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the rotation of earth around its axis and the sun generates rhythmic daily and seasonal 
cycles in our world. these rhythms affect the quality of life in different manners. animals 
have evolved to be active in the night (nocturnal) or the day (diurnal) according to their 
anatomical and physiological features, source and availability of food and presence 
of predators or prey. they have also developed various seasonal strategies such as 
hibernation and migration to survive the winter when there is not enough food sources 
available. most animals are able to time the mating behavior to increase the chance 
of survival for their offspring. thus, from an evolutionary point of view it is crucial 
for any organism to predict and follow environmental cyclic rhythms. however, for 
many years the general opinion was that all rhythms in animal behavior are caused by 
environmental cues, such as day light, various length of the day in different seasons, 
temperature and magnetic field of the earth. in 1729 de mairan noticed for the first 
time a daily rhythm in   Mimosa pudica, a plant which opens its leaves during the 
day and closes it at night. he hypothesizes that day light triggers this behavior in 
the Mimosa. to test his hypothesis, he exposed the plant to the constant darkness 
(dd) and recorded the behavior. Notably, the daily rhythmic opening and closing of 
the leaves persisted even in the absence of sunlight. however, his main conclusion 
was that other factors than sunlight, such as temperature and magnetic fields, were 
responsible for the rhythmic behavior. de mairan’s work stimulated further research 
in the field of chronobiology. however, it took more than two centuries before the 
concept of an endogenous time keeper was accepted. 

in 1832 de candolle showed that the movement of the leaves continues in constant 
conditions. in addition, he found that the leaves open an hour earlier each day, thus 
indicating a period of 23 hours (h) in the absence of the sunlight. this phenomenon 
is called “free running” and indicates the period of the endogenous clock slightly 
deviates from 24h. therefore the environmental light/dark cycle is required to entrain 
the internal clock every day. many years later in 1959 the word circadian was introduced 
to describe the approximately 24h cycles which are generated endogenously by every 
organism. circadian is a latin word composed of circa = around and dies = day which 
means “approximately a day” (halberg, 1959). 

in 1910, by an accidental observation forel suggested that animals have a memory 
of time and can measure the passage of the time. in his summer house, forel usually 
had breakfast outside on the terrace around the same time of the day and there 
appeared some bees to collect marmalade. after couple of days it was impossible 
to have breakfast outside as many bees appear on the terrace slightly before 
breakfast time. this bee appearance on the terrace around breakfast time continued 
for couple of days without any marmalade or other food being presented. however, 
bees were not present on the terrace at other time points of the day. in 1929, von 
frisch and Beling showed in a systematic experiment that the organisms can truly 
measure the passage of time (Beling, 1929). this observation directed scientists to the 
hypothesis that circadian rhythms are outputs of an internal system measuring time. 
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in 1935 Bünning demonstrated that plants and insects raised in constant conditions 
still display a circadian rhythm and concluded that circadian rhythms are genetically 
inherited. in 1950s, colin pittendrigh performed many studies to convince biologists 
that a circadian system generates the timekeeping features of the organisms. since 
then, many researchers documented that circadian rhythms exist in many organisms 
from unicellular to higher species including human.

first evidence for the location of mammalian biological clock was found in 1972 
by two independent research groups. By making small brain lesions in anterior 
hypothalamus directly above the optic chiasm, they demonstrated disappearance 
of rhythmicity in wheel running and drinking behaviors and hormone secretion 
(stephan and Zucker; moore and eichler, 1972). in 1979 inouye and kawamura for 
the first time implanted an electrode in the rat suprachiasmatic nucleus (scN) and 
recorded the rhythmic scN electrical activity with a peak around the midday while 
other brain regions oscillating in anti-phase i.e. with a peak of electrical activity 
at night. When the scN was partially dissociated from the surrounding tissues by 
anatomical dissections, the electrical rhythm remained stable both in the scN and 
surrounding tissues. however, only after complete anatomical isolation of the scN, 
surrounding tissues lost their rhythm and only the scN remained rhythmic. it lasted 
until 1982, when it was finally accepted that scN is able to generate an electrical 
activity rhythm independently from synaptic inputs from other brain regions. three 
different research groups succeeded to isolate the scN as a brain slice and recorded 
its rhythmic electrical activity in vitro (green and gillette, 1982; groos and hendriks, 
1982; shibata et al., 1982). in 1987 schwartz and colleagues showed that blocking the 
scN electrical activity by tetrodotoxin (ttX), a pharmacological blocker of fast sodium 
channels, inhibits behavioral rhythmicity and re-entrainment of the scN to a shifted 
light/dark cycle. this data indicates that scN input and output signals are mediated 
by its electrical activity. further evidence that scN is the main circadian pacemaker has 
been compiled in the last decades. since 1979, many research groups confirmed that 
disruption of scN output results in behavioral arrhythmicity, although many organs and 
some brain areas remain rhythmic as local pacemakers. however, peripheral circadian 
rhythms desynchronize from each other and the overall circadian output is abolished in 
the absence of scN output (inouye and kawamura, 1979; shibata et al., 1982; honma 
et al., 1984; eskes and rusak, 1985; panda and hogenesch, 2004; abrahamson and 
moore, 2006) and pinpoints the scN as a master circadian pacemaker. the role of 
the scN is to generate a precise image of the solar time and then convey that across 
the brain and body via hormonal and neural pathways to time the physiological and 
behavioral aspects of the organisms.
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suprachiasmatic Nucleus as mammaliaN  
circadiaN clock

the scN is situated in the anterior hypothalamus above the optic chiasm and bilateral 
to the third ventricle and interacts with many brain regions (Fig. 1A). it receives light 
input directly from melanopsin-containing retinal ganglion cells via retinohypothalamic 
tract (rht; hattar et al., 2002; morin and allen, 2006) and in turn synchronizes other 
brain regions and downstream peripheral targets to the light/dark cycle (gachon et al., 
2004). retinal projections release glutamate and pituitary adenylate cyclase-activating 
polypeptide (pacap, as a neuromodulator) at synaptic terminals to the scN (morin and 
allen, 2006). anatomically, the scN is composed of ventrolateral region (core) which is 
retionrecipient and dorsomedial region (shell) which receives input from the core, while 
the core is only sparsely innervated by the shell (albus et al., 2005). Both ventrolateral 
and dorsomedial scN regions consist of different cell types. Vasoactive intestinal 
peptide- (Vip) and gastrin-releasing peptide- (grp) producing cells are found in the 
ventral area. argenine vasopressin- (aVp) and somatostatin-containing cells are mainly 
located dorsally (abrahamson and moore, 2006; Fig. 1B). Vip and aVp are colocalized 
with gaBa in 38% and 15% of synaptic terminals respectively (Buijs et al., 1995). most, 
if not all of the scN neurons express gaBa receptors and generate spontaneous 
post synaptic gaBaergic currents (moore and speh, 1993). to a certain extent, scN 
anatomy and neuropeptides is specie-specific and might be more complex than simply 
being divided in to core/shell regions (morin et al., 2006).

scN NeuroNs as autoNomous circadiaN 
oscillators

scN cells generate rhythmic oscillations in gene expression and neuronal activity. 
they are autonomic neurons, which stay rhythmic even when they are isolated from 
the network of cells (herzog et al., 1998; liu et al., 2007; Webb et al., 2009). the 
electrical impulse of the scN peaks in the middle of the day and is the main circadian 
output to downstream targets (colwell, 2011). however, it is not the actual oscillatory 
mechanism of the scN. the rhythm in neuronal electrical activity is controlled by other 
rhythmic components such as different ionic currents (Brown and piggins, 2007). at 
the molecular level, the core circadian clock is driven by numerous clock genes that 
are rhythmically expressed with a period of about 24h.

in 1971 the first clock gene was discovered in Drosophila which was called “period” 
(konopka and Benzer, 1971). after the discovery of the first clock gene, the gene 
network underlying the molecular clock has been largely elucidated. the molecular 
clock enables cell autonomy within the scN based on a negative transcriptional-
translational feedback loop. the loop starts when clock/Bmal1 dimers bind to 
the e-box regions in the promoter of clock genes thereby inducing the transcription 
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Figure 1. the location and organization of the suprachiasmatic nucleus (scN). (A) the scN is located 
in the anterior hypothalamus. light information is transmitted to the scN via the retinohypothalamic 
tract (rht) which releases glutamate (glu) and pituitary adenylate cyclase–activating polypeptide 
(pacap). several brain nuclei receive scN output (red arrows) and/or project to the scN (blue arrows), 
some involved in sleep/waking regulation (Vlpo, lha) and melatonin release (pineal gland). (B) the 
scN is functionally organized in at least two distinct regions: dorsomedial (dm) and ventrolateral (Vl) 
areas. argenine vasopressin (aVp) producing cells mark the dorsomedial area and vasoactive intestinal 
peptide (Vip) producing cells are mainly found in the ventrolateral area. these neuropeptides, in 
concert with gaBa, are involved in synchronization and neuronal interaction within the scN. the scN 
receives different inputs (left) and transmit its output to several brain nuclei and downstream targets 
(right). 3V = third ventricle, igl = intergeniculate leaflet, lha = lateral hypothalamus, mr = median 
raphe, neuropeptide y = Npy, oc = optic chiasm, Vlpo = ventrolateral preoptic nucleus.
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of period (Per1, Per2 and Per3) and cryptochrome (Cry1 and Cry2) genes (koike 

et al., 2012; huang et al., 2012). in turn, per and cry proteins translocate to the 

nucleus and inhibit the transcription of genes. degradation of per and cry permits 

a new cycle. casein kinase 1 delta  plays an important role in maintaining the 24-h 

circadian period by phosphorylating the core clock proteins such as per (Vielhaber et 

al., 2000; meng et al., 2008; etchegaray et al., 2009; lee et al., 2009). the amount 

of Bmal and clock is also rhythmically controlled by an additional feedback loop 

including Rev-Erbα, Rev-Erbβ and ROR genes, which are driven by Clock-Bmal1, and 

their protein products promote rhythmic expression of Bmal1 (preitner et al., 2002). 

many genes that rhythmically control excitability and secretion, are regulated by 

these negative feedback loops. to maintain the cell autonomy there should be a link 

between membrane and nuclear processes. it is not completely known that how this 

molecular circadian clock is connected to rhythmic membrane properties.    

circadiaN coNtrolled ioNic coNductaNces

rhythmic electrical activity is an important output of the scN that controls behavioral 

and physiological phenomena. Both in nocturnal and diurnal species, the electrical 

activity of scN neurons peaks in the middle of the day when most of the scN neurons 

actively generate action potentials (ap) with a high rate. in the night the same cells 

are either silent or fire action potentials with lower frequencies (Fig. 2). this rhythm in 

electrical activity is regulated by two main classes of ionic conductances which are mostly 

circadian controlled as well (Brown and piggins, 2007). firstly, currents responsible for 

the excitatory drive such as persistent sodium (Na+) and hyperpolarization-activated 

currents. secondly, currents which translate the excitatory drive to action potentials and 

control firing frequencies e.g. different classes of potassium (k+) currents (colwell, 2011).

Persistent Na+ currents
during the day, scN neurons have a significantly more depolarized resting membrane 

potential which is very close to the threshold for initiating an action potential (kuhlman 

and mcmahon, 2004). one of the excitatory drives, bringing scN neurons from resting 

to threshold values, are Na+ persistent currents, which are activated between -60 to -40 

mV (Jackson et al., 2004). No circadian regulation of this current has been reported so 

far. however, closure of these channels prevents the daily rhythm of the scN electrical 

activity (kononenko et al., 2004).

Hyperpolarization-activated currents
in response to hyperpolarization, almost all scN neurons generate a depolarizing current. 

When the hyperpolarization-activated channels are open, Na+ enters and k+ leaves the 

cell but the net result is membrane depolarization (de Jeu and pennartz, 1997). recently, 
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it was shown that the magnitude of this current shows a modest circadian rhythm with 

a peak during the day-time when the electrical activity is high (atkinson et al., 2011). 

hence, these channels may contribute to the excitatory drive in the scN cell membrane 

and prepare it for generating action potentials mainly during the day.

K+ Currents
among the major classes of k+ channels, two are expressed widely in the scN: voltage-

gated and calcium (ca2+) activated k+ channels. Both are involved in repolarization and 

afterhyperpolarization (ahp) of an action potential. it has been shown that several of 

the currents belonging to these families represent a circadian rhythm in their current 

magnitude (Fig. 2). fast delayed rectifier (fdr) and a-type (ia) k+ currents for example 

are larger during the day when the electrical activity increases (itri et al., 2005; itri et 

al., 2010). fdr current has been shown in different brain regions that is crucial for 

creating high frequency sustained train of action potentials (rudy and mcBain, 2001). 

ia seems to serve a similar function during the day in the scN: in concert with fdr 

these currents facilitate the generation of action potentials and increase the electrical 

activity. these currents shape the action potential waveform with a rapid repolarization, 

which prepares the membrane to trigger the next action potential. in the night when 

the electrical activity declines, ia and fdr currents both decrease in magnitude. 

in contrast to fdr and ia currents, large conductance ca2+ activated k+ currents 

(Bk) increase in magnitude as well as protein expression at night (pitts et al., 2006; 

Figure 2. circadian controlled ionic currents in the suprachiasmatic nucleus (scN). the clock-controlled 
fast delayed rectifier (fdr), a-type k+ currents (ia), large conductance ca2+ activated k+ currents (Bk) 
and voltage-dependent ca2+ currents (ica) modulate membrane excitability in a circadian manner. this 
results in a rhythm in the multi-unit activity (mua) of the scN  with higher frequency of action potential 
during the day compared to the night. a yet to be identified k+ current (ik) contributes to regulation 
of membrane potential, which is more depolarized during the day as compared with the night. the 
thickness of the arrows illustrates the magnitude of the current that passes through channels.
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kent and meredith, 2008). Bk currents are involved in the ahp phase of aps within the 
scN and other brain regions. activation of these channels decreases the probability of 
next action potential generation in the cell and reduces cell excitability (montgomery 
and meredith, 2012). therefore Bk channels are important for night-time suppression 
of scN electrical activity. recently, a bidirectional role for Bk channels in the scN was 
suggested. fast activation of these channels causes a rapid repolarization, recovers 
the Na+ channels from inactivation and leads to membrane excitation (montgomery 
and meredith, 2012). this paradoxical impact of Bk channels on electrical activity and 
ap waveform in the scN is not completely understood and the role of Bk channels 
in the scN may differ in various phases or physiological and pathological conditions.

apart from electrical activity, resting membrane potential (rmp) is also rhythmically 
controlled (Fig. 2). a tetraethylammonium (tea)-sensitive k+ current is responsible for 
night-time membrane hyperpolarization (de Jeu et al., 2002; kuhlman and mcmahon, 
2004). this k+ current is larger at night and causes a higher membrane conductance 
and consequently lower input resistance in the scN cells in this phase of cycle (kuhlman 
and mcmahon, 2004). in contrast, during the day closure of these k+ channels reduces 
the membrane conductance and increases the input resistance. two-pore-domain 
potassium (k2p) channels are possible candidates for rmp regulator as some of k2p 
genes such as,  tWik1, task1, trek1, and task3 are expressed rhythmically in the 
scN and in Drosophila circadian pacemaker neurons (talley et al., 2001; panda et al., 
2002; lein et al., 2007). k2p channels carry a leak k+ current and have little voltage 
dependency. they are expressed throughout the central nervous system and contribute 
to the resting membrane potential of many types of neurons (millar et al., 2000; talley 
et al., 2000). Notably, k2p expression in the ventral lateral neurons (lNvs) of Drosophila 
hyperpolarized the resting membrane potential of cells in the day (sheeba et al., 2008). 
the depolarized resting membrane potential of scN neurons during the day could be 
due to changes in kinetic, density or expression of k2p channels, or other yet to be 
described channels involved in regulating the rmp in the scN. 

Ca2+ currents
Various kinds of voltage-gated ca2+ channels including l-, p/Q-, t-, r- and N-type 
channels are expressed in the scN. l-type channels are highly expressed in the 
scN where r- and N-type channels show a low expression and  p/Q- and t-type 
channels are moderately expressed (Nahm et al., 2005). p/Q-type ca2+ channels are 
located presynaptically in the scN (Nahm et al., 2005). they play a crucial role in 
neurotransmitter release (Wu et al., 1999) and in mediating the signals of central 
nervous system to the dorsal scN (van oosterhout et al., 2008). Voltage-gated ca2+ 
channels mediate light-induced phase shifts in the scN (kim et al., 2005) and maintain 
rhythmic expression of clock-genes (lundkvist et al., 2005).

the magnitude of the l-type ca2+ current is higher during the day when a high 
frequency of electrical activity is generated in the scN (pennartz et al., 2002). moreover, 
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the baseline intracellular ca2+ concentration [ca2+]i of the scN cells is elevated during 
the day compare to the night (colwell, 2000). calcium influx via the l-type channels 
could partially be responsible for the day-time elevation of [ca2+]i. moreover, ryanodine 
and inositol (1,4,5)-triphosphate receptors, located in the membrane of intracellular 
structures, are also involved in [ca2+]i homeostasis within the scN neurons. ryanodine 
receptors exhibit a circadian rhythm in protein expression with a peak in subjective 
day when the [ca2+]i is high (diaz-munoz et al., 1999) .   

it is known that ca2+ and Bk channels are colocalized in cell membrane. Bk 
channels apart from being voltage dependent, also require a rise in intracellular ca2+ 
for their activation. however in the scN the Bk current peaks at night when the [ca2+]

i decreases. the reason for this reversed correlation between Bk magnitude and ca2+ 
concentration in the scN needs to be further investigated. 

scN NeuroNs as a Neural multi-oscillator 
NetWork 

single scN neurons exhibit a circadian rhythmicity and do not need a rhythmic input 
to generate circadian rhythms (Webb et al., 2009). however, single scN neurons are 
not sufficient to establish all the features of the circadian clock. the scN therefore, is 
a multi-oscillator structure in which interneuronal phase synchrony leads to a coherent 
rhythm. synchronization among the scN neurons is determined by a variety of 
coupling mechanisms including gap junctions, neurotransmitters and neuropeptides, 
which enable the system to deal with the environmental challenges in a flexible 
manner. here, the role of two main signaling molecules i.e. Vip and gaBa in coupling 
mechanisms will be discussed in more details. 

VIP
there is some evidence that expression levels of Vip mrNa and peptide exhibit a 
diurnal oscillation but do not show a circadian rhythm in constant darkness (shinohara 
et al., 1993; Ban et al., 1997; shinohara et al., 1999). however, Vip release from rat 
scN slice cultures has a circadian oscillation that continues for a number of cycles in 
constant conditions (shinohara et al., 2000). moreover, Vip mrNa shows a circadian 
rhythm in the mouse scN (dardente et al., 2004). these rhythms may be important 
for outputs from the circadian system since Vip acts as one of the major synchronizing 
factors within the scN network. When Vip or its receptor Vpac2 are genetically deleted, 
circadian rhythmicity in behavior, electrical activity, gene expression and metabolism 
will be weakened and scN loses its synchrony to environmental light cues (harmar et 
al., 2002; colwell et al., 2003; aton et al., 2005; maywood et al., 2006; Bechtold et 
al., 2008). therefore, Vip is crucial for intercellular communication and synchronization 
between scN neurons. loss of Vpac2 receptor however, demonstrates more dramatic 
desynchrony within the scN network compare to lack of Vip (colwell et al., 2003; 
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Brown et al., 2007). this indicates a compensatory role for other neurotransmitters such 
as pacap that binds with the same affinity of Vip to Vpac2 receptors (gottschall et al., 
1990; morrow et al., 1993). furthermore grp synchronizes the scN network when Vip 
signaling does not function properly (Brown et al., 2005; maywood et al., 2006).

GABA
the majority of scN neurons (more than 90%) contain gaBa in their synaptic terminals 
and express gaBa receptors in their membrane (moore and speh, 1993; moore et al., 
2002). in the scN, the amount of gaBaergic spontaneous activity shows a circadian 
rhythm with a peak at early night (itri et al., 2004). When the gaBaa

 receptor is activated 
an intrinsic gaBa-gated chloride (cl-) channel will be opened. the subsequent cl- influx 
results in an inhibitory action of gaBa by membrane hyperpolarization (kaila, 1994). 
it is important to note that the intracellular chloride concentration [cl-]i determines the 
direction of cl- movement through the channel. in normal adult neurons [cl-]i is low. 
therefore, opening of the cl- channel leads to cl- influx and hyperpolarization (Fig. 

3A). different classes of cl- pumps are involved in regulation of [cl-]i. two different type 
of these pumps are expressed in the scN: the Na+k+-2cl− cotransporter (Nkcc) and 
k+-cl- cotransporter (kcc; Belenky et al., 2008). Nkcc1 transports cl- into the cell and 
increases the intracellular cl- concentration. in contrast kcc2 keeps the intracellular 
cl- concentration low. the balance between the activity of the two transporters defines 
the equilibrium potential of cl- (ecl) in the scN cells. recently it has been shown that 
the mechanisms by which cl- gradient is established in neurons are more complicated 
to be determined only by theses cotransporters and local impermeant anions may also 
be important for [cl-]i (glykys et al., 2014). Nevertheless, if ecl is depolarized, because 
of a higher cl- concentration inside the cell, cl- flows out of the cell and the membrane 
potential will be depolarized (cherubini et al., 1991).

in 1997, it was reported that in the scN neurons of healthy adult rats, gaBa 
apart from its traditional inhibitory function acts also as an excitatory neurotransmitter 
(Wagner et al., 1997). since then, many other labs confirmed the dual effect of gaBa 
on scN neurons, which depends on the time of the day, regional localization and the 
activity state (de Jeu and pennartz, 2002; albus et al., 2005; choi et al., 2008; irwin and 
allen, 2009). a higher activity of Nkcc1 generating a depolarized ecl may underlie the 
observed gaBa-mediated excitation (choi et al., 2008; Belenky et al., 2010; Fig. 3B). it 
has been shown that expression of Nkcc1 but not kcc2 may be under circadian control 
in the scN (panda et al., 2002). the functional role of the gaBa-mediated excitation 
in the adult scN is not known yet. it is suggested that gaBa-mediated excitation may 
relay the photic and phase information from ventral to dorsal scN following a shifted 
light/dark cycle (albus et al., 2005). gaBa is essential for intercellular and interregional 
communication within the scN network (liu and reppert, 2000; albus et al., 2005; han 
et al., 2012). however, in Vip knock-out animals, blockade of endogenous gaBa does 
not impair scN synchrony but improves it (aton et al., 2006; freeman, Jr. et al., 2013). 
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this destabilizing effect of gaBa was considered as a necessary component for resetting 
the network to a new phase (freeman, Jr. et al., 2013). it is shown that Vip affects gaBa 
signaling in different brain regions as well as in the scN (itri and colwell, 2003; cunha-
reis et al., 2004; hermes et al., 2009; korkmaz et al., 2010). thus, Vip deficient animals 
might not be a suitable model to test the endogenous role of gaBa in the scN network. 
in addition, the discrepancy between the data is an indicator of multifaceted role of 
gaBa in scN synchronization. recently it has been shown that gaBa together with Vip, 
contributes to resynchronization of the scN network when individual cells are in anti-
phase and are not under steady state conditions (evans et al., 2013). 

SCN network organization
since the maximal activity of most of scN neurons occurs around midday and only 
a small population of neurons become active during the night, a sinusoidal pattern 
of scN multiunit activity is seen at the ensemble level (schaap et al., 2003a). the 
sinusoidal waveform of the multiunit scN electrical activity can change under different 
conditions. the degree of the synchronization between scN neurons determines 
the distribution of individual neuronal activity pattern and the output of the scN 
(Vanderleest et al., 2007; Bodenstein et al., 2012). a wider phase distribution among 
neurons for instance, results in a broader peak width in the sinusoidal waveform and 
vice versa; a more compressed distribution of neuronal phases generates a narrower 
sinusoidal electrical waveform (Fig. 4). the ensemble electrical output is different, 
more stable, more robust and more precise than single cell outputs (Welsh et al., 
2010). for instance in aging the scN network output is more robust than the single 
cell rhythms (see chapter 2 for a detailed introduction about aged scN network). 
therefore the network seems to compensate for deficits at the single cell level.

Figure 3. dual function of gaBa as an inhibitory and/or excitatory neurotransmitter. (A) in normal adult 
brain kcc2 cotransporter drives the cl- out of the cell and maintains the intracellular cl- concentration 
([cl-]i) in low levels. When gaBa receptor is activated the gaBa-gated cl- channel will be opened and cl- 
influx results in membrane hyperpolarization. (B) in immature neurons as well as in some adult neurons 
in specific brain regions e.g. scN gaBa acts as an excitatory neurotransmitter due to the function of 
Nkcc1 cotransporter. Nkcc1 transports the cl- into the cell and increases the [cl-]i. consequently when 
the gaBa -gated cl- channel is opened, cl- flows out and membrane will be depolarized. 
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the significance of the network is also manifested by the adjustment of the scN to 

seasonal rhythms. in seasonal adaptation, plasticity in the phase relationship between 

the scN cells is responsible for changes in the amplitude and waveform of multiunit 

scN electrical activity (rohling et al., 2006; Vanderleest et al., 2007; Brown and piggins, 

2009). the single cell profile is not altered and thus, does not contribute to the changes 

of the scN output in seasonality (Vanderleest et al., 2007; Naito et al., 2008). seasonal 

encoding therefore is a good model to investigate the network properties of the scN.

seasoNal eNcodiNg aNd circadiaN clock

seasonal changes in the environment have great impact on the physiology of all 

organisms and their chances to survive. in the winter a severe decrease in temperature 

and shortage of food urge the organisms to develop winter specific behaviors and 

physiology e.g. hibernation, migration and timing the mating behavior. during the 

Figure 4. the distribution of single-unit electrical activity patterns determines the sinusoidal 
waveform of multi-unit electrical activity pattern. (A) the multi-unit electrical activity pattern (shown 
as a thick black line) is compressed in short-day and broadened in long-day photoperiods. this 
pattern is derived from an ensemble of single-unit activity patterns (gray lines) that are distributed 
over the 24-h cycle according to a gaussian distribution. above the figure, the light/dark schedule 
for each photoperiod is shown. adapted from meijer et al., 2012, progress in brain research. 
(B) average single-unit activity pattern for short-day and long-day photoperiods is comparable. 
adapted from vanderleest et al., 2007, current biology. 
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evolution different strategies have been established to predict the environmental 
annual changes and remain synchronized in physiology and behavior (paul et al., 2008).

 many animals track the absolute and incremental changes in day length to be able 
to generate an annual rhythm in their physiology and behavior (hoffmann, 1979). even, 
seasonal reproductive organisms require environmental cues to remain entrained. hence, 
the timekeeping mechanisms require photoperiod -or other environmental cues such as 
food , water, temperature and social cues-  to accurately time seasonal events (reiter, 
1974). photoperiod is the most reliable signal to regulate various physiological functions 
depending on the time of the year (Johnston et al., 1982; hoffmann and illnerova, 1986).

Melatonin
the pineal gland produces melatonin, which has been shown to be important for the 
seasonal reproduction rhythms in several mammalians (hardeland et al., 2006; paul 
et al., 2008). it also contributes to the regulation of sleep and circadian rhythms and 
other physiological functions (hardeland et al., 2006). 

melatonin production is rhythmic with a peak in the night and the duration of 
the night-time melatonin production is regulated by photoperiod. the pineal gland 
receives light input through a multi-synaptic neural pathway via the scN (moore, 
1996). the scN stimulates norepinephrine release from sympathetic nerves terminals 
in the pineal gland (sugden, 1989) and increases the activity of melatonin synthesis 
enzyme, arylalkylamine N-acetyltransferase (aaNat), at night (schwartz et al., 2001). 
the melatonin profile reflects the duration of the night and this signal is therefore well 
suited to track the changes in photoperiod throughout the seasons (reiter, 1980).

While melatonin is essential for seasonal reproduction rhythms, it is known that 
c57Blr6J mice, used in our experiments, do not express melatonin in detectable amounts. 
melatonin has been knocked down naturally in these animals due to a point mutation 
in the gene of melatonin synthesizing enzyme, aaNat (ebihara et al., 1987; roseboom 
et al., 1998). We have shown these animals are able to adapt their physiology and 
behavior to different photoperiods (Vanderleest et al., 2007). also, in pinealectomized 
rats, the scN exhibits endogenous circadian rhythms that are photoperiod dependent 
(sumova et al., 1995). moreover, no photoperiod response to infusion of melatonin was 
seen in scN-lesioned hamsters and only scN-intact animals were capable to respond 
to the melatonin infusion (grosse and hastings, 1996). recently, in european hamster 
the majority of pinealectomized animals were entrained to an accelerated photoperiod 
schedule which shortens yearly seasonal changes in 6 month (monecke et al., 2013). 
these data suggest that melatonin is important for seasonal reproduction but is not the 
only component which determines the day length to generate seasonal rhythms. other 
melatonin independent pathways may also be important for seasonal adaptation. it is 
clear nevertheless that scN receives the photoperiodic information that affect both 
melatonin-dependent and -independent pathways. this indicates a close interaction 
between the circadian clock and other possible seasonal circuits. 

26



In
t

r
o

d
u

c
t

Io
n

1
Role of SCN in seasonal encoding
one of the essential functions of the scN is to entrain an organism to photoperiodic 
regulation upon seasonal differences. the scN measures the annual changes in day 
length and passes this information on to downstream targets. the scN is able to encode 
for length of day-light by adjusting the pattern of its electrical activity. under the influence 
of long-day and short-day photoperiod, the sinusoidal waveform of the multiunit scN 
electrical activity changes both in vivo and in vitro (mrugala et al., 2000a; Vanderleest et 
al., 2007; houben et al., 2009). the electrical activity pattern is compressed in short-day 
and is expanded in long-day photoperiod (Fig. 4A). accordingly, the duration of scN 
electrical activity pattern in long summer days (ld16:8h) is about 5 hours longer than in 
short winter days (ld8:16h light; mrugala et al., 2000a; meijer et al., 2010). the resulting 
electrical output signal regulates the duration of daily behavioral activity (α). accordingly 
in nocturnal animals, long photoperiod results in a shorter duration of locomotor activity 
during the night. the photoperiod-induced changes in the scN waveform and behavioral 
profile are retained for several days in animals, which are released to constant conditions 
(Vanderleest et al., 2007; houben et al., 2009). thus, the peak width of the scN electrical 
activity profile can be used as an endogenous indicator for the length of the day. 

interestingly, in single scN neurons the differences in day length have no effect on 
the duration of the electrical activity pattern (Fig. 4B) or clock gene expression profile 
(Vanderleest et al., 2007; Naito et al., 2008). subsequent studies have shown that the 
plasticity in phase distribution of single cell rhythms accounts for waveform changes in 
the electrical activity during photoperiodic adjustment (rohling et al., 2006; Vanderleest 
et al., 2007; Brown and piggins, 2009; Fig. 4). supporting this idea, dissimilar phase 
distributions between short-day and long-day photoperiod were also observed in 
clock genes expression such as Per1, 2 and 3, Cry1 and 2, Bmal1, Rev-erb and Dbp 
(Nuesslein-hildesheim et al., 2000; sumova et al., 2002; carr et al., 2003; Johnston et 
al., 2003; sumova et al., 2003; tournier et al., 2003; Johnston et al., 2005; inagaki et al., 
2007; Naito et al., 2008). the expression profiles of all genes are in synchrony during 
short days. in long days the rostral and caudal neurons of the scN are desynchronized 
in Per1 expression and the peak of the Per2 is advanced in the caudal compared to the 
rostral scN (hazlerigg et al., 2005; Naito et al., 2008). moreover, multiple peaks in Per1 
were observed in the rostral scN of long photoperiod-entrained animals (inagaki et al., 
2007). therefore, day length encoding in the scN is likely a neuronal network property 
rather than a single cell ability. plasticity in the scN network may allow broader phase 
distribution in long-day and narrower phase distribution in short-day photoperiods. 
the mechanisms underlying this photoperiodic phase adjustments are not completely 
known. Various mechanisms such as electrical and chemical synapses are responsible 
for coupling strength within the scN (liu and reppert, 2000; maywood et al., 2006; 
rash et al., 2007; Vosko et al., 2007). Vip is considered a crucial neurotransmitter for 
photoperiodic adaptation since Vip deficient mice could not encode the photoperiodic 
alterations after being maintained in constant condition (lucassen et al., 2012). gaBa 
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in concert with Vip was also shown to be involved in photoperiodic regulation (evans 
et al., 2013). more research is required to illuminate the cellular mechanisms, which 
participate in photoperiodic phase adjustment within the scN network. 

research directioNs

at the cellular level, many properties of the circadian clock neuron are determined by 
an interaction between membrane events affecting the excitability of the cell and the 
core molecular clock components (colwell, 2011). although little is known about the 
mechanisms linking the membrane excitability and the regulation of gene expression 
in scN neurons, k+ channels and intracellular ca2+ are among the key players.  many 
neuronal k+ channels have an essential impact on the regulation of the action potential 
frequency and waveform, which in turn affects the amount of ca2+ influx through voltage-
sensitive ca2+ channels. intracellular free ca2+ is an important second messenger, plays a 
pivotal role in many signaling pathways and is also known to modulate gene transcription 
in neurons (Berridge, 2012). the study of k+ currents in the scN neurons as the central 
theme of this thesis therefore probes one of the key components of the interdependence 
between membrane excitability and the molecular clock. the cellular and network 
properties of the circadian system are altered by aging or in different photoperiods, and 
modifications of k+ currents may contribute to these changes. thus, investigating the 
functional alterations of k+ currents in scN cells caused by aging and photoperiod, will 
enhance our understanding of the plasticity within the scN network and its limits. 

aging and exposure of mice to long days affect the circadian clock in similar 
ways. Both will lead to a circadian phenotype showing (i) a decreased phase-shifting 
capacity, (ii) a compressed duration of behavioral activity, (iii) wide phase distribution 
of electrical activity patterns within the scN network and (iv) a reduced amplitude of 
the rhythm of the ensemble electrical activity. it is therefore, reasonable to compare 
the cellular properties of scN neurons in aged and long-day phenotypes in search for 
potential common mechanisms. 

first, our current understanding of the consequence of aging on circadian clock 
function in the scN is reviewed in chapter 2. in this chapter the impact of aging on 
different levels – from the organism to the molecular mechanisms - of the circadian system 
is discussed. evidence is reviewed suggesting that even a partially functional neuronal 
network within the scN can compensate for more severe deficits on the cellular level. the 
potential mechanisms for age-related cellular clock dysfunction are presented in a model, 
revealing the need for more studies to identify the important cellular clock components 
affected by age. therefore, in the following two chapters (chapters 3 and 4), cellular and 
network properties of the scN in the aged circadian system were investigated.    

in chapter 3, i studied the influence of aging on different levels of the circadian system 
to determine the contribution of the different clock components to the aged phenotype 
observed in the behavior. the development of the behavioral aged phenotype was first 
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determined in a longitudinal study using locomotor activity recordings, from which the 
period length, the activity duration and the fragmentation of the rest-activity pattern 
were analyzed. Next, multiunit recordings of scN slices were performed in young (3-6 
month old) and old mice (> 24 month) to determine the impact of age on the electrical 
output of the scN. subpopulation analysis was performed on these mua data to study 
the change in neuronal network synchronization at different ages. finally, i recorded 
single scN neurons using patch-clamp techniques to determine the effect of aging on 
voltage-dependent k+ currents and neuronal excitability.

subsequently, one example of the impact of the aging on the dependency of an ion 
channel and a second messenger is discussed in chapter 4. the correlation between 
a ca2+-dependent k+ current (Bk) and the intracellular ca2+ concentration ([ca2+]i) was 
studied in scN neurons of mice older than 2 years and compared to a young control 
group. i used perforated-patch recordings to avoid washout of intracellular ca2+ which 
could otherwise influence Bk current activity. for the measurements of [ca2+]i the ca2+-
sensitive dye fura-2 was used, which enabled quantitative determination of [ca2+]i.

one of the best models for scN network plasticity is the photoperiodic phase 
adjustment within the scN. it has been suggested that different transmitters, such as 
gaBa and Vip, are involved in adaptation of the phase distribution of the electrical 
activity profiles to the annual photoperiodic changes. the aim of chapter 5 was to 
describe the impact of photoperiod on cellular properties within the scN. in this 
chapter, i explore whether and how the single cell properties within the scN are 
affected by different photoperiods. in particular i measured the effect of long-day 
(16h) and short-day (8h) photoperiods on passive membrane properties, neuronal 
excitability and fdr current activity. a potentially distinct function of the fdr current 
in photoperiodic entrainment is to facilitate the synchronization between dorsomedial 
and ventrolateral regions of the scN. modification in fdr current may then contribute 
to various phase distributions under different conditions.  

one approach to investigate mechanisms involved in photoperiod-induced phase 
distribution is to measure the impact of different day length on important neurotransmitter 
systems known to be involved in synchronization within the scN network. the most 
abundant neurotransmitter in the scN is gaBa, and in chapter 6 i studied the effect of 
different photoperiods on gaBaergic signaling in the scN. these studies were performed 
using a combination of whole-cell and perforated-patch recordings as well as ca2+ 
imaging techniques. first, gaBaergic synaptic currents and potentials were recorded in 
scN neurons from mice adapted to long-day or short-day photoperiod. Next, excitatory 
and inhibitory responses to gaBa application were recorded as [ca2+]i transients and their 
ratio determined for the different photoperiods. finally, the gaBa equilibrium potential 
was measured to support the data from ca2+ recordings. this approach aimed at the 
question if photoperiod can modify a fundamental property of many brain networks - the 
excitatory to inhibitory balance – in the scN, which may form the basis for photoperiod 
induces changes in phase distribution within the scN neuronal network. 
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