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CHAPTER 4

4.1 ABSTRACT

Urine, amniotic fluid and ascitic fluid samples of galactosialidosis patients were analyzed
and structurally characterized for free oligosaccharides using capillary high-performance
anion-exchange chromatography with pulsed amperometric detection and online mass
spectrometry. In addition to the expected endo-B-N-acetylglucosaminidase-cleaved products
of complex-type sialylated N-glycans, O-sulfated oligosaccharide moieties were detected.
Moreover, novel carbohydrate moieties with reducing-end hexose residues were detected.
On the basis of structural features such as a hexose—N-acetylhexosamine—hexose—hexose
consensus sequence and di-sialic acid units, these oligosaccharides are thought to represent,
at least in part, glycan moieties of glycosphingolipids. In addition, C -oxidized, aldohexonic
acid containing versions of most of these oligosaccharides were observed. These observations
suggest an alternative catabolism of glycosphingolipids in galactosialidosis patients:
oligosaccharide moieties from glycosphingolipids would be released by a hitherto unknown
ceramide glycanase activity. The results show the potential and versatility of the analytical
approach for structural characterization of oligosaccharides in various body fluids.
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4. 2 INTRODUCTION

Galactosialidosis is an autosomal recessive lysosomal storage disease, caused by deficiency of
both a.-neuraminidase (EC3.2.1.18) and -galactosidase (EC 3.2.1.23) activities [1], resulting from
a defect in the protective protein cathepsin A (EC 3.4.16.5). This lysosomal protein protects
o-neuraminidase and P-galactosidase from proteolytic degradation [2] by formation of a
complexinvolving cathepsin A, B-galactosidase, a.-neuraminidase and N-acetylgalactosamine-
6-sulfate sulfatase (EC 3.1.6.4) [3,4].

Galactosialidosis is characterized by excessive excretion of sialyloligosaccharides in the urine,
anincrease in the amount of bound sialic acid in various tissues, and severe clinical symptoms [5,6].
Three clinical subtypes can be distinguished, depending on the age of onset and severity of the
symptoms: the early infantile type with fetal hydrops, ascites, visceromegaly, skeletal dysplasia
and early death, usually by 8-12 months of age; the late infantile type with cardiac involvement,
hepatosplenomegaly, growth retardation and mild mental retardation; and the juvenile/adult type
with progressive neurological deterioration without visceromegaly. Coarse faces, cherry red spots
in the macula and vertebral changes are usually present [7,8]. Biochemical diagnosis is made by
demonstration of increased excretion of oligosaccharides by thin layer chromatography [9] and
by demonstrating a combined deficiency of a.-neuraminidase and 3-galactosidase in patient cells.

Several activity studies on the structural analysis of sialyloligosaccharides from urine of
galactosialidosis patients [10,11] have been published. van Pelt et al. [12] described 21 sialylated
oligosaccharides. Twenty of these were endo-[3-N-acetylglucosaminidase-cleaved products of
complex-type sialylated N-glycans, and one was a di-sialylated diantennary structure with an
intact N,N’-diacetylchitobiose unit at the reducing end.

Here we report the analysis of oligosaccharides from galactosialidosis patients using a
previously described capillary high-performance anion-exchange chromatography (HPAEC)
method with combined integrated pulsed amperometric (PAD) and ion-trap mass spectrometric
detection and analysis [13]. In addition to urine samples, ascitic fluid and amniotic fluid obtained
from mothers pregnantwith a galactosialidosis fetus were analyzed. Amniotic fluid is ofimportance
for prenatal diagnosis of many lysosomal storage disorders such as galactosialidosis [14].

In addition to the expected endo-f-N-acetylglucosaminidase-cleaved products of
complex-type sialylated N-glycans, oligosaccharide structures that had not been previously
found were detected in the samples from galactosialidosis patients. These newly found
oligosaccharide structures included O-sulfated oligosaccharide moieties, carbohydrate
moieties of glycosphingolipids, and C,-oxidized (aldohexonic acid) carbohydrate moieties of
glycosphingolipids. Onthebasis of the presence of carbohydrate moieties of glycosphingolipids,
we speculate about the potential involvement of a ceramide glycanase in the catabolism of
glycosphingolipids in humans.

4 . 3 RESULTS

Glycans from seven urine samples from six galactosialidosis patients, five amniotic fluid samples
from five mothers carrying a fetus suffering from galactosialidosis, and two ascitic fluid samples
were analyzed by HPAEC-PAD-MS (Table 4-1). In addition, four urine samples from healthy
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Table 4-1. Information about the samples and patients. ND, not detected.

Creatinine
Sample Code Details (mmol/L)
u1 Urine patient AB, 12 days old, Lyon France 1,0
u2 Urine patient AV, 6 days old, Lyon France 2,3
u3, u4 Urine patient MO, Lyon France n.d.
us Urine patient BO, 127 days old, Lyon France 1,2
ueé Urine patient BO7/0175, Amsterdam Netherlands 1,6
u7 Urine patient BO7/0845.1, Leiden Netherlands 8 weaks old 0,5
Amfl Amniotic fluid patient AB, 30 weeks fetus, Lyon France n.d.
Amfl2 Amniotic fluid patient AS, 29 weeks fetus, Lyon France n.d.
Amfl3 Amniotic fluid patient W, 23 weeks of amenorrhoea, Lyon France n.d.
Amfl4 Amniotic fluid patient LA, 22 weeks fetus, Lyon France n.d.
AmflS Amniotic fluid patient GG, protein 3.5 g/L, Nijmegen Netherlands 0,08
Asfl Ascite fluid patient AB, Lyon France n.d.
Asf2 Ascite fluid patient AS, Lyon France n.d.

individuals were investigated. Figure 4-1 shows a typical HPAEC-PAD chromatogram from a
urine sample of a galactosialidosis patient.

4.3.1 N-glycan-derived structures

The typical endo-P-N-acetylglucosaminidase cleavage products of complex-type
N-sialyloligosaccharides were found in all urine samples, amniotic fluid samples and ascitic fluid
samples (see Fig. 4-2, n1-né) [12]. A varying number of isomers were detected for the various
N-glycan compositions, and these were analyzed by MS/MS, as summarized in Table 4-2.
N-glycan-derived structure n1 had the composition HNS (H, hexose; N, N-acetylhexosamine;
S, N-acetylneuraminic acid), and two isomers of n1 were detected. Tandem mass spectrometry
indicated the structure Neu5Ac(02-3/6)Gal(B1-4)GIcNAc. On the basis of chromatographic
retention [15] in combination with the tandem mass spectrometric data [16], we speculate that
N-acetylneuraminic acid (Neu5Ac) is (a2-6)-linked in the first n1 isomer and (a.2-3)-linked in
the second isomer. Specifically, the relatively low signal intensity of the fragment ion at m/z
655.2 from the second eluting isomer [16] suggests an a2—-3-linked Neu5Ac.

Moreover, larger complex sialyloligosaccharides were found with the composition
H, N, S .. In accordance with literature data [12], we interpreted the three isomers H,N.S as
sialyl-mono antennary endo-f-N-acetylglucosaminidase cleavage products of complex-type
N-glycan structures (Fig. 4-2, n2). Similarly, the two isomers H,N.S were assigned to sialylated
diantennary structures (Fig. 4-2, n3), the two isomers H.N.S, as di-sialylated diantennary
structures (Fig. 4-2, n4), the two isomers H/N,S, as di-sialylated triantennary structures (Fig.
4-2, n5), and the three isomers H/N S, as tri-sialylated triantennary structures (Fig. 4-2, n6).
These assignments were corroborated by the MS/MS data (Table 4-2).

In addition to the expected endo--N-acetylglucosaminidase-cleaved products of complex-
type sialylated N-glycans, some O-sulfated versions were also found in low amounts (see Table
4-3 and Fig. 4-2, s1-s4). The detected carbohydrate HSO,NS eluted in the time window for
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Figure 4-1. Capillary HPAEC-PAD chromatogram of oligosaccharides from a urine sample of a
galactosialidosis patient. H, hexose; N, N-acetylhexosamine; S, N-acetylneuraminic acid; X, aldohexonic
acid. The numbers above the horizontal arrows represents the number of acidic groups.

double negatively charged carbohydrates (Fig. 4-1). The MS/MS fragment ions Y, (m/z 2199)
and Y, (m/z 462.0) indicated the sequence NeuSAc-HexSO,~HexNAc (Fig. 4-3). The ®°A, ring
fragment ion at m/z 652.1is typical of a 1-4 glycosidic link [16,17] between HexSO, and HexNAc.

The lack of significant fragment ions between the fragment ions Y, and Y, is indicative of a 2-3
linkage between Neu5Acand HexSO,. These data are consistent with a NeuSAc(a2-3)Gal-6-SO,(31-4)
ClcNAc N-glycan antenna structure or O-glycan structural motif [18]. Moreover, the presence of
complex O-sulfated sialylated oligosaccharides with the composition H, SO.N, S _ (see Table 4-2),
was indicated by MS. Based on observed retention times, mass spectrometric data (Table 4-2) and
literature data, these glycans were assigned to sulfated variants of the above-mentioned endo-f3-N-
acetylglucosaminidase cleavage products of complex-type sialylated N-glycan structures: the two
isomers of composition H.SO,N,S were assigned to O-sulfated sialylated monoantennary glycans
(Fig. 4-2, s2), the four isomers HSO,N.S as O-sulfated monosialylated diantennary glycans (Fig. 4-2,
s3), and the two isomers H.SO,N.S, as O-sulfated, disialylated diantennary glycans (Fig. 4-2, s4).

4.3.2 Glycans with reducing-end hexoses

In addition to the N-glycan-derived signals, the LC-MS/MS data provided evidence for the
presence of a group of oligosaccharides of composition H _N_ S (gl-gl1, Table 4-2). Tandem
mass spectrometry indicated a sequence Hex—HexNAc—Hex—Hexortruncated versions thereof
for most of these oligosaccharides, decorated with up to two Neu5Ac. Di-sialyl motifs (Neu5Ac
linked to Neu5Ac) were also observed. Structural characterization of these oligosaccharides is
described below.
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Figure 4-2. Schematic overview of the proposed structures of free oligosaccharides in body liquids
from galactosialidosis patients. The codes n1-né, s1-s4, g1-g11 and 01-09 refer to Tables 4-2 and 4-3.

Twoisomers of the glycan H,were detected. The retention time of the late-eluting H, isomer
was identical to that of maltose (Glc(a1-4)GClc; Table 4-2). The retention time of the early-
eluting H, isomer was identical to that of lactose, and Fig. 4-4A shows the MS/MS spectrum
obtained. Fragment ion C, (m/z178.9) indicates the composition H, and the ring fragment ion
(m/z220.8) corresponds to a loss of 120, which is interpreted as a **A, ring fragment typical of
a1-4linkage between the hexoses [16,17].

Four isomers were found with the composition H,S (Table 4-2). The MS/MS spectrum of
the first eluting isomer with retention time of 10.5 min is shown in Fig. 4-4B. The fragment ions
B, C,, Y, and Y, indicate the sequence NeuS5Ac-Hex—Hex. The ring fragments ®°A_and ®’A-18
in combination with lack of the ®°A, ring fragment ion are typical of a 1-4 linkage between
the hexoses [16,17]. The lack of relevant ring fragment ions between fragment ions B, and C, is
indicative of a 2-3 linkage between Neu5Ac and Hex. These combined data are consistent with
sialyllactose (Neu5Ac(02-3)Gal(1-4)Clc) (g6, Table 4-2). The MS/MS fragmentation spectra of
the remaining three isomers with the composition H_S are indicative of the sequence Neu5Ac—
Hex—Hex, for which the structure has been partly elucidated (Table 4-2).

An oligosaccharide species with composition H,S, was detected at 29.1 min (g9, Table 4-2).
The fragment ion B, (m/z 581.2) consists of two N-acetylneuraminic acids, indicating a sialic
acid-sialic acid motif. Fragment ion Y,(m/z 632.2) is in accordance with two Hex decorated
with NeuSAc (Fig. 4-4C). These details indicate the sequence NeuSAc—Neu5Ac—-Hex—Hex.

Two isomers were detected with the composition H,N (m/z706.2) (g7, Table 4-2). The MS/
MS spectrum of the isomer eluting at 12.7 min is shown in Fig. 4-4D. The fragment ions B, (m/z
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Figure 4-3. Negative-ion fragmentation spectrum of the proposed 6’-sulfated sialyl lactosamine.

363.5) and C, (m/z 381.9) corresponded to Hex linked to HexNAc. The fragments C, (m/z 543.9)
and C, (m/z381.9) indicated two Hex at the reducing end. Based on the ring fragment ions O%A,
and °’A -18 and the lack of ®°A,, a 1-4 linkage was deduced for the two hexoses at the reducing
terminus [16,17], in accordance with a lactose core structure. From the combined data, we
postulate that this oligosaccharide has the glycan structure Hex—HexNAc-Gal(f1-4)Clc.

Two isomers with the composition H,NS were detected at m/z 997.3 (10, Table 4-2). The MS/
MS spectrum of the isomer eluting at 22.0 min is shown in Fig. 4-4E. The fragmentions B, C, B, C,
B, C, and C, are indicative of the sequence Neu5Ac—Hex—HexNAc—Hex—Hex. The proposed linear
sequence was supported by the abundant signals B, and C,. The lack of ring fragments between
C, and C, is indicative of a 2-3 linkage between NeuSAc and the adjacent hexose. No relevant ring
fragments were observed between C,and C,, which is consistent with a1-3 linkage between Hex and
HexNAc. The ring fragment ions °’A, and **A,, and the lack of °°A,, are indicative of a 1-4 linkage
between HexNAc and the adjacent hexose. The ring fragment ions °’A,, ®’A_-18 and **A,, and the lack
of°'3A5, are indicative of a1-4 link between the reducing end Hex and the adjacent Hex [16,17]. Based
on these data, we propose the structure NeuSAc(a2-3)Hex(B1-3)HexNAc(B1-4)Gal(B1-4)Glcp.

An oligosaccharide of composition H,N,S, was detected (g11, Table 4-2). MS/MS analyses
revealed an intense signal at m/z 563.6 (B, -H,0), which indicates a di-sialic acid motif.
This oligosaccharide was interpreted to be an extended version of g9, and the structure
Hex—HexNAc—(Neu5Ac—Neu5Ac)—-Hex—Hex is proposed. Moreover, a NeuS5Ac—Neu5SAc
disaccharide was detected (g4, Table 4-2), as well as oligosaccharides of composition H.F,
(where F stands for deoxyhexose) and H_N/F, (Table 4-2).

4.3.3 Glycans with aldohexonic acid
In addition, evidence was obtained from the LC—-MS/MS data for the presence of C,-oxidized
glycans (Fig. 4-2, 01-09). The innermost residue of these oligosaccharides was found to be
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NOVEL OLIGOSACCHARIDES IN GALACTOSIALIDOSIS

an aldohexonic acid (X) with a carboxyl group at C.. This monosaccharide differs by +16 Da
from hexose and by +2 Da from hexuronic acid (oxidation of the alcohol group at C,). The
aldohexonic acid-containing oligosaccharides (01-09) showed close structural similarities
to the above-mentioned glycans with reducing-end hexose oligosaccharides (g1-g11). The
structural interpretation obtained for these glycans is presented below.

A component at m/z 357.2 was detected and interpreted as HX on the basis of the MS/MS
spectrum (Fig. 4-5A). Fragment ion B, (m/z160.9) and C, (m/z178.9) indicate terminal hexose,
and Z,(m/z176.9) and Y, (m/z 195.0) result from aldohexonic acid. The fragment ion with mass
m/z158.9 is interpreted as a mass loss of 18 Da from the Z, ion. For the fragment ion with mass
m/z220.9, carbon chain cleavages at C,-C, and C,-C, of the aldohexonic acid were assumed. A
linkage of hexose to the C, of aldohexonic acid is postulated. The proposed structure for HX is
Gal(B1-4)GluconA (gluconic acid), which may be interpreted as the C -oxidized form of lactose.

A glycan with the composition HSX (m/z 648.5) was detected at retention time 26.0 min
(Table 4-2). The MS/MS spectrum is shown in Fig. 4-5B. The fragment ions C, (m/z 307.9), Y,
(m/z 3571), Z, (m/z 339.0) and [M-CH,OCH,OCOO-H]" (m/z 544.2) are indicative of the
sequence NeuSAc—Hex—HexonA (aldohexonic acid). Fragment ions at m/z 604.3 [M—CO_—H]"
and (m/z586.3) [M-CO,-H,0-H] are indicative of a carboxylic acid. For the fragment ion with
m/z 544.2, cleavage between C, and C, in the aldohexonic acid is proposed, indicating that the
aldohexonic acid is linked via C, to the adjacent hexose. Therefore, the structure NeuSAc(a2-3)
Gal(B1-4)GluconA is proposed, which represents the C -oxidized version of sialyllactose.

A glycan with the composition HS X (m/z 939.6) was observed at retention time 29.4 min
(08, Table 4-2). The MS/MS spectrum (Fig. 4-5C) shows the fragment ions B, (m/z 290.0), B,
(m/z581.3), Y, (m/z 357.1) and Y, (m/z 648.3), which is consistent with the sequence NeuSAc-
NeuSAc—Hex-HexonA. The fragmentions Y,-CO, (m/z 604.2) and [M-CO,-H]" (m/z 895.4) are
indicative of a carboxylic acid group.

A glycan with the composition H,NX (m/z 722.4) was observed at retention time 21.4 min (07,
Table 4-2). The MS/MS spectrum (Fig. 4-5D) shows the fragment ions C,(m/z5439),Y,(m/z357.0)
and Y, (m/z 560.2), which is consistent with the sequence Hex—HexNAc—Hex—HexonA. For the
fragment ions with masses m/z 586.2 and m/z 406.1, carbon chain cleavages at C,-C,and C,-
C, of the aldohexonic acid are assumed. The fragment ion with mass m/z 406.1 originated from
fragment ion Z,. From these details, the structure Hex—HexNAc—-Cal(B1-4)-HexonA (Fig. 4-2,
o07) is proposed, which is interpreted as the C -oxidized version of oligosaccharide g7 (see above).

A glycan with the composition H,NSX (m/z1013.4) was detected at retention time 27.4 min
(09, Table 4-2).The fragment ions [M~CO_-H] (m/z 969.7) and [M=CO_~H,O-H] (m/z 951.7)
are indicative of a carboxylic acid group (Fig. 4-5E). For fragment ion [M~CH,OCH,OCOO-H]
(m/z909.5), a cleavage between C, and C, of the aldohexonic acid is proposed. Moreover, the
MS/MS spectrum shows the fragment ions B, (m/z 364.1), A (m/z 3571), Zy (m/z 704.7),
YZB (m/z 722.3) and B, (m/z 817.5), which are consistent with the sequence Hex—HexNAc-
[Neu5Ac]-Hex—HexonA.

Other C -oxidized oligosaccharide moieties were an aldohexonic acid carrying a sialic acid
residue (03), oligosaccharide o4, which represents a C -oxidized version of g3, and o5, which is
interpreted as C -oxidized version of g5 (for details, see Table 4-2).
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Figure 4-4. Negative-ion fragmentation mass spectra of oligosaccharides with reducing-end hexose
residues with the proposed structures: (A) lactose, precursor ion m/z 341.2, g1; (B) sialyllactose,
precursor ion m/z 632.2, gé; (C) lactose carrying a disialyl motif, precursor ion m/z923.3, g9; (D) H\N
tetrasaccharide, precursor ion m/z706.2, g7; (E) H,NS pentasaccharide, precursor ion m/z 997.3, g10.

4.3.4 Glycan profiling of body fluids

LC-MS data were obtained for four urine samples from control individuals as well as seven
urine samples, five amniotic fluid samples and two ascitic fluid samples from galactosialidosis
patients. In the four urine samples of healthy controls, lactose (m/z 341.2), sialylhexose (m/z
470.2) and sialyllactose (m/z 632.2) were detected (data not shown). For the body fluid samples
of galactosialidosis patients, the relative abundances of the mass spectrometric signals are
given in Table 4-3. The two major classes of detected oligosaccharides are the endo-fB-N-
acetylglucosaminidase-cleaved products of complex-type sialylated N-glycans derivatives
(n1-n6) and oligosaccharides with reducing-end hexose residues or disialyl motifs (g1-g11),
with mean relative abundances of 37.1% and 44.8%, respectively. Sulfated glycans (s1-s4), which
are presumably derived from complex-type N-glycans, accounted for a mean of 1.6% of all
detected glycans. The relative abundance of aldohexonic acid-based oligosaccharides (01-09)
differed considerably between urine samples on the one hand (mean 29.7%) and amniotic fluid
and ascitic fluid samples on the other (mean 3.1%).

In all samples, the same set of complex-type N-glycan-derived structures was found, with
the exception of HN_S (n3) and H,N,S_ (n5) in ascitic fluid samples Asfl and Asf2, respectively
(Table 4-3). In all samples, complex-type N-glycan derivatives with very high relative
abundance were sialyl-N-acetyllactosamine (HNS; n1), disialylated diantennary structures
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Figure 4-5. Negative-ion fragmentation mass spectra of C-oxidized oligosaccharides with
the proposed structures: (A) C -oxidized lactose, precursor ion m/z 357.2, 02; (B) C -oxidized
sialyllactose, precursor ion m/z 648.5, 06; (C) C -oxidized lactose carrying a disialyl motif, precursor
ion m/z 939.6, 08; (D) C-oxidized version of H,N tetrasaccharide, precursor ion m/z722.4; o7; (E) C -
oxidized version of the H,NS pentasaccharide, precursor ion m/z1013.4; 09.

(H,N,S,; n4) and sialylated monoantennary structures (H,N.S; n2). In amniotic fluid and ascitic
fluid, tri-sialylated triantennary N-glycans (H,N,S.; n6) were clearly next in order of relative
abundance (Table 4-3).

Sulfated N-glycan derived structures were detected in all samples (Table 4-3). In three urine
samples, the entire set of four sulfated N-glycans could be detected (Table 4-3, U2, U4 and U6).
In one urine sample (U2), three isomers were detected for H.SO,N.S, (data not shown).

Free oligosaccharides with reducing-end hexoses were detected in all samples. In two
samples (Table 4-3, U1 and Amf5), the entire set of 11 oligosaccharides (g1—-g11) was detected.
The most abundant species of this glycan group in urine samples was sialyllactose (relative
mean abundance 16.4% for g6, H_S; Table 4-3), while the proposed sialylgalactose was the most
abundant species in the amniotic and ascitic fluid samples (mean 20.4% for g2, HS; Table 4-3).
Sialyllactose was observed with similar relative abundances in urine, amniotic and ascitic fluid
samples (g6, Table 4-3). In urine sample U7, the relative amount of lactose was high (39.9%),
and was one or two orders of magnitude lower for the other analyzed samples (g1, Table 4-3).
The disialyl glycan (g4) was detected in all samples and had a mean relative abundance of 4.8%.
Other glycans containing a disialyl motif (g9 and g11) were detected at low relative intensities (<
0.5%). Only in three of the 14 samples analyzed were neither of these species detected.
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Table 4-3. Oligosaccharides observed in various body fluids of galactosialidosis patients. Mean retention time,
mass to charge ratio and relative area are given for glycans detected in urine (U), amniotic fluid (Amf) or ascitic
fluid (Asf). H, hexose; N, N-acetylhexosamine; S, N-acetylneuraminic acid; X, aldohexonic acid; SO,, sulphate; +,
trace amount; —, not detected.

Sample: U w2z Uz u4

Fig.2 Composition m/z charge Ret. Time % % % %

n HNS 6734 [MHI 23 41 145 183 159

2 n2 HNS 12004  [MH] 2.0 28 106 34 75
& n3 HN,S 17278 [MHT 239 03 06 02 06
S n4 HNS, 10090  [M2H] 273 59 176 36 96
® ns H,N,S, 94 [M2H] 274 05 13 05 11
= né HN,S, 8913 [M3H]* 313 04 12 05 12

= 141 457 265 360
51 H(SNS 7532 [MHT 320 03 06 14 23

. 52 HONS 6397  [M2HP 36.5 03 13 - 05
# g 3 H(ONS 9033  [M2HP 34.6 - 03 - 02
= s4 HSNS, 10488  [M2H]* 396 + 02 01 02
06 24 15 32

I H, 3412 [MH] 7.6 219 53 36

2 HS 4702 [MH] 24.4 34 44 94 86

o 3 H, 5032 [MH] 91 02 34 35 32
g N 14 s, 5992 [MH] 27.7 33 42 49 82
<32 Is HN 5442 [MH] 9.6 09 18 34 43

s E 16 H,S 6322  [MWHI 27 g1 108 299 222
2= 7 HN 7062 [MH] 127 18 08 24 08
33 I8 H,NS 8353  [MH] 2.8 15 41 20 42
£ 19 H,S, 9233 [MHI 291 + 01 - -
g 1o H,NS 9973 [MHJ 22.0 07 04 02 05
m H,NS, 6437  [M2H] 295 04 - 01 0]

2,6 318 6,0 557

ol X 1951 [MH] 133 623 16 10 20

3 02 HX 3572 [MH] 19.2 08 173 30 22
2 o3 SX 4861 [MH] 264 0.2 01 - 0,2
g 04 H,X 5192 [MH] 2.6 03 09 - -
s 05 HNX 502 [MH] 24.3 02 01 61 03
o 06 HSX 6485  [MH] 26.0 - - 08 05
£ o7 H,NX 7224 [MH] 214 - - - -
g 08 HS X 9396  [MH] 294 - + 0 -
g 09 H,NSX 10134 [MH] 274 - - - -

63,7 20,1 11 52
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us ueé uz AvguU Amfi Amf2 Amf3 Amf4 Amf5 Asfl Asf2 AvgA AvgOA
% % % % % % % % % % % % %

15,1 96 150 132 225 199 227 254 205 192 191 213 173
09 4,0 0,5 42 6,0 73 5,0 47 47 3,7 58 53 458

0,2 0,4 0,1 0,3 + 0,5 0,2 0,8 0,3 - 0,1 0,4 0,4
2,2 55 1,2 6,5 18,7 22,3 16,5 17,5 22,0 91 14,3 17,2 n9
0,4 0,4 0,1 0,6 1,2 14 0,9 14 15 0,4 - 1,1 0,8

0,3 0,2 0,2 0,6 52 4,8 3,5 34 4,9 13 2,6 3,7 2,1
19,2 20,0 17,0 25,5 53,6 56,2 48,9 53,2 539 33,8 41,8 48,8 371

23 06 03 1 - - - 04 07 07 30 12 1
+ 03 - 06 08 13 09 09 10 - - 10 08
+ 0,2 - 02 03 - 04 - - 04 - 04 03
- + - 0 - - - - 0,6 - - 06 03

2,4 11 03 16 11 13 14 13 2,2 1 3,0 16 1,6

42 12 399 82 09 04 - 07 15 23 23 13 50

60 26 5 56 191 144 219 147 134 361 231 204 130

3 - 29 27 - - - - 0,6 - - 06 24

7.2 43 09 47 30 50 56 73 68 24 46 50 48

33 09 16 23 12 08 09 13 1] 09 11 1] 17

72 65 202 164 13 143 147 164 142 178 178 154 159

04 05 03 10 02 - - 04 0] - - 02 08

09 19 06 22 4 35 40 2] 34 10 35 3 2,6

0 + + 01 - 03 - 02 04 - 03 03 02

01 0,2 + 03 03 - - 03 03 - - 03 03
- - - 0,2 - - - - 0,2 - - 02 02

42,3 18,1 71,6 43,1 411 38,6 47, 43,6 4,9 60,6 52,8 46,5 44,8

31 186 89 B9 09 - - - 1] 2,2 + 14 102
279 370 15 128 13 1,0 - 13 02 09 18 1] 74
02 0] - 02 04 05 - - 0,4 - - 04 03
15 05 - 08 15 16 23 - - 15 - 17 13
09 02 05 12 0] 07 04 06 03 - 06 04 08
27 38 - 19 - - - - - - - 19
- 0,2 - 0,2 - - - - - - - 0,2
- 02 0] 0 - - - - - - - 0
- 03 + 03 - - - - - - - 03

36,1 60,8 11 29,7 4,2 39 2,7 19 2,0 4,6 2,4 31 16,4
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In the amniotic and ascitic fluid samples, aldohexonic acid-containing oligosaccharides o1-
o5 were detected. In the urine samples, high levels of aldohexonic acid-containing glycans were
often observed, with the exception of U4 (Table 4-3). In U1, U6 and U7, gluconic acid (ol) has high
abundance, and high levels of C -oxidized lactose (02) were observed in urine samples U2, U5 and Ué.

4.4 DISCUSSION

Using a prototype capillary HPAEC-PAD-MS system, we observed N-glycan-derived
oligosaccharide structures (Fig. 4-2, n1-6) in urine, amniotic fluid and ascitic fluid samples
from various galactosialidosis patients as described previously [12]. The new set-up also
allowed detection of new oligosaccharides in the samples from galactosialidosis patients: (a)
O-sulfated oligosaccharide moieties, (b) carbohydrate moieties with reducing-end hexoses,
and (c) oligosaccharides with C -oxidized hexose. The detection of relatively low amounts of
O-sulfated oligosaccharide moieties and C -oxidized carbohydrate moieties, especially in the
amniotic and ascitic fluid samples, is made possible by the sensitivity gain achieved by coupling
of a capillary HPAEC-PAD to the MS system compared to use of a normal-bore HPAEC-PAD
[13,19]. Importantly, the analytical setup allows analysis of glycans with reducing ends, reduced
termini and C, oxidation, which makes it more broadly applicable than methods that depend
on reducing ends for reductive amination reactions [20]. An important aspect of HPAEC is its
ability to separate structural isomers, as documented previously [13,15]. Hence, HPAEC-PAD-MS
represents a valuable addition to the repertoire of LC-MS methods for oligosaccharide analysis.

Almost all carbohydrate structures described here are terminated with galactose and / or
sialic acid residues, which can be explained by the defect of cathepsin A in galactosialidosis
patients, resulting in insufficient protection of -galactosidase and a.-neuraminidase against
excessive intra-lysosomal degradation [2]. Cathepsin A is one of four enzymes in a lysosomal
multi-enzyme complexcomprising N-acetylgalactosamine-6-sulfate sulfatase, 3-galactosidase,
cathepsin A and a.-neuraminidase [3,4].

The enzyme N-acetylgalactosamine-6-sulfatase or galactose-6-sulfatase has been shown
to be specific for 6-sulfated galactose and N-acetylgalactosamine [21,22]. The structures s1—
s4 (Fig. 4-2) are interpreted as being derived from complex-type N-linked carbohydrates. 6'-
sulfated sialyllactosamine (s1) has also been found on O-linked glycan moieties [18], which may
therefore represent an alternative source of this glycan.

Tandem mass spectrometry provided evidence that at least some of the oligosaccharide
chains with hexose at the reducing end have a Gal(B1-4)Clc (lactose) core structure. This
group of glycans (g1-gl1) shares structural features with milk oligosaccharides, plasma
oligosaccharides and previously described urinary oligosaccharides from healthy individuals
[23-25]. The structures g1 and g6 in Fig. 4-2 can be interpreted as lactose (g1) and sialyllactose
(g6), which are known to be present in various body fluids [24,26-28]. Moreover, the
tetrasaccharide g7 may be interpreted as lacto-N-tetraose, and g10 may represent a sialylated
version thereof. As these structures are in part identical with milk sugars, they may be of limited
diagnostic value. Several glycosyltransferases have been identified in urine and amniotic fluid
[29-32], but no-one, to the best of our knowledge, has demonstrated that glycosyltransferases
are active in these fluids.
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Notably, the detected structures g4 (S,), g8 (H,NS), g9 (H,S,), g10 (H,NS) and g11 (H,NS.)
all exhibited structural motifs that are typically found on glycosphingolipids. g4 is interpreted
as a predominantly glycosphingolipid-derived disialyl motif, and the oligosaccharides g8,
g9, g10 and g11 are postulated to represent, at least in part, reducing-end glycan moieties of
the gangliosides GM2, GD3, GM1 and GD1b, respectively (Fig. 4-2, g8—gl1). In addition, the
structures g5 and g7 may also be interpreted as partly glycosphingolipids derived (ganglio-,
lacto- or lactoneo- series).

To our knowledge, such intact oligosaccharide moieties have hitherto not been described
as glycosphingolipids degradation products. According to the literature, catabolism of
glycosphingolipids starts from the non-reducing end while the glycan is still bound to the
ceramide, and is performed by a variety of exoglycosidases, which are often also involved in
the degradation of N-glycans and O-glycans [33,34]. This process leads to the release of
monosaccharides and results in glucosylceramide and galactosylceramide, which may be
degraded further by glycosidic bond cleavage. Additional proteins such as saposins (sphingolipid
activator proteins) are required for the catabolism of glycosphingolipids [35]. A blockage of
glycosphingolipid degradation, as occurs in Fabry’s disease as a result of a lack of a.-galactosidase
activity, leads to accumulation of the glycosphingolipid substrate, which in Fabry’s disease is
globotriaosylceramide [34]. Consequently, in galactosialidosis, only intact glycosphingolipids
would be expected to be secreted, not the glycan moieties as described here. Our finding of
free oligosaccharide moieties presumably derived from glycosphingolipids implies the existence
of an endoglycosylceramidase involved in an alternative glycosphingolipid catabolic pathway.
While such an enzyme has not been described for vertebrates, endoglycoceramidases (EC
3.2.1.123) have been found and characterized for invertebrates [36-39]. The enzymatic activity
of the postulated endoglycoceramidase may depend on saposins [35], and may represent a side
activity of glucosylceramidase (EC 3.2.1.45) facilitated by specific saposins. With regard to the
disaccharide of two sialic acid residues (Fig. 4-2, g4), it is unclear which enzyme would catalyze
the release of this disaccharide unit from gangliosides.

The last group of newly found oligosaccharides is characterized by C-oxidized hexose
residues (01-09). This group of glycans appears to be strongly related to the above-described
glycans with reducing-end hexoses (g1-g11), suggesting C, oxidation of these oligosaccharide
moieties. The glycans 08 and 09 may be interpreted as C -oxidized versions of ganglioside-
derived glycan moieties (Fig. 4-2). The C -oxidized oligosaccharides were found in urine samples
at relatively high amounts (mean 30%; Table 4-3). C -oxidized carbohydrate moieties were also
found in amniotic fluid samples, albeit at lower relative amounts (mean 3%; Table 4-3). The cause
of C, oxidation of the reducing end is unknown. We can exclude the possibility that these species
were observed due to oxidation of reducing sugars during the chromatographic process and the
subsequent MS detection, as we observed chromatographic separation of the reducing glycans
from the C-oxidized species, clearly indicating that these species were already present in the
samples prior to HPAECPAD-MS analysis. With regard to the origin of the C -oxidized glycans,
it is possible to speculate about a non-enzymatic oxidation reaction that may have occurred
before the urine and amniotic samples were collected, or during sample storage. Alternatively,
an enzymatic oxidation may be postulated. The possibility that an enzyme of microbial origin is
responsible, as described for Escherichia coli [40-44], appears not to be likely, as the oxidation
products were not only observed in urine samples, but also in amniotic fluid, which is considered
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to be sterile. Alternatively, it could be speculated that a human enzymatic activity might be
present in the liver or kidney, for example, that causes C, oxidation of glycosphingolipid glycan
moieties. This enzyme may act in conjunction with the postulated endoglycoceramidase.

Together with our previous study on G, gangliosidosis [13], this study shows the potential
value of capillary HPAEC-PAD-MS for analyzing oligosaccharides from clinical samples. This
prototype analytical system features femtomolar sensitivity for both pulsed amperometric
detection and mass spectrometric detection [13]. Moreover, it allows the analysis of
oligosaccharides in both positive-ion mode [13] and negative-ion mode, as shown here. Based
on the excellent MS/MS features of the ion trap mass spectrometer, informative fragment
spectra of sodium adducts [13] and deprotonated species (this study) can be obtained with
minute amounts of material, thus allowing insights into defects of glycoconjugate degradation
and lysosomal storage diseases.

4. 5 EXPERIMENTAL PROCEDURES
4.5.1 Materials

Analytical reagent-grade sodium hydroxide (50% w/w), sodium acetate, sulfuric acid and
sodium chloride were obtained from J.T. Baker (Deventer, The Netherlands). Acetonitrile was
obtained from Biosolve (Valkenswaard, The Netherlands). All solutions were prepared using
water from a Milli-Q synthesis system from Millipore BV (Amsterdam, The Netherlands). Details
of the urine, amniotic fluid and ascitic fluid samples are given in Table 4-1.

4.5.2 Capillary HPAEC

The capillary chromatographic system consists of a modified BioLC system from Dionex
(Sunnyvale, CA), comprising a microbore GP40 gradient pump, a Famos micro autosampler with
a full polyaryletherketone (PAEK) injector equipped with a 1 L loop, and an ED40 electrochemical
detector. BioLC control, data acquisition from the ED40 detector and signal integration are
supported by chromeleon software (Dionex). This modified system has been described in detail
previously [13]. A prototype capillary column 250 mm long with internal diameter 0.4 mm, packed
with CarboPac PA200 resin, was manufactured by Dionex. The GP40 flow rate was 0.53 mL-min™, and
the eluent flow was split using a custom-made polyether ether ketone (PEEK) splitter to 10 yL-min™.
The pump was provided with the following eluents: eluent A, water; eluent B, 500 mM NaOH; eluent
C, 500 mM NaOAc. All separations were performed at room temperature. The following ternary
gradient was used for the separation: 76% A + 24% B (20 to -14 min), isocratic sodium hydroxide
wash; 88% A +12% B (14 to O min), isocratic equilibration of the column; 42.6% A +12% B + 45.4% C
(0—-40 min), linear sodium acetate gradient was used for the separation. The ED40 detector applies
the following waveform to the electrochemical cell: E =01V (t,=0.00-0.205s, t = 0.20-040 s),
E,= 2.0V (t,= 041-0425), £, = 0.6V (t, = 043s), £, = -0 V (t, = 044-0.50 s) versus an Ag/AgCl
reference electrode [45]. A gold work electrode and a 25 pm gasket were installed.

4.5.3 Mass spectrometry

Coupled to the chromatographic system was an Esquire 3000 ion-trap mass spectrometer
from Bruker Daltonics (Bremen, Germany), equipped with an electrospray ionization source.
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To convert the HPAEC eluate into an ESI-compatible solution, an in-line prototype desalter
(Dionex) was used, continuously regenerated with diluted sulfuric acid [13]. A modified
microbore AGP-1 from Dionex was used as an auxiliary pump: to obtain efficient ionization of
the eluted carbohydrates, 50% acetonitrile was pumped into the eluent flow via a MicroTEE
(P-775, Upchurch Scientific, Oak Harbor, WA, USA) at a flow rate of 4.6 pl-min™. The mixture was
directed to the electrospray ionization interface of the Esquire 3000. The carbohydrates were
detected using the MS in the negative-ion mode. The MS was operated under the following
conditions: dry temperature 325 °C, nebulizer 103 kPa, dry gas 7 L-min~, target mass m/z 850,
scan speed 13 000 m/z per s in MS and MS/MS mode. For tandem MS, automatic selection of
three precursors was applied.

4.5.4 Sample preparation

Oligosaccharides of the samples were isolated by graphitized carbon solid-phase extraction,
as described previously [46]. A 200 pL sample was diluted with 1800 pL demineralized water
and loaded on a Carbograph SPE (210142) from Alltech Associates Inc. (Deerfield, IL, USA). The
cartridge was washed with 6 mL of demineralized water. The oligosaccharides were eluted from
the column using 3 mL of 25% acetonitrile containing 0.05% trifluoroacetic acid. The eluate was
evaporated under a nitrogen stream at room temperature until the volume had decreased by
50%. The remaining solution was lyophilized and reconstituted with 200 pL demineralized water.
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