2/*2 > UGT2B15*1/*2 > UGT2B15*1/*1. 

Lifestyle effect model 

The lifestyle effect for FPG (LEFPG) was zero for the mean population but individual effects 

were observed and implemented in the model using an additive random effect. A lifestyle 

effect on HbA1c (LEHB) was best described by an effect on KinH during the course of the 

study. This effect was independent of the drug treatment effects which were carried over 

from changes in FPG to HbA1c. The lifestyle effect was found to be lower in actively treated 

groups compared to the placebo group. Specifically, a population mean decrease of 3.7% was 

identified for the lifestyle effect in the placebo group, whilst in the actively treated groups the 

reduction was slightly lower, 2%. No significant ‘lifestyle’ effect on HbA1c could be 

identified on the rosiglitazone group.  
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relative to the sipoglitazar groups shows that a total daily dose of at least 64mg for 

sipoglitazar (for all genotypes) would be needed to achieve comparable treatment response. 

For the different genotype groups the treatment effect was found to increase in the order 
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Lifestyle effect model 

The lifestyle effect for FPG (LEFPG) was zero for the mean population but individual effects 

were observed and implemented in the model using an additive random effect. A lifestyle 

effect on HbA1c (LEHB) was best described by an effect on KinH during the course of the 

study. This effect was independent of the drug treatment effects which were carried over 

from changes in FPG to HbA1c. The lifestyle effect was found to be lower in actively treated 

groups compared to the placebo group. Specifically, a population mean decrease of 3.7% was 

identified for the lifestyle effect in the placebo group, whilst in the actively treated groups the 

reduction was slightly lower, 2%. No significant ‘lifestyle’ effect on HbA1c could be 

identified on the rosiglitazone group.  
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Covariate Analysis 

Potential covariates on IIV were evaluated, during forward inclusion for BSLG, BSLH, 

LEFPG and LEHB. However neither sex, weight, duration of disease or age had a significant 

effect on any of these parameters and no covariates were retained in the final model.  

Evaluation of the Influence of Genotype on FPG and HbA1c Treatment Effects 

Simulation of FPG and HbA1c Time Course 

Based on the simulated time profiles for sipoglitazar by genotype and for rosiglitazone over 

a one year period, 90% of steady state for FPG and HbA1c is expected to be reached at 

approximately 2.3 months and 3.7 months, respectively (Figure 2a and 2b). 

Figure 2.  (a) Simulated FPG over time for sipoglitazar 64 mg by genotype and 

rosiglitazone (8mg QD).  

 

 

 

 

 

Figure 2.  (b) Simulated HbA1c over time for sipoglitazar at 64 mg by genotype and 

rosiglitazone (8mg QD) 

 

 

The simulated median change from baseline in FPG for a total daily dose of 64mg 

sipoglitazar at 6 months was -1.2 mmol/L, -1.6 mmol/L and -2.1 mmol/L for 

UGT2B15*1/*1, UGT2B15*1/*2 and UGT2B15*2/*2 genotypes respectively. The same 

trend is observed for HbA1c, the median change from baseline by genotype was -0.9%, 

-1.1% and -1.4% for the UGT2B15*1/*1, UGT2B15*1/*2 and UGT2B15*2/*2 genotypes, 

respectively. For the reference treatment rosiglitazone 8mg QD, predicted changes in FPG 

and HbA1c at 6 months were -2.0 mmol/L and -1.2%, respectively. 

Simulation of Clinical Response at 6 Months 

The percentage of patients achieving a reduction in HbA1c > 0.7% at 6 months for doses of 

8, 16, 32, 64 and 96 mg by genotype were simulated and are shown in Figure 3.  
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Figure 3.  Bar graph for the % of responders (>0.7% reduction in HbA1c at 6 months) by 

dose and genotype. Design A (UGT2B15*1/*1=32mg, UGT2B15*1/*2=16mg 

and UGT2B15*2/*2=8mg) Design B (UGT2B15*1/*1=64mg, 

UGT2B15*1/*2=32mg and UGT2B15*2/*2=16mg) Design C 

(UGT2B15*1/*1=96mg, UGT2B15*1/*2=64mg and UGT2B15*2/*2=32mg) 

 

A comparable result to the 8mg rosiglitazone treatment was obtained for all genotypes at a 

dose level of 96 mg sipoglitazar (single dose approach). For genotyped-based dose 

assignment this was achieved in all three genotypes using Design C (UGT2B15*1/*1=96mg, 

UGT2B15*1/*2=64mg and UGT2B15*2/*2=32mg) with lower doses being administered to 

the UGT2B15*1/*2 and UGT2B15*2/*2 groups than with the single dose approach. Within 

Design C the percentage of subjects achieving a target reduction in HbA1c were 74, 72 and 

65% for the UGT2B15*1/*1, UGT2B15*1/*2 and UGT2B15*2/*2 groups respectively, as 

compared to 73% for rosiglitazone.  

Evaluation of genotyped-based dosing and titration-based dosing approaches 

Figures 4a and 4b show the response for FPG and HbA1c over a 12 month period for 

genotyped and titration-based dosing approaches for the UGT2B15*1/*1 and 

 

 

 

 

UGT2B15*1/*2 genotypes respectively. For the UGT2B15*1/*1 genotype, FPG at 2 months 

was 8.8 mmol/L and 8.1 mmol/L for the titration and genotyped based dosing respectively. 

At 2 months in the titration-based approach the dose was increased from 32mg to 64mg. At 4 

months the median value for FPG was 8.3 mmol/L in the titration-based group and a further 

titration step up to 96mg was included.  

 

Figure 4. (a) Simulated FPG and HbA1c profiles for genotyped and titration-based 

dosing approaches for UGT2B15*1/*1. 
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Figure 4. (b) Simulated FPG and HbA1c profiles for genotyped and titration-based 

dosing approaches for UGT2B15*1/*2. 

 

For genotyped based dosing, where this subject receives 96mg from the start a stronger 

reduction in FPG was observed over the first 6 months of treatment. The difference in FPG 

between the two approaches at 2 months and 4 months was -0.7 mmol/L and -0.4 mmol/L. 

The time to achieve 90% of FPG steady state was approximately 2.4 months and 4.6 months 

for genotype and titration-based dosing respectively 

For the UGT2B15*1/*2 genotype, only one titration step was included at 2 months from 

32mg to 64mg. The value for FPG at 2 months was 8.6 mmol/L and 8.1 mmol/L for the 

 

 

 

 

titration and genotype designs respectively. For FPG, 90% of steady state for the two 

approaches was reached at approximately 1.7 and 2.7 months. 

Discussion  

A PK-PD model-based approach was applied to simultaneously evaluate changes in FPG and 

HbA1c in type 2 diabetic patients with no prior exposure to anti-diabetic medication. The aim 

of our analysis was to characterize the relationship between differences in exposure due to 

genotype and the clinical response using FPG and HbA1c data as biomarkers. After 

accounting for genotype-related differences in exposure, a single unique PK-PD relationship 

was found to apply to the entire patient population. We found that genotype driven 

differences in exposure resulted in differences in clinical response for both FPG and HbA1c. 

The application of genotype-based dosing was found to normalize the differences in HbA1c 

response whilst minimizing the potential for over exposure of the drug in the UGT2B15*1/*2 

and UGT2B15*2/*2 genotypes.   

The mean influence of genotype on FPG and HbA1c response was simulated over a one year 

time period. Based on these simulations, greater reductions in both FPG and HbA1c were 

observed in the UGT2B15*2/*2 genotype as compared to the other groups. At a dose of 

64mg for sipoglitazar, the values of the HbA1c decrease at 6 months were -0.9% versus 

-1.4% for the UGT2B15*1/*1 and UGT2B15*2/*2 genotype respectively. This may translate 

into clinically meaningful differences, since reducing hyperglycemia improves morbidity and 

mortality in T2DM patients [25]. Long term studies (10 years in duration) showed that a 1% 

reduction in HbA1c was associated with a reduction in risk of 21% for any end point related 

to diabetes, of 21% for deaths related to diabetes, of 14% for myocardial infarction, and of 

37% for microvascular complications [26]. Furthermore a 0.5% decrease in HbA1c could 

avert 10% of cardiovascular complications over the course of 5 years [27]. Subjects with the 

UGT2B15*1/*1 genotype, would have the potential to gain clinical benefit from 

individualized dosing in order to achieve further reductions in HbA1c. 

A simulation study was performed to evaluate the utility of genotype based dosing to account 

for the differences in exposure due to genotype. The number of subjects achieving a HbA1c 
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reduction >0.7% at 6 months was used for evaluation. Based on these results to achieve 

equivalence to the reference PPAR agonist rosiglitazone, for all subjects irrespective of 

genotype, a dose of 96mg of sipoglitazar would be required. However using genotype based 

dosing uniform response rates could be achieved with lower doses for the UGT2B15*2/*2 

and UGT2B15*1/*2 groups. The responder rates of genotype design C 

(UGT2B15*1/*1=96mg, UGT2B15*1/*2=64mg and UGT2B15*2/*2=32mg) were 

comparable to that of 8mg rosiglitazone. As previously described some outlying subjects had 

considerably higher exposure than expected based on their genotype [3]. For these outlying 

subjects for whom there is disconnect between genotype and exposure a therapeutic drug 

monitoring approach or further safety evaluation at higher exposures would probably still be 

needed even though genotype based dose selection is a valid approach to improve HbA1c 

reduction.  

Through simulation, genotype and titration based-dosing approaches were compared. As 

shown in Figures 4a and 4b the advantage for genotype dosing is that glycemic control can be 

achieved in a shorter time duration. The difference in the time to 90% of steady state between 

genotyped and titration-based dosing was approximately 1 and 2 months for the 

UGT2B15*1/*2 and UGT2B15*1/*1 genotypes. However, ultimately the magnitude of FPG 

reduction achieved for the two approaches would be expected to be the same. The biggest 

impact of genotyped-based dosing seems to be observed for those subjects with 

UGT2B15*1/*1. In the Caucasian population the frequency for UGT2B15*1/*1 is reported 

between 19-22% which is consistent with our own studies [28]. However in Asian American 

and Japanese American subjects the frequency was reported as 47% and 100% respectively 

[28]. Therefore in the Asian population the impact of this polymorphism would be greater on 

a larger percentage of the population and may have the potential to impact on any future 

clinical trial results if genotype frequency information was not collected or considered. Those 

subjects with UGT2B15*1/*1 would have a lower clinical response if only a fixed dose 

approach was used or a longer time to maximum effect if titration based dosing was applied. 

Newly approved therapies such as dipeptidyl peptidase 4 inhibitors have no requirement for 

dose titration to effect included in the label, which is in contrast to older drugs such as 

 

 

 

 

rosiglitazone [29]. Therefore the impact of genotyping and dose titration for this drug would 

have to be considered in relation to new and upcoming therapies that do not require titration 

to effect. 

There are several limitations of our model. During the trial no PK data were collected for 

rosiglitazone. In addition the 6 month simulation is based only on trial data up to 3 months 

both of which may increase the uncertainly in our extrapolations. However, simulated 

changes in FPG and HbA1c at 6 months for rosiglitazone 8mg total daily dose, based on the 

currently developed model, were fairly comparable to those previously reported in T2DM 

patients over the same time period. The mean change from baseline for rosiglitazone 4mg 

twice daily for FPG and HbA1c was reported as -3.0 mmol/L and -1.5%, respectively [30]. 

Simulated responder rates were slightly higher than those reported using the same criteria, 

54% (actual) vs. 73% (simulated) [31]. However a direct comparison may be confounded by 

differences in the patient baseline characteristics and enrolment criteria.  

A non-linear relationship between FPG and HbA1c was observed. This is consistent with 

other reports, and was best described with the use of a power function with a value of 0.7. 

This value is comparable to a previous PK-PD analysis with tesaglitazar, where this value 

was reported as 0.7 [17]. In addition a reduction in HbA1c that was visibly observed in the 

placebo group could also be identified in active treatment. This effect was found to be 

independent of changes in FPG. It is hypothesized that this disconnect between FPG and 

HbA1c may result from the contribution of post-prandial glucose (PPG) since the value of 

HbA1c is the result of both fasting and postprandial hyperglycemia [32]. Ozmen et al also 

showed that mean plasma glucose (the arithmetic mean of FPG and PPG) may better 

correlate with HbA1c [33]. This relationship between average glucose and HbA1c was 

explored using a semi-mechanistic model-based approach by Garcia et al. However, a 

model-based approach incorporating both post-prandial and fasting plasma glucose 

simultaneously with HbA1c may offer further insight into the complex relationship between 

HbA1c and glycemia. 

In conclusion, we show how the genotype effect on the PK does translate to differences in 

FPG and HbA1c response and this could be addressed with a genotype-based dosing 
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correlate with HbA1c [33]. This relationship between average glucose and HbA1c was 

explored using a semi-mechanistic model-based approach by Garcia et al. However, a 

model-based approach incorporating both post-prandial and fasting plasma glucose 

simultaneously with HbA1c may offer further insight into the complex relationship between 

HbA1c and glycemia. 

In conclusion, we show how the genotype effect on the PK does translate to differences in 

FPG and HbA1c response and this could be addressed with a genotype-based dosing 
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approach. A model-based analysis should be performed to elucidate these genotype 

differences while considering the other components affecting clinical response. 

References 

1. Nishihara M, Sudo M, Kawaguchi N, et al. An Unusual Metabolic Pathway of 

Sipoglitazar, a Novel Anti-Diabetic Agent: Cytochrome P450-Catalyzed Oxidation of 

Sipoglitazar Acyl Glucuronide. Drug Metab Dispos.2011;34:1220-1128. 

2. Stringer F, Ploeger BA, DeJongh J et al. Evaluation of the Impact of UGT Polymorphism 

on the Pharmacokinetics and Pharmacodynamics of the Novel PPAR Agonist 

Sipoglitazar. J Clin Pharmacol. 2013 Mar;53(3):256-63. 

3. Stringer F, Scott G, Valbuena M, Kinley J, Nishihara M, Urquhart R. The effect of 

genetic polymorphisms in UGT2B15 on the pharmacokinetic profile of sipoglitazar, a 

novel anti-diabetic agent. Eur J Clin Pharmacol. 2013 Mar;69(3):423-30.  

4. Hansen T. Type 2 diabetes mellitus--a multifactorial disease. Ann Univ Mariae Curie 

Sklodowska Med. 2002;57(1):544-9. 

5. Wright A, Burden AC, Paisey RB, Cull CA, Holman RR. Sulfonylurea 

inadequacy:efficacy of addition of insulin over 6 years in patients with type 2 diabetes in 

the U.K. Prospective Diabetes Study (UKPDS 57). Diabetes Care 2002;25:330-6. 

[Erratum, Diabetes Care 2002;25:1268.]. 

6. Riddle MC, Rosenstock J, Gerich J; Insulin Glargine 4002 Study Investigators. The 

treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy 

of type 2 diabetic patients. Diabetes Care. 2003 Nov;26(11):3080-6. 

7. Distefano JK, Watanabe RM. Pharmacogenetics of Anti-Diabetes Drugs. Pharmaceuticals 

(Basel). 2010 Aug 1;3(8):2610-2646. 

8. van Leeuwen N, Swen JJ, Guchelaar HJ, 't Hart LM. The Role of Pharmacogenetics in 

Drug Disposition and Response of Oral Glucose-Lowering Drugs. Clin Pharmacokinet. 

2013 May 30. [Epub ahead of print] 

 

 

 

 

9. Yeo KR, Kenny JR, Rostami-Hodjegan A. Application of in vitro-in vivo extrapolation 

(IVIVE) and physiologically based pharmacokinetic (PBPK) modelling to investigate the 

impact of the CYP2C8 polymorphism on rosiglitazone exposure. Eur J Clin Pharmacol. 

2013 Jan 11. [Epub ahead of print]. 

10. Kirchheiner J, Thomas S, Bauer S et al. Pharmacokinetics and pharmacodynamics of 

rosiglitazone in relation to CYP2C8 genotype. Clin Pharmacol Ther 80:657–667. 

11. Yoo HD, Kim MS, Cho HY, Lee YB. Population pharmacokinetic analysis of glimepiride 

with CYP2C9 genetic polymorphism in healthy Korean subjects. Eur J Clin Pharmacol. 

2011 Sep;67(9):889-98. 

12. Zhou K, Donnelly L, Burch L et al. Loss-of-function CYP2C9 variants improve 

therapeutic response to sulfonylureas in type 2 diabetes: a Go-DARTS study. Clin 

Pharmacol Ther. 2010 Jan;87(1):52-6. 

13. Hamberg AK, Wadelius M, Lindh JD et al. A Pharmacometric Model Describing the 

Relationship Between Warfarin Dose and INR Response With Respect to Variations in 

CYP2C9, VKORC1, and Age. Clin Pharmacol Ther. 2010 Jun;87(6):727-34.  

14. Hamberg AK, Dahl ML, Barban M et al. A PK-PD model for predicting the impact of 

age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin 

Pharmacol Ther. 2007 Apr;81(4):529-38. Epub 2007 Feb 14. 

15. Siccardi M, Almond L, Schipani A et al.Pharmacokinetic and Pharmacodynamic Analysis 

of Efavirenz Dose Reduction Using an In Vitro–In Vivo Extrapolation Model. Clin 

Pharmacol Ther. 2012 Oct;92(4):494-502. 

16. van Schie RM, Wadelius MI, Kamali F et al. Genotype-guided dosing of coumarin 

derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial 

design. Pharmacogenomics. 2009 Oct;10(10):1687-95. 

17. Hamrén B, Bjork E, Sunzel M, Karlsson MO. Models for plasma glucose, HbA1c, and 

hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar 

treatment. Clin Pharmacol Ther. 2008; 84: 228–235. 

Chapter 5

124

12475_Stringer_Layout.indd   124 09-12-14   12:19



 

 

 

 

approach. A model-based analysis should be performed to elucidate these genotype 

differences while considering the other components affecting clinical response. 

References 

1. Nishihara M, Sudo M, Kawaguchi N, et al. An Unusual Metabolic Pathway of 

Sipoglitazar, a Novel Anti-Diabetic Agent: Cytochrome P450-Catalyzed Oxidation of 

Sipoglitazar Acyl Glucuronide. Drug Metab Dispos.2011;34:1220-1128. 

2. Stringer F, Ploeger BA, DeJongh J et al. Evaluation of the Impact of UGT Polymorphism 

on the Pharmacokinetics and Pharmacodynamics of the Novel PPAR Agonist 

Sipoglitazar. J Clin Pharmacol. 2013 Mar;53(3):256-63. 

3. Stringer F, Scott G, Valbuena M, Kinley J, Nishihara M, Urquhart R. The effect of 

genetic polymorphisms in UGT2B15 on the pharmacokinetic profile of sipoglitazar, a 

novel anti-diabetic agent. Eur J Clin Pharmacol. 2013 Mar;69(3):423-30.  

4. Hansen T. Type 2 diabetes mellitus--a multifactorial disease. Ann Univ Mariae Curie 

Sklodowska Med. 2002;57(1):544-9. 

5. Wright A, Burden AC, Paisey RB, Cull CA, Holman RR. Sulfonylurea 

inadequacy:efficacy of addition of insulin over 6 years in patients with type 2 diabetes in 

the U.K. Prospective Diabetes Study (UKPDS 57). Diabetes Care 2002;25:330-6. 

[Erratum, Diabetes Care 2002;25:1268.]. 

6. Riddle MC, Rosenstock J, Gerich J; Insulin Glargine 4002 Study Investigators. The 

treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy 

of type 2 diabetic patients. Diabetes Care. 2003 Nov;26(11):3080-6. 

7. Distefano JK, Watanabe RM. Pharmacogenetics of Anti-Diabetes Drugs. Pharmaceuticals 

(Basel). 2010 Aug 1;3(8):2610-2646. 

8. van Leeuwen N, Swen JJ, Guchelaar HJ, 't Hart LM. The Role of Pharmacogenetics in 

Drug Disposition and Response of Oral Glucose-Lowering Drugs. Clin Pharmacokinet. 

2013 May 30. [Epub ahead of print] 

 

 

 

 

9. Yeo KR, Kenny JR, Rostami-Hodjegan A. Application of in vitro-in vivo extrapolation 

(IVIVE) and physiologically based pharmacokinetic (PBPK) modelling to investigate the 

impact of the CYP2C8 polymorphism on rosiglitazone exposure. Eur J Clin Pharmacol. 

2013 Jan 11. [Epub ahead of print]. 

10. Kirchheiner J, Thomas S, Bauer S et al. Pharmacokinetics and pharmacodynamics of 

rosiglitazone in relation to CYP2C8 genotype. Clin Pharmacol Ther 80:657–667. 

11. Yoo HD, Kim MS, Cho HY, Lee YB. Population pharmacokinetic analysis of glimepiride 

with CYP2C9 genetic polymorphism in healthy Korean subjects. Eur J Clin Pharmacol. 

2011 Sep;67(9):889-98. 

12. Zhou K, Donnelly L, Burch L et al. Loss-of-function CYP2C9 variants improve 

therapeutic response to sulfonylureas in type 2 diabetes: a Go-DARTS study. Clin 

Pharmacol Ther. 2010 Jan;87(1):52-6. 

13. Hamberg AK, Wadelius M, Lindh JD et al. A Pharmacometric Model Describing the 

Relationship Between Warfarin Dose and INR Response With Respect to Variations in 

CYP2C9, VKORC1, and Age. Clin Pharmacol Ther. 2010 Jun;87(6):727-34.  

14. Hamberg AK, Dahl ML, Barban M et al. A PK-PD model for predicting the impact of 

age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin 

Pharmacol Ther. 2007 Apr;81(4):529-38. Epub 2007 Feb 14. 

15. Siccardi M, Almond L, Schipani A et al.Pharmacokinetic and Pharmacodynamic Analysis 

of Efavirenz Dose Reduction Using an In Vitro–In Vivo Extrapolation Model. Clin 

Pharmacol Ther. 2012 Oct;92(4):494-502. 

16. van Schie RM, Wadelius MI, Kamali F et al. Genotype-guided dosing of coumarin 

derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial 

design. Pharmacogenomics. 2009 Oct;10(10):1687-95. 

17. Hamrén B, Bjork E, Sunzel M, Karlsson MO. Models for plasma glucose, HbA1c, and 

hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar 

treatment. Clin Pharmacol Ther. 2008; 84: 228–235. 

A Model-Based Approach to Analyze the Influence of UGT2B15 Polymorphism

125

5

12475_Stringer_Layout.indd   125 09-12-14   12:19



 

 

 

 

18. Petersson KJ, Hanze E, Savic RM, Karlsson MO. Semiparametric distributions with 

estimated shape parameters. Pharm Res. 2009 Sep;26(9):2174-85. 

19. Wahlby U, Jonsson EN, Karlsson MO. Assessment of actual significance levels for 

covariate effects in NONMEM. J Pharmacokinet Pharmacodyn. 2001;28(3):231-252. 

20. Post TM, Freijer JI, Ploeger BA, et al. Extensions to the visual predictive check to 

facilitate model performance evaluation. J Pharmacokinet Pharmacodyn. 2008;35(2): 

185-202. 

21. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for 

diagnostics: problems and solutions. AAPS J. 2009;11(3):558-569. 

22. Gavin JR 3rd, Bohannon NJ. A review of the response to oral antidiabetes agents in 

patients with type 2 diabetes. Postgrad Med. 2010 May;122(3):43-51. 

23. Rohatagi S, Carrothers TJ, Jin J et al. Model-based development of a PPARgamma 

agonist, rivoglitazone, to aid dose selection and optimize clinical trial designs. J Clin 

Pharmacol. 2008 Dec;48(12):1420-9. 

24. Landersdorfer CB, Jusko WJ. Pharmacokinetic/pharmacodynamic modelling in diabetes 

mellitus. Clin Pharmacokinet. 2008;47:417-448. 

25. Kurukulasuriya LR, Sowers JR. Therapies for type 2 diabetes: lowering HbA1c and 

associated cardiovascular risk factors. Cardiovasc Diabetol. 2010 Aug 30;9:45. 

26. Stratton IM, Adler AI, Neil HA et al. Association of glycaemia with macrovascular and 

microvascular complications of type 2 diabetes (UKPDS 35): prospective observational 

study. BMJ 2000, 321:405-412. 

27. Heintjes E, Penning-van Beest FJA, Parasuraman SV, Grandy S, Pollack M, Herings 

RMC. PCV32 Population Attributable Risk (PAR) of Macrovascular Events Associated 

with HbA1c, Blood Pressure or Weight in Patients with Type 2 Diabetes Mellitus: 

Evidence from a Dutch Cohort. Value in Health - November 2011 (Vol. 14, Issue 7, Page 

A370, DOI: 10.1016/j.jval.2011.08.754) 

 

 

 

 

28. Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. 

Pharmacogenomics J. 2003;3(3):136-158. 

29. Bloomgarden Z, Drexler A. What role will 'gliptins' play in glycemic control? Cleve Clin 

J Med. 2008 Apr;75(4):305-10. 

30. Lebovitz HE, Dole JF, Patwardhan R, Rappaport EB, Freed MI. Rosiglitazone Clinical 

Trials Study Group. Rosiglitazone monotherapy is effective in patients with type 2 

diabetes. J Clin Endocrinol Metab. 2001 Jan;86(1):280-8. 

31. European Medicines Agency. Avandia, INN- rosiglitazone - European Medicines 

Agency.http://www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?we

bContentId=WC500029103.Accessed July, 25 2013. 

32. Monnier L, Lapinski H, Colette C. Contributions of Fasting and Postprandial Plasma 

Glucose Increments to the Overall Diurnal Hyperglycemia of Type 2 Diabetic Patients. 

Diabetes Care. 2003 Mar;26(3):881-5. 

33. Ozmen S, Cil T, Atay AE, Tuzcu AK, Bahceci M. A simple way to estimate mean plasma 

glucose and to identify Type 2 diabetic subjects with poor glycaemic control when a 

standardized HbA1c assay is not available. Diabet Med. 2006 Oct;23(10):1151-4. 

34. Lledó-García R, Mazer NA, Karlsson MO. A semi-mechanistic model of the relationship 

between average glucose and HbA1c in healthy and diabetic subjects. J Pharmacokinet 

Pharmacodyn. 2013 Apr;40(2):129-42. 

  

Chapter 5

126

12475_Stringer_Layout.indd   126 09-12-14   12:19



 

 

 

 

18. Petersson KJ, Hanze E, Savic RM, Karlsson MO. Semiparametric distributions with 

estimated shape parameters. Pharm Res. 2009 Sep;26(9):2174-85. 

19. Wahlby U, Jonsson EN, Karlsson MO. Assessment of actual significance levels for 

covariate effects in NONMEM. J Pharmacokinet Pharmacodyn. 2001;28(3):231-252. 

20. Post TM, Freijer JI, Ploeger BA, et al. Extensions to the visual predictive check to 

facilitate model performance evaluation. J Pharmacokinet Pharmacodyn. 2008;35(2): 

185-202. 

21. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for 

diagnostics: problems and solutions. AAPS J. 2009;11(3):558-569. 

22. Gavin JR 3rd, Bohannon NJ. A review of the response to oral antidiabetes agents in 

patients with type 2 diabetes. Postgrad Med. 2010 May;122(3):43-51. 

23. Rohatagi S, Carrothers TJ, Jin J et al. Model-based development of a PPARgamma 

agonist, rivoglitazone, to aid dose selection and optimize clinical trial designs. J Clin 

Pharmacol. 2008 Dec;48(12):1420-9. 

24. Landersdorfer CB, Jusko WJ. Pharmacokinetic/pharmacodynamic modelling in diabetes 

mellitus. Clin Pharmacokinet. 2008;47:417-448. 

25. Kurukulasuriya LR, Sowers JR. Therapies for type 2 diabetes: lowering HbA1c and 

associated cardiovascular risk factors. Cardiovasc Diabetol. 2010 Aug 30;9:45. 

26. Stratton IM, Adler AI, Neil HA et al. Association of glycaemia with macrovascular and 

microvascular complications of type 2 diabetes (UKPDS 35): prospective observational 

study. BMJ 2000, 321:405-412. 

27. Heintjes E, Penning-van Beest FJA, Parasuraman SV, Grandy S, Pollack M, Herings 

RMC. PCV32 Population Attributable Risk (PAR) of Macrovascular Events Associated 

with HbA1c, Blood Pressure or Weight in Patients with Type 2 Diabetes Mellitus: 

Evidence from a Dutch Cohort. Value in Health - November 2011 (Vol. 14, Issue 7, Page 

A370, DOI: 10.1016/j.jval.2011.08.754) 

 

 

 

 

28. Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. 

Pharmacogenomics J. 2003;3(3):136-158. 

29. Bloomgarden Z, Drexler A. What role will 'gliptins' play in glycemic control? Cleve Clin 

J Med. 2008 Apr;75(4):305-10. 

30. Lebovitz HE, Dole JF, Patwardhan R, Rappaport EB, Freed MI. Rosiglitazone Clinical 

Trials Study Group. Rosiglitazone monotherapy is effective in patients with type 2 

diabetes. J Clin Endocrinol Metab. 2001 Jan;86(1):280-8. 

31. European Medicines Agency. Avandia, INN- rosiglitazone - European Medicines 

Agency.http://www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?we

bContentId=WC500029103.Accessed July, 25 2013. 

32. Monnier L, Lapinski H, Colette C. Contributions of Fasting and Postprandial Plasma 

Glucose Increments to the Overall Diurnal Hyperglycemia of Type 2 Diabetic Patients. 

Diabetes Care. 2003 Mar;26(3):881-5. 

33. Ozmen S, Cil T, Atay AE, Tuzcu AK, Bahceci M. A simple way to estimate mean plasma 

glucose and to identify Type 2 diabetic subjects with poor glycaemic control when a 

standardized HbA1c assay is not available. Diabet Med. 2006 Oct;23(10):1151-4. 

34. Lledó-García R, Mazer NA, Karlsson MO. A semi-mechanistic model of the relationship 

between average glucose and HbA1c in healthy and diabetic subjects. J Pharmacokinet 

Pharmacodyn. 2013 Apr;40(2):129-42. 

  

A Model-Based Approach to Analyze the Influence of UGT2B15 Polymorphism

127

5

12475_Stringer_Layout.indd   127 09-12-14   12:19



 

 

 

 

 

 

 

 

 

Supplemental Appendix 

  

Chapter 5

128

12475_Stringer_Layout.indd   128 09-12-14   12:19



 

 

 

 

 

 

 

 

 

Supplemental Appendix 

  

A Model-Based Approach to Analyze the Influence of UGT2B15 Polymorphism

129

5

12475_Stringer_Layout.indd   129 09-12-14   12:19



 

 

 

 

 

Table S1. Baseline characteristics 

Characteristics Median and range (or count) 
Age (years) 56 (34 – 75) 
Sex (male:female) 388:392 
Body weight (kg) 88.8 (55 – 160) 
Duration of disease (years) 1.0 (0 – 30.9) 
FPG baseline (mmol/L) 9.3 (2.9 – 20.8) 
HbA1c baseline (%) 7.9 (6.9 – 9.9) 
UGT2B15 genotype* 
(*1/*1:*1/*2:*2/*2) 

149:357:194 

*genotype information not collected in 80 subjects 

FPG, fasting plasma glucose; HbA1c, glycosylated haemoglobin 

 

Figure S1. Histogram plot for baseline FPG for all subjects included in the analysis 
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Figure S2. Histogram plot for baseline HbA1c for all subjects included in the analysis 
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Figure S2. Histogram plot for baseline HbA1c for all subjects included in the analysis 
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Figure S3.  Box plots (median, 25th, and 75th percentiles) for the effect (Drug + placebo) 

by genotype and treatment group for placebo and sipoglitazar. (solid grey line 

= median rosiglitazone, dashed greyline=rosiglitazone 25th, and 75th 

percentiles). (1= UGT2B15*1/*1, 2= UGT2B15*1/*2, 3=UGT2B15*2/*2) 
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Figure S4. Diagnostic plots of HbA1c for all treatment groups of sipoglitazar 

UGT2B15*1/*1  

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S5. Diagnostic plots of HbA1c for all treatment groups of sipoglitazar 

UGT2B15*1/*2  

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S6. Diagnostic plots of HbA1c for all treatment groups of sipoglitazar 

UGT2B15*2/*2  

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S5. Diagnostic plots of HbA1c for all treatment groups of sipoglitazar 

UGT2B15*1/*2  

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S6. Diagnostic plots of HbA1c for all treatment groups of sipoglitazar 

UGT2B15*2/*2  

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S7. Diagnostic plots of FPG for all treatment groups of sipoglitazar 

UGT2B15*1/*1 

  

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S8. Diagnostic plots of FPG for all treatment groups of sipoglitazar 

UGT2B15*1/*2 

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S7. Diagnostic plots of FPG for all treatment groups of sipoglitazar 

UGT2B15*1/*1 

  

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S8. Diagnostic plots of FPG for all treatment groups of sipoglitazar 

UGT2B15*1/*2 

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S9. Diagnostic plots of FPG for all treatment groups of sipoglitazar 

UGT2B15*2/*2 

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted residuals vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S9. Diagnostic plots of FPG for all treatment groups of sipoglitazar 

UGT2B15*2/*2 

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted residuals vs. time 

D:  Conditional weighted vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Abstract 

Aim: Application of a model-based approach to evaluate long term durability and glycemic 

control of pioglitazone in comparison to other oral glucose-lowering drugs in Japanese type 2 

diabetes mellitus (T2DM) patients. 

Methods: Japanese T2DM patients were enrolled in a prospective, randomized, open-label, 

blinded-endpoint study and received pioglitazone ± other oral glucose-lowering drugs 

(excluding another thiazolidinedione (TZD)) (n=293) or oral glucose-lowering drugs 

excluding TZD (n=294). Treatment was adjusted to achieve HbA1c<6.9% and samples for 

FPG and HbA1c were collected over 2.5-4 years. A simultaneous cascading indirect response 

model structure was applied to describe the time course of FPG and HbA1c. HbA1c levels 

were described using both an FPG-dependent and an FPG-independent function. To account 

for titration, drug effects for both treatment groups were implemented using a time dependent 

Emax model.  

Results: Pioglitazone was superior in both time to maximum effect and the magnitude of 

reduction achieved in FPG and HbA1c. Greater reduction (2-fold) in FPG was observed with 

pioglitazone compared to the control group. Maximum drug effect for FPG was predicted to 

occur earlier (11 months) for pioglitazone than the control group (14 months). The simulated 

additional reduction in FPG and HbA1c achieved with pioglitazone was predicted to be 

maintained beyond the currently observed study duration.  

Conclusion: Pioglitazone was found to result in improved glycemic control and durability 

compared to control treatment. This model-based approach enabled the quantification of 

differences in FPG and HbA1c for both treatment groups and simulation to evaluate longer 

term durability on FPG and HbA1c.  

 

 

 

 

Introduction 

The prevalence of diabetes in Japan has been increasing over the past two decades, primarily 

driven by lifestyle changes [1,2]. There will be an estimated number of diabetes cases in 

Japan of 8.9 million by the year 2030, following the same trend as other Asian countries [3]. 

Epidemiological studies have established that hyperglycemia is a significant risk factor for 

the development of cardiovascular disease (CVD) [4,5]. Japanese type 2 diabetes mellitus 

(T2DM) subjects have been shown to have a three-fold higher risk for CVD than non-diabetic 

subjects and the Ministry of Health, Labour and Welfare in Japan has now identified diabetes 

as a healthcare priority [1].  

Current guidelines in Japan recommend achieving a target HbA1c <7.0% to inhibit the 

progress of and prevent the onset of macrovascular disease [6]. There are currently seven 

groups of oral agents currently used in Japan: Sulfonylurea drugs, fast-acting insulin 

secretion stimulators (glinides), biguanides, thiazolidines (TZD), alpha-glucosidase 

inhibitors, dipeptidyl peptidase-4 inhibitors, and sodium glucose cotransporter-2 inhibitors 

[7]. However there are differences in the usage patterns compared to North America and 

Europe [1]. Furthermore the underling pathology of T2DM was found to be different between 

Japanese and Caucasian subjects [8,9]. In comparison to Caucasians, Japanese are unable to 

compensate insulin resistance with increased insulin secretion to the same extent. A recent 

study identified body composition as the major determinant for these pathophysiological 

differences between Japanese and Caucasian T2DM subjects [9]. As a result of differences in 

glycemic targets and in the pathophysiological features of diabetes, treatment guidelines in 

Japan differ from those in Western countries [7]. 

T2DM is a slowly progressing disease and glycemic deterioration is predominantly due to 

insulin resistance and beta-cell failure [10]. Currently there are no available therapies that can 

completely stop the progressive loss of glycemic control, although different therapies can 

delay the extent of this loss by different degrees [11]. To evaluate this further, determination 

of a coefficient of failure (which is the slope obtained by performing regression analysis) was 

proposed as an approach to assess beta-cell failure from any index of glycaemia [12]. Further 

extension of this approach can be undertaken using pharmacokinetic-pharmacodynamic 
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occur earlier (11 months) for pioglitazone than the control group (14 months). The simulated 

additional reduction in FPG and HbA1c achieved with pioglitazone was predicted to be 

maintained beyond the currently observed study duration.  

Conclusion: Pioglitazone was found to result in improved glycemic control and durability 

compared to control treatment. This model-based approach enabled the quantification of 

differences in FPG and HbA1c for both treatment groups and simulation to evaluate longer 

term durability on FPG and HbA1c.  
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driven by lifestyle changes [1,2]. There will be an estimated number of diabetes cases in 

Japan of 8.9 million by the year 2030, following the same trend as other Asian countries [3]. 

Epidemiological studies have established that hyperglycemia is a significant risk factor for 

the development of cardiovascular disease (CVD) [4,5]. Japanese type 2 diabetes mellitus 

(T2DM) subjects have been shown to have a three-fold higher risk for CVD than non-diabetic 

subjects and the Ministry of Health, Labour and Welfare in Japan has now identified diabetes 

as a healthcare priority [1].  

Current guidelines in Japan recommend achieving a target HbA1c <7.0% to inhibit the 

progress of and prevent the onset of macrovascular disease [6]. There are currently seven 

groups of oral agents currently used in Japan: Sulfonylurea drugs, fast-acting insulin 

secretion stimulators (glinides), biguanides, thiazolidines (TZD), alpha-glucosidase 

inhibitors, dipeptidyl peptidase-4 inhibitors, and sodium glucose cotransporter-2 inhibitors 

[7]. However there are differences in the usage patterns compared to North America and 

Europe [1]. Furthermore the underling pathology of T2DM was found to be different between 

Japanese and Caucasian subjects [8,9]. In comparison to Caucasians, Japanese are unable to 

compensate insulin resistance with increased insulin secretion to the same extent. A recent 

study identified body composition as the major determinant for these pathophysiological 

differences between Japanese and Caucasian T2DM subjects [9]. As a result of differences in 

glycemic targets and in the pathophysiological features of diabetes, treatment guidelines in 

Japan differ from those in Western countries [7]. 

T2DM is a slowly progressing disease and glycemic deterioration is predominantly due to 

insulin resistance and beta-cell failure [10]. Currently there are no available therapies that can 

completely stop the progressive loss of glycemic control, although different therapies can 

delay the extent of this loss by different degrees [11]. To evaluate this further, determination 

of a coefficient of failure (which is the slope obtained by performing regression analysis) was 

proposed as an approach to assess beta-cell failure from any index of glycaemia [12]. Further 

extension of this approach can be undertaken using pharmacokinetic-pharmacodynamic 
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models developed to characterize the time course of drug effects. The advantage of 

implementing a model based approach being the key characterization of the relationship 

between treatment and the physiology of the disease over time [13]. Traditional approaches 

such as last observation carried forward result in a collapse in the time dimension of the data 

and therefore disregard the actual trajectory of change in disease status over time [14]. As a 

result of this, crucial information on disease progression over time is ignored and short-term 

hypoglycemic effects of a treatment are combined with its longer term effects on the disease.  

In contrast however, a model based approach is applied to describe and explain changes in 

disease status as a function of time and drug therapy.  In Caucasian T2DM patients these 

approaches have been widely applied to discriminate between standard of care and new 

therapies, assessing alternative treatment strategies and by using meta-analysis to evaluate the 

current competitive landscape for anti-diabetic therapy [15-18]. Furthermore the regulatory 

authorities advocate the application of these model based approaches with a particular focus 

on understanding exposure response relationships [19,20]. 

Up until now, no model based approach in Japanese T2DM patients has been undertaken on 

mid to long-term data. Therefore this analysis represents to our knowledge, the first model 

based approach to evaluate the drug specific effects in Japanese T2DM patients for 

pioglitazone in combination with other oral glucose lowering drugs as compared to oral 

glucose-lowering drugs alone simultaneously on FPG and HbA1c. The aim of this analysis is 

to further enhance our understanding of the treatment and time course effects on FPG and 

HbA1c whilst the development of a model will enable the simulation for both groups to 

compare the longer term glycemic durability. 

Methods 

Subjects and Data Collection 

The data used in this analysis are from a multicenter, prospective, randomized, open-label, 

blinded-endpoint (PROBE) study that was designed to assess the glycemic effects of 

pioglitazone and their impact on cardiovascular outcomes in Japanese patients with type 2 

diabetes over a period of 2.5–4 years. Patients received pioglitazone and other oral 

 

 

 

 

glucose-lowering drugs (excluding another TZD) (n=293) or oral glucose-lowering drugs 

excluding TZD (n=294). Treatment was adjusted to achieve HbA1c<6.9%. The primary 

results of this study have already been described in detail elsewhere [21,22].  

Population Data Analysis 

During the study HbA1c was collected every 12 weeks and FPG was collected every 24 

weeks. The baseline characteristics are described in Table 1. The changes in FPG and HbA1c 

levels over time were described using a simultaneous, cascading indirect response model 

structure, similar to the approach previously described in Caucasian patients [14,23]. HbA1c 

(%) data were collected using the Japanese Diabetes Society values and then converted to the 

National Glycohemoglobin Standardization Program (NGSP) values [24]. 

Disease progression submodel for FPG and HbA1c 

The model was parameterized in terms of a zero order production rate for FPG (KinG) and a 

first-order rate constant for the removal of FPG (KoutG). Changes in HbA1c were initially 

modelled as secondary changes dependent on FPG, with a first order rate constant (KinH) for 

production and a first order HbA1c degradation rate constant, KoutH for disappearance. The 

description of HbA1c production also included the use of a power function on FPG [15,25]. 

Disease progression for FPG was implemented as a proportional increase in the FPG level 

with a slope (FPGDP), relative to the baseline at study start. A number of different models for 

disease progression were explored including exponential and log-linear, however these were 

not found to be superior.  

The overall model structure is described below in equations 1-3. 

)*1(*)*( TIMEFPGDPKinGBSLGKinGDP      EQ(1) 

FPGDEFKoutGKinGDP
dt

dFPG
 )1(

     EQ(2) 

cHbAKoutHFPGKinHFPGind
dt

cdHbA 11
 

  EQ(3) 
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description of HbA1c production also included the use of a power function on FPG [15,25]. 
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disease progression were explored including exponential and log-linear, however these were 

not found to be superior.  

The overall model structure is described below in equations 1-3. 

)*1(*)*( TIMEFPGDPKinGBSLGKinGDP      EQ(1) 

FPGDEFKoutGKinGDP
dt

dFPG
 )1(

     EQ(2) 

cHbAKoutHFPGKinHFPGind
dt

cdHbA 11
 

  EQ(3) 
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During model development, it was noted that the changes in HbA1c over time could not be 

fully described by the changes observed in FPG alone. Furthermore, there were differences 

observed in the rate of change over time between FPG and HbA1c following graphical 

inspection of the data. This is consistent with previous reports and is likely to result from the 

co-contribution and input of non-fasting glucose since HbA1c is a measure of average 

glucose comprising of both fasting and postprandial hyperglycemia [26,27]. A separate 

FPG-independent effect to describe the source of changes in HbA1c was therefore included 

which resulted in significantly improved model diagnostics and fit. This FPG independent 

input was described using a zero order rate constant (KinZ) and a linear time dependent 

parameter (DPind) included in the following equation: 

)*1(* TIMEDPindKinZFPGind       EQ(4) 

Drug effect Model  

The drug effect (DEF) on FPG was incorporated using an Emax model driven by TIME, 

where Emax is the maximal effect of overall exposure to FPG-lowering drugs. ET50 is the 

time required for titration to half of the maximal exposure. For both treatment groups DEF 

was implemented as a stimulatory effect on KoutG. The Emax model approach was applied 

to account for the titration of anti-diabetic medication in the early phase of the study. This 

information could not be directly included in the analysis at the individual patient level due to 

the way in which time was recorded in the case report form for the titration schemes. To 

account for titration-related dose changes in both patient populations the drug effect was 

described with the following approach:  

TIME TIME/ET50EmaxDEF     EQ(5) 

ET50 in the pioglitazone group was estimated with a value close to 0 and with low precision. 

This is likely to result from the maximum effect of titration being achieved for drugs in the 

pioglitazone group by the time of first FPG sample collection at 3 months. As a result, this 

parameter was fixed to zero for all remaining model development without any loss in 

goodness-of-fit.  

 

 

 

 

Subjects who entered the trial were already receiving anti-diabetic medication, the details of 

which are shown in Table 1. However the assumption was used that these subjects were 

indeed at steady state on their baseline medication when they entered the trial. Further 

refinements to the model to account for this additional background therapy at the individual 

patient level did not result in any improvements in model diagnostics.  

Table 1. Baseline characteristics 

Characteristics Pioglitazone Group (n=293) Control Group (n=294) 
Age (years)a 58.0 (35.0 – 74.0) 58.0 (37.0 – 74.0) 
Sex (male:female) 184:109 181:113 
Body weight (kg)a 69.0 (45.0 – 107.0) 68.0 (44.0 – 116.0) 
BMI (kg/m2)a 26.5 (18.5 – 37.3) 26.2 (19.0 – 42.6) 
FPG baseline (mg/dL)a  153.0 (77.0 – 304.0) 157.0 (81.0 – 371.0) 
HbA1c baseline (%)a 7.9 (6.9 – 11.4) 7.6 (6.9 – 11.8) 
Number of non-TZD mediations at 
baselinea 

1 (0 – 4) 2 (0 – 4) 

Non-TZD diabetic medication at baseline by type 
Sulphonylureas (%) 73.0 81.6 
alpha-Glucosidase inhibitors (%) 35.8 55.8 
Biganides (%) 42.6 67.7 
Rapid-acting insulin secretagogue 
drugs (%) 

6.5 12.9 

Number of non-TZD diabetic medications at baseline 
0 (%) 10.6 1.4 
1(%) 42.0 37.1 
2 (%) 39.2 46.9 
>=3 (%) 8.2 14.6 
aMedian and range 

 

Data Analysis 

All analyses were performed using the nonlinear mixed effects modeling approach in 

NONMEM (version 7, release 1; Icon Development Solutions, Ellicott City, Maryland). The 

first-order conditional estimation method with interaction (ADVAN6, TOL=5) was used. 

Statistical analysis was performed in S-Plus (version 8.1 Professional, TIBCO Software Inc.). 
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Simulations of FPG and HbA1c were performed in Berkeley Madonna version 8.3.13 (Macey 

& Oster, University of California, Berkeley). 

Inter-individual Variability and Residual Error 

Inter-individual variability (IIV) on FPG baseline and EMAX was explored assuming a log 

normal distribution of the individual parameter estimates. However IIV on the baseline for 

HbA1c was evaluated using a Box-Cox transformation model to account for skewness 

observed in the individual data, likely resulting from inclusion criteria based on 

HbA1c>6.9% [25,28]. IIV on FPGDP was described by an additive random effect. Residual 

variability was included using a proportional model and the correlation between IIV on 

baselines was included using the OMEGA BLOCK option.  

Covariate Analysis 

Potential covariates at baseline included age, sex, weight, BMI, number of non-TZD 

medications, type of non-TZD medication and baseline FPG and HbA1c. These were 

evaluated in the model using a forward inclusion and backward elimination procedure [29]. 

Before performing the covariate analysis the most appropriate distribution of the covariates 

was evaluated.  

Model Qualification 

The visual predictive check (VPC) was used to evaluate the ability of the final model to 

predict both the central tendency and the variability of FPG and HbA1c (median and 90th 

prediction interval) [30]. The stability of the model was tested by using 100 bootstrap 

replicates of the original dataset. To further inform model validation ETA shrinkage for the 

random effects was estimated [31]. 

Model Selection 

No further improvement in the model was considered by a change in objective function of 

less than 10.8 (P≤0.001) for each additional degree of freedom (=extra parameter). In 

addition graphical analysis enabled assessment of bias and the biologically plausibility of the 

parameter estimates was evaluated. 

 

 

 

 

Evaluation of the treatment effects on glycemic markers 

Based on observed data the % of subjects achieving a HbA1c<7.0% and the mean HbA1c 

values at 2.5 years (the minimum study duration for all subjects) were estimated and 

compared for both treatment groups. 

Observed change from baseline in HOMA-IR was calculated and a two-sample t-test was 

used to compare the mean values of change from baseline in HOMA-IR at each visit between 

treatment groups. To further explore the predictability of the model, change from baseline in 

HOMA-IR was recalculated using the model predicted FPG values. 

To explore the influence of drug effects on the time course for pioglitazone and the control 

group the median FPG and HbA1c time profiles were simulated.  

Results 

The results presented here were based on the simultaneous analysis of FPG and HbA1c data 

in 587 T2DM subjects with median treatment duration of 3.14 years (maximum 3.9 years). 

Results of the VPC are shown in Figure 1a and 1b and indicate adequate precision and 

accuracy of the model. The results for the model parameters are specified in Table 2 along 

with their bootstrap estimate. All model parameters could be obtained with adequate 

precision, and all parameters fall within the 95% CI’s. Estimated shrinkage for all random 

effect parameters was low (< 21%). Additional diagnostics are provided in Supplemental 

Figures S1-S4. 
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Figure 1. (a) Visual predictive check for observed and predicted FPG data. 
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Figure 1. (b) Visual predictive check for observed and predicted HbA1c data. 
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Figure 1. (b) Visual predictive check for observed and predicted HbA1c data. 
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Table 2. Summary of parameter estimates for the final model including bootstrap 

estimates 

Parameter Model Estimate 
(CV%) 

Mean Bootstrap Estimate (95% 
CI)a 

 Fixed effects 
BSL FPG (Females) (mg/dL) 156.0 (1.1) 155.7 (152.5-158.9) 
KoutG (days-1)   0.0089 (11.4) 0.0089 (0.0073-0.011) 
BSL HbA1c (%) 7.83 (0.5) 7.83 (7.75-7.91) 
Box Cox  3.28 (14.8) 3.28 (2.27-4.29) 
KoutH (days-1)   0.072 (13.1) 0.071 (0.051-0.116) 
Emax Piogliazone (%) 17.3 (8.3) 17.5 (14.4-20.5) 
Emax Control (%) 8.4 (14.8) 8.5 (5.7-11.2) 
ET50 Pioglitazone (days) 0 FIX 0 FIX 
ET50 Control (days) 49.2 (46.3) 49.0 (-0.9-100.8) 
KinZT (days-1)   0.28 (16.9) 0.29 (0.17-0.41) 
FPGDP (years-1) 0.017 (28.3) 0.016 (0.006-0.027) 
DPind (years-1)  0.03 (14.8) 0.03 (0.006-0.06) 
Gamma 1.91 (21.8) 1.84 (1.0-2.7) 
Gender on FPG BSL 0.05 (22.9) 0.05 (0.03-0.08) 
 Random effects: inter-individual variability (IIV) 
ω2 BSL FPG 0.03 (7.2) 0.03 (0.023-0.033) 

ω2 BSL HbA1c 0.01 (8.5) 0.01 (0.008-0.011) 

ω2 FPGDP 0.004 (19.7) 0.003 (0.002-0.005) 

ω2 Emax 0.75 (11.8) 0.74 (0.57-0.90) 
Correlation (ω2 BSL HbA1c, 
ω2 BSL FPG) 0.01 (10.0) 0.01 (0.009-0.013) 

 Random effects:  residual error 

Residual error FPG (%) 14.4 (4.6) 14.4 (13.7-15.1) 

Residual error HbA1c (%) 5.8 (5.1) 5.8 (5.4-6.1) 
a During conduct of the bootstrap, 97.0 % of runs minimized successfully. 

CV, coefficient of variation; CI, confidence interval; BSL FPG, baseline for fasting plasma glucose; KoutG, 
first-order rate for fasting plasma glucose; BSL HbA1c, baseline for glycosylated hemoglobin; KoutH, 
first-order rate constant for glycosylated hemoglobin; Emax, is the maximal effect of overall exposure to 
FPG-lowering drugs; FPGDP, disease progression rate for FPG; DPind disease progression rate for 
FPG-independent input; KinZT, zero order rate constant for FPG-independent input; ET50, the time required for 
titration to half of the maximal exposure; ω2, inter individual variability. 

 

During the study period (2.5-4 years), 90 subjects (9% Pioglitazone, 6% control group) 

discontinued before 2.5 years. This was based on a number of criteria including: adverse 

 

 

 

 

event, voluntary withdrawal or major protocol deviation. Patient discontinuation may 

possibly influence model parameters when caused by selective drop-out of certain 

subpopulations of patients. This may be due to lack of efficacy, occurrence of side effects, 

and/or compliance. To exclude this, models were run using all the data and excluding the 

drop-out subjects. All model parameters were compared by including and excluding these 

discontinued subjects. Only a slight difference was observed in the FPG disease progression 

rate parameter (FPGDP) 0.017 year-1 (with all subjects) and 0.016 year-1 (excluding 

discontinued subjects). This result showed only a very minor influence of these subjects was 

observed on the FPG profile and due to the low observed drop out in the study further model 

development including drop-out was not performed. 

Drug effect model 

Differences in the effect due to maximum drug exposure (EMAX) on FPG were observed 

between the two treatment groups. The model derived Emax values for pioglitazone and the 

control group were 17% and 8%, respectively. Resulting in approximately 2-fold greater 

reduction in FPG for pioglitazone as compared to the control treatment (median maximum 

simulated change from baseline in FPG was -21 mg/dL compared to -9 mg/dL for 

pioglitazone and the control group, respectively). An ET50 value of 49 days for the control 

group indicated that half the maximum exposure level of drugs affecting FPG was achieved 

in approximately 2 months. However for the pioglitazone group, ET50 was fixed at 0 

indicating that apparent steady state for the titration of treatment for FPG occurs earlier than 

the control group. Based on simulation, the resulting maximum drug effect for FPG was 

achieved at approximately 14 and 11 months for the control and pioglitazone groups, 

respectively.  

Disease progression was parameterized as a proportional increase over time relative to the 

FPG baseline. The model predicted increases over time were estimated at approximately 2 

mg/dL (95% CI 0.9 – 3.5)/per year for FPG and 0.2 % (95% CI 0.15 – 0.25)/per year for 

HbA1c (Figure 2a and 2b). A second contribution to HbA1c production was described using 

an additional FPG- independent input (DPind); this FPG-independent input was estimated to 

contribute an additional 0.03% to the increase in HbA1c per year. Simulated FPG and HbA1c 
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control group were 17% and 8%, respectively. Resulting in approximately 2-fold greater 

reduction in FPG for pioglitazone as compared to the control treatment (median maximum 

simulated change from baseline in FPG was -21 mg/dL compared to -9 mg/dL for 

pioglitazone and the control group, respectively). An ET50 value of 49 days for the control 

group indicated that half the maximum exposure level of drugs affecting FPG was achieved 

in approximately 2 months. However for the pioglitazone group, ET50 was fixed at 0 

indicating that apparent steady state for the titration of treatment for FPG occurs earlier than 

the control group. Based on simulation, the resulting maximum drug effect for FPG was 

achieved at approximately 14 and 11 months for the control and pioglitazone groups, 

respectively.  
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FPG baseline. The model predicted increases over time were estimated at approximately 2 

mg/dL (95% CI 0.9 – 3.5)/per year for FPG and 0.2 % (95% CI 0.15 – 0.25)/per year for 

HbA1c (Figure 2a and 2b). A second contribution to HbA1c production was described using 

an additional FPG- independent input (DPind); this FPG-independent input was estimated to 

contribute an additional 0.03% to the increase in HbA1c per year. Simulated FPG and HbA1c 
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median values over time for pioglitazone are shown simultaneously in Figure 2c. As shown 

in the simulation the additional FPG-independent input to HbA1c results in differences in the 

rate of change over time between FPG and HbA1c.  

Figure 2. (a) Simulated FPG time profiles for pioglitazone and control group over 5 years 

 

 

 

 

 

 

Figure 2. (b) Simulated HbA1c time profiles for pioglitazone and control group over 5 years 
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Figure 2. (c) Simulated comparison of FPG and HbA1c time profiles for pioglitazone 

 

No differences in the apparent disease progression rates (FPGDP or DPind) between 

treatments could be identified from the model predicted post-hoc parameters. 

Evaluation of the treatment effects on glycemic markers 

Model-based simulation results 

Glycemic durability was evaluated using the model optimized parameters to simulate the 

median FPG and HbA1c time profiles over a 5 year period (Figure 2a and 2b). Median FPG 

in the control group was predicted to almost return to baseline levels (160 mg/dL) 5 years 

after starting treatment, however at 5 years in the pioglitazone group predicted FPG levels 

were still considerably lower (147 mg/dL) (Figure 2a). The duration of time required for 

median HbA1c levels to return to baseline (HbA1c=7.8%) was approximately 2.1 years in the 

control group and approximately 4.5 years for the pioglitazone group, for the typical patient 

 

 

 

 

in this population (Figure 2b). The differences between pioglitazone and the control group in 

simulated FPG and HbA1c median values was approximately 13 mg/dL and 0.5%, 

respectively at 5 years. 

Observed data analysis 

At 2.5 years (the minimum study duration for all subjects), 34% of the patients in the 

pioglitazone group had an observed HbA1c level <7.0%, as compared to only 18% in the 

control group. Mean observed HbA1c values at 2.5 years were 7.3% and 7.8% (p<0.001) for 

the pioglitazone and control groups, respectively.  

This is comparable to data observed in Caucasians when pioglitazone was added to 

metformin, at 2 years 31% of patients had an HbA1c<7.0% [32]. 

Figure 3a shows the observed and predicted change from baseline in HOMA-IR by treatment 

group. A statistically significant difference (p<0.05) from the control group for pioglitazone 

in observed HOMA-IR was maintained from 168 days until the last visit. The observed and 

predicted change from baseline HOMA-IR values are compared graphically (Figure 3a). 

Observed and predicted values are in close agreement, confirming the good predictability of 

the model. 
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Figure 3. (a) Observed and predicted change from baseline in HOMA-IR over the study 

duration. (not significant = ^) (# = p<0.05) (*= p<0.01). 

 

Covariate Analysis 

Following the covariate analysis, only one relationship was identified as significant. Male 

subjects were found to have a slightly (5%) higher BSLG than female subjects. These 

differences in FPG levels by gender have been previously reported in Japanese subjects [33]. 
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Discussion 

Here we present the first application of a model based approach to evaluate drug and disease 

effects in Japanese T2DM patients over a 2.5-4 year treatment period. Our analysis enabled 

the determination of disease progression rates in Japanese treatment experienced T2DM 

patients for both FPG and HbA1c and a comparison of the drug effects between treatment 

groups. Stronger drug effects (2-fold greater) could be identified for pioglitazone as 

compared to the control group. Furthermore these effects could be maintained over a longer 

period, indicating that pioglitazone in combination with other oral glucose lowering drugs in 

Japanese T2DM patients can result in improved glycemic durability.  

Greater reductions in both FPG and HbA1c data were observed in the pioglitazone group. 

Data in Caucasian subjects evaluating the treatment effects of pioglitazone in combination 

with other glucose lowering drugs have also shown favorable glycemic results in both short 

and long term studies [34]. When comparing gliclazide or metformin alone with pioglitazone 

given as add-on therapy improved and sustained glycemic control was maintained over a 2 

year study period [32]. In a longer term study, glycemic durability over 3.5 years in 

Caucasian subjects for Pioglitazone in combination with metformin revealed significant 

benefits in glycemic control compared with glibenclamide [35]. Furthermore reductions in 

HOMA-IR were also maintained out to 3.5 years in the same study. Indicating that 

pioglitazone through lowering the burden of insulin resistance could lead to increased 

protection of the beta-cells [35].  

A difference in the rate of change over time between FPG and HbA1c was identified. These 

differences were accounted for in the model using a separate FPG-independent and 

time-dependent effect on HbA1c. Studies have shown that mean plasma glucose (the 

arithmetic mean of FPG and PPG) correlates better with HbA1c than FPG alone [26,16]. It is 

therefore hypothesized that the different rates of change observed between FPG and HbA1c 

are due primarily to the input related to PPG. To demonstrate the magnitude of this 

FPG-independent contribution, the HbA1c time profile is simulated with and without the 

hypothesized contribution of PPG (Figure S5). An absolute difference of approximately 1% 

in HbA1c is observed between the HbA1c simulation dependent only on FPG and the 
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year study period [32]. In a longer term study, glycemic durability over 3.5 years in 

Caucasian subjects for Pioglitazone in combination with metformin revealed significant 

benefits in glycemic control compared with glibenclamide [35]. Furthermore reductions in 

HOMA-IR were also maintained out to 3.5 years in the same study. Indicating that 

pioglitazone through lowering the burden of insulin resistance could lead to increased 

protection of the beta-cells [35].  

A difference in the rate of change over time between FPG and HbA1c was identified. These 

differences were accounted for in the model using a separate FPG-independent and 

time-dependent effect on HbA1c. Studies have shown that mean plasma glucose (the 

arithmetic mean of FPG and PPG) correlates better with HbA1c than FPG alone [26,16]. It is 

therefore hypothesized that the different rates of change observed between FPG and HbA1c 

are due primarily to the input related to PPG. To demonstrate the magnitude of this 

FPG-independent contribution, the HbA1c time profile is simulated with and without the 

hypothesized contribution of PPG (Figure S5). An absolute difference of approximately 1% 

in HbA1c is observed between the HbA1c simulation dependent only on FPG and the 
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simulation dependent on FPG and PPG. Recent publications have reported that PPG has an 

absolute contribution of approximately 1.3-1.6 % to overall HbA1c levels [36]. Treatments 

which specifically target PPG have also shown reductions in HbA1c in the region of 1-1.5% 

[36]. Based on these studies the estimated absolute contribution of PPG to HbA1c is between 

1%-1.6%. This is consistent with our findings and therefore supports the hypothesis that PPG 

is the main driver for the differences we observed between the rate of change over time in 

FPG and HbA1c.  

The model enabled the quantification and evaluation of apparent disease progression rates for 

FPG and HbA1c. Although no differences could be identified in the underlying disease 

progression rate that is estimated here in either FPG or HbA1c between groups, pioglitazone 

is shown to maintain glycemic control over a longer duration whilst reducing insulin 

resistance. As predicted form its mechanism of action, pioglitazone maintains a statistically 

significant decrease in HOMA-IR until the last visit compared to the control group (Figure 

3a). A clinically meaningful difference in HbA1c [37], between the two groups at 5 years was 

also predicted in the current study. The difference between pioglitazone and the control group 

in the simulated FPG and HbA1c median values was predicted as approximately 13 mg/dL 

and 0.5%, respectively at 5 years. Apparent disease progression rates in this trial are lower 

than those reported in the UKPDS study in Caucasian subjects determined using the 

coefficient of failure [12], however comparison to other studies maybe confounded by both 

the baseline characteristics, the combination of different glycemic treatments and titration 

schemes and ethnic background. Therefore, a model based approach that combines glycemic 

data from Caucasian and Japanese T2DM patients simultaneously, should be performed to 

elucidate any differences in disease progression rates while considering the other covariates 

affecting clinical response. 

There are several limitations of our current model analysis. Due to study limitations no 

individual dose titration data could be included in the analysis and no pharmacokinetic data 

was collected for any of the treatments, in addition any long term simulation is based only on 

trial data with a median duration of 3.1 years. Each of these factors contribute to a certain 

degree of uncertainly in our extrapolations beyond the actual study duration.  

 

 

 

 

In summary, the application of a model based approach quantified differences in FPG and 

HbA1c for both treatment groups and enabled simulation to evaluate the longer term 

durability on FPG and HbA1c data for both pioglitazone and the control group. Based on this 

result pioglitazone when given in combination with other oral glucose lowering drugs in 

Japanese T2DM patients was found to result in improved glycemic control and durability as 

compared to oral glucose lowering treatment alone.  
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Figure S1.  Diagnostic plots of FPG for pioglitazone 

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted residuals vs. time 

D:  Conditional weighted residuals vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S2.  Diagnostic plots of FPG for control group 

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted residuals vs. time 

D:  Conditional weighted residuals vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S3.  Diagnostic plots of HbA1c for pioglitazone 

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted residuals vs. time 

D:  Conditional weighted residuals vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S4.  Diagnostic plots of HbA1c for control group 

 

 

A:  Observations vs. individual fitted values 

B:  Observations vs. population fitted values 

C:  Conditional weighted residuals vs. time 

D:  Conditional weighted residuals vs. population fitted values 

Dashed line: line of identity (A and B) or line indicating 0 (C and D) 
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Figure S5.  Observed (dot), individual predicted (IPRED) and the population prediction 

(PRED) for the FPG time profile of typical representative subjects 

 

 

 

 

 

 

Figure S6.  Observed (dot), individual predicted (IPRED) and the population prediction 

(PRED) for the HbA1c time profile of typical representative subjects 
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Figure S6.  Observed (dot), individual predicted (IPRED) and the population prediction 

(PRED) for the HbA1c time profile of typical representative subjects 
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Figure S7.  Simulated Pioglitazone HbA1c time profile for HbA1c dependent on FPG 

only and HbA1c dependent on both FPG and PPG 
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Pharmacogenomics in Drug Development: 

Conclusions and Perspectives

 

 

 

 

Figure S7.  Simulated Pioglitazone HbA1c time profile for HbA1c dependent on FPG 

only and HbA1c dependent on both FPG and PPG 
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The investigation described in this thesis focused on assessing the role of genotype 

differences in explaining inter-individual variability in drug metabolism and the impact of 

these differences on both the clinical response and the selection of the appropriate dosing 

scheme.  

The impact of genotype resulting from differences in the rate of metabolism between 

individuals has been found to vary widely between drugs [1]. Primarily this appears to result 

from factors which include the relative role of the polymorphic enzyme(s) to the clearance of 

the drug and the type of enzyme or transporter that is involved [2,3]. Furthermore the extent 

of the influence of these changes is also dependent on where the therapeutic dose is in 

relation to the exposure response relationships for both efficacy and safety [1]. PK-PD model 

based approaches to evaluate the impact of these differences including clinical response or 

surrogate biomarkers, has not been routinely implemented. Model based applications can be 

used to quantify the differences in drug exposure resulting from genetic differences between 

individuals whilst also incorporating other factors which may contribute to the 

inter-individual variably [4-6]. Furthermore the development of a PK-PD model can provide 

a more comprehensive link between differences in drug exposure and the magnitude of its 

effect(s) on clinical response.  

The focus of this thesis was to apply a PK-PD model based approach in Type 2 Diabetes 

(T2D), to assess both the short and the long term implications of Pharmacogenomics (PGx) in 

drug development. The aim was to specifically investigate enzymes that were contributing to 

the inter-individual variability, to quantify the resulting exposure differences between 

genotypes, to evaluate the predictability of genotype for exposure and to assess the influence 

of these differences on the clinical response of efficacy and safety.  

Clinical relevance of genetic variants in pharmacokinetic properties 

Exploratory preliminary evaluation of genotype during Phase I 

In vitro assessment can be used to determine the involvement of specific isoforms of drug 

metabolizing enzymes responsible for metabolism of a drug candidate; however since in-vitro 

 

 

 

 

studies are not always quantitatively predictive, confirmation of the relative role of the 

enzyme in vivo is required [7]. In Chapter 3 the approach to quantify the contribution of the 

enzymes responsible for the metabolism of the drug sipoglitazar is described. In vitro studies 

conducted prior to human dosing had predicted a central role for glucuronidation by uridine 

5'-diphospate-glucuronosyltransferases (UGTs) in the in vivo biological transformation of 

sipoglitazar [8,9]. The results of these metabolism studies indicated that multiple UGT 

isoforms were potentially involved in the metabolism of the drug [8]. Since pharmacogenetic 

variation has been identified for UGTs [10], the aim of this analysis was to identify which 

UGTs were potentially correlated with sipoglitazar exposure and then to evaluate the extent 

of variability explained in part due to genotype.  

The results of three preliminary phase I studies of sipoglitazar in healthy volunteers were 

combined for analysis of the data. There was a total of 82 subjects enrolled for whom both 

PK and UGT genotype information was available (Chapter 3, Table 1). The dose range 

included in the studies was 0.2-64mg for sipoglitazar and statistical analysis of area under the 

plasma concentration–time curve from time 0 to infinity (AUC) revealed dose proportionality 

across the dose range, with a slope and 95 % confidence interval of 0.99 and 0.92–1.05, 

respectively (Chapter 3). 

As a first step in the investigation the contribution of each genotype was assessed using 

Analysis of variance (ANOVA) models on dose normalized AUC. Results of this 

investigation revealed that variation in UGT2B15 accounted for approximately two-thirds of 

the variability in sipoglitazar plasma exposure, while no relationship between sipoglitazar 

plasma exposure and variants of the other UGT enzymes could be identified. This 

relationship between UGT2B15 genotype and sipoglitazar dose normalized AUC is shown in 

Figure 1. Considerable overlap was observed between genotype groups, particularly between 

the UGT2B15*1/*1 and UGT2B15*1/*2 genotypes (Figure 1). 
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The results of three preliminary phase I studies of sipoglitazar in healthy volunteers were 

combined for analysis of the data. There was a total of 82 subjects enrolled for whom both 

PK and UGT genotype information was available (Chapter 3, Table 1). The dose range 

included in the studies was 0.2-64mg for sipoglitazar and statistical analysis of area under the 

plasma concentration–time curve from time 0 to infinity (AUC) revealed dose proportionality 

across the dose range, with a slope and 95 % confidence interval of 0.99 and 0.92–1.05, 

respectively (Chapter 3). 

As a first step in the investigation the contribution of each genotype was assessed using 

Analysis of variance (ANOVA) models on dose normalized AUC. Results of this 

investigation revealed that variation in UGT2B15 accounted for approximately two-thirds of 

the variability in sipoglitazar plasma exposure, while no relationship between sipoglitazar 

plasma exposure and variants of the other UGT enzymes could be identified. This 
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Figure 1.  Dose normalized (1mg) histogram for sipoglitazar AUC by UGT2B15 

genotype in healthy volunteers (n=82). 

 

The principle metabolite of sipoglitazar is the dealkylated derivative M-I. The metabolite is 

formed in vitro predominantly by the action of cytochrome P450 (CYP) 2C8 on glucuronide 

intermediates [8]. Based on in-vitro results the metabolic pathway from sipoglitazar to M-I is 

one in which sipoglitazar is initially metabolized to sipoglitazar-G1 by 

UDP-glucuronosyltransferase and then sipoglitazar-G1 is metabolized to M-I by 

O-dealkylation by CYP2C8 and deconjugation [9]. The proposed metabolic pathway is 

shown in Figure 2. 
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Figure 2.  Postulated metabolic pathways of sipoglitazar. M-I-G, glucuronide of M-I 

(Reproduced with permission from ref. [9]). 

 

The M-I metabolite also undergoes subsequent conjugation to M-I-G and since a high 

concentration of M-I-G was present in the urine in monkey studies, it is presumed that the 

glucuronidation of M-I would also occur in humans [11]. Due to its unique metabolic 

formation, the metabolite M-I was considered to be a potential marker for the level of 

metabolic activity of UGT.  

Furthermore since sipoglitazar-G1 is deethylated by CYP-2C8 to form M-I, CYP2C8 

genotype samples were also collected in one phase I study (n=24) to exclude any influence of 

CYP-2C8 variants on exposure to sipoglitazar. Following graphical analysis, no relationship 

was evident between sipoglitazar exposure and CYP2C8 genotypes *1/*1, *1/*3, or *3/*3 

(Chapter 3). 

Parent to metabolite ratios for AUC were calculated to evaluate if there was a change in the 

metabolic activity relative to the UGT2B15 genotype. As shown in Figure 3, a reduction 

could be observed in the metabolite ratio across UGT2B15 genotypes, with the lowest value 

observed for UGT2B15*2/*2. Consistent with the observed increase in exposure for the 

UGT2B15*2/*2 genotype, these reductions in metabolite ratios indicate that reduced 

metabolic activity is associated with UGT2B15*2/*2, supporting the in vitro findings.  
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metabolic activity is associated with UGT2B15*2/*2, supporting the in vitro findings.  

 

Pharmacogenomics in Drug Development: Conclusions and Perspectives

177

7

12475_Stringer_Layout.indd   177 09-12-14   12:20



 

 

 

 

Figure 3.  Parent to metabolite ratio for area under the plasma concentration–time curve 

from time 0 to infinity for sipoglitazar by UGT2B15 genotype in healthy 

volunteers 

 

During the analysis of the early phase I studies two subjects, who were genotyped as 

UGT2B15*1/*1 and UGT2B15*1/*2 had considerably higher exposure than expected based 

on their genotype (approximately 2.5-4 fold higher than the mean AUC for the genotype). 

The metabolic ratios for these two subjects were then compared to the average ratio for the 

genotype. One of the subjects identified as an outlier had a metabolite ratio consistent with 

their genotype, indicating that other variables contribute to the disconnect between genotype 

and exposure. Since rates of glucuronidation are also affected by other factors such as age, 

diet or disease [10], further extension of this preliminary evaluation was performed through 

the development of a population PK model to characterize the pharmacokinetic profile and 

explore other potential sources of variability between individuals.  

Initial population PK model development  

A population PK model was developed based on the early phase I studies that are described in 

Chapter 3. The aim was to quantitatively evaluate the differences in clearance (CL) between 

UGT2B15 genotype and to evaluate other potential covariates that may contribute to 

explaining the inter subject variability for sipoglitazar.  
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The data were described using a 2-compartment model with a combined zero and first order 

uptake process. UGT2B15 genotype was included as a categorical covariate on CL. Figure 4 

shows the visual predictive check (VPC) for the observed and predicted data and key 

parameter estimates are shown in Table 1. 

All parameters could be estimated with good precision and the VPC shows that the median 

trend and variability can be well described in all three genotype groups. ETA shrinkage for 

clearance and V2 was estimated at 1.6 and 15%, respectively.  

Table 1. Key pharmacokinetic parameter estimates from small phase I study (n=82) in 

healthy volunteers 

Parameter Parameter 
(CV%) 

IIV (%, CV%) 

Clearance population, UGT2B15*1/*1 (L/hr) 4.9 (9.8) 

30.2 (26.4) Clearance population, UGT2B15*1/*2 (L/hr) 3.98 (4.2) 
Clearance population, UGT2B15*2/*2 (L/hr) 2.2 (5.1) 

Volume of central distribution (V2) (L) 10.5 (3.6) 15.7 (24.7) 

Peripheral volume of distribution (L) 1.2 (5.4)  
Residual error (proportional) 0.08 (17.8)  

Based on this preliminary evaluation there was approximately a 2.3 fold decrease in CL 

between the UGT2B15*1/*1 and UGT2B15*2/*2 genotype groups. Before accounting for 

UGT2B15 as a covariate on CL, inter individual variability (IIV) was estimated at 49%. After 

accounting for UGT2B15 genotype as a covariate, IIV on CL was reduced from 49 to 30%. 
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uptake process. UGT2B15 genotype was included as a categorical covariate on CL. Figure 4 
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parameter estimates are shown in Table 1. 

All parameters could be estimated with good precision and the VPC shows that the median 
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Residual error (proportional) 0.08 (17.8)  

Based on this preliminary evaluation there was approximately a 2.3 fold decrease in CL 

between the UGT2B15*1/*1 and UGT2B15*2/*2 genotype groups. Before accounting for 

UGT2B15 as a covariate on CL, inter individual variability (IIV) was estimated at 49%. After 

accounting for UGT2B15 genotype as a covariate, IIV on CL was reduced from 49 to 30%. 
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Figure 4.  Visual predictive check for dose normalized (64mg) plasma concentration data 

in 82 subjects from phase I data in healthy volunteers by genotype group. 

UGT2B15*1/*1 (n=19), UGT2B15*1/*2 (n=41), UGT2B15*2/*2 (n=22) 

 

Potential effects of the demographic covariates age, weight and gender were evaluated in the 

model using a forward inclusion procedure [12]. Based on the data in this healthy volunteer 

population none of the tested covariates at this stage were found to be significant. However as 

the distribution volume for body weight would be expected to be higher in diabetes patients 

and 96% of subjects enrolled in this study were Caucasian, a further covariate analysis was 

undertaken during the Phase II population PK analysis described in Chapter 4. 
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Pharmacokinetic studies in healthy volunteers 

During the early development phase, an important consideration is the characterization of the 

relationship between genotype and drug exposure. Pharmacogenomic guidelines from both 

the EMA and FDA highlight that conventional pharmacokinetic approaches (frequent blood 

sample collections), should be performed to evaluate the role of genotype on the disposition 

and recommend that these studies follow a similar approach to the evaluation in organ 

impairment where subjects are matched between groups for intrinsic factors such as age or 

body weight which may influence the PK of the drug [7, 13]. Evaluating genotype during 

phase I should be used in an exploratory context and for generating hypotheses that can be 

tested during the later development phase [13].  

To this end in addition to the preliminary phase I studies described in Chapter 3, an additional 

large phase I study for sipoglitazar was conducted in healthy volunteers (study overview 

presented in Chapter 4). The aim of this study was to the further investigate the correlation 

between UGT2B15 genotype and sipoglitazar metabolic phenotype in the context of all other 

potential sources of variation, in a diverse study population of approximately 500 healthy 

male and female subjects. As such five hundred and twenty-four subjects (mean age of 29.8 

years), including 220 male, 304 female, 108 Black or African American, and 104 Hispanic 

subjects were enrolled into the study.  

It was evaluated if the PK model that had been developed only on the preliminary phase I 

studies could then predict the mean and variability in such a large, diverse population. This 

was performed using an external VPC, where the median and variability simulated from the 

small population PK model are overlaid with the individual, median and observed variability 

from this large phase I trial. The results of this external VPC are shown in Figure 5.  
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Figure 5.  External visual predictive check (observed data from large phase I study in 

healthy volunteers n=524) and simulated median and prediction interval using 

the model developed on preliminary phase I data in healthy volunteers (n=82). 

 

 

Although the median and the extent of the variability can be well described for the 

UGT2B15*1/*1 genotype, there appears to be a modest under prediction of the extent of 

absorption and of the elimination phase for the typical subject in the UGT2B15*2/*2 group. 

There may be a number of explanations for this difference based on differences in the 

population characteristics of the subjects enrolled. To evaluate these covariate differences 

further, a visual inspection of the demographic data and the CL from the small phase I study 
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and CL from the model developed on the large phase I dataset (Chapter 4) was performed. 

The results of this are shown in Figures 6 and 7.  
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Figure 6. Plots for age vs CL. Individual (triangle 

– large phase I, circles – small phase I) and 

smoothing spline (solid line – large phase I, 

dashed line – small phase I). Color by genotype 

UGT2B15*1/*1 (blue), UGT2B15*1/*2 (red), 

UGT2B15*2/*2 (green) 
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Figure 7. Plots for body weight vs CL. 

Individual (triangle – large phase I, circles – 

small phase I) and smoothing spline (solid line 

– large phase I, dashed line – small phase I). 

Color by genotype UGT2B15*1/*1 (blue), 

UGT2B15*1/*2 (red), UGT2B15*2/*2 (green) 

Based on this graphical analysis, the relationship between age and CL appears to be 

comparable between the two datasets but some differences appear to be present in the 

relationship between body weight and CL. This is likely resulting from the larger body 

weight range in the large phase I trial that creates a higher sensitivity for the existence of an 

inter-relationship. One of the major differences in the large phase I trial is the enrollment of a 

diverse ethnic population. A summary of the data for CL by race is shown in Figure 8 for the 

large phase I study. Of the 122 subjects that were enrolled in the UGT2B15*2/*2 genotype 

group, 70% were non-hispanic white, 18% were Hispanic and 12% were Black or African 

American. In the UGT2B15*2/*2 genotype in the small phase I trial only Caucasian subjects 

were enrolled in this genotype group. Furthermore in the UGT2B15*2/*2 genotype group in 
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the small phase I studies, 73% of subjects were male as compared to only 39% in the large 

phase I trial (Figure 9). 

Figure 8.  Box plot for CL by ethnicity and UGT2B15 genotype for large phase 1 study 

in healthy volunteers. 1=American Indian or Alaskan native, 2=Asian, 

3=Black or African American, 4=Native Hawaiian or Other Pacific Islander 5= 

non-hispanic white, 6= Multiracial 
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Figure 9.  Box plot for CL and gender for large phase I study in healthy volunteers. 

Scatter plot of CL (triangles) for small phase I in healthy volunteers by gender. 

 

 

The differences in CL by genotype between the studies are summarized in Table 2. 

Approximately a 1.4-fold difference is observed between the CL estimates for the 

UGT2B15*2/*2 genotype between the studies.  
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Table 2.  Model estimated CL values by genotype for small (n=82) and large phase I 

(n=524) models in healthy volunteers 

Genotype Small phase I model estimated 
population CL (CV%) 

Large phase I model estimated 
population CL (CV%) 

UGT2B15*1/*1 (L/hr) 4.9 (9.8) 4.82 (2.5) 
UGT2B15*2/*1 (L/hr) 3.98 (4.2) 3.29 (9.2) 
UGT2B15*2/*2 (L/hr) 2.2 (5.1) 1.55 (2.0) 

A combination of the differences in body weight, gender or ethnicity may contribute to 

explaining the difference that is observed between studies in the UGT2B15*2/*2 genotype 

group. Some limitations may have been observed in the predictability of these small phase I 

studies to a more diverse population, but the value of this early preliminary work is shown as 

the general trends in the genotype-exposure relationship can already be identified and this 

information can then be used to inform the design of future trials to appropriately characterize 

these relationships in the target population.  

Evaluating the clinical relevance of genotype differences in exposure 

As a result of the preliminary evaluation described in Chapter 3, genotype analysis was 

carried out for the UGT2B15 polymorphism in all subjects enrolled in the subsequent phase 

II trials (n=627). The aim of the work described in Chapters 4 and 5 was to develop a 

population PK-PD model to describe the relationship between changes in exposure and 

clinical response and to evaluate the necessity of genotype-based dosing in relation to current 

dosing practice in T2D.  

Development of a population PK model for sipoglitazar in T2D patients 

Phase II clinical studies provide the opportunity to assess the exposure of a drug in the target 

patient population and to evaluate the effect of genotype relative to other intrinsic or extrinsic 

factors. Diabetes may have the potential to alter the PK of a drug due to its effects on protein 

levels, lipids and carbohydrate metabolism [14]. These factors may result in changes in 

absorption due to decreased gastric emptying, distribution changes related to non-enzymatic 

glycation of albumin and biotransformation or excretion changes due to regulation of 

enzymes or nephropathy [14]. 

 

 

 

 

In Chapter 4 a population PK analysis was conducted with the aim to quantify the differences 

in exposure in the target population between UGT2B15 genotype, to evaluate other potential 

sources of variability and to derive exposure values by dose for comparison to the safety 

margin. The model estimated median clearance values for UGT2B15*2/*2 genotype were 

found to be approximately 2-fold and 3-fold higher than those subjects with the 

UGT2B15*2/*1 or UGT2B15*1/*1 genotypes, respectively.  

Before accounting for any covariates (including genotype), IIV on clearance was 60%; 

however, after including genotype as a covariate, the IIV of clearance was reduced to 40%. 

Only one other covariate (Free fat mass) was found to be significant during the covariate 

analysis and accounted for an additional 2% of the IIV. This analysis confirmed the earlier 

findings of the relationship of UGT2B15 genotype to sipoglitazar exposure in the target 

population. Although, during the analysis of the small phase I studies a somewhat lower 

(2.3-fold) difference in CL was observed between the UGT2B15*1/*1 and UGT2B15*2/*2 

genotypes.  

Post-hoc CL values were then used to determine individual exposure over the dose interval at 

steady state (AUC24). These exposure values were then compared to the safety margin for 

the therapeutic dose and were used as the input into the PK-PD model to evaluate the 

exposure response relationship.  

Predictability of the genotype-phenotype relationship 

Once a relationship has been established between genotype and exposure, a key question is 

the determination of not only the magnitude of the variability between genotypes but also 

how predictable the genotype-phenotype relationship is. This becomes important if dosing 

based on genotype were to be considered. If subjects have a higher exposure than predicted 

based on their genotype, a genotype-based dosing approach may unintentionally result in 

several fold higher exposure than expected and could exceed safety margins depending on the 

therapeutic window of the drug.  

An approach to evaluate the predictability of the genotype-phenotype relationship is 

described in Chapter 4. The predictive strength of genotype for apparent drug clearance was 
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II trials (n=627). The aim of the work described in Chapters 4 and 5 was to develop a 

population PK-PD model to describe the relationship between changes in exposure and 

clinical response and to evaluate the necessity of genotype-based dosing in relation to current 

dosing practice in T2D.  

Development of a population PK model for sipoglitazar in T2D patients 

Phase II clinical studies provide the opportunity to assess the exposure of a drug in the target 

patient population and to evaluate the effect of genotype relative to other intrinsic or extrinsic 

factors. Diabetes may have the potential to alter the PK of a drug due to its effects on protein 

levels, lipids and carbohydrate metabolism [14]. These factors may result in changes in 

absorption due to decreased gastric emptying, distribution changes related to non-enzymatic 

glycation of albumin and biotransformation or excretion changes due to regulation of 

enzymes or nephropathy [14]. 

 

 

 

 

In Chapter 4 a population PK analysis was conducted with the aim to quantify the differences 

in exposure in the target population between UGT2B15 genotype, to evaluate other potential 

sources of variability and to derive exposure values by dose for comparison to the safety 

margin. The model estimated median clearance values for UGT2B15*2/*2 genotype were 

found to be approximately 2-fold and 3-fold higher than those subjects with the 

UGT2B15*2/*1 or UGT2B15*1/*1 genotypes, respectively.  

Before accounting for any covariates (including genotype), IIV on clearance was 60%; 

however, after including genotype as a covariate, the IIV of clearance was reduced to 40%. 

Only one other covariate (Free fat mass) was found to be significant during the covariate 

analysis and accounted for an additional 2% of the IIV. This analysis confirmed the earlier 

findings of the relationship of UGT2B15 genotype to sipoglitazar exposure in the target 

population. Although, during the analysis of the small phase I studies a somewhat lower 

(2.3-fold) difference in CL was observed between the UGT2B15*1/*1 and UGT2B15*2/*2 

genotypes.  

Post-hoc CL values were then used to determine individual exposure over the dose interval at 

steady state (AUC24). These exposure values were then compared to the safety margin for 

the therapeutic dose and were used as the input into the PK-PD model to evaluate the 

exposure response relationship.  

Predictability of the genotype-phenotype relationship 

Once a relationship has been established between genotype and exposure, a key question is 

the determination of not only the magnitude of the variability between genotypes but also 

how predictable the genotype-phenotype relationship is. This becomes important if dosing 

based on genotype were to be considered. If subjects have a higher exposure than predicted 

based on their genotype, a genotype-based dosing approach may unintentionally result in 

several fold higher exposure than expected and could exceed safety margins depending on the 

therapeutic window of the drug.  

An approach to evaluate the predictability of the genotype-phenotype relationship is 

described in Chapter 4. The predictive strength of genotype for apparent drug clearance was 
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investigated by analyzing the data without a priori consideration of UGT2B15 genotype in 

the model. Without this knowledge, the individual value of CL was assigned over one of three 

distributions using a probability model (NONMEM $MIX) to assign subjects to one of three 

subpopulations having either a low, intermediate or high CL, based on the joint 

model-optimization of probability and population parameters [15]. These three populations 

(POP1, POP2, and POP3) were generated for post-hoc evaluation against the actual 

UGT2B15 genotype *1/*1, *1/*2 and *2/*2 and the difference in subject assignment between 

categories was then compared (appendix Chapter 4).  

From the results of the comparison between actual assignment of genotype and assignment to 

a population based on the model parameters, in total, 27% (278/1023) of all subjects had been 

assigned to a different population category than expected based on their genotype. The 

highest number of subjects misclassified was for the UGT2B15*1/*1 genotype. This is likely 

due to the large overlap in CL distribution between UGT2B15*1/*1 and UGT2B15*1/*2 

subjects; 62% of the UGT2B15*1/*1 subjects had been assigned to the POP2 (intermediate 

CL) category. However the consequence of this depends on the specific type of 

genotype-based dosing approach that would be applied clinically. For example, the biggest 

impact of a misspecification of CL class based on genotype would occur if a subject who was 

genotyped as an extensive metabolizer actually appeared to have a clearance within the range 

associated with that in the poor metabolism group. That subject would then receive a dose 

that could result in the exposure for that subject being several fold greater than expected. For 

a drug with a wide therapeutic index this may not be of clinical relevance but for a drug of 

which the top dose is close to the exposure margin, the risks of overdosing subjects should be 

considered on balance to the risk/benefit profile.  

Evaluating the influence of genotype on clinical response 

A quantitative and descriptive analysis of the influence of genotype on the pharmacokinetic 

properties of sipoglitazar was described in Chapters 3 and 4. The question for the clinical 

development program now focuses on evaluation of the relationship between changes in the 

exposure due to genotype and its magnitude of effect on the clinical response. In Chapter 5, it 

was addressed if the relationship between changes in the PK due to genotype would result in 

 

 

 

 

clinically relevant change in response using fasting plasma glucose (FPG) and glycosylated 

hemoglobin (HbA1c) as surrogate biomarkers for clinical response. 

The approach was taken to develop a population PK-PD model to describe the changes in 

FPG and HbA1c as a function of individual exposure, whilst PD response data from 

rosiglitazone at a therapeutic dose of 8mg QD were incorporated into the analysis as 

reference data. The model could describe the individual and median profiles for all dose 

levels (8-64 mg total daily dose of sipoglitazar) and no differences in the shape of the 

exposure response relationship were found between genotypes. The model derived median 

exposure response relationship for the typical patient between AUC and change from baseline 

in HbA1c is shown in Figure 10 in relation to the actual observed data from the Phase II 

trials. As outlined in Chapter 2, the therapeutic dose should be considered relative to the 

exposure response relationship and evaluated in context to the safety margin. For sipoglitazar, 

AUC at steady state achieving half the maximal response (AUC50) and the established 

exposure limit are shown in Figure 10. The median exposure range between UGT2B15*1/*1 

and UGT2B15*2/*2 genotypes for a dose of 32mg are shown on Figure 10. At this dose level 

the response in HbA1c is different by genotype as the exposure range between genotypes sits 

in the middle of the dose response curve (Table 3). If the dose was closer to the Emax for 

glycemic control, i.e. exposure for all genotypes was above the exposure limit of 73 mg.hr/L 

(corresponding to a dose of approximately 400mg for all subjects), changes in exposure 

caused by genotype would have less of an impact on the predicted/expected change in HbA1c 

(Figure 10, Table 3). However if higher exposure levels were to be achieved for all subjects, 

the exposure would then exceed the safety margin for a substantial fraction of the population. 

The current exposure limit is based on mean data from non-clinical studies; however this 

margin also includes a degree of uncertainty on clinical relevance and as well as on 

variability within the patient population. Significantly exceeding this would require 

additional insight in clinical safety and tolerability. 
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exposure limit are shown in Figure 10. The median exposure range between UGT2B15*1/*1 

and UGT2B15*2/*2 genotypes for a dose of 32mg are shown on Figure 10. At this dose level 

the response in HbA1c is different by genotype as the exposure range between genotypes sits 

in the middle of the dose response curve (Table 3). If the dose was closer to the Emax for 

glycemic control, i.e. exposure for all genotypes was above the exposure limit of 73 mg.hr/L 

(corresponding to a dose of approximately 400mg for all subjects), changes in exposure 

caused by genotype would have less of an impact on the predicted/expected change in HbA1c 

(Figure 10, Table 3). However if higher exposure levels were to be achieved for all subjects, 

the exposure would then exceed the safety margin for a substantial fraction of the population. 

The current exposure limit is based on mean data from non-clinical studies; however this 

margin also includes a degree of uncertainty on clinical relevance and as well as on 
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Figure 10.  Observed change from baseline in HbA1c (%), observed AUC for all 

sipoglitazar dose levels in the Phase II trials (3 months) and simulated median 

exposure response relationship between HbA1c and AUC. (  median 

exposure range between UGT2B15*1/*1 and UGT2B15*2/*2 genotypes for a 

dose of 32 mg,  median exposure range between UGT2B15*1/*1 and 

UGT2B15*2/*2 genotypes for a dose of 400 mg). 

 

 

The developed PK-PD model was used to simulate the expected FPG and HbA1c change 

from baseline at 6 months (duration of a Phase III trial). The simulation showed that for 

 

 

 

 

sipoglitazar, a dose of 32 mg in the UGT2B15*2/*2 genotype would be expected to provide 

an equivalent result to the reference treatment rosiglitazone (Table 3). The results of the 

simulation also show that for a dose of 32 mg, a less than proportional change in HbA1c was 

observed relative to the changes in drug exposure across genotypes. In the phase II 

population, approximately a 3.3-fold difference in CL is observed between UGT2B15*1/*1 

and UGT2B15*2/*2 genotypes, however this results in only a 1.8-fold difference in HbA1c 

drop relative to the baseline. Although a dose of 32 mg in the UGT2B15*2/*2 subjects can 

achieve reductions in HbA1c equivalent to rosiglitazone, a clinically significant difference 

(0.5% change from baseline in HbA1c [16]) is observed between the UGT2B15*2/*2 and 

UGT2B15*1/*1 genotypes as a result of the differences in drug exposure. It was therefore 

postulated that genotyped based dosing could contribute to the normalization of response 

across individuals by achieving comparable exposure levels across genotype groups.  

Table 3.  Simulated median change from baseline in HbA1c at 6 months by genotype 

for sipoglitazar at a dose of 32 and 400 mg and difference in CL between 

UGT2B15 genotypes (T2D subjects) 

Genotype/Treatment CL 
(L/hr) 

Change from baseline HbA1c at 
6 months for 32 mg (%) 

(Exposure range 6-21 mg.hr/L) 

Change from baseline HbA1c at 6 
months for 400 mg (%) 

(Exposure range 79-261 mg.hr/L) 

UGT2B15*1/*1  5.04 -0.6 -1.7 

UGT2B15*1/*2  3.35 -0.8 -1.8 

UGT2B15*2/*2  1.53 -1.1 -1.9 

Rosiglitazone 8mg  -1.2 

Evaluating genotyped-based dosing approaches 

When genetically determined differences in exposure have been observed, there are specific 

approaches recommended by the regulatory authorities to determine the appropriate dosing 

adjustment [7]. These include dose titration, optional gene base dosing or dosing based on 

genotype. The PK-PD model developed in Chapter 5 was then used to simulate these various 

scenarios and evaluate the most efficient dosing strategy to achieve optimal therapeutic 

response for all genetic subgroups for sipoglitazar. 
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approaches recommended by the regulatory authorities to determine the appropriate dosing 

adjustment [7]. These include dose titration, optional gene base dosing or dosing based on 
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scenarios and evaluate the most efficient dosing strategy to achieve optimal therapeutic 

response for all genetic subgroups for sipoglitazar. 
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Simulations were performed evaluating three different approaches, (1) a single dose level for 

all subjects, (2) genotype-based dose adjustment (where genotype is used to estimate the 

starting dose) or (3), titration based on therapeutic response. Based on the simulation at 6 

months, using a single dose level for all subjects, a dose of 96mg would be expected to 

provide a comparable result to the rosiglitazone treatment arm in all genotype groups. 

However a dose of 96mg would be expected to exceed the currently defined safety margin, 

particularly for subjects in the UGT2B15*2/*2 genotype and would be a dose higher than had 

previously been administered during either Phase I or Phase II. If such an approach was to be 

taken, additional safety evaluation and/or TDM of plasma levels in an early stage of the study 

would be needed at these higher exposures. The use of TDM may be an alternative approach 

to prevent over exposure of subjects [17,18]. This could be of particular value if there was a 

disconnect between the genotype-exposure relationship. TDM has been routinely used as tool 

to individualize drug dosage in many therapeutic areas and further discussion of this 

approach is out of scope of this thesis [18,19,20].  

As shown from the simulation of a genotype based dosing approach in Chapter 5, a result 

equivalent to the rosiglitazone reference dose could (also) be achieved for all genotypes by 

administering lower doses to the UGT2B15*2/*2 and UGT2B15*1/*2 genotype groups. The 

optimal genotype-based approach would have the following fixed dosing scheme: 

UGT2B15*1/*1=96 mg, UGT2B15*1/*2=64 mg, and UGT2B15*2/*2=32 mg. The design of 

the Phase III study would then include pre-selection of dose based on genotype for all 

subjects enrolled in the trial. Such an approach would also require the development of an 

assay for UGT2B15 genotype for the relevant genetic testing to be performed in the clinic if 

genotyped-based dosing was then included in the label [21].  

Although a genotype-based dosing approach could be used to normalize response between 

the genetic subgroups, in T2D a titration approach based on efficacy/safety is routinely 

applied. A comparison was therefore simulated between genotyped-based dosing and titration 

based approaches, with all subjects in the titration group starting at 32mg. Subjects in the 

UGT2B15*2/*2 group would not need to undergo dose titration as 32mg appears to be the 

optimal dose for this genotype group. The results of this simulation highlight two key points. 

 

 

 

 

The magnitude of reduction in FPG or HbA1c between the genotype and titration approaches 

would be expected to be the same but the time taken to eventually achieve that maximum 

response would be shorter when pre-selection of dose was based on genotype. The 

differences between genotyped and titration approaches in the time to maximum effect was 

estimated at 2 and 3 months for the UGT2B15*1/*2 and UGT2B15*1/*1 genotypes 

respectively (Chapter 5, Figure 4a and 4b). Since there is a causal link established between 

hyperglycemia and diabetic complications, earlier reduction in glycemic markers through the 

use of genotyped-based dosing may offer additional clinical benefit in specific cases or 

patient populations [22]. 

The frequency of the UGT2B15*2/*2 genotype is approximately 22% in the Caucasian 

population, but in Japanese American subjects, in a sample size of 77, there were no subjects 

reported as UGT2B15*2/*2 genotype [10]. This is an import consideration for comparing 

genotype-based dosing and titration approaches since the benefit of genotype-based dosing 

would affect a lower number of subjects if there was a higher proportion of UGT2B15*2/*2 

genotype subjects as they would already start treatment at the most efficacious dose without 

the need for genotyping. If the frequency of the UGT2B15*1/*1 and UGT2B15*1/*2 

genotypes was higher, genotyped-based dosing may be advantageous as these subjects would 

start at the correct dose and would not require additional titration steps. Therefore, the 

frequency of the genotype in different ethnic populations should also be considered in 

evaluating the most appropriate dosing scheme.  

Genotype influences on model based approaches in disease progression analysis 

Analysis conducted using Genome Wide Association Studies (GWAS) in T2D have identified 

significant associations for more than 35 independent loci [23]. These studies are conducted 

not only to identify new disease genes but also to evaluate the mechanisms behind the 

disease, with initial studies identifying loci that impact directly on beta cell function [24]. In 

type 1 diabetes (T1D) the concept that candidate genes may affect disease progression by 

modulating survival and function of the β-cells has already been evaluated for the gene 

cathepsin H [27]. Results in children with T1D showed that carriers of the T allele required a 

significantly higher insulin dose to maintain glycemic control and carriers of this genotype 
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had faster disease progression, leading to a more prominent β-cell dysfunction [27]. The 

application of disease progression models incorporating drug and genetic information may 

offer further insight into these interesting findings on disease differences by genotype. 

The aim of the work described in Chapter 6 was to evaluate the drug and disease effects on 

FPG and HbA1c over a long term period in treatment experienced Japanese T2D subjects 

receiving the current standard of care. Using the model developed on this long term data 

(>2years) it can be hypothesized how PGx in T2D may influence drug response through both 

symptomatic and disease modifying effects. 

In Chapter 5 it was demonstrated that pre-selection of an optimal dose based on genotype 

would result in a decrease in the time to reach maximum effect as compared to using titration 

based on efficacy. However T2D is a slowly progressing disease and the symptomatic 

benefits of this early optimization of dose should also be evaluated considering the influence 

of disease progression [25]. It could be postulated that through genotyping a subject a more 

efficacious starting dose could be selected that would reduce the time taken for titration. A 

simulation was therefore performed to evaluate how reducing the time taken to reach the 

maximal dose during titration would influence the FPG profile over a period of 5 years.  

Simulation for a range of ET50 values was performed (0-150 days); where ET50 represents 

the time taken to achieve half the maximal dosage for a subject undergoing titration. Results 

in Figure 11 show that decreasing titration time has several consequences on the long term. 

As the time to maximal effect is reduced greater symptomatic benefit of FPG reduction can 

be obtained, however as there is no change in the underlying disease rate symptomatic 

benefits observed early in the treatment period have almost disappeared after 5 years. This is 

consistent with the profile for a disease independent symptomatic effect [26]. 

In Figure 12, the effects of differences in the disease progression rate for the FPG profile are 

shown. This may be as a result of a treatment that directly targets a novel disease pathway 

identified from GWAS or that a subject's disease progression rate, as observed in T1D, can be 

different depending on the genotype. Interestingly, this simulation shows that changes in 

disease progression rate would only appear to have a substantial influence on FPG levels in 

 

 

 

 

this treatment experienced patient population approximately 1.5 years from the start of 

treatment.   

 

Figure 11. Simulation of median FPG change 

over time for a range of ET50 values (all 

simulations performed using a DPRC value in 

the model of 0.013 year-1). 

 

Figure 12. Simulation of median FPG change 

over time for a range of disease progression rate 

(DPRC) values (all simulations performed using 

an ET50 value in the model of 75 days). 

As shown in Figures 11 and 12, the advantages of symptomatic and disease modifying 

benefits occur on different timescales. Early symptomatic improvements would generate a 

short-term improvement that decreases over time. In contrast, the disease modifying effects 

on FPG propagate over time. An optimized treatment approach in T2D would therefore not 

only have symptomatic improvement but could also interact with the disease progression rate. 

It may therefore be that the most optimal PGx driven treatment approaches come from a 

range of different studies involving genes that target different pathways. 

Perspectives on approaches to evaluate the impact of genotype in clinical development 

During the non-clinical stage if a polymorphic gene is identified to play a central role in the 

metabolism of the drug, consideration should be given to this during the design of the first in 

human trial (FIH) [28]. A key component of this is the prediction of the influence of genotype 
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treatment.   

 

Figure 11. Simulation of median FPG change 

over time for a range of ET50 values (all 

simulations performed using a DPRC value in 

the model of 0.013 year-1). 

 

Figure 12. Simulation of median FPG change 

over time for a range of disease progression rate 

(DPRC) values (all simulations performed using 

an ET50 value in the model of 75 days). 
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short-term improvement that decreases over time. In contrast, the disease modifying effects 

on FPG propagate over time. An optimized treatment approach in T2D would therefore not 

only have symptomatic improvement but could also interact with the disease progression rate. 

It may therefore be that the most optimal PGx driven treatment approaches come from a 

range of different studies involving genes that target different pathways. 

Perspectives on approaches to evaluate the impact of genotype in clinical development 

During the non-clinical stage if a polymorphic gene is identified to play a central role in the 

metabolism of the drug, consideration should be given to this during the design of the first in 
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differences from non-clinical data. As proposed by Zhou et al, a predict, learn and confirm 

approach towards clinical development should be implemented [29]. Physiologically-based 

pharmacokinetic (PBPK) models are built mainly from drug-independent “system” 

information and incorporate both intrinsic and extrinsic factors [30]. These models can be 

used to assess the influence of genotype on human drug exposure before the conduct of the 

FIH trial by utilizing the non-clinical animal and in vitro data. This is an important 

consideration for making predictions on genotype effects on exposure as PBPK models can 

incorporate metabolic intrinsic clearance values for multiple CYP enzymes and information 

on the frequency and activity of different allelic forms [31,32]. The influence of genotype can 

then be assessed relative to the contribution of enzymes and transporters on intestinal and 

hepatic availability, with the aim to fully understand the impact of these variables on the 

bioavailability in vivo [33]. 

If the frequency of the genotype for the enzyme is already known, subjects can be enrolled 

into the phase I trials to evaluate the differences in exposure between these genetic subgroups 

using a stratified approach. These early phase I studies can then be used to further validate or 

challenge the PBPK model assumptions. Such an approach would also enable simulations to 

be performed to evaluate potential differences by genotype in drug-interaction and organ 

impairment studies [33]. Lower doses in subjects with organ impairment maybe required for 

subjects who are poor metabolizers of a drug and the application of PBPK simulations could 

be used to assess the exposure changes by genotype relative to the changes in hepatic 

function or protein binding. This information can be used to appropriately plan and prioritize 

studies in special populations in the clinical development program and inform patient 

inclusion/exclusion criteria in phase II.  

Population PK analysis of clinical data, including maximum likelihood or Bayesian 

methodology can be used in combination with bottom-up PBPK approaches [31]. PBPK 

models can be combined with population PK approaches to evaluate PK sample collection 

and optimal design for the phase II or III trials [31,34,35]. Virtual populations can be 

simulated using the PBPK models and these simulations can be evaluated by population PK 

methods. This combined approach has already been demonstrated to assess co-medication as 

 

 

 

 

a covariate, and further extension of this approach would include genotype as an additional 

covariate in the analysis [34,35]. It would also be of value to use PBPK models for trial 

simulation if only limited subjects from a particular genotype subgroup have been enrolled in 

the phase I studies or if the phase II studies are expanded into subjects of a different ethnic 

background as such information can be incorporated into the simulation.  

Following the phase II studies, a population PK approach would be applied to evaluate the 

influence of genotype as a covariate on exposure data relative to the other intrinsic and 

extrinsic factors which may also contribute to the variability both within and between 

subjects in the target patient population. The data from this population PK approach can then 

be compared to the earlier derived PBPK model forecast to validate the model assumptions in 

special populations. 

Understanding the dose-exposure-response relationship is a key component in evaluating how 

genotype differences in exposure may result in a different clinical response. This should be 

evaluated relative to any appropriate safety margins, whilst the magnitude of influence of 

genotype should be considered relative to the other covariates identified. The development of 

a PK-PD or PBPK-PD model incorporating safety and/or efficacy can be used to understand 

the shape of this dose response relationship. One of the advantages of implementing PBPK 

models is the ability to predict the impact of specific mechanistic processes and determinants 

on the tissue dose [36]. Further extension of these models by linking PBPK to PD response 

can be considered in the simulation, and the relationships between drug exposure and efficacy 

or toxicity can be evaluated [37]. An additional advantage of linking PBPK models to PD 

response is that the local concentration at the effect site can be determined and used as the 

input for the PD response, rather than plasma concentration. This is particularly important 

when transporters are involved in drug disposition at the effect site, as there may be 

disconnect between the plasma concentration and the concentration at the site of action [38]. 

The development of models linking exposure with clinical response would then be used for 

clinical trial simulation evaluating different dosing scenarios such as genotype-based dosing 

or TDM approaches to appropriately design further studies. As clinical trials expand into 

other regions, the frequency of the genotype should then be considered relative to ethnicity 
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on the tissue dose [36]. Further extension of these models by linking PBPK to PD response 

can be considered in the simulation, and the relationships between drug exposure and efficacy 

or toxicity can be evaluated [37]. An additional advantage of linking PBPK models to PD 

response is that the local concentration at the effect site can be determined and used as the 

input for the PD response, rather than plasma concentration. This is particularly important 

when transporters are involved in drug disposition at the effect site, as there may be 

disconnect between the plasma concentration and the concentration at the site of action [38]. 

The development of models linking exposure with clinical response would then be used for 

clinical trial simulation evaluating different dosing scenarios such as genotype-based dosing 
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and regional lifestyle differences. The necessity of genotype-based dosing approaches may 

also depend on the frequency of the genetic subgroups enrolled.  

Less progress has been made in understanding the role of PGx differences directly 

influencing PD response. In oncology there are several examples where drugs are 

administered only in certain genetic subpopulations, for example genetic testing for K-Ras 

mutation and EGFR-expression are required prior to initiating treatment for cetuximab and 

panitumumab [39]. As shown for warfarin, a genotype-based dosing approach is not only 

limited to genetic differences which influence the PK, but also including genetic differences 

that directly affect the PD response. Further expansion of the current model based approaches 

for warfarin would link PBPK models with PD response and incorporate the differences due 

to VKORC1 genotypes [40]. When evaluating the variability between individuals in PD 

response consideration should not be limited to the multiple CYP enzymes or transporters 

that are involved in the metabolism or uptake of the drug, but also to the possibility that 

genetic subgroups in the PD may also contribute to the variability observed in the response.  

Conclusions 

The applications of PGx across the clinical development paradigm are starting to change the 

approach to evaluating clinical response between individuals. As PGx sample collection 

becomes routine in clinical studies, the possibility to integrate this into our understanding of 

drug effects should only increase. Model based approaches integrating physiological based 

parameters or linking exposure with response are powerful tools to quantify and evaluate the 

impact of genetic differences resulting from either change in drug exposure or directly related 

to clinical response. Evaluating this impact early in the development phase is important to 

appropriately design future clinical studies and to ensure that the exposure response 

relationship can be appropriately determined for all genetic subgroups. Such a comprehensive 

approach should only improve study design and patient outcomes and ultimately help to 

reduce drug attrition across the pharmaceutical industry.  
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The investigation described in this thesis focused on assessing the role of genotype 

differences in explaining inter-individual variability in drug metabolism and the impact of 

these differences on both the clinical response and the selection of the appropriate dosing 

scheme. In Chapter 1 this thesis starts with an overview of the current applications of 

Pharmacogenomics (PGx) across drug development with an emphasis on the implications of 

polymorphisms in drug metabolizing enzymes and transporters. The second section (Chapter 

2) focuses on the application of model based approaches to evaluate differences in drug 

exposure and response as a result of these genetic differences between individuals. In 

Chapters 3, 4 and 5 the focus for this thesis is on a clinical example for the oral glucose 

lowering drug, sipoglitazar which undergoes phase II biotransformation by conjugation 

catalyzed by UDP-glucuronosyltransferase (UGT). Clinical data from four phase I studies in 

healthy volunteers and from two phase II trials in subjects with type 2 diabetes mellitus (T2D 

patients) were utilized in the analysis. PGx samples for determination of UGT genotype were 

collected for all subjects enrolled in the trials 

 

Clinical relevance of genetic variants in pharmacokinetic properties 

Exploratory preliminary evaluation of genotype during Phase I clinical trials 

In Chapter 3, an investigation was conducted to evaluate the enzymes that were contributing 

to the inter-individual variability of sipoglitazar and to then quantify the resulting differences 

in exposure between genotypes. The analysis in Chapter 3 was conducted using data from a 

trio of phase I clinical pharmacology studies in healthy volunteers (n=82). The dose range for 

sipoglitazar was 0.2-64mg. Statistical analysis of area under the plasma concentration–time 

curve from time 0 to infinity (AUC) revealed dose proportionality across the dose range 

(slope = 0.99; 95% confidence interval 0.92-1.05), (Chapter 3). As a first step in the PGx 

investigation, the contribution of each genotype to the variation in dose normalized AUC was 

assessed using Analysis of variance (ANOVA). Results of this investigation revealed that 

variation in UGT2B15 accounted for approximately two-thirds of the variability in 

 

 

 

 

sipoglitazar plasma exposure, while no relationship between sipoglitazar plasma exposure 

and variants of the other UGT enzymes could be identified. Considerable exposure overlap 

was observed between genotype groups, particularly between the UGT2B15*1/*1 and 

UGT2B15*1/*2 genotypes and the exposure was found to be approximately two- to 

three-fold higher in the UGT2B15*2/*2 genotype than either UGT2B15*1/*1 or 

UGT2B15*1/*2. Two outlier subjects were identified. These subjects, which were genotyped 

as UGT2B15*1/*1 and UGT2B15*1/*2, had considerably higher exposure than expected 

based on their genotype. This analysis showed that across the population UGT2B15, 

genotype could explain 66% of the variability of sipoglitazar exposure as determined by 

dose-normalized AUC. Other factors such as age, body mass index or sex appeared to 

contribute little to explaining the additional variability or outlying subjects in this healthy 

volunteer population.  

 

Development of a population PK model for sipoglitazar in T2D patients 

 The investigation and analysis conducted in Chapter 4 was then focused on evaluating 

genotype influences in the target population, T2D patients. In this chapter data from two 

phase II randomized, double-blind studies (sipoglitazar once daily: 8, 16, 32, or 64 mg; 

sipoglitazar twice daily: 16 or 32 mg; rosiglitazone 8 mg once daily and placebo for 13 

weeks; n = 780) were included in the analysis A population PK analysis was conducted with 

the aim to quantify the differences in exposure in the target population between UGT2B15 

genotype, to evaluate other potential sources of variability and to derive exposure values by 

dose. The model estimated median clearance values for UGT2B15*2/*2 genotype were found 

to be approximately 2-fold and 3-fold higher than those subjects with the UGT2B15*1/*2 or 

UGT2B15*1/*1 genotypes, respectively. Before accounting for any covariates (including 

genotype), inter-individual variability (IIV) on clearance was 60%; however, after including 

genotype as a covariate, the IIV of clearance was reduced to 40%. Only one other covariate 

(fat free mass) was found to be significant during the covariate analysis and accounted for an 

additional 2% of the IIV. This analysis confirmed the earlier findings of the relationship of 

UGT2B15 genotype to sipoglitazar exposure in the target population. Post-hoc CL values 
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were then used to determine individual exposure over the dose interval at steady state 

(AUC24). These exposure values were then were used as the input into the PK-PD model to 

evaluate the exposure response relationship described in Chapter 5.  

 

Evaluating the clinical relevance of genotype differences in exposure 

Evaluating the influence of genotype on clinical response through disease progression 

analysis 

In Chapter 5, the approach was taken to develop a population PK-PD model to describe the 

changes in FPG and HbA1c as a function of individual exposure, whilst PD response data 

from rosiglitazone at a therapeutic dose of 8mg QD were incorporated into the analysis as a 

reference group The developed PK-PD model could describe the individual and median 

profiles for all dose levels (8-64 mg total daily dose of sipoglitazar) and no differences in the 

shape of the exposure response relationship were found between genotypes. The PK-PD 

model was used to simulate the expected FPG and HbA1c change from baseline at 6 months 

(duration of a Phase III trial) by UGT2B15 genotype. The simulation showed that for 

sipoglitazar, a dose of 32 mg in the UGT2B15*2/*2 genotype would be expected to provide 

an equivalent result to the reference treatment rosiglitazone. The results of the simulation also 

show that for a dose of 32 mg, the change in HbA1c was less than proportional relative to the 

changes in drug exposure across genotypes. In the phase II population, approximately a 

3.3-fold difference in CL is observed between UGT2B15*1/*1 and UGT2B15*2/*2 

genotypes, however this results in only a 1.8-fold difference in HbA1c drop relative to the 

baseline. Although a dose of 32 mg in the UGT2B15*2/*2 subjects can achieve reductions in 

HbA1c equivalent to rosiglitazone, the reduction in HbA1c was significantly less in the 

UGT2B15*1/*1 genotype as compared to the UGT2B15*2/*2 genotype. 

 It was therefore postulated that genotyped based dosing could contribute to the 

normalization of response across individuals by achieving comparable exposure levels across 

genotype groups. Simulations were performed evaluating three different approaches, (1) a 

single dose level for all subjects, (2) genotype-based dose adjustment (where genotype is 

 

 

 

 

used to estimate the starting dose) or (3), titration based on therapeutic response. The 

percentage of subjects achieving HbA1c reduction >0.7% at 6 months was used for 

evaluation. Based on these results to achieve equivalence to rosiglitazone (73%), for all 

subjects irrespective of genotype, a dose of 96mg of sipoglitazar would be required (a single 

dose level for all subjects). However using genotype based dosing uniform response rates 

could be achieved with lower doses for the UGT2B15*2/*2 and UGT2B15*1/*2 groups 

(UGT2B15*1/*1=96mg, UGT2B15*1/*2=64mg and UGT2B15*2/*2=32mg).  

Although a genotype-based dosing approach could be used to normalize response between 

the genetic subgroups, in T2D a titration approach based on efficacy/safety is routinely 

applied. A comparison was therefore simulated between genotyped-based dosing and titration 

based on therapeutic response, with all subjects in the titration group starting at 32mg. The 

results of this simulation highlight two key points. The magnitude of reduction in FPG or 

HbA1c between the genotype and titration approaches would be expected to be the same but 

the time taken to eventually achieve that maximum response would be shorter when 

pre-selection of dose was based on genotype. The difference in the time to 90% of steady 

state between genotyped and titration-based dosing was approximately 1 and 2 months for the 

UGT2B15*1/*2 and UGT2B15*1/*1 genotypes. 

 

Application of a PD model based approach in Japanese T2D subjects to describe the drug 

and disease effects on FPG and HbA1c for pioglitazone over 2.5-4 years 

The next section (Chapter 6) focusses on PD model based approaches in T2D over a much 

longer time period (>2.5 years). Since T2D is a slowly progressing disease, the importance of 

considering both the drug and disease effects on the time course of the relevant biomarkers is 

investigated. A phase IV study that was conducted in Japanese T2D subjects was used for the 

analysis. In this study (n=587) subjects received either pioglitazone (+/-oral glucose-lowering 

drugs) or oral glucose-lowering drugs alone (control group). Treatment was adjusted to 

achieve HbA1c<6.9% and all subjects included in the trial were treatment experienced. A 

simultaneous cascading indirect response model structure was applied to describe the time 
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course of FPG and HbA1c. HbA1c levels were described using both an FPG-dependent and 

an FPG-independent function. To account for titration, drug effects for both treatment groups 

were implemented using a time dependent Emax model. 

 Differences in the effect due to maximum drug exposure on FPG were observed between the 

two treatment groups. The model derived Emax values for pioglitazone and the control group 

were 17% and 8%, respectively and resulted in approximately 2-fold greater reduction in 

FPG for pioglitazone as compared to the control treatment. Disease progression was 

parameterized as a proportional increase over time relative to the FPG baseline. The model 

predicted increases resulting from disease progression were estimated at approximately 2 

mg/ml/per year for FPG and 0.2%/per year for HbA1c. Simulations of FPG and HbA1c over 

5 years were performed. The maximum drug effect for FPG was forecasted to occur earlier 

(11 months) for pioglitazone than the control group (14 months). The simulated additional 

reduction in FPG and HbA1c achieved with pioglitazone was predicted to be maintained 

beyond the currently observed study duration. Through the development of a model on this 

long term data (>2years) simulation can be used to hypothesize how PGx in T2D may be 

used to influence drug response through both symptomatic and disease modifying effects. 

Conclusions 

The application of model based approaches to evaluate the influence of genotype, have 

primarily focused on the use of genotype as a covariate on drug exposure. These models 

should preferably also be extended during the drug development program to include clinical 

response, evaluating safety or efficacy markers to design the appropriate genetic based dosing 

algorithms or compare different study designs i.e. genotype-based dosing vs. a single dose 

level for all subjects. The implementation of a population PK-PD model based approach to 

evaluate the influence of genotype provides a more comprehensive link between the observed 

changes in the pharmacokinetics and its influence on the magnitude of response. Thus 

enabling a comparison of the differences observed between the magnitude of change in the 

PK due to genotype and the magnitude of this change on clinical response. As PGx sample 

collection becomes routine in clinical studies, the possibility to integrate this into our 

understanding of drug effects should only increase. Evaluating this impact early in the 

 

 

 

 

development phase is important to appropriately design future clinical studies and to ensure 

that the exposure response relationship can be appropriately determined for all genetic 

subgroups. Such a comprehensive approach should only improve study design and patient 

outcomes and ultimately help to reduce drug attrition across the pharmaceutical industry.  
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Het onderzoek zoals beschreven in dit proefschrift richt zich op het vaststellen van de rol van 

genotypische verschillen om individuele variabiliteit in geneesmiddelenmetabolisme te 

verklaren en de invloed van deze verschillen op zowel het klinische effect als de keuze van 

het passende doseringsschema vast te stellen.  

In Hoofdstuk 1 geeft het proefschrift een overzicht van de huidige toepassingen van 

Farmacogenetica (PGx)  bij ontwikkeling van geneesmiddelen met de nadruk op de 

gevolgen van polymorfismen voor de activiteit van geneesmiddel-metaboliserende  

enzymen en transporters. Het tweede deel (Hoofdstuk 2) concentreert zich op de toepassing 

van de wiskundige modellen waarmee verschillen in blootstelling aan, en de werking van, 

geneesmiddelen als gevolg van bovengenoemde genetische verschillen tussen personen 

kunnen worden vastgesteld. De Hoofdstukken 3, 4 en 5 richten zich op een voorbeeld uit de 

kliniek. Het betreft het oraal toegediende, glucose verlagende middel sipoglitazar dat fase II 

biotransformatie ondergaat door koppeling aan glucuronzuur, gekatalyseerd door het enzym 

UDP-glucoronosyltransferase (UGT). Klinische data uit vier fase I studies in gezonde 

vrijwilligers en uit twee fase II onderzoeken in proefpersonen met type 2 diabetes mellitus 

(T2D patiënten) zijn gebruikt voor de analyse. PGx monsters ter bepaling van UGT genotype 

werden verzameld bij alle proefpersonen die deelnamen aan het onderzoek. 

 

Klinische relevantie van genetische varianten? in farmacokinetische eigenschappen 

  

Voorlopige evaluatie van de invloed van genotype tijdens fase I klinisch onderzoek 

 

In Hoofdstuk 3 werd een onderzoek uitgevoerd om variatie in de activiteit van de enzymen 

die bijdragen aan de individuele spreiding in de farmacokinetiek van sipoglitazar te evalueren 

om zo de hieruit voortkomende verschillen in blootstelling tussen genotypes te kwantificeren. 

De analyse in Hoofdstuk 3 werd uitgevoerd  met data van een drietal fase I klinisch 

farmacologische onderzoeken in gezonde vrijwilligers (n=82). De dosering van sipoglitazar 

varieerde van 0.2-64 mg. Statistische analyse van het oppervlak onder de plasma concentratie 

 

 

 

 

tijdscurve vanaf punt 0 tot oneindig (AUC), toonde een evenredig verband aan over het 

gehele dosisbereik (hellingsgraad=0.99; 95% betrouwbaarheidsinterval 0.92-1.05), 

(Hoofdstuk 3). Als een eerste stap in het PGx onderzoek, werd de bijdrage van elk genotype 

aan de variatie in de waarde van de dosis genormaliseerde AUC, bepaald met behulp van 

variantieanalyse (ANOVA). De resultaten van dit onderzoek lieten zien dat variatie in 

UGT2B15*1/1 ongeveer twee derde van de variabiliteit in plasma concentraties van 

sipoglitazar verklaart, terwijl er geen relatie tussen de blootstelling en varianten van de 

andere UGT enzymen kon worden vastgesteld. Er werd een aanzienlijke overlap in 

blootstelling waargenomen tussen de genotype groepen, vooral tussen  UGT2B15*1/*1 en 

UGT2B15*1/*2. Na toediening van dezelfde dosis is de blootstelling ongeveer twee- tot 

driemaal hoger in het UGT2B15*2/*2 genotype dan in ofwel het UGT2B15*1/*1 of het 

UGT2B15*1/*2 genotype. Twee afwijkende individuen zijn geïdentificeerd. Deze personen 

met genotypen UGT2B15*1/*1 en UGT2B15*1/*2 vertoonden een beduidend hogere 

blootstelling dan verwacht op basis van hun genotype. Deze analyse bewijst dat gemeten over 

de gehele UGT2B15 populatie, genotype 66% van de spreiding in sipoglitazar blootstelling,  

uitgedrukt op basis van de dosis genormaliseerde AUC, kan verklaren. Andere factoren als 

leeftijd, body mass index of geslacht lijken weinig bij te dragen aan een verklaring van de 

resterende variabiliteit in deze populatie van gezonde vrijwilligers. 

 

Ontwikkeling van een populatie PK model voor sipoglitazar in Type-2 diabetes mellitus 

(T2D) patienten 

 

Het onderzoek en de analyse uitgevoerd in Hoofdstuk 4 richt zich vervolgens op het 

evalueren van de invloed van het genotype in de doelgroep, T2D patiënten. In dit hoofdstuk 

zijn data uit twee fase II gerandomiseerde , dubbelblind onderzoeken (sipoglitazar eenmaal 

daags: 8, 16, 32 of 64 mg; sipoglitazar tweemaal daags: 16 of 32 mg; rosiglitazone 8 mg 

eenmaal daags of een maal daags placebo, gedurende 13 weken; n=780) opgenomen in de 

analyse. PK analyse is uitgevoerd  om samenhang tussen het UGT B15 genotype en de 
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enzymen en transporters. Het tweede deel (Hoofdstuk 2) concentreert zich op de toepassing 

van de wiskundige modellen waarmee verschillen in blootstelling aan, en de werking van, 

geneesmiddelen als gevolg van bovengenoemde genetische verschillen tussen personen 

kunnen worden vastgesteld. De Hoofdstukken 3, 4 en 5 richten zich op een voorbeeld uit de 

kliniek. Het betreft het oraal toegediende, glucose verlagende middel sipoglitazar dat fase II 

biotransformatie ondergaat door koppeling aan glucuronzuur, gekatalyseerd door het enzym 

UDP-glucoronosyltransferase (UGT). Klinische data uit vier fase I studies in gezonde 

vrijwilligers en uit twee fase II onderzoeken in proefpersonen met type 2 diabetes mellitus 

(T2D patiënten) zijn gebruikt voor de analyse. PGx monsters ter bepaling van UGT genotype 

werden verzameld bij alle proefpersonen die deelnamen aan het onderzoek. 
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die bijdragen aan de individuele spreiding in de farmacokinetiek van sipoglitazar te evalueren 

om zo de hieruit voortkomende verschillen in blootstelling tussen genotypes te kwantificeren. 

De analyse in Hoofdstuk 3 werd uitgevoerd  met data van een drietal fase I klinisch 

farmacologische onderzoeken in gezonde vrijwilligers (n=82). De dosering van sipoglitazar 

varieerde van 0.2-64 mg. Statistische analyse van het oppervlak onder de plasma concentratie 

 

 

 

 

tijdscurve vanaf punt 0 tot oneindig (AUC), toonde een evenredig verband aan over het 

gehele dosisbereik (hellingsgraad=0.99; 95% betrouwbaarheidsinterval 0.92-1.05), 

(Hoofdstuk 3). Als een eerste stap in het PGx onderzoek, werd de bijdrage van elk genotype 

aan de variatie in de waarde van de dosis genormaliseerde AUC, bepaald met behulp van 

variantieanalyse (ANOVA). De resultaten van dit onderzoek lieten zien dat variatie in 

UGT2B15*1/1 ongeveer twee derde van de variabiliteit in plasma concentraties van 

sipoglitazar verklaart, terwijl er geen relatie tussen de blootstelling en varianten van de 

andere UGT enzymen kon worden vastgesteld. Er werd een aanzienlijke overlap in 

blootstelling waargenomen tussen de genotype groepen, vooral tussen  UGT2B15*1/*1 en 

UGT2B15*1/*2. Na toediening van dezelfde dosis is de blootstelling ongeveer twee- tot 

driemaal hoger in het UGT2B15*2/*2 genotype dan in ofwel het UGT2B15*1/*1 of het 

UGT2B15*1/*2 genotype. Twee afwijkende individuen zijn geïdentificeerd. Deze personen 

met genotypen UGT2B15*1/*1 en UGT2B15*1/*2 vertoonden een beduidend hogere 

blootstelling dan verwacht op basis van hun genotype. Deze analyse bewijst dat gemeten over 

de gehele UGT2B15 populatie, genotype 66% van de spreiding in sipoglitazar blootstelling,  

uitgedrukt op basis van de dosis genormaliseerde AUC, kan verklaren. Andere factoren als 

leeftijd, body mass index of geslacht lijken weinig bij te dragen aan een verklaring van de 

resterende variabiliteit in deze populatie van gezonde vrijwilligers. 

 

Ontwikkeling van een populatie PK model voor sipoglitazar in Type-2 diabetes mellitus 

(T2D) patienten 

 

Het onderzoek en de analyse uitgevoerd in Hoofdstuk 4 richt zich vervolgens op het 

evalueren van de invloed van het genotype in de doelgroep, T2D patiënten. In dit hoofdstuk 

zijn data uit twee fase II gerandomiseerde , dubbelblind onderzoeken (sipoglitazar eenmaal 

daags: 8, 16, 32 of 64 mg; sipoglitazar tweemaal daags: 16 of 32 mg; rosiglitazone 8 mg 

eenmaal daags of een maal daags placebo, gedurende 13 weken; n=780) opgenomen in de 

analyse. PK analyse is uitgevoerd  om samenhang tussen het UGT B15 genotype en de 
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verschillen in blootstelling te kwantificeren, om mogelijke andere bronnen van spreiding te 

ontdekken en te kunnen beschrijven en om de blootstelling per dosis te  bepalen. De door 

het model geschatte gemiddelde klaringswaarde voor het UGT2B15*2/*2 genotype bleek 

ongeveer tweemaal tot driemaal hoger te zijn dan in de proefpersonen met respectievelijk de 

UGT2B15*1/*2 of UGT2B15*1/*1 genotypen. Wanneer er geen rekening werd  gehouden 

met invloeden van covariaten (inclusief genotype), bleek de inter-individuele variabiliteit 

(IIV) in de klaring 60% te zijn; echter, na het toevoegen van het genotype als covariaat, was 

de IIV voor de klaring verminderd tot 40%. In de covariatenanalyse werd nog één andere 

covariaat (vetvrije massa) gevonden met een effect op de klaring. Deze covariaat was 

verantwoordelijk voor 2% van de IIV. Deze analyse bevestigde de eerdere bevindingen over 

de relatie tussen enerzijds het UGT2B15 genotype en anderzijds de sipoglitazar blootstelling 

in de doelgroep. De post-hoc klaringswaarden die in deze studie werden gevonden, werden 

gebruikt om individuele blootstelling te bepalen tijdens het doseringsinterval in steady-state 

na herhaalde toediening (AUC24). Deze blootstellingswaarden werden  ingevoerd in PK-PD 

model om de relatie tussen de blootstelling en het effect zoals beschreven in Hoofdstuk 5 te 

bepalen.  

 

De beoordeling van klinische relevantie van genotype verschillen in blootstelling  

 

Het beoordelen van de invloed van genotype op klinische respons door middel van 

ziekteprogressie-analyse 

 

Hoofdstuk 5  beschrijft de ontwikkeling van een populatie PK-PK model om de 

veranderingen in de waarden van de biomarkers FPG en HbA1c te beschrijven als een functie 

van individuele blootstelling. In deze analyse werden data  van de effecten van rosiglitazone, 

na toediening van de therapeutische dosis van 8 mg 4 maal daags, als referentiegroep 

meegenomen. Het resulterende PK-PD model gaf een goede beschrijving van de individuele 

en de gemiddelde profielen van de beide biomarkers voor alle doseringen (8-64 mg, totale 

 

 

 

 

dagelijkse dosis sipoglitazar). Er werden geen verschillen gevonden tussen de genotypen voor 

wat betreft de relatieve respons op blootstelling. Het PK-PD model werd gebruikt om de 

verwachte verandering in FPG end HbA1c, in vergelijking met de basislijn bij 6 maanden 

(Fase III onderzoeksperiode), voor de verschillende UGT2B15 genotype na te bootsen. De 

resultaten hiervan lieten zien dat een sipoglitazar dosis van 32 mg in het UGT2B15*2/*2 

genotype een zelfde verandering in FPG en Hb1Ac oplevert als de referentiebehandeling met 

rosiglitazone. De resultaten van de simulatie lieten ook zien dat voor een dosis van 32 mg, de 

verschillen in mate van daling van HbA1c tussen alle genotypen relatief klein zijn in 

vergelijking met de verschillen in blootstelling. In de fase II populatie kan ongeveer een 

3.3-voudig verschil in blootstelling aan sipoglitazar worden waargenomen tussen de 

UGT2B15*1/*1 en UGT2B15*2/*2 genotypen, maar dit leidt tot een slechts 1.8-voudig 

verschil in  HbA1c-daling ten opzichte van de basislijn. Hoewel een dosis van 32 mg in de 

UGT2B15*2/*2 proefpersonen een HbA1c-daling kan bewerkstelligen gelijk aan die van 

rosiglitazone, was deze daling beduidend minder in het UGT2B15*1/*1 genotype dan in het 

UGT2B15*2/*2 genotype. 

 

Op grond van de hiervoor beschreven veranderingen werd er verondersteld dat 

genotype-gestuurde dosering, zou kunnen bijdragen aan normering van de individuele 

respons door het bereiken van vergelijkbare blootstellingsniveaus in alle genotype groepen. 

Om dit verder te onderbouwen werden simulaties uitgevoerd, waarin drie verschillende 

scenario’s met elkaar werden vergeleken, (1) toediening van dezelfde dosis voor alle 

proefpersonen, (2) een op genotype-gebaseerde aangepaste dosis (waar genotype wordt 

gebruikt om de startdosis in te schatten) of (3) titratie van de dosis  gebaseerd op de 

therapeutische respons. Het percentage proefpersonen dat een HbA1c vermindering >0.7% 

behaalde na 6 maanden werd gebruikt als eindpunt voor de evaluatie. Deze resultaten laten 

zien dat om een vergelijkbaar effect als voor de referentiebehandeling met rosiglitazone 

(73%) te behalen, voor alle proefpersonen, ongeacht het genotype, een dosis van 96 mg 

sipoglitazar nodig is (een gelijke dosis voor alle proefpersonen). Echter gebruikmakend van 

dosering op basis van genotype, kon een uniforme responsgraad worden behaald met lagere 
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verschillen in blootstelling te kwantificeren, om mogelijke andere bronnen van spreiding te 

ontdekken en te kunnen beschrijven en om de blootstelling per dosis te  bepalen. De door 

het model geschatte gemiddelde klaringswaarde voor het UGT2B15*2/*2 genotype bleek 

ongeveer tweemaal tot driemaal hoger te zijn dan in de proefpersonen met respectievelijk de 

UGT2B15*1/*2 of UGT2B15*1/*1 genotypen. Wanneer er geen rekening werd  gehouden 

met invloeden van covariaten (inclusief genotype), bleek de inter-individuele variabiliteit 

(IIV) in de klaring 60% te zijn; echter, na het toevoegen van het genotype als covariaat, was 

de IIV voor de klaring verminderd tot 40%. In de covariatenanalyse werd nog één andere 

covariaat (vetvrije massa) gevonden met een effect op de klaring. Deze covariaat was 

verantwoordelijk voor 2% van de IIV. Deze analyse bevestigde de eerdere bevindingen over 

de relatie tussen enerzijds het UGT2B15 genotype en anderzijds de sipoglitazar blootstelling 

in de doelgroep. De post-hoc klaringswaarden die in deze studie werden gevonden, werden 

gebruikt om individuele blootstelling te bepalen tijdens het doseringsinterval in steady-state 

na herhaalde toediening (AUC24). Deze blootstellingswaarden werden  ingevoerd in PK-PD 

model om de relatie tussen de blootstelling en het effect zoals beschreven in Hoofdstuk 5 te 

bepalen.  

 

De beoordeling van klinische relevantie van genotype verschillen in blootstelling  

 

Het beoordelen van de invloed van genotype op klinische respons door middel van 

ziekteprogressie-analyse 

 

Hoofdstuk 5  beschrijft de ontwikkeling van een populatie PK-PK model om de 

veranderingen in de waarden van de biomarkers FPG en HbA1c te beschrijven als een functie 

van individuele blootstelling. In deze analyse werden data  van de effecten van rosiglitazone, 

na toediening van de therapeutische dosis van 8 mg 4 maal daags, als referentiegroep 

meegenomen. Het resulterende PK-PD model gaf een goede beschrijving van de individuele 

en de gemiddelde profielen van de beide biomarkers voor alle doseringen (8-64 mg, totale 

 

 

 

 

dagelijkse dosis sipoglitazar). Er werden geen verschillen gevonden tussen de genotypen voor 

wat betreft de relatieve respons op blootstelling. Het PK-PD model werd gebruikt om de 

verwachte verandering in FPG end HbA1c, in vergelijking met de basislijn bij 6 maanden 

(Fase III onderzoeksperiode), voor de verschillende UGT2B15 genotype na te bootsen. De 

resultaten hiervan lieten zien dat een sipoglitazar dosis van 32 mg in het UGT2B15*2/*2 

genotype een zelfde verandering in FPG en Hb1Ac oplevert als de referentiebehandeling met 

rosiglitazone. De resultaten van de simulatie lieten ook zien dat voor een dosis van 32 mg, de 

verschillen in mate van daling van HbA1c tussen alle genotypen relatief klein zijn in 

vergelijking met de verschillen in blootstelling. In de fase II populatie kan ongeveer een 

3.3-voudig verschil in blootstelling aan sipoglitazar worden waargenomen tussen de 

UGT2B15*1/*1 en UGT2B15*2/*2 genotypen, maar dit leidt tot een slechts 1.8-voudig 

verschil in  HbA1c-daling ten opzichte van de basislijn. Hoewel een dosis van 32 mg in de 

UGT2B15*2/*2 proefpersonen een HbA1c-daling kan bewerkstelligen gelijk aan die van 

rosiglitazone, was deze daling beduidend minder in het UGT2B15*1/*1 genotype dan in het 

UGT2B15*2/*2 genotype. 

 

Op grond van de hiervoor beschreven veranderingen werd er verondersteld dat 

genotype-gestuurde dosering, zou kunnen bijdragen aan normering van de individuele 

respons door het bereiken van vergelijkbare blootstellingsniveaus in alle genotype groepen. 

Om dit verder te onderbouwen werden simulaties uitgevoerd, waarin drie verschillende 

scenario’s met elkaar werden vergeleken, (1) toediening van dezelfde dosis voor alle 

proefpersonen, (2) een op genotype-gebaseerde aangepaste dosis (waar genotype wordt 

gebruikt om de startdosis in te schatten) of (3) titratie van de dosis  gebaseerd op de 

therapeutische respons. Het percentage proefpersonen dat een HbA1c vermindering >0.7% 

behaalde na 6 maanden werd gebruikt als eindpunt voor de evaluatie. Deze resultaten laten 

zien dat om een vergelijkbaar effect als voor de referentiebehandeling met rosiglitazone 

(73%) te behalen, voor alle proefpersonen, ongeacht het genotype, een dosis van 96 mg 

sipoglitazar nodig is (een gelijke dosis voor alle proefpersonen). Echter gebruikmakend van 

dosering op basis van genotype, kon een uniforme responsgraad worden behaald met lagere 
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doseringen voor de UGT2B15*2/*2 en UGT2B15*1/*2 groepen (UGT2B15*1/*1=96 mg, 

UGT2B15*1/*2=64 mg en UGT2B15*2/*2=32mg). 

Hoewel een op genotype gebaseerde methode kan worden gebruikt om de respons tussen de 

genetische subgroepen te normeren, wordt in T2D routinematig een titratiemethode toegepast 

gebaseerd op doelmatigheid/veiligheid. Daarom werd een simulatie uitgevoerd om de een 

genotype gebaseerde dosering met een titratie gebaseerd op therapeutische respons te 

vergelijken, waarbij alle proefpersonen in de titratie groep startten op een dosis van 32 mg. 

Twee belangrijke punten vallen op bij het resultaat van deze simulatie. In lijn met de 

verwachting was de daling in de waarde van FPG of HbA1c dezelfde voor enerzijds de op 

genotype-gebaseerde en anderzijds de op titratie gebaseerde methodes, maar het tijdsduur 

binnen welke de maximale respons werd behaald was korter indien de voorselectie van 

dosering gebaseerd werd op genotype. Het verschil in tijdsduur benodigd voor het bereiken 

van 90% van de uiteindelijke steady-state waarde van de biomarkers tussen op genotype en 

op titratie gebaseerde doseringsmethoden was ongeveer 1 en 2 maanden voor de 

UGT2B15*1/*2 en UGT2B15*1/*1 genotypen. 

 

Toepassing van een PD model  om het effect van pioglitazone op de veranderingen in de 

waarden van  FPG en HbA1c in Japanse TdD patiënten over een periode van 2.5-4 jaar te 

beschrijven 

 

Het onderzoek dat wordt beschreven in hoofdstuk 6 heeft betrekking op het beschrijven van 

de invloed van pioglitazone op de veranderingen in de waarden van FPG en Hb1Ac over een 

langere periode (> 2.5 jaar) in Japanse T2D patiënten.  Dit is belangrijk omdat T2D een 

langzaam voortschrijdende ziekte is en er daardoor een behoefte is aan geneesmiddelen 

waarmee de mate van deze ziekteprogressie kan worden afgeremd.  

 

Bij deze studie werden data uit een fase IV onderzoek in Japanse T2D patiënten gebruikt. In 

dit onderzoek (n=587) ontvingen proefpersonen ofwel pioglitazone in combinatie met een of 

 

 

 

 

meerdere oraal toegediende, glucose verlagende geneesmiddelen of  uitsluitend orale, 

glucose verlagende geneesmiddelen (controle groep). Het behandelingsdoel was om een 

HbA1c waarde <6.9% te bereiken. Een getrapte indirect respons modelstructuur werd 

toegepast om het profiel van de concentraties van FPG en HbA1c gedurende de studieduur te 

beschrijven. Voor HbA1c werd het verloop beschreven met een combinatie van zowel een 

FPG afhankelijke als een FPG onafhankelijke functie. Om rekening te houden met het effect 

van eventuele titratiestappen, werd de aanpassing van de geneesmiddeldosering voor beide 

groepen beschreven met een tijdsafhankelijke, niet-lineaire functie.  

 

Er kon een verschil in effect op FPG bij maximale blootstelling worden vastgesteld tussen de 

twee groepen. De model-afgeleide Emax waarden voor pioglitazone en de controle groep 

waren respectievelijk 17% en 8%.  Dit resulteerde in een circa twee maal sterkere verlaging 

van FPG waarden in de pioglitazone groep vergeleken met de controle behandeling. 

Ziekteprogressie werd uitgedrukt als een tijdsafhankelijke functie van FPG ten opzichte van 

de (FPG) basislijn. De door het model voorspelde toename kon worden geschat op ongeveer 

2mg/ml per jaar voor FPG en 0.2% per jaar voor HbA1c.  Vervolgens werden simulaties 

van de veranderingen in FPG en HbA1c over en periode van 5 jaar uitgevoerd. Op basis van 

deze simulaties werd er voorspeld dat het maximale effect van het geneesmiddel voor FPG 

eerder optreedt voor pioglitazone dan voor de controlegroep (11 vs. 14 maanden). De 

voorspelde initiële daling van FPG en HbA1c behaald met pioglitazone zou volgens deze 

voorspelling langer aanhouden dan de huidige studieduur . Door de ontwikkeling van het 

huidige  model, gebaseerd op  lange termijn data(>2 jaar), is het mogelijk geworden via 

simulaties hypothesen op te stellen over de rol van PGx op het verloop van T2D en de 

behandeling hiervan, zowel van de symptomatische als van de ziekte remmende effecten.  

 

Conclusies 

 

De toepassing van op wiskundige modellen gebaseerde methoden om de invloed van 
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doseringen voor de UGT2B15*2/*2 en UGT2B15*1/*2 groepen (UGT2B15*1/*1=96 mg, 

UGT2B15*1/*2=64 mg en UGT2B15*2/*2=32mg). 

Hoewel een op genotype gebaseerde methode kan worden gebruikt om de respons tussen de 

genetische subgroepen te normeren, wordt in T2D routinematig een titratiemethode toegepast 

gebaseerd op doelmatigheid/veiligheid. Daarom werd een simulatie uitgevoerd om de een 

genotype gebaseerde dosering met een titratie gebaseerd op therapeutische respons te 

vergelijken, waarbij alle proefpersonen in de titratie groep startten op een dosis van 32 mg. 

Twee belangrijke punten vallen op bij het resultaat van deze simulatie. In lijn met de 

verwachting was de daling in de waarde van FPG of HbA1c dezelfde voor enerzijds de op 

genotype-gebaseerde en anderzijds de op titratie gebaseerde methodes, maar het tijdsduur 

binnen welke de maximale respons werd behaald was korter indien de voorselectie van 

dosering gebaseerd werd op genotype. Het verschil in tijdsduur benodigd voor het bereiken 

van 90% van de uiteindelijke steady-state waarde van de biomarkers tussen op genotype en 

op titratie gebaseerde doseringsmethoden was ongeveer 1 en 2 maanden voor de 

UGT2B15*1/*2 en UGT2B15*1/*1 genotypen. 

 

Toepassing van een PD model  om het effect van pioglitazone op de veranderingen in de 

waarden van  FPG en HbA1c in Japanse TdD patiënten over een periode van 2.5-4 jaar te 

beschrijven 

 

Het onderzoek dat wordt beschreven in hoofdstuk 6 heeft betrekking op het beschrijven van 

de invloed van pioglitazone op de veranderingen in de waarden van FPG en Hb1Ac over een 

langere periode (> 2.5 jaar) in Japanse T2D patiënten.  Dit is belangrijk omdat T2D een 

langzaam voortschrijdende ziekte is en er daardoor een behoefte is aan geneesmiddelen 

waarmee de mate van deze ziekteprogressie kan worden afgeremd.  

 

Bij deze studie werden data uit een fase IV onderzoek in Japanse T2D patiënten gebruikt. In 

dit onderzoek (n=587) ontvingen proefpersonen ofwel pioglitazone in combinatie met een of 

 

 

 

 

meerdere oraal toegediende, glucose verlagende geneesmiddelen of  uitsluitend orale, 

glucose verlagende geneesmiddelen (controle groep). Het behandelingsdoel was om een 

HbA1c waarde <6.9% te bereiken. Een getrapte indirect respons modelstructuur werd 

toegepast om het profiel van de concentraties van FPG en HbA1c gedurende de studieduur te 

beschrijven. Voor HbA1c werd het verloop beschreven met een combinatie van zowel een 

FPG afhankelijke als een FPG onafhankelijke functie. Om rekening te houden met het effect 

van eventuele titratiestappen, werd de aanpassing van de geneesmiddeldosering voor beide 

groepen beschreven met een tijdsafhankelijke, niet-lineaire functie.  

 

Er kon een verschil in effect op FPG bij maximale blootstelling worden vastgesteld tussen de 

twee groepen. De model-afgeleide Emax waarden voor pioglitazone en de controle groep 

waren respectievelijk 17% en 8%.  Dit resulteerde in een circa twee maal sterkere verlaging 

van FPG waarden in de pioglitazone groep vergeleken met de controle behandeling. 

Ziekteprogressie werd uitgedrukt als een tijdsafhankelijke functie van FPG ten opzichte van 

de (FPG) basislijn. De door het model voorspelde toename kon worden geschat op ongeveer 

2mg/ml per jaar voor FPG en 0.2% per jaar voor HbA1c.  Vervolgens werden simulaties 

van de veranderingen in FPG en HbA1c over en periode van 5 jaar uitgevoerd. Op basis van 

deze simulaties werd er voorspeld dat het maximale effect van het geneesmiddel voor FPG 

eerder optreedt voor pioglitazone dan voor de controlegroep (11 vs. 14 maanden). De 

voorspelde initiële daling van FPG en HbA1c behaald met pioglitazone zou volgens deze 

voorspelling langer aanhouden dan de huidige studieduur . Door de ontwikkeling van het 

huidige  model, gebaseerd op  lange termijn data(>2 jaar), is het mogelijk geworden via 

simulaties hypothesen op te stellen over de rol van PGx op het verloop van T2D en de 

behandeling hiervan, zowel van de symptomatische als van de ziekte remmende effecten.  

 

Conclusies 

 

De toepassing van op wiskundige modellen gebaseerde methoden om de invloed van 
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genotype op de werking van geneesmiddelen te bepalen, heeft zich primair geconcentreerd op 

het gebruik van genotype als een covariaat voor de blootstelling. De toepassing van deze 

modellen zou bij voorkeur moeten worden uitgebreid naar latere fasen 

geneesmiddelenontwikkeling waar klinische uitkomsten worden vastgesteld en de veiligheid 

wordt geëvalueerd. Dat maakt het mogelijk doseringsalgoritmes te optimaliseren voor de 

verschillende genotypen. Bovendien wordt het zo mogelijk om verschillende 

onderzoeksvragen te vergelijken; zoals bijvoorbeeld de vergelijking tussen de op genotype 

gebaseerde dosering tegenover de toediening van een eenheidsdosis voor alle proefpersonen. 

Toepassing van  populatie PK-PD modellen om de invloed van genotype op de blootstelling 

te bepalen, levert een belangrijke schakel in het onderzoek naar de relaties tussen de 

veranderingen in de farmacokinetiek en de daaruit voortvloeiende verandering in  effecten. 

Door de routinematige bepaling van PGx eigenschappen in klinische studies zal het begrip 

hierover op mogelijke effecten van geneesmiddelen verder kunnen toenemen. Integratie van 

deze informatie verkregen uit de vroege fasen van geneesmiddelenontwikkeling is essentieel 

voor de juiste opzet van toekomstige klinische studies naar de relatie(s) tussen blootstelling 

en effecten in alle genetische subgroepen. Uiteindelijk zal een samenhangende benadering 

hiervan (dienen te) leiden tot een zo efficiënt mogelijke studie-opzet als tot het meest 

kansrijke klinische resultaat voor individuele patiënten. 
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