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The endoplasmic reticulum as a central organelle organizer

Abstract

The Endoplasmic Reticulum (ER) fills the cytosolic space and is by far the largest intracellular
compartment. The ERis traditionally considered a site for protein synthesis, folding and export while
other functions are usually ignored. This may be a limited view. Due to its size and omnipresence,
the ER functions as a membrane source for organelles such as autophagosomes, peroxisomes and
lipid droplets and is able to contact all intracellular organelles to control lipid transfer, signaling
and intracellular transport. Here we postulate a more central role of the ER in distributing software
between intracellular compartments to control their biochemistry, transport, signal transduction
and without doubt many other processes yet to be uncovered. The ER is not large just for protein

synthesis, but applies its intracellular corpulence for organelle contacts and control.



The endoplasmic reticulum as a central organelle organizer

From its first description in 1945, the Endoplasmic Reticulum (ER) has been one of the most
studied cellular organelles. In fact, it represents an interconnected network of tubules and
cisternae that occupies the entire cytosolic space. Rough ER (ER lined by ribosomes) defines
sites of protein translation, whereas the smooth ER is considered a site of lipid production and
storage of lipids and ions. A third ER ‘subdomain’ recognized is the nuclear envelope. The ER is
by far the largest intracellular organelle containing about 70% of cellular lipids and contributes
to generation of other organelles such as the Golgi complex. By specific interactions between ER
resident and organelle resident proteins, the ER can generate membrane contact sites (MCSs)
with other compartments. MCS’s resemble intracellular synapses where membrane proteins from
two compartments can directly interact and regulate processes as diverse as lipid and ion transfer
but also microtubule-motor binding. Given its omnipresence in the cytosol, the ER is the basic
compartment tointegrate and coordinate communicationwith and between differentintracellular
compartments. Here we will discuss how the ER guides the biogenesis and maintenance of
other, apparently unrelated organelles and how information is exchanged between the ER and
these organelles. We will elaborate on how the ER can integrate, rank and distribute information
gathered from the different organelles and discuss the molecular mechanisms as understood at
present. These uncover a new role for the ER in cellular homeostasis: distributing biochemical

information from organelles to control life and location of other intracellular compartments.

The ER as an Organelle birth ground

Considering the origin of membranes for organelles touches the basis of cellular life. Membranes
in the endocytic system are derived from the plasma membrane and the Golgi is derived from
the ER. Yet, the origin of membranes for organelles such as peroxisomes, autophagosomes
and lipid droplets (LD) has long been elusive. As the ER holds most cellular lipids, it may be
the prime candidate for donating membranes to other organelles. The ER is indeed a major
contributor to the formation of autophagosomes, peroxisomes and LD and the mechanisms
are beginning to be elucidated, as illustrated below.

As afirst step in LD biogenesis, neutral lipids accumulate between ER bilayer leaflets at defined
sites'. Subsequently the hemi-membrane will bud into the cytosol to provide the phospholipid
monolayer, while lipids accumulate in the interior before the mature LD releases itself from the ER.
An alternative model suggest that the ER and LD are not continuous but that the ER membrane is
tightly wrapped around the lipid droplet resembling an egg cup (the ER) holding an egg (the lipid
droplet)?. Proteins involved in lipid metabolism such as the ER resident FATP1/acyl-CoA synthetase
and the lipid droplet protein DGAT2/diacylglycerol acyltransferase interact at these ER-LD contact
sites’(figure 1). Another ER protein, Seipin, also localizes to these inter-organellar contact sites
and determines the morphology of lipid droplets and their metabolism®. The ER is thus involved
in the control of various steps in the birth and life of lipid droplets.

Autophagosomes are compartments induced by starvation and require membranes to
encapsulate cytosol before fusion to lysosomes for the degradation of cytosolic material. But what
is the origin of the membranes for this compartment? PI3P is required to initiate autophagosome
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formation® and is produced by Atgl4. Atgl4 localizes to the ER and the phagophore (the
autophagosome precursor). The ER is critical in this process as a mutant of Atgl4 unable to bind
the ER impairs autophagosome formation®®. The specialized regions of the ER that provide the

autophagosomal membranes are termed “omegasomes””.

Omegasomes are continuous with the ER
membrane and cradles between two ER membranes during early stages of growth # (figure 2). How
scission of the omegasome from the ER occurs is -like for other ER derived compartments- unclear,
as is the role of the ER in later stages of autophagosome maturation and fusion with lysosomes.

A third compartment originating from the ER is the peroxisome®™. Two subpopulations of
pre-peroxisomal vesicles (each containing half of the peroxisomal translocon machinery) bud
from the ER™. These two populations fuse later to assemble a functional translocon allowing the
peroxisome to import matrix proteins for its maturation.

The ERis the largest membrane-containing compartment in the cell and contributes to the
early life of different compartments. As in normal adult-child interactions, the ER stays in close
contact with these (and other) organelles long after their initial birth.

The ER as central conductor

Golgi Autophagosome Peroxisome Lipid droplet
Biogenesis Biogenesis Biogenesis Biogenesis
Lipid transfer Phospholipid transfer Lipid and protein transfer
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signaling lipids
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Figure 1. The ER as a central conductor. The ER is the largest intracellular compartment. Illustrated are
new functions of the ER that relate to the birth of organelles (shown at top) and direct interactions in
membrane contact sites- with organelles and the plasma membrane (bottom). The transfer of lipids and
cholesterol by lateral diffusion in ER membranes is depicted. These and other molecules can use the ER
to distribute to different compartments without exposure into the free cytosol. Some of the functions of
organelles related to the ER is depicted in the figure.
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Staying in touch

Membrane contact sites (MCS) are defined as sites where membranes of two organelles locate
within 10-30 nm (for comparison, the thickness of a lipid bilayer is ~10 nm while a small protein
like GFPis ~5 nm) (figure 3). Proteins of opposite compartments can interact to form functional
inter-compartment interactions within this space™. MCS’s are only recently recognized and
their function (if only one) not fully specified. We asked leaders in this developing area on their
opinion of the function of MCSs, and their quotes are summarized in Box 1. One dominant
feeling is that information exchange between compartments occurs at MCS (as described

below). In a way, the ER might be considered the cell’s central nervous system, able to gather,

- N

Box 1

Will Prinz

National Institute of Diabetes

and Digestive and Kidney diseases,
NIH, Bethesda

Clare Futter
UCL institute of Ophthalmology,
London, UK

Scot Emr and Chris Stefan
Cornell University,
Ithaca, USA

Rik van der Kant and Jacques
Neefles, The Netherlands Cancer
Institute, Amsterdam NL

Tim Levine
UCL institute of Ophthalmology,
London, UK

“Membrane contact sites may be regions were
signals and small molecules are effectively
channeled between organelles, increasing the
rate and efficiency of exchange.”

“The close apposition of the ER membrane with
the membranes of other organelles generates a
discrete micro-environment with the potential for

lipid transfer and protein-protein interactions.”

“The endoplasmic reticulum is the foundation
of the secretory pathway, as it serves essential
roles in protein and lipid biosynthesis.
Intracellular signaling at ER-organelle junctions
provides an elegant system to coordinate
protein and lipid synthesis in the ER, in response
to cues from various compartments along the

secretory and endocytic pathways.”

“The ER controls the location of other
compartments by affecting motor protein
binding. This inter-organelle control is likely
controlled by the transfer of lipids within the
membrane contact sites.”.

“If lipids do not cross between organelles at
contact sites by the action of lipid transfer proteins

then I'll have been proved absolutely wrong.”
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integrate and distribute information between all organelles™™%, This information often comes
in the form of (signaling) lipids and calcium that are exchanged at MCS between the ER and
other organelles. The ER can subsequently distribute lipids via membrane diffusion and ions
through the ER luminal space to other compartments thus acting as a passive, long-range pan-
cellular distribution system™. MCS probably not only function as sites of substance transfer,
but may also play a more active role in cellular homeostasis by sensing the need for ions, lipids
(and other undefined substances) of individual organelles. The ER is thus a major distributor of
molecules that are difficult to selectively distribute by other means. As a result, the ER senses

the homeostasis of the different organelles in a cell. But what is transferred at MCS and how?

Information transfer at Membrane Contact Sites

Hydrophobic lipids can be distributed by vesicular transport or by lipid carriers®. Alternatively,
lipids can use the ER for lateral diffusion to other compartments before actual transfer in MCS
by lipid transfer proteins (summarized in figure 2). Examples of lipid transfer proteins are Golgi
proteins such as CERT, Nir2, OSBP and possibly ORP9. These proteins possess an FFAT motif
to contact the ER protein VAP (figure 2) for lipid transfer”™. Cholesterol transport between
endosomes and the ER also involves MCS containing ER protein ORPS and endosomal proteins
HRS and NPC-1°?", Membrane contact sites between the ER and late endosome are established by
another OSBP family member, ORPIL, that senses but may not transfer cholesterol®. Triglyceride
synthesis in lipid droplets is controlled by the ER protein PATP1 . In addition, the ER/Golgi resident
PI/PC exchange protein Nir2 can appear on lipid droplets possibly to support lipid transfer at
ER-lipid droplets contact sites ®. Other lipid transfer proteins enriched in MCS between the ER
and LD are Seipin (in yeast)*, Adiphophilin® and possibly ORP2*. The exchange of phospholipids
between peroxisomes and the ER * likely also involves peroxisome-ER contacts sites'®™. In general,
a theme emerges where the ER provides a distribution system for lipids and other compounds
that cannot efficiently be delivered by simple diffusion in the hydrophilic milieu of the cytosol.
The ER then dynamically contacts other compartments for specific exchange and delivery.

Data integration by membrane contact sites

While some lipids are membrane building blocks, other lipids can act as second messengers in
signal transduction. If such lipids are transferred at MCS between compartments, signals are
very specifically delivered in an undiluted manner. At present, there are two compartments
defined for inter-compartmental signal control by the ER: the cell surface and mitochondria.
Further studies may broaden this concept to other compartments.

How does the ER control signaling at the cell surface and mitochondria? Contact sites
between ER and plasma membrane (PM) are particularly obvious in muscle where the
sarcoplasmic reticulum (SR) (ER found in smooth and striated muscle) is positioned within
10-20 nm of the plasma membrane *. Upon ligand binding, many membrane receptors initiate
the production of Inositol-1,4,5-trisphosphate (IP,) at the PM. IP3 activates the IP3 receptor
(IP3R) in the ER to release Ca” that acts as second messenger in signaling. After the depletion
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Figure 2. Protein-protein interactions in ER-organelle MCS’s. ER protein interactions (Right) with proteins
of other compartments as indicated (Left). These proteins meet in MCS's or MCS are formed as the result
of these interactions. Proteins involved in these interactions are diverse, Bottom. Box illustrates a common
interaction in MCS’s where the integral ER protein VAP (A and B) (right) interacts with proteins containing a
FFAT motif (meaning ‘two phenylalanines in an acidic trail (Aspartate and Glutamate rich trail”) (left). These
proteins belong to from the ORP (oxysterol binding protein related protein, Osh in Yeast) family that are
(often) lipid transfer proteins through the ORD domain. The FFAT motif is essential for interacting with the

MSP domain of VAP (in yellow circle).
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of Ca* from the ER lumen, Ca* channels in the PM open to allow entry of extra-cellular Ca* to
fill the ER. Efficient directional transfer without long distance diffusion of Ca®* in the cytosol is
solved by MCS between plasma membrane and ER.

The molecular mechanisms are understood to some degree. The ER protein STIM1is enriched
at the PM-ER interface following depletion of Ca* from ER stores”. STIM1 then interacts with the
ORA1 subunit of CRAC channels at the plasma membrane to open these for Ca® inflow®. IP3R
in the ER also contacts other calcium (TRPC) channels in the plasma membrane via an adapter
protein called Homer1®. Of note, Homerl binds to a wide variety of receptors at the plasma
membrane yielding probably a broader signaling response than currently anticipated®. As stated
above, the first step in the response to calcium signaling is the generation of IP3. Also this may be
cross-compartmentally controlled as studies in yeast suggest that ER-PM contact sites actually
regulate plasma membrane Pl metabolism®*’, possibly controlling PI flux and calcium signaling at
the plasma membrane via the ER. The plasma membrane controls Ca? release from the ER and the
ER controls Ca? inflow via the plasma membrane to spatially control second messengers signaling.

Is cross-talk between ER and plasma membrane the exception or does it exemplifies a
broader concept? Other important mediators in Ca®' signaling are mitochondria. Mitochondria
store Ca’ from the cytosol, participate in Ca**signaling and make frequent contacts with the ER
to regulate Ca*transfer™®. In addition, phospholipids (PS and PC) and probably cholesterol are
also transported from the ER to mitochondria utilizing MCS*%. How formation of these MCS is
controlled is understood at some level of detail and involves the ERMES complex in yeast that
includes Gem1**¥, Gem1 is a small GTPase with Ca” sensing abilities controlling phospholipid
exchange between the ER and mitochondria®. The ERMES complex is absent in metazoans,
but possibly replaced by another ER-mitochondria tethering complex of mitofusins that may
interact with Miro1, the mammalian homologue of Gem], to requlate ER-mitochondria MCS¥.

Local Ca* transfer between ER and other organelles has not yet been described. However,
Ca® is involved in the dynamics of lysosomes®, Golgi” and peroxisomes® and all of these
organelles are also contacted by the ER. How the ER integrates lipid and Ca* signaling at MCS
with these and other organelles, remains an intriguing question.

Textbook pictures suggest that a cell contains isolated organelles connected through
vesicular transport. This view is now challenged by the concept of dynamic inter-organel
interactions that serve to exchange lipid, ionic and other information between different
compartments. The ER might serve as the central nervous system of the cell integrating signals
acquired through the various MCS, acting as a middleman for different compartments to

control intracellular dynamics and signaling.

The ER as terminator of extracellular signaling
The EGF-receptor (EGFR) is strongly phosphorylated following binding of EGF. Phosphorylation

induces signal transduction that can be terminated by protein-tyrosine phosphatase 1B (PTP1B).
A topological problem occurred when PTP1B was shown to reside on the cytosolic side of the
ER implying the ER in control of EGFR signaling. Recent data indicate that the ER contacts
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Figure 3. Contact site or fusion? Many organelles make transient - non-continuous - contacts with the
ER. These can be easily observed by confocal microscopy (Left) when one compartment (late endosomes)
is labeled differently than the ER. When ORPIL (a late endosomal protein) is expressed, the ER protein
VAP perfectly colocalizes suggesting fusion of late endosomes with ER. The resolution of light microscopy
is usually >240 nm leaving details below this unresolved. When the same cells are analyzed by electron
microscopy, the formation of MCS between late endosomes and ER is observed with the two markers
labeling exclusively their respective compartments. MCS appear as one membrane by light and as two
by electron microscopy. No evidence for fusion of ER and late endosomes was observed at sufficient
resolution (for details, see 22).

endosomes carrying phosphorylated EGFR to induce contacts with PTP1B *. As PTP1B is involved
in more signaling processes, the ER may have a broader involvement in the spatial and temporal
control of these and other processes.

The ER as an organelle organizer

Is the ER only mediating inter-compartmental lipid and Ca* transfer at MCS or is the ER also
actively controlling organelle behavior? Lipids and Ca®" are known to affect the location of
organelles, a system that might be co-regulated by the ER. The inter-compartmental control
of these processes has only recently been realized and is illustrated by two examples that
are understood in molecular detail: scission of mitochondria, and dynein motor-mediated
transport of late endosomes and lysosomes.

One of the most spectacular examples of ER control of dynamics of other organelles is
the fission of mitochondria*. The ER tightly wraps around mitochondria during fission events
marking the site of mitochondrial division. The ER may further support fission by depositing
Ca” at these (now scission) sites required for the recruitment of cytosolic Drpl to mitochondrial

membranes®. Drplis a dynamin-related protein that provides the mechanical force for fission®.
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Ca” also reqgulates mitochondrial transport via the calcium binding protein Mirol/Rhotl, a
GTPase that interacts with motor proteins to regulate transport®. In yeast, Mirol is found at
the ER-mitochondrial interface, indicating a role for MCS in mitochondrial trafficking®. Of
note, another protein enriched at the ER-mitochondrial interface is Fisl, a protein involved in
apoptosis by controlling cytochrome C release. The ER-mitochondria MCS’s may thus control
apoptosis (figure 2)**%°. Since Fis1 and Drp1 are also involved in peroxisomal dynamics, a similar
mechanism involving the ER may be at work there as well **°",

Endosomes move due to the activities of microtubule and actin-based motor proteins
that determine their intracellular location®, The dynein motor transports vesicles such as late
endosomes to the microtubule minus-end (where the microtubule organizing center (MTOC)
resides). The dynein motor binds to late endosomes through the Rab7 effector RILP#*%. Rab7 also
binds the FFAT motif containing cholesterol sensor ORPIL that changes conformation dependent
on late endosomal cholesterol content 2. Low LE cholesterol results in a conformation change of
ORPIL allowing the FFAT motif in ORPIL to interact with ER-resident protein VAP-A. VAP-A then
removes the dynein motor from late endosomes effectively allowing kinesin motors for transport
to the cell periphery. Niemann-Pick and other lysosomal storage diseases such as Gaucher
patients have lysosomes clustered around the MTOC and also high lysosomal cholesterol levels™*,
The cholesterol alters the conformation of ORPIL to not expose the FFAT motif thus preventing
interactions with ER protein VAP-A. As a result, the dynein motor remains on the Rab7-RILP
receptor and lysosomes cluster around the MTOC?¥. De-regulation of interactions within MCS’s
might also underlie other disease phenotypes such as Amyotrophic lateral sclerosis ALS®™, further
illustrating the importance of inter-compartmental contacts in cellular homeostasis.

Concluding remarks

ER-organelle contact sites were first observed some 40 years ago *°. Recent years have seen a
burst of new observations and the beginning of a “molecular era of organelle contact sites” ¢°.
The ER is not only a site for protein synthesis and folding but is also a major organizer of other
intracellular compartments, as a puppeteer controlling the marionettes. It is involved in the
distribution of information in the form of Ca* and signaling lipids and the delivery of other
lipids such as cholesterol between different compartments. In addition, the ER controls major
cell biological events such as mitochondrial fission, organelle birth and transport of other
compartments. As the ER fills the cytosolic space, it is probably the only compartment able
to contact and connect every other organelle. The role of the ER as a master conductor that
controls the nature of other intracellular compartments is only beginning to be appreciated
and it is anticipated that many more processes involve this large and dynamic organelle. We are
only at the beginning of understanding and appreciating the complexity of the ER as a central
organizer of other intracellular compartments.
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