
Characterization of oligosaccharides with capillary high performance
anion exchange chromatography hyphenated to pulsed amperometric
detection and ion trap mass spectrometry : application to the analysis of
human lysosomal disorders
Bruggink, C.

Citation
Bruggink, C. (2013, May 29). Characterization of oligosaccharides with capillary high
performance anion exchange chromatography hyphenated to pulsed amperometric detection
and ion trap mass spectrometry : application to the analysis of human lysosomal disorders.
Retrieved from https://hdl.handle.net/1887/20909
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/20909
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/20909


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/20909  holds various files of this Leiden University 
dissertation. 
 
Author: Bruggink, Cornelis 
Title:  Characterization of oligosaccharides with capillary high performance 
anion exchange chromatography hyphenated to pulsed amperometric detection and ion 
trap mass spectrometry 
Issue Date: 2013-05-29 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/20909
https://openaccess.leidenuniv.nl/handle/1887/1�


O
lig

o
sa

c
c

h
a

rid
e

 c
h

a
ra

c
te

riza
tio

n
 w

ith
 C

a
p

 H
P

A
E

C
- M

S
  

Carbondiox ide

W a t e r

C
arbohydrate

A
n

a
b

o
l i sm

Energy

A T P

Enzym
e

C
at

ab
o

l i
sm

C o r n e l i s  B r u g g i n k

C h a r a c t e r i z a t i o n  o f  o l i g o s a c c h a r i d e s  
w i t h  c a p i l l a r y  h i g h  p e r f o r m a n c e  a n i o n   

e x c h a n g e  c h r o m a t o g r a p h y  h y p h e n a t e d  
t o  p u l s e d  a m p e r o m e t r i c  d e t e c t i o n  a n d  

i o n  t r a p  m a s s  s p e c t r o m e t r y

A p p l i c a t i o n  t o  t h e  a n a l y s i s  
o f  h u m a n  l y s o s o m a l  d i s o r d e r s

C
o

rn
e

lis B
ru

g
g

in
k



CHARACTERIZATION OF OLIGOSACCHARIDES  
WITH CAPILLARY HIGH PERFORMANCE ANION  
EXCHANGE CHROMATOGRAPHY HYPHENATED  

TO PULSED AMPEROMETRIC DETECTION  
AND ION TRAP MASS SPECTROMETRY: 

Application to the analysis of human lysosomal disorders

Cornelis Bruggink



© 2013 Cornelis Bruggink, Breda. All rights reserved. No part of this book may be 
reproduced, stored in a retrieval system or transmitted in any form or by any means 
without permission of the author.

Layout & printing: Off Page, www.offpage.nl

Cover image: North America Nebula (NGC 7000) picture made by Takayuki Yoshida

Cover design and layout: Cornelis Bruggink

ISBN: 978-94-6182-156-0

The study described has been supported with prototype materials of Thermo 
Fisher Scientific, Sunnyvale CA.

Printing of this thesis was financially supported by: Dionex Benelux BV



CHARACTERIZATION OF OLIGOSACCHARIDES  
WITH CAPILLARY HIGH PERFORMANCE ANION  
EXCHANGE CHROMATOGRAPHY HYPHENATED  

TO PULSED AMPEROMETRIC DETECTION  
AND ION TRAP MASS SPECTROMETRY: 

Application to the analysis of human lysosomal disorders

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

ter verdedigen op woensdag 29 mei 2013

klokke 16:15 uur

door

Cornelis Bruggink 

geboren te Amsterdam

In 1951



PROMOTIECOMMISSIE

Promotor:  Prof. Dr. A.M. Deelder

Copromotor:  Dr. M. Wuhrer

Overige leden:   Prof. dr. J.M.F.G. Aerts, Amsterdam Medical Center

   Dr. H.A. Schols, Wageningen University 

   Prof. dr. H.P. Spaink, Leiden University

   Dr. Ch.M. Cobbaert

   Prof. dr. E. Bakker

   Prof. dr. H.J. Tanke



TABLE OF CONTENTS

Chapter 1 General introduction 7

Chapter 2 Analysis of carbohydrates by anion-exchange  
chromatography and mass spectrometry 37

Chapter 3 Oligosaccharide analysis by capillary-scale high-pH  
anion-exchange chromatography with on-line ion-trap  
mass spectrometry 51

Chapter 4 Glycan profiling of urine, amniotic fluid and ascitic  
fluid from galactosialidosis patients reveals novel  
oligosaccharides with reducing end hexose and  
aldohexonic acid residues 67

Chapter 5 Analysis of urinary oligosaccharides in lysosomal  
storage disorders by capillary high-performance  
anion-exchange chromatography-mass spectrometry 91

Chapter 6 General discussion 131

Addendum 141
Summary 143 
Samenvatting 147 
Abbreviations 151 
Curriculum vitae 153 
List of publications 155 
Dankwoord – acknowledgements 157



1



GENERAL INTRODUCTION



Partially based on:
Oligosaccharide analysis by high-performance anion-exchange chromatography hyphenated to integrated 
pulsed amperometric detection and on-line ion-trap mass spectrometry

Cees Bruggink

Chapter 21 of Applications of ion chromatography for pharmaceutical and biological products
Editors Bhattacharyya L and Rohrer JS
John Wiley & Sons, Inc.

8

CHAPTER 1



1.1  GLYCOBIOLOGY
Deoxyribonucleic acid (DNA) plays a central role in cell biology, because it is the biological 

information carrier required for the function of the cell. The flow of this information to generate 

other cellular molecules and metabolites is accomplished by translating parts from the DNA 

code into ribonucleic acid (RNA), and from RNA into the generation of proteins. Proteins and 

DNA alone are not the only essential classes of molecules necessary for a living cell, lipids and 

carbohydrates being two other classes of vast importance.

Carbohydrates can serve as energy sources, signaling molecules, or as construction 

components. Carbohydrates are often covalently bonded to other molecules like lipids and 

proteins forming glycoconjugates such as glycolipids and glycoproteins. From all proteins, more 

than 50% are glycosylated [1]. The glycan part of a glycoprotein is involved in many different 

biological processes such as protein folding, signaling, development of multicellular organisms, 

cell-cell communication and adhesion, cell-matrix interaction, fertilization, inflammation, and 

immune responses [2-9]. This list of examples is not complete but illustrates the importance of 

glycans. As a result of the disturbed production or degradation of glycoconjugates, a more or 

less severe disease can be developed [7,10].

It is essential to analyze the biochemical effects of disturbed glycoconjugate degradation 

in order to understand the molecular basis of the resulting human diseases. This includes the 

analysis of the glycan and glycoconjugates accumulated due to enzymatic defects, which is 

addressed in this thesis. In the following the methods applied in this thesis will be introduced 

(1.2.) followed by an overview on genetic, biochemical and clinical aspects of various defects in 

glycoconjugate degradation (1.3).

1.2   HIGH PERFORMANCE ANION-EXCHANGE 
CHROMATOGRAPHY WITH PULSED 
AMPEROMETRIC DETECTION (HPAEC-PAD)

Ion chromatography is a special form of high performance liquid chromatography for the analysis 

of a mixture of ionic species. For a good analysis of ions in a complex sample matrix, a separation 

prior to the detection is often required. This separation is needed because of interferences in 

the detection method due to chemical similarities of components. In these cases separation 

is an essential part of the analytical procedure. Another reason for applying a separation is 

the possibility to use nonselective detection techniques. Chromatographic techniques are 

particularly successful in combination of an efficient separation and instantaneous in-line 

detection [11,12]. Ion chromatography is routinely used for the analysis of inorganic as well as 

organic ions and polar components. Specifically, the analysis of carbohydrates by HPAEC-PAD is 

a very common and well accepted application for the characterization of free oligosaccharides 

which are derived from glycoproteins or glycolipids [13-15].
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1.2.1  History of anion-exchange chromatography and detection  
of sugars

Already during decades anion-exchange chromatography has been used in different ways to 

separate and analyze carbohydrates. Initially Zill and colleagues made use of anionic sugar-borate 

complex formation and an anion-exchange resin in the borate form [16,17]. Various improvements 

of this method have been developed such as the use of a post column reaction prior to optical 

detection, gradient elution, and automation [18]. Such an automated system allowed the analysis 

of monosaccharides originating from glycoproteins [19]. The post column reaction with orcinol in 

hot concentrated sulfuric acid is very corrosive and aggressive and has been later substituted for 

a non-corrosive dye reaction for reducing sugars [20] or a fluorescence post column reaction [21]. 

These anion-exchange chromatography systems had various drawbacks such as a destructive 

detection method, slow elution resulting in broad peak shapes even in the case of shorter run 

times, and the lack of selectivity for oligosaccharides larger than dimers [22]. 

A big step forward in ion chromatography was the development of an agglomerated 

pellicular resin as stationary phase in combination with an eluent stripper column situated in 

front of the detector by Small et al. [23]. Ion chromatography was initially used for the separation 

of small ions and the stripper column was later named suppressor or desalter. Due to the faster 

exchange kinetics of this type of resin shorter run times with a better resolution were obtained 

in combination with chemically suppressed conductivity detection, a sensitive non-destructive 

detection method, without derivatization of the ions. In 1981 Hughes and Johnson reported 

about a sensitive electrochemical detection method for underivatized carbohydrates named 

pulsed amperometric detection [24].

A noble metal used as working electrode, such as platinum or gold, acts as electrochemical catalyst 

for oxidation reactions of carbohydrates. Consequently only a low potential is needed for detection 

Figure 1-1. Scanning electron microscope (SEM) picture of an agglomerated pellicular resin. Reprinted 
with permission from [12].
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and results in an optimal signal to noise ratio with a limit of detection in the pmol range. Parallel to the 

development of PAD carbohydrate separation was investigated employing strong anion-exchange 

columns packed with agglomerated pellicular resin (Figure 1-1) used with high pH eluents.

The combination of these detection and separation methods resulted in 1983 in a publication 

of Rocklin and Pohl describing the use of a low capacity anion-exchange resin with a high pH 

eluent for the separation and of carbohydrates followed by pulsed amperometric detection 

known as HPAEC-PAD [25].

1.2.2 Mechanism of separation
Anion-exchange chromatography can separate anionic carbohydrates that contain a sialic acid, 

a carboxylate, a sulfate, or a phosphate group [13,14]. Neutral carbohydrates are very weak acids 

and they dissociate in an eluent at a sufficiently elevated pH allowing their interaction with 

anion-exchange resins (Table 1-1).

From selectivity research with small anions it is known that analyte charge is the dominant 

retention factor, followed by the size of an ion [12]. The relevance of analyte charge is nicely 

illustrated in Figure 1-2 that shows the separation of phosphorylated sugars.

A monophosphorylated glucose (peak 4) elutes faster from the anion-exchanger than a 

diphosphorylated glucose (peak 13). In addition, at sufficient high pH neutral glycans will 

undergo dissociation resulting in negative charges. The influence of glycan size is illustrated 

in Figure 1-3 showing the separation of fructo-oligosaccharides where a higher degree of 

polymerization (DP) leads to longer retention times.

The separation of dihexose structural isomers in Figure 1-4 highlights the relevance 

of additional selectivity mechanisms other than those related to charge and size. This 

chromatogram shows separations of several dihexoses representing compositional isomers (i.e. 

peak numbers 2, 3, and 9), anomers and isomers differing in linkage positions (i.e. peak numbers 

1, 4, 6, 7, and 9). Koizumi and colleagues [28] analyzed positional isomers of methyl ethers of 

D-glucose among other isomers with HPAEC-PAD and concluded that the reduction in retention 

time resulting from O-methylation follows the order of 1-OH > 4-OH ≥ 6-OH >3-OH >2-OH 

representing the difference in the acidity of the different alcohol groups. From this obtained 

data it is comprehensible that trehalose (Glc(α1-α1)Glc) elutes so early from the column (Figure 

1-4) since both anomeric alcohol groups are blocked. Koizumi et al. also studied the retention 

of glucose disaccharides and compared the results with the findings obtained for O-methylated 

Table 1-1. Dissociation constants of common carbohydrates in water at 25 °C [26].

Carbohydrate pK
a

Fructose 12.03

Mannose 12.08

Xylose 12.15

Glucose 12.28

Galactose 12.39

Dulcitol 13.43

Sorbitol 13.60

α-Methyl glucoside 13.71
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Figure 1-2. Separation of mono- and diphosphorylated monosaccharides with a CarboPac PA1 column 
using a sodium acetate gradient in 100 mM sodium hydroxide and PAD detection at a gold electrode. 
Peaks and amount (μg): (1) α-D-galactosamine-1-phosphate, 1.13; (2) α-D-glucosamine-1-phosphate, 0.45; 
(3) α-D-galactose-1-phosphate, 1.75; (4) α-D-glucose-1-phosphate, 1.75; (5) α-D-ribose-1-phosphate, 1.46; 
(6) b-D-glucose-1-phosphate, 1.75; (7) D-glucosamine-6-phosphate, 3.75; (8) D-galactose-6-phosphate, 
2.04; (9) D-glucose-6-phosphate, 1.25; (10) D-fructose-1-phosphate, 0.96; (11) D-fructose-6-phosphate, 
0.42; (12) α-D-glucuronic acid-1-phosphate, 3.08; (13) α-D-glucose-1,6-diphosphate, 1.06; (14) b-D-
fructose-2,6-diphosphate, 0.92; (15) D-fructose-1,6-diphosphate, 0.92. Reprinted with permission from 
technical note 20 Thermo Fisher Scientific.

Figure 1-3. Separation of inulin with a CarboPac PA200 column using a sodium acetate gradient in 60 
mM NaOH and PAD detection at a gold electrode. Reprinted with permission from [27].

glucoses showing that elution positions were somewhat effected by the configuration and 

hydrophobic interactions. In general, the α-isomer elutes faster from the column than the 

corresponding b-isomer with the exception of cellobiose and maltose (see Figure 1-4) [13,28].

A nice example of an isomeric N-linked oligosaccharide separation is shown in Figure 3-6, 

and an example of a baseline separation of two asialo-triantennary glycopeptides only differing 
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in the linkage of a galactose (either b1-3 or b1-4) has been published by Hardy et al. [29]. For 

a more in depth study of HPAEC oligosaccharide separations the following review articles are 

recommended: [13,14,29,30].

1.2.3 Detection by pulsed amperometric detection (PAD)
Underivatized carbohydrates can be sensitively detected with a gold working electrode, because 

aldehyde, ketone, and alcohol groups are oxidizable at 0.10 V versus a Ag/AgCl reference 

electrode [31]. Oxidation at this low potential is possible because gold serves as a catalyst in the 

oxidation reaction of the aforementioned groups [32]. To keep the gold electrode catalytically 

active, cleaning and activation potentials are applied after the detection potential [33]. All of 

these potentials are only applied for less than a second for the total sequence of potentials 

and their time periods being referred to as a waveform. A modern waveform provides two data 

points per second and is stable over a long period of time [33].

1.2.4 Mass spectrometric detection
To obtain more information from complex samples, particularly in those cases where standards 

are not available, mass spectrometric detection (MS) is advisable. To this end, the effluent of 

the column passing the amperometric detection cell can be fraction collected. These fractions 

need to be desalted prior to mass spectrometric analysis. Desalting can be performed off-line 

or more conveniently inserting a membrane device as an on-line desalter between the detector 

and the fraction collector [34,35]. Another approach is to analyze the fraction by HPLC-MS with 

the salt plug redirected to waste [36]. Direct hyphenation of MS to HPAEC using electrospray 

ionization (ESI) is particularly useful when the sample amount is limited, to identify glycans, 

and to unravel coeluting glycans in chromatograms of complex samples. The obtained signal 

intensity of carbohydrates is relatively low compared to that of peptides or proteins due to 

the low ionization efficiency of carbohydrates. Anionic carbohydrates can selectively be 

detected in deprotonated form with ESI-MS in the negative mode. Neutral carbohydrates easily 

form adducts with a proton or a metal ion so that they can be detected in the positive mode 

Figure 1-4. Separation of disaccharides with HPAEC-PAD. Peaks (1) Glc(α1,α1)Glc (trehalose); (2) 
Fru(b2,α1)Glc (sucrose); (3) Gal(b1,4)Glc (lactose); (4) Glc(α1,6)Glc (isomaltose); (5) Gal(α1,6)Glc 
(melibiose); (6) Glc(b1,6)Glc (gentiobiose); (7) Glc(b1,4)Glc (cellobiose); (8) Glc(α1,3)Fru (turanose); (9) 
Glc(α1,4)Glc (maltose). Reprinted with permission from technical note 20 version 1 Thermo Fisher Scientific.
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[37,38]; see Table 1-2 for commonly used adduct ions. Mohr et al. [37] have studied the relative 

affinities of different alkali metal ions for carbohydrates, and have found that the affinity order 

is Cs+ > K+ > Na+ > Li+ > H+. Notably, although cesium is generally most efficient at producing ions 

of oligosaccharides, it is inefficient in ionizing small carbohydrates [39].

Di- and trivalent metals are also capable of ionizing carbohydrates, but only singly charged 

quasimolecular ions are formed [40]. If the glycan contains fucose as constituent and proton 

adducts are formed, rearrangements can occur and the position of the fucose residue in 

the glycan may be changed upon tandem mass spectrometry [41-43] which may lead to 

structural misinterpretation. Lithium adducts are most sensitive for ionizing relatively small 

sugars. Carbohydrate lithium adducts easily undergo in source fragmentation [44]. While 

this is often viewed as a disadvantage because of signal intensity loss, it can be turned into an 

advantage when a single quadrupole MS detector is used to obtain more information about 

the eluting carbohydrate by efficient in source fragmentation [44]. Sodium adducts are more 

resistant to in source decay and are commonly used in MS detection. The stability of sodium 

adducts is such that with mild energy levels fragmentation can be induced with tandem MS 

allowing structural elucidation. The first piece of information to be obtained is the mass of the 

precursor / intact carbohydrate. From this mass and knowledge of the masses of contributing 

monosaccharides (e.g. hexoses have a mass increment of 162, N-acetylhexosamines of 203; 

Table 1-3) a composition can be obtained. Upon tandem MS the glycosidic cleavages provides 

the monosaccharide sequence, while cross-ring fragmentation can reveal linkage information, 

though the anomeric configuration (i.e. whether a linkage is α or b) can generally not be 

determined on the basis of MS spectra [45-47].

The broadly accepted nomenclature for assigning the fragmentation of carbohydrates 

was proposed by Domon and Costello [48] and is depicted in Figure 1-5. At the left side of the 

figure is the non-reducing end of the oligosaccharide, while at the right side the reducing end 

is situated. Abundant fragments are generated by cleavage at the glycosidic bonds. Fragments 

containing the non-reducing end are called B and C fragments, and Y and Z fragments contain 

the reducing end. A-ions are cross-ring fragments containing the non reducing part of the 

glycan, while X-ions are cross-ring fragments including the reducing part.

These cross-ring fragment ions are accompanied by a subscript indicating the position 

relative to the termini and a superscript in front indicating the cleavage positions in the ring, 

starting with 0 for the bond between the ring oxygen and the anomeric carbon with further 

counting in the clockwise direction (Figure 1-5). Linkage position information may be derived 

from cross-ring fragments. Table 1-4 lists mass losses observed depending on cross-ring 

fragmentation when tandem MS is used in the positive mode.

Table 1-2. Adduct ions and their use in the ESI (+) mode.

Adduct ion Monoisotopic mass Remarks

Hydrogen 1.01 Fucose rearrangement possible

Lithium 7.02 In source fragmentation easy to induce

Sodium 22.99 Commonly used

Potassium 38.96 Stable adduct

Cesium 132.91 Only for larger oligosaccharides
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Separation of carbohydrates with HPAEC is usually performed with sodium hydroxide in 

the eluent, and to elute oligosaccharides from the anion-exchange column a sodium acetate 

gradient is applied, while the hydroxide concentration is typically kept constant [49]. A mobile 

phase containing sodium hydroxide and sodium acetate is incompatible with the ESI interface 

of the mass spectrometer. To convert the eluent for on-line MS into a compatible fluid, a 

membrane based desalter is used. There are several types mentioned in the literature such as 

the carbohydrate membrane desalter (CMD) [34] and the anion self regenerating suppressor 

(ASRS) [44]. Such a membrane desalter can be considered as a cation-exchanger in the acidic 

form exchanging sodium ions for hydronium ions. The sodium hydroxide is converted into water 

while sodium acetate is converted into volatile acetic acid. The CMD and ASRS are continuously 

regenerated by electrolysis of water that is sometimes assisted with trifluoroacetic acid as proton 

donor to enhance the desalting capacity [34]. After desalting the eluent, a make-up solution is 

added via a T-connector to facilitate carbohydrate adduct - and spray formation, see Figure 1-6.

Table 1-3. Monoisotopic mass increments of some carbohydrates.

Carbohydrate residue Residue Mass

Deoxyhexose 146.06

Hexose 162.05

Hexosamine 161.07

Uronic acid 176.03

N-acetylhexosamine 203.08

N-acetylneuraminic acid 291.10

N-glycolylneuraminic acid 307.09

Figure 1-5. Glycan fragmentation types and their nomenclature as proposed by Domon and Costello. 
Reprinted with permission from [48].
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1.2.5  Application example: analytical-scale HPAEC-PAD-MS of 
released N-glycans

A mix of N-glycan standards representing structures such as they are typically found on 

therapeutic glycoproteins expressed in mammalian cell culture was analyzed by HPAEC-PAD-

MS. The system was a Dionex ICS-3000 ion chromatograph consisting of a low pressure gradient 

pump, an isocratic pump, a chromatography detector module equipped with an electrochemical 

detector and cell outfitted with a gold working electrode and Ag/AgCl as reference electrode, 

injection valve and a dual zone temperature control, and a cooled autosampler. The MS was a 

Bruker HCT Ultra ion-trap equipped with an ESI interface. The separation was carried out on a 

CarboPac PA200 (3 x 250 mm) column from Dionex Corp. at 30 ºC and a flow rate of 360 μL/

min. After the column a homemade PEEK splitter was installed which split 90 μL/min to the 

electrochemical cell and 270 μL/min to the desalter (ASRS-300 2 mm Dionex in the external 

water mode). The eluent leaving the desalter was combined with 90 μL/min 50% acetonitrile for 

MS detection in the positive mode detecting the glycans in the protonated form (Figure 1-6).

The resulting separation is shown in Figure 1-7. The different peaks are identified on the basis 

of MS and tandem MS spectra. In case of MS could only partly elucidate structure, structures 

were confirmed by running standard solutions of the different glycans. This application shows 

the successful hyphenation of on-line MS with HPAEC-PAD by adding a desalter in front of the 

ESI-MS/MS.

1.3  LYSOSOMAL CATABOLISM OF OLIGOSACCHARIDES
Lysosomes were described for the first time by de Duve in 1955 [50]. Unconnected lysosomes 

together form the endosomal-lysosomal system which is a characteristic space within a cell 

[50,51]. Within the lysosome an acidic environment is generated forming the digestion system 

of the cell. The digestion of oligomers to smaller products is mediated by hydrolases which 

generally have a pH optimum in the range of 3.5 to 5.0. Other proteins involved in lysosomal 

degradation processes are cofactors, activator proteins for glycosphingolipids, and carrier 

proteins that deliver catabolic products to the cytosol. The endosomal-lysosomal system has a 

central position in the economy of the cell [51].

Table 1-4. Mass difference relative to a C-type ion observed for sodium adducts of oligosaccharides upon A-type 
cross-ring cleavages of hexose (Hex) and N-acetylhexosamine (HexNAc) residues [45-47].

Monosaccharide Linkage type

Hex HexNAc 1 – 6 1 – 4 1 – 3 1 – 2

-60 -101 0,2A 0,2A - -

-90 -131 0,3A - - -

-120 -161 0,4A 2,4A - 1,3A

-106 -147 3,5A 3,5A - -

-78 0,2A-H
2
O - - 0,2A-H

2
O
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Minutes 25.0

IPAD
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EIC m/z 732.3

EIC m/z 1317.3

EIC m/z 813.2

EIC m/z 1479.3

EIC m/z 894.2[M+2H]2+

[M+2H]2+

[M+2H]2+

[M+H]+

[M+H]+

Mannose
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Fucose

N-Acetylglucosamine

Pump 

Eluent 

Pump 
 

Auto 
Sampler 

Column 

Electrochemical 
Detector 

Signals 

0.31 nC 

Flow  
0.36 ml/min Splitter 

Make-up solution 
50 % Organic Solvent 

+ 
 0.6 mmol/L Me+Cl- 

 Flow 90 µl/min 

cell 

Desalter 

Ion-trap 

Figure 1-6. Instrumental setup for on-line HPAEC-PAD-MS. Eluent A was ultra pure water, B 200 mM 
NaOH, and C 400 mM NaOAc. The gradient was 0 – 5 min 50% A, 50% B, 0% C and from 5 – 65 min 0% A, 
50% B, and 50% C. The PAD waveform applied to the gold working electrode was 0.00 – 0.20 s 0.10 V, 0.20 
– 0.40 s 0.10 V (data collection), 0.41 – 0.42 s -2.00 V, 0.43 s 0.60 V, 0.44 – 0.50 s -0.10 V versus a Ag/AgCl 
reference electrode [33]. The figure is modified form [27] and reprinted with permission.

Figure 1-7. Separation of N-linked glycans with on-line HPAEC-PAD-MS using a CarboPac PA200 
column. Reprinted with permission from [27].

17

GENERAL INTRODUCTION



1.3.1 Catabolism of Asn-linked glycoproteins in the human lysosome
There are three different types of oligosaccharides known to be linked via asparagine to human 

proteins: high mannose, hybrid type, and complex type N-glycans (Figure 1-8). 

The acidic condition in the lysosome is required for the enzymatic activity of the lysosomal 

enzymes which have an acidic pH optimum and will also partially denature the protein substrates 

thereby making them more accessible for endo- and exohydrolases.

Complete breakdown of glycoconjugates to monomers is required to avoid lysosomal 

disorders that can become manifest when fragments as small as dimers are left undigested 

[52]. Catabolism of Asn-linked glycoproteins to monosaccharides and amino acids occurs in 

lysosomes. The first process happening in glycoprotein degradation is the hydrolysis of the 

protein backbone with endo- and exopeptidases until finally asparagine-linked glycans are left. 

Next, the degradation of Asn linked glycans happens in a highly ordered way (see Figure 1-9) 

[10]. First the removal of the core fucose (Fucα1→ 6GlcNAc) of complex type or hybrid type 

N-glycans and probably any peripheral fucose residues linked to the outer branches of the 

chain (Fuc α1 → 3GlcNAc) is performed by lysosomal α–fucosidase [10]. Aspartyl-N-acetyl-

b-D-glucosaminidase then hydrolyses the GlcNAcb-Asn bond followed by the removal of the 

reducing-end GlcNAc by endo-b-N-acetylglucosaminidase (chitobiase) as shown in primates 

and rats [52,53], leaving the oligosaccharide with only one GlcNAc at the reducing end. The 

Figure 1-8. Three examples of asparagine linked oligosaccharides. High mannose type (A), hybrid type 
(B), complex type (C). Green circle mannose, yellow circle galactose, blue square N-acetylglucosamine, 
purple diamond N-acetylneuraminic acid, red triangle fucose.
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oligosaccharide chain is then sequentially degraded by sialidases and / or α-galactosidases 

followed by b-galactosidase, b-N-acetylhexosaminidase, and α-mannosidase. The remaining 

Manb1→4GlcNAc is split by b-mannosidase to mannose and GlcNAc. The resultant 

monosaccharides are removed from the lysosome by diffusion or with the help of transporter 

proteins. The highly ordered catabolic pathway explains in part the oligosaccharides found in 

the diverse Lysosomal storage disorders (LSD).

1.3.2 Catabolism of Ser/Thr-linked glycans in the human lysosome
There are several types of glycans in humans linked to serine or threonine of human 

glycoproteins. Glycoaminoglycans (GAGs) are attached via a xylosyl-serine linkage. Short 

mucin-type oligosaccharides are linked via N-acetylgalactosamine to serine or threonine. 

Other glycans are linked via mannose, N-acetylglucosamine and fucose to serine or threonine 

[10]. It is supposed that the catabolism of all these types of O-glycosylated proteins happens in 

the lysosomes. O-glycosylated peptides in urine of patients suffering from Schindler’s disease 

have been characterized by Fourier transform ion cyclotron resonance MS [54]. Little has 

been published about the enzymology of the lysosomal catabolism of O-linked glycans with 

the exception of glycosaminoglycans of proteoglycans [55]. Most plausible is that the same 

lysosomal enzymes catalyze the hydrolysis of the same glycosidic linkages in O-linked glycans 

as in other glycoconjugates. A different type of O-linked glycosylation involves the attachment 

of a single N-acetylglucosamine to serine/threonine in nuclear and cytoskeletal proteins is 

transient and plays a role in intracellular signaling [56]. Its removal is catalyzed by a specific 

cytosolic N-acetylglucosaminidase [57].

Figure 1-9. Catabolism of complex N-linked oligosaccharides by lysosomal enzymes. 
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1.3.3 Catabolism of glycosphingolipids in the human lysosome
Glycosphingolipids are degraded stepwise from the nonreducing end by exoglycosidases while 

they are still bound to the ceramide moiety. Since glycosphingolipids have sugar sequences 

which are in part similar to those found in N- and O-glycans, many of the glycosidases are 

shared. However, specialized hydrolases and activator proteins are needed for cleaving the 

glucose-ceramide and galactose-ceramide bonds and other linkages near the membrane.

When a glycosphingolipid contains less than four carbohydrate residues additional 

noncatalytic sphingolipid activator proteins (SAPs, also called saposins) are essential in human 

cells for the further degradation by lysosomal hydrolases [58]. In Figure 1-10 the degradation 

of G
M1

-ganglioside is schematically represented. The first catabolic step is the cleavage of 

galactose by the combined action of b-galactosidase and saposin B resulting in leaving G
M2

-

ganglioside. The next hydrolysis step is a combined action of b-hexosaminidase A and the G
M2

 

activator protein and this produces G
M3

 ganglioside. The following hydrolysis step is done in 

a concerted action of sialidase and saposin B and results in lactosylceramide. The concerted 

action of b-galactosidase and saposins B and C produces glucosylceramide. The last step in 

degrading the glycan moiety is the combined action of glucosylceramide-b-glucosidase and 

saponin C to hydrolyse glucosylceramide into glucose and ceramide. Based on this knowledge 

it has been concluded that free glycan moieties originating from glycosphingolipids are not 

expected in body fluids like urine.

1.3.4 Lysosomal storage disorder
When one or more of the lysosomal hydrolases are deficient, caused by one or more genetic 

defects, accumulation of undegraded substrates will happen in the lysosomes. Consequently, 

Figure 1-10. Catabolism of the glycan part of glycolipid G
M1

 ganglioside by lysosomal enzymes and 
cofactors.
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lysosomes can swell up to 50% of the cell volume [59] and this will result into damage of many 

cells. The undegraded substrate will then come free into the extracellular space. Examples of 

possible stored products are glycosaminoglycans, oligosaccharides, glycopeptides, glycolipids, 

cholesterols, and sphingomyelins. There have been at least 45 of these deficiencies described 

forming a group of autosomal recessive inherited lysosomal storage disorders [59,60]. The 

majority of the lysosomal hydrolases are exoenzymes, so the accumulated and excreted 

substrates often share the same terminal residue, (see Table 1-5). An extensive review about the 

lysosome and its disorders has been written by Vellodi [50].

1.3.5 Fucosidosis
Complex type or hybrid type N-glycans may carry fucoses (Figure 1-8). Furthermore fucose 

can be linked α1-6 to the core N-acetylglucosamine that is attached to asparagine. Fucose can 

be α1-3 or α1-4 linked to N-acetylglucosamine in the branches or α1-2 to galactose residues of 

glycans. The required step in lysosomal degradation of these fucosylated oligosaccharides is 

hydrolysis of fucose by α-L-fucosidase (EC 3.2.1.51) [62]. A defect of this hydrolase is the cause 

of fucosidosis. The disorder was initially described by Durand et al. in 1968 [63], followed by 

the report of the defect in α-L-fucosidase by Van Hoof and Hers [64]. Fucosidosis is divided in 

two distinct phenotypes, but the reality is often more a continuum of severities [65]. The most 

severe infantile form is type I with an onset of psychomotoric retardation at the age of 3 to 

18 months, coarse facies, growth retardation, dysostosis multiplex, neurologic deterioration, 

and remarkably increased amount of sodium chloride in the patients’ sweat. In the milder 

phenotype, type II, the onset of psychomotoric retardation will be manifest between 1 and 

2 years of age. The coarse facies, growth retardation, dysostosis multiplex, and neurologic 

symptoms are similar or slightly milder than those in type I. The major features that distinguish 

this milder phenotype from type I are the presence of angiokeratoma, longer survival, and 

more normal sodium chloride values in sweat.  

Fucosidosis is autosomal recessively inherited and the gene symbol for α-L-fucosidase 

is FUCA1 that codes for the common subunit shared by the multiple forms of α-fucosidase 

and is situated on chromosome 1p36.11 (MIM 230000). Fucosidosis may be caused by at least 

23 different mutations and 4 of these result in an amino acid substitution. For the remaining 

mutations it is presumed that the result will be unstable or defective mRNA, e.g. premature 

stop codons, frame shifts, defective splicing, and large deletions [66].

Presumed responsible mutations include the following changes: 188C → T (S63L), 758delA 

(frame shift), 1201G → T (G401X), 1030ins66 (in-frame insertion), IVS5 + 1G → A (splicing), 229C 

→ T (Q77X), 1145G → A (W382X), 633C → A (Y211X), 421del C (frame shift), 794del C (frame shift), 

646del A (frame shift), 340del 10 (frame shift), 549G → A (W183X), 14C → G (P5R), 1988insT 

(frame shift), 985A → T (N329Y), 1123G → T (E375X), 179G → A (G60D), 451delAA (frame shift), 

and del exons 7&8 (deletion of 2 exons), 1264C → T (Q422X). All genotypes are homozygote 

except 229C → T, 1145G → A, 646del A, 451delAA, and 1264C → T. This is evidence for the very 

high rate of consanguinity found in fucosidosis families [67].

The enzyme defect results in the accumulation and excretion of a variety of fucosylated 

glycoasparagines and oligosaccharides with core α1–6 linked fucose and / or antenna fucose 

(Figure 1-11) [68-72]. 
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Table 1-5. Lysosomal disorders. This table is modified from [61] and reprinted with permission.

Disorder Storage product Protein defect

Mucopolysaccharidoses (MPS)

MPS I (Hurler/Scheie) Oligosaccharides of heparan sulfate, 
dermatan sulfate

α-Iduronidase

MPS II (Hunter syndrome) Oligosaccharides of heparan sulfate, 
dermatan sulfate

Iduronate-2-sulfatase, GlcNAc-P-
Transferase

MPS IIIA (Sanfilippo, Pseudo-
Hurler polydystrophy A)

Heparan sulfate Heparan N-sulfatase (sulfamidase) 
GlcNAc-P-Transferase

MPS IIIB (Sanfilippo) Heparan sulfate N-Acetyl-α-glucosaminidase

MPS IIIC (Sanfilippo, Pseudo-
Hurler polydystrophy C)

Heparan sulfate Acetyl-CoA: α-glucosamide 
heparan sulfate, 
N-acetyltransferase, GlcNAc-P-
transferase 

MPS IIID (Sanfilippo) Heparan sulfate N-Acetylglucosamine-6-sulfatase

MPS IVA (Morquio A syndrome) Keratan sulfate, chondrotoin-6-sulfate N-Acetylgalactosamine-6-sulfate 
sulfatase

MPS IVB (Morquio B syndrome) Keratan sulfate b-Galactosidase

MPS VI (Maroteaux–Lamy) Dermantan sulfate N-Acetylgalactosamine-4-
sulfatase, (arylsulphatase B)

MPS VII (Sly) Heparan sulfate, dermatan sulfate, 
chondroitin-4- and -6-sulfates

b-Glucuronidase

Glycoproteinoses

Aspartylglucosaminuria N-linked GlcNAc peptides N-Aspartylglucosaminidase

Fucosidosis Fucosyloligosaccharides, glycolipides α-Fucosidase

α-Mannosidosis Oligosaccharides with α-Mannose at the 
non-reducing end

α-Mannosidase

b-Mannosidosis b-Mannosyl-GlcNAc b-Mannosidase

Sialidosis (Mucolipidosis I) Sialyloligosaccharides Exo-α-sialylidase

Schindler disease Peptides modified with O-linked GalNAc 
often carrying Gal and Neu5Ac

α-N-Acetylgalactosaminidase

Sphingolipidoses

Fabry’s disease Globotrihexosylceramide (gal-gal-
glc-cer), bloodgroup-B substances, 
digalactosylceramide

α-Galactosidase A

Farber’s disease Ceramide Ceramidase

Gaucher’s disease Glucosylceramide b-Glucosidase, saposin-C activator

G
M1

 gangliosidosis G
M1

 gangliosidoside, 
galactosyloligosaccharides

b-Galactosidase

Tay-Sachs disease G
M2

 gangliosidoside and related 
glycolipids

ß-Hexosaminidase A

Sandhoff’s disease G
M2

 gangliosidoside, G
A2

, globoside, 
N-acetylglucosaminosyloligosaccharides

ß-Hexosaminidase A and B

Krabbe’s disease Galactosylceramide Galactosylceramidase

Metachromatic leucodystrophy Sulfatide, sulfated glycolipids Arylsulfatase A, Saposin-B 
activator

Niemann-Pick disease, types 
A and B

Sphingomyeline Sphingomyelinase

Other lipidoses

Niemann-Pick disease type C Cholesterol and sphingolipids NPC1 and 2

Wolman’s disease Cholesterol esters and triglycerides Acid lipase
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Neuronal ceroid lipofuscinosis

Glycogen storage disease

Glycogen storage disease type 
II (Pompe’s disease)

Glycogen α-Glucosidase

Multiple enzyme deficiency

Multiple sulfatase deficiency Glycosaminoglycans, sulfatides Several sulfatases, Cα-
formylglycine-generating enzyme

Galactosialidosis Gangliosides, sialyloligosaccharides Cathepsin A secondary deficient 
b-galactosidase and exo-α-
sialidase

Mucolipidosis II/III (I-cell 
disease and pseudo-Hurler 
polydystrophy)

Oligosaccharides, mucopolysaccharides, 
and lipids

UDP-N-acetylglucosamine: 
lysosomal enzyme GlcNAc-P-
transferase; secundary deficiency 
of several lysosomal enzymes

Mucolipidosis IV Lipids and acid mucopolysaccharides Mucolipin-1

Lysosomal transport defects

Cystinosis Cystine Cystinosin

Sialic acid storage disease and 
Salla disease

Sialic acid Lysosomal transport defect of free 
sialic acid, Sialin

Other disorders due to defects in lysosomal proteins

Danon disease Cytoplasmic debris and glycogen LAMP2

Hyaluronidase deficiency Hyaluronan Hyaluronidase

1.3.6 α-Mannosidosis
The lysosomal storage disorder α–mannosidosis was first reported by Öckerman & Lund [73] 

and is caused by a deficient lysosomal α-D-mannosidase (EC 3.2.1.24). There are two types of 

which the most severe phenotype is the infantile type I that shows progressive rapid mental 

retardation, hepatosplenomegaly, severe dysostosis multiplex, and is mostly mortal between 3 

and 12 years of age. The milder juvenile-adult type II form is characterized by a less progressive 

and milder course with survival into adulthood. The type II is accounting for 10 – 15 percent 

of cases. This distinction into two types is in fact a continuum of clinical findings [66,74]. 

α-Mannosidosis is autosomal recessively inherited and the gene coding for the precursors 

of α-D-mannosidase maps to the human chromosome 19p13-q12. The reported mutation for 

α–mannosidosis is nucleotide 212A→T which changes amino acid histidine 71 into leucine [75].

The catabolic pathway of high mannose and hybrid type N-linked glycans has been extensively 

reviewed by Winchester [10]. The pathways for the hydrolysis of these, both type N-glycans by 

human lysosomal α-D-mannosidase have been elucidated [76]. For human high mannose type 

glycans the α1-2 linked mannose in the middle branch of Man
9
GlcNAc, see Figure 1-12, is rather 

resistant to lysosomal α-D-mannosidase. Hybrid type glycans do not contain this α1-2 linked 

mannose at that position. The core α1-6 linked mannose is likewise rather resistant to lysosomal 

α-D-mannosidase. The core tetraose Man
3
GlcNAc is no substrate for lysosomal α-D-mannosidase. 

There is evidence for the existence of a specialized lysosomal α1-6 mannosidase, still active in α–

mannosidosis patients [38,77,78]. All these findings do explain the found storage products in urine 

from α–mannosidosis patients of which the three major mannose rich urinary metabolites are:

Table 1-5. continued.

Disorder Storage product Protein defect
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Man(α1-3)Man(b1-4)GlcNAc Man(α1-2)Man(α1-3)Man(b1-4)GlcNAc Man(α1-2)Man(α1-2)

Man(α1-3)Man(b1-4)GlcNAc Strecker et al. [79] and Yamashita et al. [80] have characterized 

additional mannose-rich oligosaccharides from urine. Until now seventeen mannose-

rich oligosaccharides have been characterized from pooled urines of two mannosidosis 

patients [81,82], of which sixteen had been reported earlier [80,83]. All these mannose rich 

oligosaccharides, found in urine samples from α-mannosidosis patients, are endo-N-acetyl-b-

glucosaminidase cleaved products. The major metabolite Man(α1-3)Man(α1-4)GlcNAc in urine 

is most probably derived from incompletely digested complex type glycans. The presence of a 

lysosomal (α1-6)mannosidase, still active in affected patients, supports this assumption [10,76].

1.3.7 Sialidosis and Galactosialidosis
Many glycan structures in glycoconjugates contain N-acetylneuraminic acid (Neu5Ac), one 

of the sialic acids, with a linkage of α2–3 or α2–6. The cause of sialidosis is a deficient acid 

hydrolase exo-α-sialidase (EC 3.2.1.18) [84]. Exo-α-sialidase (sialidase) cleaves both type of 

linkages α2–3 and α2–6 [85].

In galactosialidosis both sialidase and b-galactosidase (EC 3.2.1.23) are deficient. The deficiency 

of sialidase and b-galactosidase is a secondary effect of a defect of another enzyme, an associate 

in the large multi-enzyme complex protective protein/carboxypeptidase C (PPCA), cathepsin A.

1.3.7.1 Protective protein/carboxypeptidase C (PPCA)
The mammalian multi-enzyme complex protein/carboxypeptidase C has both protective and 

catalytic functions. PPCA is an association of sialidase, b-galactosidase, carboxypeptidase C 

(EC 3.4.16.5), and recently indications have been found that N-acetylgalactosamine-6-sulfate 

sulfatase (GALNS) (EC 3.1.6.4) also belongs to the multi-enzyme complex [86,87].

PPCA protects sialidase and b-galactosidase from fast proteolysis in the aggressive 

environment of the lysosome, and the interaction of sialidase with PPCA is needed for optimal 

activity of sialidase [87-93] (see table 1-6).

Figure 1-11. Some storage products in fucosidosis. The figure is modified from [10] and taken with permission.
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1.3.7.2 Sialidosis
Due to the considerable heterogeneity of the clinical phenotypes observed a proper delineation 

of sialidosis is difficult. Nowadays two subtypes of sialidosis are distinguished [94,95]. The milder 

type I is characterized by ocular cherry-red spot and development of myoclonus at the age of 20 

– 40 years. The onset of type I occurs at the age of 2 – 25 years. In more than 50% of the affected 

patients seizures, hyperreflexia, and ataxia are observed [96-98]. The rather severe type II sialidosis 

is distinguished from type I by an early onset, often at the age of 0 – 2 years. The phenotype shows 

ocular cherry-red spot, mental retardation, myoclonus, visceromegaly, dysotosis multiplex, 

hydrops/acites, and skeletal dysplasia [84,99,100]. Sialidosis is autosomal recessively inherited and 

the gene at location 6p21 is involved. The presumed responsible mutations are 1258G→T, amino 

acid change H337X; 401T→G, amino acid change L91R; 1337delC, frame shift; 7insACTC, frame shift; 

779T→A, amino acid change F260Y; 1088T→C, amino acid change L303P [101,102]. As an effect of 

deficient sialidase in both subtypes excessive amounts of sialyloligosaccharides in urine of up to 

800 x normal levels are observed [103]. Most compounds are endo-b-N-acetylglucosaminidase-

cleaved products of complex-type sialylated N-glycans [104-106]. In 70% of the cases the Neu5Ac 

is α2–6 linked to galactose and α2–3 linked in 30% [107].

1.3.7.3 Galactosialidosis
For galactosialidosis three phenotypes are distinguished. Firstly, the severe early infantile type 

that shows onset between birth and 3 months of age with fetal hydrops, neonatal edema, 

kidney involvement, coarse facies, inguinal hernias, and telangiectasias, small dilated blood 

vessels near the surface of the skin. This phenotype generally leads to death before the age of 

24 months. Telangiectasias has seldom been observed in the other two phenotypes.

Secondly, a mild type is observed named the late infantile type. The symptoms initiate in 

the first months after birth. Observations at onset are coarse facies, hepatosplenomegaly, 

and dysostosis multiplex, especially affecting the spine. Often cherry-red spots and / or 

corneal clouding are observed. The third phenotype is juvenile/adult type. This type shows 

a variable, broad continuous spectrum of severity of the course and of the age of onset. 

First symptoms become visible at 1 to 40 years of age with an average of 16 years. Often 

coarse facies are found, spinal changes are observed whilst dysostosis multiplex seems rare. 

The most observed neurologic abnormalities are myoclonus, ataxia, seizure, and progressive 

mental retardation. The clinical phenotype of galactosialidosis is very similar to that of 

sialidosis most probably due to the deficiency of sialidase which they have in common [108]. 

Figure 1-12. High mannose Man
9
GlcNAc cleavage product generated from glycoproteins by endo-N-

acetyl-b-glucosaminidase.
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Galactosialidosis is autosomal recessively inherited and is genetically unrelated to sialidosis 

as the primary defect is in PPCA (Table 1-6). 

The gene that transmits the disorder is localized on chromosome 20q13.1 [110]. Mainly 

single-base substitutions or splice-junction defects have been identified as cause.

The major clinical phenotype is caused by the deficient activity of sialidase. The resulting 

urinary excretion of sialyloligosaccharides has been reported to be similar to that found 

in sialidosis [111,112]. Comparative studies of oligosaccharides excreted by galactosialidosis 

and sialidosis patients have yielded conflicting results: Takahashi et al.[107] found excessive 

galactosyl-terminated oligosaccharides in galactosialidosis patients, while these compounds 

were not detected by van Pelt et al. [112,113].

1.3.8 G
M1

-gangliosidosis
The lysosomal storage disorder G

M1
-gangliosidosis was first described by Suzuki et al. [114]. 

G
M1

-gangliosidosis is divided into three phenotypes. Type 1 or infantile type shows an onset 

mostly before 6 months of age. The development of the infant shows delay in the first 6 

months and after this period severe brain damage becomes obvious. Macular cherry red spots, 

hepatosplenomegaly, dysmorphism, and generalized skeletal dysplasia are observed. Within 

two years after onset the disease is fatal. Type 2 or late infantile/juvenile type G
M1

-gangliosidosis 

shows an onset between 7 months and 3 years of age and presents with a heterogeneous 

phenotypic appearance. The range of symptoms is the same as for type 1 but not all of them 

are observed in affected patients. The type 2 of the disorder is fatal within 5 years of age. The 

type 3 or adult/chronic form shows an onset from 3 to 10 years of age. Macular cherry red 

spots, dysmorphism, and hepatosplenomegaly are absent. Generalized skeletal dysplasia is 

observed. Type 3 is fatal after approximately 30 years of age. The 3 types of G
M1

-gangliosidosis 

have the storage of ganglioside G
M1

 and oligosaccharides derived from glycoproteins in 

common [115,116]. G
M1

-gangliosidosis is caused by the deficiency of b-galactosidase (EC 

3.2.1.23) and is autosomal recessively inherited. The gene of human b-galactosidase is localized 

on chromosome 3p21.33. Heterogeneous gene mutations have been found. Five common 

mutations have been described: for type 1 R208C in American patients [117] and R482H in Italian 

patients [118]; for type 2, R201C in Japanese patients [119,120]; and for type 3, I51T in Japanese 

patients [119]. Galactosyl oligosaccharides are found in urine samples of patients suffering from 

G
M1

-gangliosidosis [121-124]. A correlation has been established between severity of the disease 

and the concentration of the excreted galactosyl oligosaccharides [123,124].

Table 1-6. Relation of PPCA to LSDs [109].

Enzyme or  protein deficiency leads to Disorder

Sialidase −−−−−−−−→ Sialidosis

↑ activation

PPCA −−−−−−−−→ Galactosialidosis

↓ stabilization

b-Galactosidase −−−−−−−−→ G
M1

-gangliosidosis
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1.3.9 G
M2

-gangliosidosis
There are three essential lysosomal polypeptides needed for the cleavage of the 

N-acetylgalactosamine at the non-reducing end for metabolic recycling of different glycan 

moieties such as G
M2

-ganglioside. The G
M2

-ganglioside requires to be complexed with the 

substrate-specific liftase G
M2

-activator protein [125] to facilitate enzymatic hydrolysis of the 

GalNAc at the non-reducing end by b-hexosaminidase (EC 3.2.1.52). There are two isoenzymes 

of b-hexosaminidase: b-hexosaminidase A (Hex A) with heterodimeric structure αb, and 

b-hexosaminidase B (Hex B) with homodimeric structure bb. Hex A is the only isozyme that 

can hydrolyze G
M2

-ganglioside in vivo [126]. The G
M2

-ganglioside/G
M2

 activator protein complex 

only interacts with Hex A. Consequently there are three different variants of G
M2

-gangliosidosis 

and they are caused by defects in different genes. Sandhoff et al. [127] proposed a classification 

based on the b-hexosaminidase isoenzyme that is still active in tissue of affected patients. In 

Tay-Sachs disease and its variants (variant B) Hex A activity is deficient and the deficiency is 

caused by mutations of the HEX A gene encoding for the α subunit. Sandhoff disease and its 

variants (variant 0) have a combined deficient activity of Hex A and Hex B and are caused by 

defects in the HEX B gene encoding for the b subunit common in Hex A and Hex B. In the AB 

variant the G
M2

-activator protein is defect which is caused by mutations in the GM2A gene. 

Hydrolysis of ganglioside G
M2

 by Hex A is impaired by the absence or defective formation of the 

G
M2

-activator protein/ganglioside G
M2

 complex [128].

The above-mentioned way of describing G
M2

-gangliosidosis is impractical for describing the 

large spectrum of clinical variance observed. Classification by clinical designations recognizes the 

dominance of the encephalopathy rather than the age of onset as the primary clinical delineator 

[129]. The clinical phenotype of infantile acute G
M2

-gangliosidosis is indistinguishable from Tay-Sachs 

disease, Sandhoff disease, and G
M2

-activator protein deficiency (AB variant). The first signs of onset 

are often only recognized in retrospect but start at 3 to 5 months with mild motor weakness. Clinical 

observations are regression and even loss of acquired mental skills, organomegaly, ophthalmology, 

macular cherry red spot, macrocephaly, and death between 1 to 2 years of age.

The next phenotype is the late-onset form of G
M2

-gangliosidosis. This phenotype is not 

known for variant AB. The clinical phenotype varies widely in the late onset type of Tay-Sachs 

and Sandhoff disease. Onset varies from late infantile period to adult age. Macular cherry 

red spot are less frequent observed. In some patients mental capacity can be well preserved, 

although often masked by dysarthria. The onset of subacute G
M2

-gangliosidosis starts between 

2 and 10 years of age by the development of ataxia and incoordination. Clinical phenotype 

includes regression in speech and life skills, dementia, psychomotor deterioration, increasing 

spasticity, and loss of vision. A vegetative state with decerebrate rigidity and involuntary 

extension of the upper extremities in response to external stimuli indicating brain stem 

damage, develops around 10 to 15 years of age, followed within a few years by death, usually 

due to intercurrent infections. Patients suffering chronic G
M2

-gangliosidosis show onset from 

childhood to adulthood. G
M2

-gangliosidosis is an autosomal recessively inherited disorder. 

HEXA maps to chromosome 15, while HEXB and GM2A maps to chromosome 5. Infantile, 

subacute, or chronic disease forms of G
M2

-gangliosidosis can be distinguished in mutations of 

DNA. The estimated heterozygote frequencies in the general population are 0.006 for HEXA 

and 0.0036 for HEXB mutations. In some ethnic groups, the observed carrier frequencies are 

remarkably higher. The heterozygote frequency for HEXA mutations is 0.033 for the Ashkenazi 
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Jewish population [129,130]. For all variants of G
M2

-gangliosidosis the major neural storage 

compound is ganglioside G
M2

 [130-132]. The ubiquitous storage compounds in Sandhoff disease 

are oligosaccharides derived from glycoproteins. Blockage of the N-glycan catabolism results 

in accumulation of b-endo-N-acetylglucosaminidase cleaved oligosaccharides carrying a 

single N-acetylglucosamine residue at the non reducing end which are found in the urine of 

Sandhoff disease patients [129,133-136].

1.3.10 Diagnostic methods in lysosomal storage disorders
The group of lysosomal storage disorders contains a subgroup of disorders called heteroglycanoses 

which are characterized by the excretion of glycans and / or glycoconjugates in urine. The 

only accepted method to determine these disorders unambiguously is the determination 

of the specific (reduced) enzyme activity. Not all clinical laboratories are equipped for these 

expensive and difficult assays [137]. Another way is to screen for excess urinary glycans with paper 

chromatography [138] or thin layer chromatography [139]. These methods are often unreliable 

[140,141]. Interpretation of a TLC pattern of excreted oligosaccharides is sophisticated and needs 

extraordinary skills [137]. HPLC appears to be an attractive alternative that could overcome some 

of the limitations of TLC pattern interpretation. Derivatization of glycans is necessary for UV or 

fluorescence detection or to obtain interaction with stationary phases commonly used in HPLC 

[142-144]. Derivatization of saccharides is depending on reducing ends for reductive amination 

reactions [145,146]. HPAEC and PAD do not depend on derivatization and are therefore more 

broadly applicable for characterization of saccharides [14,147,148]. Hommes et al. have reported 

on the diagnostic use of HPAEC-PAD for heteroglycanoses disorders [149]. 

1.4  SCOPE OF THE THESIS
High performance anion-exchange chromatography with pulsed amperometric detection is a 

well-accepted method for separating and characterizing carbohydrates [13,14]. Downscaling of 

column dimension is a viable approach in glycan analysis technology to achieve better sensitivity 

for the analysis of samples available in limited amount. The miniaturization of the column 

comes together with lower eluent flow rates, which is advantageous for mass spectroscopy. 

HPAEC hyphenated to an ion trap mass spectrometer is a strong analytical combination for 

identifying carbohydrates and for performing partial structural elucidation. This thesis reports 

on the development of a capillary scale HPAEC using prototype capillary columns as well as a 

prototype desalter which allows the hyphenation to ESI-MS. To investigate the applicability 

and value of capillary HPAEC in biomedical research, urine and ascitic fluid samples from 

patients suffering from a range of disorders that affect the lysosomal carbohydrate catabolism 

were investigated. In addition, amniotic fluid samples from mothers carrying a diseased child 

were analyzed. The selectivity of HPAEC in combination with the better sensitivity of the new 

platform and the informative data generated by MS detection has provided new insights into 

the catabolism of glycoconjugates. Thus, this thesis demonstrates the usefulness of HPAEC-

PAD-MS as an analytical tool in oligosaccharide analysis, both with regard to glycan structural 

elucidation and to glycan profiling. 
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ANALYSIS OF CARBOHYDRATES BY  
ANION-EXCHANGE CHROMATOGRAPHY  
AND MASS SPECTROMETRY



2.1  ABSTRACT
A versatile liquid chromatographic platform has been developed for analyzing underivatized 

carbohydrates using high-performance anion-exchange chromatography (HPAEC) followed 

by an inert PEEK splitter that splits the effluent to the integrated pulsed amperometric detector 

(IPAD) and to an on-line single quadrupole mass spectrometer (MS). Common eluents for 

HPAEC such as sodium hydroxide and sodium acetate are beneficial for the amperometric 

detection but not compatible with electrospray ionization (ESI). Therefore a membrane-

desalting device was installed after the splitter and prior to the ESI interface converting 

sodium hydroxide into water and sodium acetate into acetic acid. To enhance the sensitivity 

for the MS detection, 0.5 mmol/l lithium chloride was added after the membrane desalter to 

form lithium adducts of the carbohydrates. To compare sensitivity of IPAD and MS detection 

glucose, fructose, and sucrose were used as analytes. A calibration with external standards 

from 2.5 to 1000 pmole was performed showing a linear range over three orders of magnitude. 

Minimum detection limits (MDL) with IPAD were determined at 5 pmole levels for glucose to 

be 0.12 pmole, fructose 0.22 pmole and sucrose 0.11 pmole. With MS detection in the selected 

ion mode (SIM) the lithium adducts of the carbohydrates were detected obtaining MDL’s for 

glucose of 1.49 pmole, fructose 1.19 pmole, and sucrose 0.36 pmole showing that under these 

conditions IPAD is 3–10 times more sensitive for those carbohydrates. The applicability of the 

method was demonstrated analyzing carbohydrates in real world samples such as chicory inulin 

where polyfructans up to a molecular mass of 7000 g/mol were detected as quadruple charged 

lithium adducts. Furthermore mono-, di-, tri, and oligosaccharides were detected in chicory 

coffee, honey and beer samples.
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a Dionex B.V., Lange Bunder 5, 4854 MB Bavel, The Netherlands
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2.2  INTRODUCTION
Liquid chromatographic methods play an important role in determining carbohydrates. Normal-

phase and porous graphitized carbon allow the separation of underivatized carbohydrates. 

Underivatized carbohydrates lacks a chromophore and in combination with an isocratic 

separation refractive index detection can be performed while evaporating light scattering can 

be used following isocratic and gradient separations [1,2]. A well-established technique for 

determining underivatized carbohydrates is anion-exchange chromatography (HPAEC) using 

alkali hydroxide and alkali acetate based eluents [3,4]. The high efficient separation of sugar 

alcohols, mono-, di- and oligosaccharides up to a degree of polymerization (DP) of 60 is possible 

[4]. Today, selective and sensitive detection integrated pulsed amperometric detection (IPAD) 

is used, which is directly compatible with the high ionic strength of these eluents [5].

For verification of the identity of individual sugars the retention times of the peaks are 

compared with those obtained from reference solutions. Fractions are collected of unknown 

peaks and identified offline by MS, NMR or other techniques [6].

For further development of carbohydrate analysis online MS detection is required for faster 

and more reliable identification and peak conformation according to their mass to charge 

ratio. Interfacing anion-exchange chromatography with mass spectrometric detection is 

a technological challenge. Typical alkali acetate and hydroxide eluents are not compatible 

with atmospheric pressure ionization (API) due to their non-volatility and high conductance, 

therefore, a desalting device is installed between the column and the MS. The desalter converts 

the alkali hydroxide and acetate into water and acetic acid continuously exchanging the alkali 

cations by hydronium ions using a selective cation-exchange membrane and a regenerant [4,7].

To enhance sensitivity of the neutral carbohydrates, 0.5 mmol/l LiCl is added after the 

desalter and prior to the MS using a T-piece and an auxiliary pump. Lithium chloride is forming 

charged complexes with carbohydrates. The sugars can be detected as Li-adducts [M + Li]+ 

at [M + 7]+ in the positive mode or as chloride adducts in negative mode [M + Cl]−, while the 

positive charged complexes are detected with higher sensitivity.

In source collision induced fragmentation (CID) of carbohydrates after ESI can be achieved in 

single quadrupole MS accelerating the ions into the focusing RF lens region with a high enough 

voltage applied to the exit cone. The formed fragment ions are from glycosidic cleavage and 

can confirm that an unknown eluting peak is a carbohydrate or not.

In the analytical system, the MS detector and the amperometric detection cell are placed in 

parallel after the analytical column with the aid of a flow splitter.

When normal bore columns are used, the amperometric detection cell and the MS detector 

are usually installed in series. When narrow bore columns are used, there will be a higher degree 

of loss of separation when they are installed in series then when they are installed in parallel. 

The main cause of this loss in chromatographic efficiency is the void volume of the reference 

electrode cavity in the amperometric cell.

The system is evaluated in isocratic separation mode for mono- and disaccharides. Here the MS 

detection is compared to the IPAD detection for response and minimum detection limit. Then 

employability for gradient separation is shown with a native inulin sample.

The applicability of food and beverage samples for the analyses of neutral carbohydrates will be 

shown. Oligosaccharides are analyzed in a native inulin sample, chicory coffee, lager beer and honey.
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2.3  EXPERIMENTAL

2.3.1 Chemicals
Sodium hydroxide (50%, w/w) and sodium acetate were obtained from J.T. Baker (Deventer, 

The Netherlands). Fresh demineralized water was obtained from an Elga Purelab Ultra Analytic 

system from Rossmark Waterbehandeling B.V. (Ede, The Netherlands). Chicory inulin was a 

sample from Warcoing Research (Belgium, Warcoing).

2.3.2 Instrumentation
The schematic drawing of the complete chromatographic system is depicted in Fig. 2-1. The BioLC 

system from Dionex (Sunnyvale, CA, USA) consisted of a GP50 low-pressure quaternary gradient 

pump, an ED50A electrochemical detector, an AS50 autosampler with sample cooling, thermal 

compartment for thermal stabilizing of the column and amperometric cell and a 25 μl injection 

loop. The single quadrupole MS used, was manufactured by Thermo Electron for Dionex.

To pump the 0.5 mmol/l LiCl solution at a flow rate of 0.05 ml/min, an AXP-MS auxiliary 

pump from Dionex was used. To control the complete system and to realize data acquisition 

and analysis the Chromeleon® chromatography management system from Dionex was used.

2.3.2.1 Analytical column
The separation was performed on a CarboPac PA200 (3 mm×250 mm) with a CarboPac 

PA200 guard (3 mm×50 mm) column from Dionex. The stationary phase is a 5.5 μm diameter 

DP 
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Sampler 

Separator 

MSQ 

Electrochemical 
Detector 

Data system 

Signals 

0.31 nC 

Flow 0.50 Splitter 

0.5 mM LiCl 

Pump 

Flow 0.05 

cell 

Desalter 

Figure 2-1. Schematics of the chromatographic system.
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ethylvinylbenzene/divinylbenzene substrate (55% cross-linking), agglomerated with 34 nm 

MicroBeadTM 6% cross-linked quaternary amine functionalized latex.

2.3.2.2 Flow splitter for detection
To split the effluent after the analytical column a flow splitter was built entirely from PEEK 

material (Scivex Upchurch Scientific Division, USA). The splitter consisted of a Micro-TEE 

(P-775) and two PEEK tubings (300 mm×0.075 mm I.D.). One of the PEEK tubings was connected 

between the MicroTEE and the electrochemical detection cell and the other tubing was 

connected to the MicroTEE and desalter for the MS detection. PEEK material was used because 

of inertness. To avoid changing of the split ratio, due to varying backpressure from the ESI 

probe during optimizing the probe temperature, the total backpressure of the splitter was set 

to 1.4MPa. The internal volume (1.5 μl) of the splitter resulted in no extra band broadening. The 

split ratio of the flow splitter is 1:1.

2.3.2.3 Desalter
A cation-exchange membrane in the acid-form was used, as an in-line desalter, to convert 

the eluate into an ESI compatible solution. The membrane was continuously regenerated with 

acid generated by electrolysis of water. It efficiently exchanges Na+ ions originated from the 

eluent for H
3
O+ ions [7-9]. Neutral and anionic compounds will pass the desalter to the mass 

spectrometer. As desalter, an ASRS Ultra II 2mm (volume <15 μl) from Dionex was used. The 

water was fed from an air-pressurized bottle into the regenerant chamber at a flow rate of 5 ml/

min. For the isocratic separation conditions a regenerant current of 45 mA was applied and for 

the gradient conditions 286 mA.

2.3.3 Detection
The ED50A detector delivered to the electrochemical cell the following potential waveform: 

E
1
 = 0.1V (t

d
 = 0.00–0.20 s, t

1
 = 0.20–0.40 s), E

2
 =−2.0V (t

2
 = 0.41–0.42 s) E

3
 = 0.6V (t

3
 = 0.43 s), 

E
4
 =−0.1V (t

4
 = 0.44–0.50 s) versus a Ag/AgCl reference electrode to a gold work electrode 

[10]. The standard 25 μm gasket was installed. The inlet stainless steel tube of the cell was 

removed to reduce internal volume. The PEEK tubing, coming from the flow splitter, was 

directly connected to the cell.

Neutral carbohydrates were detected in the positive ion mode in the MS after formation 

of quasi-molecular ions with the added lithium ions. For efficient ionization of the eluted 

carbohydrates a make-up solution (0.5 mM LiCl) was pumped into the eluent flow at a flow rate 

of 50 μl/min. This flow was delivered via a MicroTEE (P-775 Scivex). The mixture was directed 

to the electrospray ionization (ESI) interface of the MSQ quadrupole mass spectrometer. The 

ESI-MS was operated at the following conditions: probe temperature 525 °C, nitrogen pressure 

0.5 MPa, cone voltage 75 volts. When a higher degree of fragmentation was required the cone 

voltage was set to 100 volts.

2.3.4 Chromatographic conditions
Isocratic separation was done with a flow rate of 0.50 ml/min at 30 °C and 60 mM NaOH as 

eluent. A ternary gradient elution with the same flow rate and temperature was used with the 

following eluents: eluent A, water; eluent B, 600 mM NaOH; eluent C, 500 mM NaOAc. 
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The gradient was as follows: 80% A+ 20% B (0–5 min) isocratic to convert the column into the 

hydroxide form; 90% A+ 10% B (5–20 min) isocratic equilibration of the column and after 15 min 

the sample was injected; 25.5% A+ 10% B+ 64.5% C (20–48 min) linear acetate gradient; 25.5% 

A+ 10% B+ 64.5% C (48–50 min) isocratic.

2.3.5 Samples
A chicory coffee, a lager beer and a honey were bought off-the-shelf. From the chicory coffee 

2.5 g were dissolved in 100 ml demineralized water and filtered through a 0.2 μm membrane 

filter before injection. The lager beer sample was degassed by placing it for 5 min into an 

ultrasonic bath and five times diluted with demineralized water prior to injection. From the 

honey sample 100 mg were diluted to 100 ml with demineralized water and filtered through a 

0.2 μm membrane filter before injection.

2.4  RESULTS AND DISCUSSION

2.4.1 Evaluation of the detection performance
To evaluate the sensitivity and selectivity of the system an isocratic separation was used for the 

separation of glucose, fructose and sucrose, see Fig. 2-2. The three carbohydrates are well separated 

and from 500 pmol injection a mass spectrum with good signal to noise ratio was obtained, see Fig. 

2-3. At a cone voltage of 75V the quasi-molecular ion at m/z 349 is clearly the base peak of sucrose. 

Also fragment ions from glycosidic cleavages were observed, numbering system proposed by 

Domon and Costello [11] is used and shown in the same figure. The mass loss of 162 (Y fragment 

at m/z 187) is a clear indication for a hexose. The fragment ion at m/z 205 is a water adduct of the 

Y fragment. Such water adducts are easily formed in the ESI of the MSQ mass spectrometer. B 

fragment ion at m/z 169 is a glycosidic cleavage on the other side of the oxygen atom.

To study the signal response of both detectors a calibration using external standards was 

performed and the limit of detection was determined, both for IPAD and MS. The calibration 

range was over 3 orders of magnitude (2.5–1000 pmole) with seven different levels of each 

carbohydrate. The calibration curve fit of the different signals is reported in Table 2-1.

By repeated injections of 5 pmole of each carbohydrate the minimum detection limit 

was determined, see Table 2-1 and Fig. 2-4. Selected ion monitoring (SIM) was used to study 

sensitivity and minimum detection limit of the MS, because the signal to noise ratio in this 

mode is better than in scan mode with a quadrupole MS. The limit of detection for glucose and 

fructose is approximately 10 times and for sucrose three times better in pulsed amperometric 

detection compared to mass spectrometric detection.

2.4.2 Gradient performance of the system
To explore the gradient performance of the chromatographic system a gradient separation was 

developed for native inulin and is shown in Fig. 2-5. Inulin is mainly a mixture of two linear fructan 

oligosaccharides (FOS), one with a terminal sucrose (GFn) the other with a fructopyranose (Fm) 

unit, up to a high degree of polymerization (DP) [12]. Both homologous series have their own 

retention behavior. Despite good separation, coelution of the FOS is also observed.
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Figure 2-2. Isocratic separation of 500 pmole each of glucose (1), fructose (2) and sucrose (3). The 
IPAD chromatogram is obtained from the amperometric detector. The lower chromatogram is obtained 
from the MS in scanning mode for 100–2000m/z.

Figure 2-3. Mass spectrum of sucrose.

An example is the peak at 18.24 min. Extracting ion chromatograms from the MS data at 

appropriate mass to charge ratios, unveiled both series. In Table 2-2 retention times of the fructo-

oligosaccharides are reported. Retention times printed in italic are indicating coeluting compounds.

As an example of coeluting peaks the mass spectrum in Fig. 2-6 shows two mass peaks, 

one at m/z 1159 (GF
6
) and the other one at m/z 835 (F

5
). MS data helps to unveil coeluting 

compounds, because they are not isobaric. Multiple charged adducts were observed for fructan 
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oligosaccharides with higher molecular mass. From Table 2-2 it can be observed that DP1 to 7 

are singly charged adducts, from DP6 to 25 doubly charged adducts with an overlap for DP6 

and DP7. Triply charged adducts were observed from DP13 and higher, not shown. Quadruple 

charged adducts were observed from DP26 and higher, not shown. As an example for multiply 

charged adducts the mass spectrum of GF
6
 is shown in Fig. 2-6. Singly charged GF

6
 is observed 

at m/z 1159 and the double charged lithium adduct of GF
6
 at m/z 583. We observed under these 

conditions for every 1000 Da increase in molecular mass the charge is raised by one extra unit.

2.4.3 Determination of oligohexoses in food and beverage samples
The same gradient conditions as for inulin were used for separating all food and beverage samples. 

In Figs. 2-7 and 2-8 the resulting chromatograms of chicory coffee and lager beer are shown. The 

chromatograms obtained in IPAD are very complex showing a high number of unresolved peaks. 

This is caused by the fact that integrated pulsed amperometric detection is not only selective for 

carbohydrates, but also for amines like amino acids, peptides, proteins and Maillard reaction 

products such as Amadori and Heyn’s products is expected in these samples. The MS can be of help to 

identify oligohexoses by extracting mass selective chromatograms. Moreover, the cationic desalter 

membrane is very acidic and will protonate amines and as a result remove them prior to MS detection.

Extracted ion chromatograms of the chicory coffee sample for mass to charge ratios of 

neutral oligohexoses show mainly DP1 to DP11. Up to DP8 are shown in Fig. 2-7. The extracted 

Table 2-1. Calibration curves and minimum detection limits.

Curve Slope Corr. Coeff. SIM MDL (pmole) IPAD MDL (pmole)

Glucose SIM 187 −0.13946 291.988 0.99992 1.49 0.12

Fructose SIM 187 −0.05785 131.603 0.99997 1.19 0.22

Sucrose SIM 349 −0.02718 62.920 0.99998 0.36 0.11

MDL = t
s
 x σ, n = 7 based on peak area of 5 pmole. t

s
 is Students t

Figure 2-4. 5 pmole of glucose, fructose and sucrose. IPAD and SIM channels of m/z 187 and 349.
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Figure 2-5. Gradient separation of 7.5 µg inulin. The IPAD chromatogram is obtained from the 
amperometric detector. The lower chromatogram is extracted from the MS data range of m/z 300–1500.

Table 2-2. Retention times and mass to charge ratios of fructan oligosaccharides.

GFn (min) Fm (min) Charge

DP z = +1 z = +2 z = +3

8.33 14.55 3 511

13.56 16.52 4 673

15.21 18.24 5 835

16.76 19.89 6 997 502

18.24 Not found 7 1159 583

19.69 23.24 8 664

21.20 24.65 9 745

22.63 25.96 10 826

23.91 27.18 11 907

25.11 28.34 12 988

26.24 29.22 13 1069 715

27.30 14 1151 769

28.31 15 1232 823

mass selective chromatograms from DP1 to DP8 unveil the retention time ranges of the 

individual oligosaccharides for example mass to charge ratio at m/z 187 elute from 3 to 5 min, 

while the pentasaccharides at m/z 835 elute between 14 and 18 min. Fig. 2-8 presents extracted 

mass chromatograms of DP1 to DP10 of the lager beer sample. Oligohexoses up to DP14 were 

observed in this sample. In contrast of the chicory coffee sample, the beer sample contains 

lower concentrations of mono- and disaccharides and relative high concentrations at m/z 511 

(DP3) and at m/z 673 (DP4) in comparison to mono- and disaccharides.

The honey sample contains mainly mono- and dihexoses as shown in Fig. 2-9. The 

chromatogram is relatively simple compared to chicory coffee and beer. Major components 
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Figure 2-6. Mass spectrum of the peak at retention time 18.24 min.

Figure 2-7. Chicory coffee 25 mg/ml, 25 µl injected. The upper chromatogram is obtained from the 
amperometric detector. The lower signals are mass extracted chromatograms of oligohexoses up to DP8.
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Figure 2-8. Lager beer degassed 5x diluted, 25 µl injected. The upper chromatogram is obtained from the 
amperometric detector. The lower signals are mass extracted chromatograms of oligohexoses up to DP10.

Figure 2-9. Honey 1 mg/ml, 5 µl injected. The upper chromatogram is obtained from the amperometric 
detector. The lower signals are mass extracted chromatograms of oligohexoses up to DP3.
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are the monosaccharides and low abundant are the di- and trisaccharides. These examples 

show the broad applicability of the chromatographic platform determining carbohydrates in 

complex samples with minimal sample preparation.

2.5  CONCLUSIONS
A versatile narrow bore column liquid chromatography platform has been developed for the 

analysis of underivatized carbohydrates. Applicability is shown with complex food and beverage 

samples. It demonstrates the successful combination of integrated pulsed amperometric 

and an on-line single quadrupole mass spectrometric detection, following gradient anion-

exchange separation. Although there can be significant sensitivity differences between the MS 

and IPAD detection, mass selective detection is beneficial for confirmation of sugars in food and 

beverage samples. In source formed fragment ions can confirm that unknown components are 

carbohydrates. Only cleavages of glycosidic linkages were observed. The resulting mass loss of 

a monosaccharide unit is a very strong indication for detecting carbohydrates. Coelutions of 

compounds can be determined with MS detection. The different isobaric polyfructan chains in 

inulin with terminal fructose or sucrose are identified according to their mass to charge ratio and 

retention times. Multiple charged Li adduct formation is observed as high as four for molecule 

masses above 4200 g/mol (DP 26), enabling use of a single quadrupole mass spectrometer with 

an upper mass range of 2000m/z to detect the higher molecular weight compounds.

REFERENCES
1. Honda S (1984) High-performance liquid chromatography of mono- and oligosaccharides. Anal Bio-

chem 140, 1-47.

2. Anumula KR (2000) High-sensitivity and high-resolution methods for glycoprotein analysis. Anal Bio-
chem 283, 17-26.

3. Lee YC (1990) High-performance anion-exchange chromatography for carbohydrate analysis. Anal 
Biochem 189, 151-162.

4. Cataldi TR, Campa C, & De Benedetto GE (2000) Carbohydrate analysis by high-performance anion-
exchange chromatography with pulsed amperometric detection: the potential is still growing. Fre-
senius J Anal Chem 368, 739-758.

5. Rocklin RD, Tullsen TR, & Marucco MG (1994) Maximizing signal-to-noise ratio in direct current and 
pulsed amperometric detection. J Chromatogr A 671, 109-114.

6. Lee KB, Loganathan D, Merchant ZM, & Linhardt RJ (1990) Carbohydrate analysis of glycoproteins. A 
review. Appl Biochem Biotechnol 23, 53-80.

7. Thayer JR, Rohrer JS, Avdalovic N, & Gearing RP (1998) Improvements to in-line desalting of oligosac-
charides separated by high-pH anion exchange chromatography with pulsed amperometric detec-
tion. Anal Biochem 256, 207-216.

8. van der Hoeven RAM, Tjaden UR, van der Greef J, van Casteren WHM, Schols HA, Voragen AGJ, & 
Bruggink C (1998) Recent progress in high-performance anion-exchange chromatography/ionspray 
mass spectrometry for molecular mass determination and characterization of carbohydrates using 
static and scanning array detection. J Mass Spectrom 33, 377-386.

9. Torto N, Hofte A, Tjaden UR, Gorton L, Marko-Varga G, Bruggink C, & van der Greef J (1998) Microdial-
ysis-introduction high-performance anion-exchange chromatography/ionspray mass spectrometry 
for monitoring of online-desalted carbohydrate hydrolysates. J Mass Spectrom 33, 334-341.

10. Rocklin RD, Clarke AP, & Weitzhandler M (1998) Improved long-term reproducibility for pulsed ampero-
metric detection of carbohydrates via a new quadruple-potential waveform. Anal Chem 70, 1496-1501.

48

CHAPTER 2



11. Domon B & Costello CE (1988) A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-
MS/MS Spectra of Glycoconjugates. J Glycoconj 5, 397-409.

12. De Leenheer F (1996) Production and use of inulin: Industrial reality with a promising future. In Car-
bohydrates as Organic Raw Materials III (van Bekkum H, Roper H, & Voragen F, eds), pp. 67-92. CRF, 
The Hague.

49

ANALYSIS OF CARBOHYDRATES BY HPAEC-MS



3



OLIGOSACCHARIDE ANALYSIS  
BY CAPILLARY-SCALE HIGH-pH ANION-
EXCHANGE CHROMATOGRAPHY WITH 
ON-LINE ION-TRAP MASS SPECTROMETRY



3.1  ABSTRACT
A capillary-scale high-pH anion-exchange chromatography (HPAEC) system for the analysis of 

carbohydrates was developed, in combination with two parallel on-line detection methods of 

sub-picomolar sensitivity: (1) pulsed amperometric detection (PAD); (2) capillary-scale desalting 

followed by electrospray ion-trap (IT) mass spectrometry (MS). The capillary chromatographic 

system combined the superb selectivity of HPAEC that allows routine separation of isomeric 

oligosaccharides with the information on monosaccharide sequence and linkage positions 

obtained by MS/MS fragmentation using the IT-MS. The applicability of the system in biomedical 

research was demonstrated by its use for the analysis of a urine sample of a G
M1

-gangliosidosis 

patient. Isomeric glycans in the sample could be resolved by HPAEC and assigned on the basis 

of the monosaccharide linkage information revealed by on-line IT-MS/MS.
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3.2  INTRODUCTION
Within the panel of analytical techniques available for the characterization of oligosaccharides, 

chromatographic methods play a central role [1,2]. While reverse-phase HPLC of 

oligosaccharides requires derivatization [2,3], other stationary phases such as normal-

phase and porous graphitized carbon allow the separation of both derivatized and native 

oligosaccharides [2-4]. Photometric detection of native carbohydrates is insensitive because 

they lack a natural chromophore or fluorophore, and therefore derivatization at the reducing 

end is usually required to allow detection in the sub-picomol range by fluorescence detection 

[5]. An alternative, sensitive and widely used chromatographic system for the separation and 

analysis of underivatized carbohydrates is high-pH anion-exchange chromatography with 

pulsed amperometric detection (HPAEC-PAD) [6,7]. This chromatographic system is based on 

the fact that carbohydrates are weak acids [8], which form anions in an eluent of high pH. In 

addition, the presence of aldehydes, ketones and multiple hydroxyl groups in carbohydrates 

makes them relatively attractive electrochemical analytes and pulsed amperometry therefore 

allows the detection of oligosaccharides at low picomol levels [9] when using a 4 mm I.D. 

analytical column.

Both on-line-coupling to mass spectrometry and downscaling of the column dimensions to 

the capillary- or nano-scale are important for the development of glycan analysis technology 

that is compatible with current standards in biomedical research. These requirements have 

already been met for the graphitized carbon stationary phase [3,4,10], normal phase (NPLC) 

[11,12] and reversed phase liquid chromatography (RPLC) [3,13]. In the case of HPAEC-PAD, 

however, oligosaccharide separation with on-line desalting and on-line mass spectrometry 

has so far only been demonstrated at the narrow bore (2 mm column I.D.) [14-16] and at the 

analytical scale (4 mm column I.D.) [17].

This study describes the implementation of a prototype capillary bore (0.381 mm I.D.) column 

for HPAEC with on-line pulsed amperometric detection and on-line electrospray ion-trap mass 

spectrometry (IT-MS). MS coupling was made possible with an experimental on-line capillary-

scale desalter. The system exhibits sub-picomol sensitivity, both in amperometric and in mass 

spectrometric detection, and was found to be particularly useful for the characterization of 

complex biological samples due to its high chromatographic resolution combined with the MS/

MS capabilities of the ion-trap mass spectrometer.

3.3  EXPERIMENTAL

3.3.1 Chemicals
Analytical reagent grade sodium hydroxide (50%, w/w), sodium acetate, sulphuric acid and 

sodium chloride were obtained from J.T. Baker (Deventer, The Netherlands). Acetonitril 

was from Biosolve (Valkenswaard, The Netherlands). All solutions were prepared with 

water from a Milli-Q synthesis system from Millipore BV (Amsterdam, The Netherlands). 

The asialo diantennary glycan was a gift from Dr. D.H. van den Eijnden (Free University, 

Amsterdam). Chicory inulin was obtained from Warcoing Research (Warcoing, Belgium).
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3.3.2 Chromatographic system
A schematic drawing of the complete instrumental set-up is shown in Fig. 3-1. The BioLC system 

from Dionex (Sunnyvale, CA, USA) consisted of a microbore GP40 gradient pump, a Famos 

micro autosampler with a full PEEK-injector and a 0.41 μl loop, and an ED40 electrochemical 

detector, all controlled by Chromeleon software (Dionex).

Coupled to the system was an Esquire 3000 ion-trap mass spectrometer from Bruker 

Daltonik (Bremen, Germany), equipped with an electrospray ionization source. A microbore 

AGP-1 from Dionex was used as an auxiliary pump (see Section 3.3.3.2).

3.3.2.1 Flow splitter for providing the eluent
To accomplish a flow rate of 10 μl/min, a homemade flow splitter (split ratio 56:1) constructed 

entirely from PEEK was inserted between the gradient pump and the autosampler. The eluent 

flow was split up via a TEE (P-715; Scivex Upchurch Scientific, Oak Harbor, WA, USA). The 

analytical column was connected to the TEE by 1256 cm×0.075 mm I.D. tubing. To the other exit 

of the TEE 1316 cm×0.125 mm I.D. and in addition 894 cm×0.750 mm I.D. tubing was connected.

To determine flow rates at various places in the capillary system a 25 μl syringe without 

plunger was coupled to the appropriate exit and the filling time was measured with a stopwatch.

3.3.2.2 Analytical column
A prototype capillary column (250 mm×0.381 mm I.D.) packed with CarboPac PA200 resin 

was manufactured by Dionex. The stationary phase is a 5.5 μm diameter ethylvinylbenzene/ 

divinylbenzene substrate (55% cross-linking), agglomerated with 34 nm MicroBeadTM 6% cross-

linked quaternary amine functionalized latex.

Figure 3-1. Schematic representation of the experimental set-up of capillary HPAEC with 
electrochemical as well as on-line-mass spectrometric detection.
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3.3.2.3 Flow splitter for detection
To avoid unacceptable loss of resolution, the detectors were coupled to the outlet of the analytical 

column in parallel. The desalter was connected to a PEEK TEE (P-715 from Scivex Upchurch 

Scientific Division) and put in-line with the mass spectrometer with a total of 150 cm×0.075 mm 

I.D. PEEK tubing. The electrochemical cell and 350 cm×0.075 mm I.D. PEEK tubing were connected 

to the other outlet of the TEE. This resulted in a split ratio of 11 to 5 for MS to PAD. The total 

backpressure was 210 kPa, which was found to be sufficient to minimize system flow fluctuations.

3.3.2.4 Desalter
To convert the eluent into an electrospray ionization (ESI)-compatible solution, a capillary 

in-line desalter was prepared. The desalter consisted of a Nafion cation-exchange capillary (15 

cm×0.102 mm I.D.×0.254 mm O.D.) housed in a PEEK column (250 cm×4 mm I.D.) with inlet 

and outlet liquid connecting ports. Provisions were made so that there were separate fluid 

connections to the cation exchange capillary tubing in the PEEK column. The cation exchange 

capillary was maintained predominantly in the hydronium form by flowing dilute sulfuric acid 

through the PEEK column so that the capillary was fully immersed in the solution of sulfuric acid. 

Using the capillary desalter, neutral and anionic compounds pass to the mass spectrometer, 

and the eluent is converted into water and acetic acid.

3.3.3 Detection

3.3.3.1 Electrochemical detection
The ED40 detector delivered to the electrochemical cell the following waveform: E

1
 = 0.1V 

(t
d
 = 0.00–0.20 s, t

1
 = 0.20–0.40 s), E

2
 =−2.0V (t

2
 = 0.41–0.42 s), E

3
 = 0.6V (t

3
 = 0.43 s), E

4
 =−0.1V 

(t
4
 = 0.44–0.50 s) versus an Ag/AgCl reference electrode [18]. A gold work electrode and a 25 μm 

gasket were installed. The inlet stainless steel tube of the cell was removed to minimize void volume. 

The electrochemical cell was placed in the low-pressure splitter outlet as described in Section 3.3.2.3.

3.3.3.2 Mass spectrometry
For efficient ionization of the eluted carbohydrates and in order to get a stable electrospray, 

a make-up solution (0.6 mM NaCl in 50% acetonitrile) was pumped into the eluent flow via a 

MicroTEE (P-775 Scivex). To obtain a flow rate of 4.6 μl/min for the make-up solution, the auxiliary 

pump was equipped with a homemade low-pressure PEEK splitter with a split ratio of 1:46.5. The 

mixture was directed to the electrospray ionization (ESI) interface of an Esquire 3000 ion-trap 

mass spectrometer from Bruker Daltonik. Neutral carbohydrates were detected with MS in the 

positive ion mode as sodium adducts. Analyses were routinely performed in the automatic MS/

MS mode. The mass spectrometer was operated at the following conditions: dry temperature 

325 °C, nebulizer 103 kPa, dry gas 7 l/min, capillary −3500V and target mass m/z 850.

3.3.4 Separation conditions
The GP40 pumped with a flow rate of 10 μl/min and was provided with the following eluents: 

eluent A, water; eluent B, 500mM NaOH; eluent C, 500mM sodium acetate. All separations 

were performed at room temperature. The asialo diantennary N-glycan was chromatographed 

under isocratic conditions (70% A+ 30% B). The ternary gradient for fructan oligosaccharides 

was as follows: The column was first washed with 76% A+ 24% B (−20 to −14 min; isocratic) in 
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order to convert the column into the hydroxide form, followed by an equilibration with 88% 

A+ 12% B (−14 to 0 min; isocratic). Elution was achieved with a linear acetate gradient to 25.5% 

A+ 12% B+ 62.5% C (0–55 min). For analysis of urinary oligosaccharides from patients with G
M1

-

gangliosidosis the gradient was as follows: 76% A+ 24% B (−20 to −14 min; isocratic); 88% A+ 

12% B (−14 to 0 min; isocratic); linear hydroxide gradient to 60% A+ 40% B (0–9.1 min); 60% A+ 

40% B (9.1–12.5 min; isocratic); linear gradient to 85.2% A+ 12% B+ 2.8% C (12.5–21.6 min); linear 

acetate gradient to 60.5%A+ 12% B+ 27.5% C (21.6–104 min). The samples were injected at 0 min.

3.3.5 Preparation of urine samples
Oligosaccharides of urine samples were isolated with graphitized carbon solid phase extraction, 

according the method described by Packer et al. [19]. Two hundred μl of urine was diluted with 

1800 μl water and loaded on a Carbograph SPE cartridge (300 mg; Alltech Associates Inc., 

Deerfield, IL, USA). The cartridge was washed with water (6 ml) and the neutral oligosaccharides 

were subsequently eluted with 3ml 25% acetonitrile. The eluate was concentrated under a 

stream of nitrogen at room temperature until the volume was decreased to 50%. The remaining 

solution was lyophilized and reconstituted in 200 μl water.

3.4  RESULTS

3.4.1 Characterisation of the desalter
In order to determine the desalting capacity of the prototype on-line capillary desalter, various 

concentrations of NaOH were pumped through at a flowrate of 10 μl/min over a time range of 

at least 60 min, with a regenerant flow of 825 μl/min. The regenerant concentration was kept 

constant at 12.5 mM sulphuric acid. Higher concentrations of regenerant were avoided in order 

to prevent the breakthrough of the sulphate ions according to the Donnan-exclusion [20,21]. The 

conductivity of the effluent was continuously monitored and every 10 min the pH was checked 

with universal pH-paper. It was determined that the desalting capacity of the capillary desalter 

is 225 mM NaOH for the tested eluent flow rate of 10 μl/min. The resulting effluent conductivity 

was 54 μS/cm, the pH was 7 and was stable for at least 60 min. To determine to which extent the 

desalter contributed to peak broadening, the system was tested with a 0.41 μl injection of an inulin 

solution of 300 μg/ml. Inulin contains two linear homologous series of fructan oligosaccharides 

(FOS) [22,23]. The most abundant series terminates in sucrose, the other in fructopyranosyl. 

FOS from inulin were separated with a sodium acetate gradient in sodium hydroxide with the 

electrochemical cell directly installed after the capillary column (Fig. 3-2A).

Alternatively, the desalter in the sodium form was installed between the column and the 

electrochemical cell (Fig. 3-2B). For the registered peak pair 1, which eluted in the isocratic part of the 

separation, resolution was 0.94 and 0.70 without and with the desalter, respectively. For peak pair 2, 

which eluted in the gradient part of the separation, the resulting resolutions were 8.38 versus 5.47. The 

retention time shift caused by the desalter was 8 s and corresponded to an internal volume of 1.35 μl.

3.4.2 Gradient performance and detection of fructan oligosaccharides
To test the gradient performance of the instrumental set-up, a solution of 1 mg/ml inulin was 

chromatographed. The estimated gradient delay time to the electrochemical detector was 11.2 
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min. Extracted ion chromatograms (EIC) of FOS up to DP13 (degree of polymerization) are shown 

in Fig. 3-3. At higher masses doubly charged sodium adducts were observed. By use of extracted 

ion chromatograms co-eluting variants could be discriminated such as two species eluting at 

approximately 20 min, namely DP5 (m/z 851.3) and DP7 (m/z 1175.7). In each EIC corresponding 

to a certain DP, two fully separated peaks were present, representing sodium adducts of the 

two isobaric variants, which demonstrated the separation potential of the HPAEC system. From 

the extracted ion chromatograms it turned out that the homologous series terminating in 

fructopyranose exhibited more retention than the series terminating in glucopyranose.

As analyses were performed in the automatic MS/MS mode, fragmentation spectra were obtained 

for most of the FOS. Fig. 3-4B and C shows MS/MS spectra of the two isobaric DP5 variants, which 

exhibited similar fragmentation patterns, yet varied in the relative intensities of the fragment ions. 

The MS/MS spectra show mainly cleavages of glycosidic linkages and ions representing a loss of 90 

Da (m/z 437.2 and 275.2). This loss of 90 Da can arise from ring fragmentation as indicated in Fig. 3-4B.

3.4.3 Signal response of the detectors
Signal response of the system has been investigated for both detectors under isocratic 

conditions with the asialo N-linked diantennary glycan. Five concentrations in the range of 

0.16–100 pmol were tested in three fold. The IPAD signal was linear up to 20 pmol, while the 

MS signal was linear over the whole range investigated (regression coefficient >0.999 for IPAD 

and MS). A sub-picomolar detection limit was achieved, as demonstrated in Fig. 3-5. From the 

total amount of 160 fmol diantannary oligosaccharide injected on column, about 50 fmol was 

directed to the electrochemical detector and 110 fmol to the mass spectrometer.

Figure 3-2. Capillary HPAEC-PAD separation of fructan oligosaccharides. The chromatographic 
behaviour of fructan oligosaccharides from 123 ng native chicory inulin was compared with and without 
on-line-desalting. (A) The electrochemical cell was directly connected to the column. (B) The capillary 
desalter was positioned between the column and the electrochemical cell.
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Figure 3-3. Capillary HPAEC-on-line-MS analysis of fructan oligosaccharides. Fructan oligosaccharides 
from 410 ng native chicory inulin were analyzed by capillary HPAEC with on-line-desalting and electrospray-
MS detection. Extracted ion chromatograms are given for fructan oligosaccharides of various degrees of 
polymerization (DP) which were detected as sodium adducts.

Figure 3-4. Mass spectra of the two isobaric sodium adducts of DP5 fructans. Part (A) shows the MS 
spectrum of [GF

4
 + Na]+; parts (B) and (C) are the MS2 spectra with m/z 851.6 as precursor ion, where (B) 

represents GF
4
 and (C) F

5
. In the fragmentation scheme, F stands for fructofuranosyl and X is glucopyranosyl 

or fructopyranosyl, R
1
 and R

2
 stand for the rest part of the oligosaccharide chain and R

2
 can also be a H.
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3.4.4 Urine sample of a G
M1

-gangliosidosis patient
As a relevant example of a clinical application, a urine sample of a G

M1
-gangliosidosis patient was 

analyzed with the system. The resulting chromatogram is given in Fig. 3-6. Oligosaccharides from 

urine were extracted using a carbon cartridge, and the equivalent of 400 nl urine was injected on 

the column. The electrochemical detector gave a complex peak pattern (not shown). On-line 

mass spectrometric detection revealed the presence of a dihexose (most likely lactose) as 

well as complex oligosaccharides of composition H
3–7

N
1–5

 (H: hexose; N: N-acetylhexosamine), 

which were detected in monosodiated form (H
3
N

2
 and H

3
N) or disodiated form (H

5
N

3
, H

6
N

4
 

and H
7
N

5
; Fig. 3-6). In accordance with literature data [24,25], we interpreted H

3
N

2
, H

5
N

3
, 

H
6
N

4
 and H

7
N

5
 as monoantennary, diantennary, triantennary and tetraantennary endo-b-N-

acetylglucosaminidase cleaved products of complex type N-glycan structures, respectively.

This assignment was corroborated by the obtained MS/MS data. Oligosaccharides of 

composition H
3
N were interpreted as glycolipid degradation products and exhibited a 

reducing end hexose–hexose moiety, which is in accordance with the lactosyl core structure of 

mammalian-type-glycolipids. Of the complex LC–MS/MS data set covering all these species, the 

data for H
3
N

2
 species will be presented in detail, as capillary HPAEC in conjunction with on-line 

desalting/mass spectrometry succeeded to completely resolve two isobaric structures of this 

composition (Fig. 3-6). Both structures A (elution at 8.9 min; Fig. 3-6) and B (elution at 12.9 min) 

were detected in sodiated form with a monoisotopic mass of 933.5 Da. The obtained MS/MS data 

of the two isomeric species were acquired in the automatic mode and are assigned according 

to the nomenclature of Domon and Costello [26] (Fig. 3-7A and B). Based on linkage-specific 

fragmentation, these data allowed the assignment of the two isomers to published structures of 

Figure 3-5. Analysis of an 160 fmol aliquot of an asialo diantennary glycan by combined capillary HPAEC-PAD/
online-MS detection. The chromatogram obtained from the electrochemical detector (IPAD) is corrected for 
the 2.68 min retention difference with the online-MS detection (EIC) of the double-sodiated species.
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urine oligosaccharides in G
M1

-gangliosidosis [24,25]: Both oligosaccharides seemed to contain 

a N-acetylhexosamine at the reducing end, which displayed specific ring fragmentations (0,2A 

at m/z 832 and 2,4A at m/z 772). These fragments, together with the lack of a 0,3A ring cleavage 

(no signal at m/z 802), are characteristic for a 4-substituted N-acetylhexosamine, according to 

the ring fragmentation rules established for sodiated oligosaccharides [27-29]. The observed 

series of B-ions results in a monosaccharide sequence of H−N−H−H−N for both isomers (Fig. 

3-7A and B). For compound A, the observed ring fragmentations (0,2A at m/z 670, 0,3A at m/z 

640 and 0,4A at m/z 610) of the hexose next to the reducing-end N-acetylhexosamine are typical 

for a substituent in the 6 position (Fig. 3-7A) [27-29]. Based on this information, compound A 

was concluded to be the G
M1

-gangliosidosis urinary oligosaccharide Gal(b1–4)GlcNAc((b1–2)

Man(α1-6)Man(b1–4)GlcNAc (Fig. 3-7A), which has been characterized before [24,25].

A lack of these ring fragments is typical for a substituent in the 3 position [27-29]. We conclude, 

therefore, compound B to be the isomer Gal(b1–4)GlcNAc((b1–2)Man(α1–3)Man(b1–4)GlcNAc 

(Fig. 3-7B), which has likewise been found previously in G
M1

- gangliosidosis urine [24,25].

3.5  DISCUSSION
We here describe a capillary-scale HPAEC system for the separation of oligosaccharides with both 

electrochemical and on-line mass spectrometric detection. With respect to electrochemical 

Figure 3-6. HPAEC-on-line-MS of oligosaccharides from the urine sample of a G
M1

-gangliosidosis 
patient. TIC is the total ion chromatogram. The extracted ion chromatograms (EIC) represent the major 
pseudomolecular ions registered. Several of the EIC show the separation of isobaric structures. Fragment-
ion analysis of the well-separated H

3
N

2
 species A and B is shown in Fig. 3-7. H, Hexose; N, N-acetylhexosamine.
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detection, the system displayed the usual excellent performance of HPAEC for the separation 

of oligosaccharides [6,7]. The downscaling from a narrow bore to a capillary-scale system 

involved reduction of the dead volume of a standard electrochemical cell by the surprisingly 

straightforward exchange of the metal inlet tube for a PEEK tube with a internal diameter of 

75 μm. Regarding mass spectrometric detection, an on-line desalting step was incorporated 

in the system in order to allow electrospray ionization-MS at high sensitivity. The degree 

of peak broadening generated by the desalter was found to be insignificant, and the superb 

chromatographic performance of HPAEC resulted in the resolution of isomeric structures. The 

MS detector is particularly useful for the analysis of complex mixtures as for example the fructan 

oligosaccharides, where it allows the differentiation between co-eluting carbohydrates.

While the desalter was found to work efficiently with concentrations of sodium ions up to 

225 mM for longer periods, the system tolerated significantly higher concentrations of sodium 

ions for short periods when run in the gradient mode. During the separation of fructan oligo- 

and polysaccharides of inulin the eluent concentration raised up to 372.5 mM sodium, while 

detection by IT-MS remained excellent, indicating that desalting was still sufficient.

In a previous study, HPAEC was performed at the microbore scale (column of 2 mm I.D.), 

allowing a lower detection limit of 17 pmol for maltoheptaose (DP7 of (α1–4)-glucose oligomer) 

[30]. When corrected for the different column diameters, this would result in a theoretical 

Figure 3-7. Fragment ion analysis of H
3
N

2
 species. H

3
N

2
 species A and B, as indicated in Fig. 3-6, were 

subjected to MS2 analysis in their sodiated form (m/z 933.5; A and B, respectively). The observed 
fragment ions are schematically interpreted according to the nomenclature of Domon and Costello [26]. 
Empty circle, mannose; filled circle, galactose; filled square, N-acetylglucosamine.
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sensitivity of 615 fmol at a 380 μm I.D. capillary system (17 pmol × (380 μm/2000 μm)2). The 

capillary-scale system used in this study (380 μm I.D.) actually exhibited even higher sensitivity, 

as demonstrated with the mass spectrometric detection of 110 fmol of a diantennary glycan 

(3.3). When compared to the 2 mm I.D. system [30], mass spectrometric sensitivity increased 

by a factor of 100. For amperometric detection, the detection limit was found to be around 50 

fmol, which means a sensitivity gain by a factor of 50 compared to the results with a 4mm I.D. 

column published by Rocklin et al. [9,18].

As the Esquire 3000 IT-MS used in the current study was formerly used for nano-scale (75 

μm I.D.) normal phase-LC/MS of oligosaccharides, sensitivities of the systems can directly 

be compared: nano-scale normal phase-LC–MS with a nanoelectrospray source exhibited 

sensitivities of approximately 1 fmol for both native [11] and derivatized oligosaccharides [12]. 

When correcting for the differences in column I.D., this would yield a theoretical sensitivity of 

25 fmol at the 380 μm I.D. scale.

HPAEC with pulsed amperometric detection has been used for diagnostic purposes of 

glycoprotein degradation disorders [31]. From the chromatograms generated by HPAEC it was 

not possible however to identify each observed component, such in strong contrast to the 

system presented here which includes on-line MS detection to provided mass and fragmentation 

data. We have evaluated our system using G
M1

-gangliosidosis urinary oligosaccharides. The total 

ion chromatogram of Fig. 3-6 shows the most abundant oligosaccharides and their masses. 

Two separated isomeric oligosaccharides could be assigned based on mass and fragmentation 

patterns to urinary oligosaccharide structures, which are described in the literature on G
M1

-

gangliosidosis [24,25]. Moreover, polymeric carbohydrates with the α1–6 linkage type are 

known to elute faster from an anion-exchange resin than isomers with a α1–3 linkage [7], which 

is in line with the obtained results.

Based on the presented data, we would like to conclude that the system, which combines 

the high separation power of HPAEC at a thus far unattained capillary-scale with the 

oligosaccharide sequence and linkage information provided by on-line ion-trap MS/MS, is a 

powerful new tool for (clinical) glycomics studies.
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GLYCAN PROFILING OF URINE,  
AMNIOTIC FLUID AND ASCITIC FLUID  
FROM GALACTOSIALIDOSIS PATIENTS  
REVEALS NOVEL OLIGOSACCHARIDES  
WITH REDUCING END HEXOSE  
AND ALDOHEXONIC ACID RESIDUES



4.1  ABSTRACT
Urine, amniotic fluid and ascitic fluid samples of galactosialidosis patients were analyzed 

and structurally characterized for free oligosaccharides using capillary high-performance 

anion-exchange chromatography with pulsed amperometric detection and online mass 

spectrometry. In addition to the expected endo-b-N-acetylglucosaminidase-cleaved products 

of complex-type sialylated N-glycans, O-sulfated oligosaccharide moieties were detected. 

Moreover, novel carbohydrate moieties with reducing-end hexose residues were detected. 

On the basis of structural features such as a hexose–N-acetylhexosamine–hexose–hexose 

consensus sequence and di-sialic acid units, these oligosaccharides are thought to represent, 

at least in part, glycan moieties of glycosphingolipids. In addition, C
1
-oxidized, aldohexonic 

acid containing versions of most of these oligosaccharides were observed. These observations 

suggest an alternative catabolism of glycosphingolipids in galactosialidosis patients: 

oligosaccharide moieties from glycosphingolipids would be released by a hitherto unknown 

ceramide glycanase activity. The results show the potential and versatility of the analytical 

approach for structural characterization of oligosaccharides in various body fluids.
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4.2  INTRODUCTION
Galactosialidosis is an autosomal recessive lysosomal storage disease, caused by deficiency of 

both α-neuraminidase (EC 3.2.1.18) and b-galactosidase (EC 3.2.1.23) activities [1], resulting from 

a defect in the protective protein cathepsin A (EC 3.4.16.5). This lysosomal protein protects 

α-neuraminidase and b-galactosidase from proteolytic degradation [2] by formation of a 

complex involving cathepsin A, b-galactosidase, α-neuraminidase and N-acetylgalactosamine-

6-sulfate sulfatase (EC 3.1.6.4) [3,4].

Galactosialidosis is characterized by excessive excretion of sialyloligosaccharides in the urine, 

an increase in the amount of bound sialic acid in various tissues, and severe clinical symptoms [5,6]. 

Three clinical subtypes can be distinguished, depending on the age of onset and severity of the 

symptoms: the early infantile type with fetal hydrops, ascites, visceromegaly, skeletal dysplasia 

and early death, usually by 8–12 months of age; the late infantile type with cardiac involvement, 

hepatosplenomegaly, growth retardation and mild mental retardation; and the juvenile/adult type 

with progressive neurological deterioration without visceromegaly. Coarse faces, cherry red spots 

in the macula and vertebral changes are usually present [7,8]. Biochemical diagnosis is made by 

demonstration of increased excretion of oligosaccharides by thin layer chromatography [9] and 

by demonstrating a combined deficiency of α-neuraminidase and b-galactosidase in patient cells.

Several activity studies on the structural analysis of sialyloligosaccharides from urine of 

galactosialidosis patients [10,11] have been published. van Pelt et al. [12] described 21 sialylated 

oligosaccharides. Twenty of these were endo-b-N-acetylglucosaminidase-cleaved products of 

complex-type sialylated N-glycans, and one was a di-sialylated diantennary structure with an 

intact N,N’-diacetylchitobiose unit at the reducing end.

Here we report the analysis of oligosaccharides from galactosialidosis patients using a 

previously described capillary high-performance anion-exchange chromatography (HPAEC) 

method with combined integrated pulsed amperometric (PAD) and ion-trap mass spectrometric 

detection and analysis [13]. In addition to urine samples, ascitic fluid and amniotic fluid obtained 

from mothers pregnant with a galactosialidosis fetus were analyzed. Amniotic fluid is of importance 

for prenatal diagnosis of many lysosomal storage disorders such as galactosialidosis [14].

In addition to the expected endo-b-N-acetylglucosaminidase-cleaved products of 

complex-type sialylated N-glycans, oligosaccharide structures that had not been previously 

found were detected in the samples from galactosialidosis patients. These newly found 

oligosaccharide structures included O-sulfated oligosaccharide moieties, carbohydrate 

moieties of glycosphingolipids, and C
1
-oxidized (aldohexonic acid) carbohydrate moieties of 

glycosphingolipids. On the basis of the presence of carbohydrate moieties of glycosphingolipids, 

we speculate about the potential involvement of a ceramide glycanase in the catabolism of 

glycosphingolipids in humans.

4.3  RESULTS
Glycans from seven urine samples from six galactosialidosis patients, five amniotic fluid samples 

from five mothers carrying a fetus suffering from galactosialidosis, and two ascitic fluid samples 

were analyzed by HPAEC-PAD-MS (Table 4-1). In addition, four urine samples from healthy 
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individuals were investigated. Figure 4-1 shows a typical HPAEC-PAD chromatogram from a 

urine sample of a galactosialidosis patient.

4.3.1 N-glycan-derived structures
The typical endo-b-N-acetylglucosaminidase cleavage products of complex-type 

N-sialyloligosaccharides were found in all urine samples, amniotic fluid samples and ascitic fluid 

samples (see Fig. 4-2, n1–n6) [12]. A varying number of isomers were detected for the various 

N-glycan compositions, and these were analyzed by MS/MS, as summarized in Table 4-2. 

N-glycan-derived structure n1 had the composition HNS (H, hexose; N, N-acetylhexosamine; 

S, N-acetylneuraminic acid), and two isomers of n1 were detected. Tandem mass spectrometry 

indicated the structure Neu5Ac(α2–3/6)Gal(b1–4)GlcNAc. On the basis of chromatographic 

retention [15] in combination with the tandem mass spectrometric data [16], we speculate that 

N-acetylneuraminic acid (Neu5Ac) is (α2–6)-linked in the first n1 isomer and (α2–3)-linked in 

the second isomer. Specifically, the relatively low signal intensity of the fragment ion at m/z 

655.2 from the second eluting isomer [16] suggests an α2–3-linked Neu5Ac.

Moreover, larger complex sialyloligosaccharides were found with the composition 

H
3–6

N
2–4

S
1–3

. In accordance with literature data [12], we interpreted the three isomers H
3
N

2
S as 

sialyl-mono antennary endo-b-N-acetylglucosaminidase cleavage products of complex-type 

N-glycan structures (Fig. 4-2, n2). Similarly, the two isomers H
5
N

3
S were assigned to sialylated 

diantennary structures (Fig. 4-2, n3), the two isomers H
5
N

3
S

2
 as di-sialylated diantennary 

structures (Fig. 4-2, n4), the two isomers H
6
N

4
S

2
 as di-sialylated triantennary structures (Fig. 

4-2, n5), and the three isomers H
6
N

4
S

3
 as tri-sialylated triantennary structures (Fig. 4-2, n6). 

These assignments were corroborated by the MS/MS data (Table 4-2).

In addition to the expected endo-b-N-acetylglucosaminidase-cleaved products of complex-

type sialylated N-glycans, some O-sulfated versions were also found in low amounts (see Table 

4-3 and Fig. 4-2, s1–s4). The detected carbohydrate HSO
3
NS eluted in the time window for 

Table 4-1. Information about the samples and patients. ND, not detected.

Sample Code Details
Creatinine 
(mmol/L)

U1 Urine patient AB, 12 days old, Lyon France 1,0

U2 Urine patient AV, 6 days old, Lyon France 2,3

U3, U4 Urine patient MO, Lyon France n.d.

U5 Urine patient BO, 127 days old, Lyon France 1,2

U6 Urine patient B07/0175, Amsterdam Netherlands 1,6

U7 Urine patient B07/0845.1, Leiden Netherlands 8 weaks old 0,5

Amfl1 Amniotic fluid patient AB, 30 weeks fetus, Lyon France n.d.

Amfl2 Amniotic fluid patient AS, 29 weeks fetus, Lyon France n.d.

Amfl3 Amniotic fluid patient W, 23 weeks of amenorrhoea, Lyon France n.d.

Amfl4 Amniotic fluid patient LA, 22 weeks fetus, Lyon France n.d.

Amfl5 Amniotic fluid patient GG, protein 3.5 g/L, Nijmegen Netherlands 0,08

Asf1 Ascite fluid patient AB, Lyon France n.d.

Asf2 Ascite fluid patient AS, Lyon France n.d.
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Figure 1
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Figure 4-1. Capillary HPAEC-PAD chromatogram of oligosaccharides from a urine sample of a 
galactosialidosis patient. H, hexose; N, N-acetylhexosamine; S, N-acetylneuraminic acid; X, aldohexonic 
acid. The numbers above the horizontal arrows represents the number of acidic groups.

double negatively charged carbohydrates (Fig. 4-1). The MS/MS fragment ions Y
1
 (m/z 219.9) 

and Y
2
 (m/z 462.0) indicated the sequence Neu5Ac−HexSO

3
−HexNAc (Fig. 4-3). The 0,2A

3
 ring 

fragment ion at m/z 652.1 is typical of a 1–4 glycosidic link [16,17] between HexSO
3
 and HexNAc.

The lack of significant fragment ions between the fragment ions Y
1
 and Y

2
 is indicative of a 2–3 

linkage between Neu5Ac and HexSO
3
. These data are consistent with a Neu5Ac(α2–3)Gal-6-SO

3
(b1–4)

GlcNAc N-glycan antenna structure or O-glycan structural motif [18]. Moreover, the presence of 

complex O-sulfated sialylated oligosaccharides with the composition H
3–5

SO
3
N

2–3
S

1–2
 (see Table 4-2), 

was indicated by MS. Based on observed retention times, mass spectrometric data (Table 4-2) and 

literature data, these glycans were assigned to sulfated variants of the above-mentioned endo-b-N-

acetylglucosaminidase cleavage products of complex-type sialylated N-glycan structures: the two 

isomers of composition H
3
SO

3
N

2
S were assigned to O-sulfated sialylated monoantennary glycans 

(Fig. 4-2, s2), the four isomers H
5
SO

3
N

3
S as O-sulfated monosialylated diantennary glycans (Fig. 4-2, 

s3), and the two isomers H
5
SO

3
N

3
S

2
 as O-sulfated, disialylated diantennary glycans (Fig. 4-2, s4).

4.3.2 Glycans with reducing-end hexoses
In addition to the N-glycan-derived signals, the LC-MS/MS data provided evidence for the 

presence of a group of oligosaccharides of composition H
0–3

N
0–1

S
0–2

 (g1–g11, Table 4-2). Tandem 

mass spectrometry indicated a sequence Hex–HexNAc–Hex–Hex or truncated versions thereof 

for most of these oligosaccharides, decorated with up to two Neu5Ac. Di-sialyl motifs (Neu5Ac 

linked to Neu5Ac) were also observed. Structural characterization of these oligosaccharides is 

described below.
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Two isomers of the glycan H
2
 were detected. The retention time of the late-eluting H

2
 isomer 

was identical to that of maltose (Glc(α1–4)Glc; Table 4-2). The retention time of the early-

eluting H
2
 isomer was identical to that of lactose, and Fig. 4-4A shows the MS/MS spectrum 

obtained. Fragment ion C
1
 (m/z 178.9) indicates the composition H

2
 and the ring fragment ion 

(m/z 220.8) corresponds to a loss of 120, which is interpreted as a 2,4A
2
 ring fragment typical of 

a 1–4 linkage between the hexoses [16,17].

Four isomers were found with the composition H
2
S (Table 4-2). The MS/MS spectrum of 

the first eluting isomer with retention time of 10.5 min is shown in Fig. 4-4B. The fragment ions 

B
1
, C

2
, Y

1
 and Y

2
 indicate the sequence Neu5Ac–Hex–Hex. The ring fragments 0,2A

3
 and 0,2A

3
-18 

in combination with lack of the 0,3A
3
 ring fragment ion are typical of a 1–4 linkage between 

the hexoses [16,17]. The lack of relevant ring fragment ions between fragment ions B
1
 and C

2
 is 

indicative of a 2–3 linkage between Neu5Ac and Hex. These combined data are consistent with 

sialyllactose (Neu5Ac(α2–3)Gal(b1–4)Glc) (g6, Table 4-2). The MS/MS fragmentation spectra of 

the remaining three isomers with the composition H
2
S are indicative of the sequence Neu5Ac–

Hex–Hex, for which the structure has been partly elucidated (Table 4-2).

An oligosaccharide species with composition H
2
S

2
 was detected at 29.1 min (g9, Table 4-2). 

The fragment ion B
2
 (m/z 581.2) consists of two N-acetylneuraminic acids, indicating a sialic 

acid–sialic acid motif. Fragment ion Y
3 

(m/z 632.2) is in accordance with two Hex decorated 

with Neu5Ac (Fig. 4-4C). These details indicate the sequence Neu5Ac–Neu5Ac–Hex–Hex.

Two isomers were detected with the composition H
3
N (m/z 706.2) (g7, Table 4-2). The MS/

MS spectrum of the isomer eluting at 12.7 min is shown in Fig. 4-4D. The fragment ions B
2
 (m/z 

With reducing end 
hexose or disialyl motifs

With reducing end HexNAc With terminal 
aldohexonic acid

(S)

lactose

sialyllactose

GM2

GD3
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Figure 2

N-Acetylhexosamine

Hexose

Figure 4-2. Schematic overview of the proposed structures of free oligosaccharides in body liquids 
from galactosialidosis patients. The codes n1–n6, s1–s4, g1–g11 and o1–o9 refer to Tables 4-2 and 4-3.
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363.5) and C
2
 (m/z 381.9) corresponded to Hex linked to HexNAc. The fragments C

3
 (m/z 543.9) 

and C
2
 (m/z 381.9) indicated two Hex at the reducing end. Based on the ring fragment ions 0,2A

4
 

and 0,2A
4
-18 and the lack of 0,3A

4
, a 1–4 linkage was deduced for the two hexoses at the reducing 

terminus [16,17], in accordance with a lactose core structure. From the combined data, we 

postulate that this oligosaccharide has the glycan structure Hex–HexNAc–Gal(b1–4)Glc.

Two isomers with the composition H
3
NS were detected at m/z 997.3 (g10, Table 4-2). The MS/

MS spectrum of the isomer eluting at 22.0 min is shown in Fig. 4-4E. The fragment ions B
1
, C

1
, B

2
, C

2
, 

B
3
, C

3
, and C

4
 are indicative of the sequence Neu5Ac–Hex–HexNAc–Hex–Hex. The proposed linear 

sequence was supported by the abundant signals B
3
 and C

3
. The lack of ring fragments between 

C
2
 and C

1
 is indicative of a 2–3 linkage between Neu5Ac and the adjacent hexose. No relevant ring 

fragments were observed between C
2
 and C

3
, which is consistent with a 1–3 linkage between Hex and 

HexNAc. The ring fragment ions 0,2A
4
 and 2,4A

4
, and the lack of 0,3A

4
, are indicative of a 1–4 linkage 

between HexNAc and the adjacent hexose. The ring fragment ions 0,2A
5
, 0,2A

5
-18 and 2,4A

5
, and the lack 

of 0,3A
5
, are indicative of a 1–4 link between the reducing end Hex and the adjacent Hex [16,17]. Based 

on these data, we propose the structure Neu5Ac(α2–3)Hex(b1–3)HexNAc(b1–4)Gal(b1–4)Glcb.

An oligosaccharide of composition H
3
N

1
S

2
 was detected (g11, Table 4-2). MS/MS analyses 

revealed an intense signal at m/z 563.6 (B
2α-H

2
O), which indicates a di-sialic acid motif. 

This oligosaccharide was interpreted to be an extended version of g9, and the structure 

Hex–HexNAc–(Neu5Ac–Neu5Ac)–Hex–Hex is proposed. Moreover, a Neu5Ac–Neu5Ac 

disaccharide was detected (g4, Table 4-2), as well as oligosaccharides of composition H
2
F

1
 

(where F stands for deoxyhexose) and H
2
N

1
F

1
 (Table 4-2).

4.3.3 Glycans with aldohexonic acid
In addition, evidence was obtained from the LC–MS/MS data for the presence of C

1
-oxidized 

glycans (Fig. 4-2, o1–o9). The innermost residue of these oligosaccharides was found to be 

Figure 4-3. Negative-ion fragmentation spectrum of the proposed 6’-sulfated sialyl lactosamine.
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an aldohexonic acid (X) with a carboxyl group at C
1
. This monosaccharide differs by +16 Da 

from hexose and by +2 Da from hexuronic acid (oxidation of the alcohol group at C
6
). The 

aldohexonic acid-containing oligosaccharides (o1–o9) showed close structural similarities 

to the above-mentioned glycans with reducing-end hexose oligosaccharides (g1–g11). The 

structural interpretation obtained for these glycans is presented below.

A component at m/z 357.2 was detected and interpreted as HX on the basis of the MS/MS 

spectrum (Fig. 4-5A). Fragment ion B
1
 (m/z 160.9) and C

1
 (m/z 178.9) indicate terminal hexose, 

and Z
1
 (m/z 176.9) and Y

1
 (m/z 195.0) result from aldohexonic acid. The fragment ion with mass 

m/z 158.9 is interpreted as a mass loss of 18 Da from the Z
1
 ion. For the fragment ion with mass 

m/z 220.9, carbon chain cleavages at C
2
–C

3
 and C

4
–C

5
 of the aldohexonic acid were assumed. A 

linkage of hexose to the C
4
 of aldohexonic acid is postulated. The proposed structure for HX is 

Gal(b1–4)GluconA (gluconic acid), which may be interpreted as the C
1
-oxidized form of lactose.

A glycan with the composition HSX (m/z 648.5) was detected at retention time 26.0 min 

(Table 4-2). The MS/MS spectrum is shown in Fig. 4-5B. The fragment ions C
1
 (m/z 307.9), Y

2
 

(m/z 357.1), Z
2
 (m/z 339.0) and [M–CH

2
OCH

2
OCOO–H]− (m/z 544.2) are indicative of the 

sequence Neu5Ac–Hex–HexonA (aldohexonic acid). Fragment ions at m/z 604.3 [M–CO
2
–H] − 

and (m/z 586.3) [M–CO
2
–H

2
O–H]− are indicative of a carboxylic acid. For the fragment ion with 

m/z 544.2, cleavage between C
3
 and C

4
 in the aldohexonic acid is proposed, indicating that the 

aldohexonic acid is linked via C
4
 to the adjacent hexose. Therefore, the structure Neu5Ac(α2–3)

Gal(b1–4)GluconA is proposed, which represents the C
1
-oxidized version of sialyllactose.

A glycan with the composition HS
2
X (m/z 939.6) was observed at retention time 29.4 min 

(o8, Table 4-2). The MS/MS spectrum (Fig. 4-5C) shows the fragment ions B
1
 (m/z 290.0), B

2
 

(m/z 581.3), Y
2
 (m/z 357.1) and Y

3
 (m/z 648.3), which is consistent with the sequence Neu5Ac–

Neu5Ac–Hex–HexonA. The fragment ions Y
3
-CO

2
 (m/z 604.2) and [M–CO

2
–H]− (m/z 895.4) are 

indicative of a carboxylic acid group.

A glycan with the composition H
2
NX (m/z 722.4) was observed at retention time 21.4 min (o7, 

Table 4-2). The MS/MS spectrum (Fig. 4-5D) shows the fragment ions C
3
 (m/z 543.9), Y

2
 (m/z 357.0) 

and Y
3
 (m/z 560.2), which is consistent with the sequence Hex–HexNAc–Hex–HexonA. For the 

fragment ions with masses m/z 586.2 and m/z 406.1, carbon chain cleavages at C
2
–C

3
 and C

4
–

C
5
 of the aldohexonic acid are assumed. The fragment ion with mass m/z 406.1 originated from 

fragment ion Z
3
. From these details, the structure Hex–HexNAc–Gal(b1–4)–HexonA (Fig. 4-2, 

o7) is proposed, which is interpreted as the C
1
-oxidized version of oligosaccharide g7 (see above).

A glycan with the composition H
2
NSX (m/z 1013.4) was detected at retention time 27.4 min 

(o9, Table 4-2).The fragment ions [M–CO
2
–H]− (m/z 969.7) and [M–CO

2
–H

2
O–H]− (m/z 951.7) 

are indicative of a carboxylic acid group (Fig. 4-5E). For fragment ion [M–CH
2
OCH

2
OCOO–H]− 

(m/z 909.5), a cleavage between C
3
 and C

4
 of the aldohexonic acid is proposed. Moreover, the 

MS/MS spectrum shows the fragment ions B
2α (m/z 364.1), Y

2
Y

2b (m/z 357.1), Z
2b (m/z 704.1), 

Y
2b (m/z 722.3) and B

3
 (m/z 817.5), which are consistent with the sequence Hex–HexNAc–

[Neu5Ac]–Hex–HexonA.

Other C
1
-oxidized oligosaccharide moieties were an aldohexonic acid carrying a sialic acid 

residue (o3), oligosaccharide o4, which represents a C
1
-oxidized version of g3, and o5, which is 

interpreted as C
1
-oxidized version of g5 (for details, see Table 4-2).
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4.3.4 Glycan profiling of body fluids
LC-MS data were obtained for four urine samples from control individuals as well as seven 

urine samples, five amniotic fluid samples and two ascitic fluid samples from galactosialidosis 

patients. In the four urine samples of healthy controls, lactose (m/z 341.2), sialylhexose (m/z 

470.2) and sialyllactose (m/z 632.2) were detected (data not shown). For the body fluid samples 

of galactosialidosis patients, the relative abundances of the mass spectrometric signals are 

given in Table 4-3. The two major classes of detected oligosaccharides are the endo-b-N-

acetylglucosaminidase-cleaved products of complex-type sialylated N-glycans derivatives 

(n1–n6) and oligosaccharides with reducing-end hexose residues or disialyl motifs (g1–g11), 

with mean relative abundances of 37.1% and 44.8%, respectively. Sulfated glycans (s1–s4), which 

are presumably derived from complex-type N-glycans, accounted for a mean of 1.6% of all 

detected glycans. The relative abundance of aldohexonic acid-based oligosaccharides (o1–o9) 

differed considerably between urine samples on the one hand (mean 29.7%) and amniotic fluid 

and ascitic fluid samples on the other (mean 3.1%).

In all samples, the same set of complex-type N-glycan-derived structures was found, with 

the exception of H
5
N

3
S (n3) and H

6
N

4
S

2
 (n5) in ascitic fluid samples Asf1 and Asf2, respectively 

(Table 4-3). In all samples, complex-type N-glycan derivatives with very high relative 

abundance were sialyl-N-acetyllactosamine (HNS; n1), disialylated diantennary structures 
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Figure 4-4. Negative-ion fragmentation mass spectra of oligosaccharides with reducing-end hexose 
residues with the proposed structures: (A) lactose, precursor ion m/z 341.2, g1; (B) sialyllactose, 
precursor ion m/z 632.2, g6; (C) lactose carrying a disialyl motif, precursor ion m/z 923.3, g9; (D) H

3
N 

tetrasaccharide, precursor ion m/z 706.2, g7; (E) H
3
NS pentasaccharide, precursor ion m/z 997.3, g10.
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(H
5
N

3
S

2
; n4) and sialylated monoantennary structures (H

3
N

2
S; n2). In amniotic fluid and ascitic 

fluid, tri-sialylated triantennary N-glycans (H
6
N

4
S

3
; n6) were clearly next in order of relative 

abundance (Table 4-3).

Sulfated N-glycan derived structures were detected in all samples (Table 4-3). In three urine 

samples, the entire set of four sulfated N-glycans could be detected (Table 4-3, U2, U4 and U6). 

In one urine sample (U2), three isomers were detected for H
5
SO

3
N

3
S

2
 (data not shown).

Free oligosaccharides with reducing-end hexoses were detected in all samples. In two 

samples (Table 4-3, U1 and Amf5), the entire set of 11 oligosaccharides (g1–g11) was detected. 

The most abundant species of this glycan group in urine samples was sialyllactose (relative 

mean abundance 16.4% for g6, H
2
S; Table 4-3), while the proposed sialylgalactose was the most 

abundant species in the amniotic and ascitic fluid samples (mean 20.4% for g2, HS; Table 4-3). 

Sialyllactose was observed with similar relative abundances in urine, amniotic and ascitic fluid 

samples (g6, Table 4-3). In urine sample U7, the relative amount of lactose was high (39.9%), 

and was one or two orders of magnitude lower for the other analyzed samples (g1, Table 4-3). 

The disialyl glycan (g4) was detected in all samples and had a mean relative abundance of 4.8%. 

Other glycans containing a disialyl motif (g9 and g11) were detected at low relative intensities (< 

0.5%). Only in three of the 14 samples analyzed were neither of these species detected.
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Figure 4-5. Negative-ion fragmentation mass spectra of C
1
-oxidized oligosaccharides with 

the proposed structures: (A) C
1
-oxidized lactose, precursor ion m/z 357.2, o2; (B) C

1
-oxidized 

sialyllactose, precursor ion m/z 648.5, o6; (C) C
1
-oxidized lactose carrying a disialyl motif, precursor 

ion m/z 939.6, o8; (D) C
1
-oxidized version of H

3
N tetrasaccharide, precursor ion m/z 722.4; o7; (E) C

1
-

oxidized version of the H
3
NS pentasaccharide, precursor ion m/z 1013.4; o9.
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Table 4-3. Oligosaccharides observed in various body fluids of galactosialidosis patients. Mean retention time, 
mass to charge ratio and relative area are given for glycans detected in urine (U), amniotic fluid (Amf) or ascitic 
fluid (Asf). H, hexose; N, N-acetylhexosamine; S, N-acetylneuraminic acid; X, aldohexonic acid; SO

3
, sulphate; +, 

trace amount; –, not detected.

Fig. 2 Composition m/z

Sample:
U1
%

U2
%

U3
%

U4
%

U5
%

U6
%

U7
%

Avg U
%

Amf1
%

Amf2
%

Amf3
%

Amf4
%

Amf5
%

Asf1
%

Asf2
%

Avg A
%

Avg OA
%charge Ret. Time

W
it

h 
re

d
uc

in
g-

en
d

n1 HNS 673,4 [M-H]- 22.3 4,1 14,5 18,3 15,9 15,1 9,6 15,0 13,2 22,5 19,9 22,7 25,4 20,5 19,2 19,1 21,3 17,3

n2 H
3
N

2
S 1200,4 [M-H]- 23.0 2,8 10,6 3,4 7,5 0,9 4,0 0,5 4,2 6,0 7,3 5,0 4,7 4,7 3,7 5,8 5,3 4,8

n3 H
5
N

3
S 1727,8 [M-H]- 23.9 0,3 0,6 0,2 0,6 0,2 0,4 0,1 0,3 + 0,5 0,2 0,8 0,3 - 0,1 0,4 0,4

n4 H
5
N

3
S

2
1009,0 [M-2H]2- 27.3 5,9 17,6 3,6 9,6 2,2 5,5 1,2 6,5 18,7 22,3 16,5 17,5 22,0 9,1 14,3 17,2 11,9

n5 H
6
N

4
S

2
1191,4 [M-2H]2- 27.4 0,5 1,3 0,5 1,1 0,4 0,4 0,1 0,6 1,2 1,4 0,9 1,4 1,5 0,4 - 1,1 0,8

n6 H
6
N

4
S

3
891,3 [M-3H]3- 31.3 0,4 1,2 0,5 1,2 0,3 0,2 0,2 0,6 5,2 4,8 3,5 3,4 4,9 1,3 2,6 3,7 2,1

14,1 45,7 26,5 36,0 19,2 20,0 17,0 25,5 53,6 56,2 48,9 53,2 53,9 33,8 41,8 48,8 37,1

Su
lfa

te
d 

 
gl

yc
an

s

s1 H(S)NS 753,2 [M-H]- 32.0 0,3 0,6 1,4 2,3 2,3 0,6 0,3 1,1 - - - 0,4 0,7 0,7 3,0 1,2 1,1

s2 H
3
(S)N

2
S 639,7 [M-2H]2- 36.5 0,3 1,3 - 0,5 + 0,3 - 0,6 0,8 1,3 0,9 0,9 1,0 - - 1,0 0,8

s3 H
5
(S)N

3
S 903,3 [M-2H]2- 34.6 - 0,3 - 0,2 + 0,2 - 0,2 0,3 - 0,4 - - 0,4 - 0,4 0,3

s4 H
5
(S)N

3
S

2
1048,8 [M-2H]2- 39.6 + 0,2 0,1 0,2 - + - 0,1 - - - - 0,6 - - 0,6 0,3

0,6 2,4 1,5 3,2 2,4 1,1 0,3 1,6 1,1 1,3 1,4 1,3 2,2 1,1 3,0 1,6 1,6

W
it

h 
re

du
ci

ng
-e

nd
 h

ex
o

se
 

o
r 

di
sy

al
yl

 m
o

ti
f

l1 H
2

341,2 [M-H]- 7.6 1,2 1,9 5,3 3,6 4,2 1,2 39,9 8,2 0,9 0,4 - 0,7 1,5 2,3 2,3 1,3 5,0

l2 HS 470,2 [M-H]- 24.4 3,4 4,4 9,4 8,6 6,0 2,6 5,1 5,6 19,1 14,4 21,9 14,7 13,4 36,1 23,1 20,4 13,0

l3 H
3

503,2 [M-H]- 9.1 0,2 3,4 3,5 3,2 3,1 - 2,9 2,7 - - - - 0,6 - - 0,6 2,4

l4 S
2

599,2 [M-H]- 27.7 3,3 4,2 4,9 8,2 7,2 4,3 0,9 4,7 3,0 5,0 5,6 7,3 6,8 2,4 4,6 5,0 4,8

l5 H
2
N 544,2 [M-H]- 9.6 0,9 1,8 3,4 4,3 3,3 0,9 1,6 2,3 1,2 0,8 0,9 1,3 1,1 0,9 1,1 1,1 1,7

l6 H
2
S 632,2 [M-H]- 22.7 8,1 10,8 29,9 22,2 17,2 6,5 20,2 16,4 12,3 14,3 14,7 16,4 14,2 17,8 17,8 15,4 15,9

l7 H
3
N 706,2 [M-H]- 12.7 1,8 0,8 2,4 0,8 0,4 0,5 0,3 1,0 0,2 - - 0,4 0,1 - - 0,2 0,8

l8 H
2
NS 835,3 [M-H]- 22.8 1,5 4,1 2,0 4,2 0,9 1,9 0,6 2,2 4,1 3,5 4,0 2,1 3,4 1,0 3,5 3,1 2,6

l9 H
2
S

2
923,3 [M-H]- 29.1 + 0,1 - - 0,1 + + 0,1 - 0,3 - 0,2 0,4 - 0,3 0,3 0,2

l10 H
3
NS 997,3 [M-H]- 22.0 0,7 0,4 0,2 0,5 0,1 0,2 + 0,3 0,3 - - 0,3 0,3 - - 0,3 0,3

l11 H
3
NS

2
643,7 [M-2H]2- 29.5 0,4 - 0,1 0,1 - - - 0,2 - - - - 0,2 - - 0,2 0,2

21,6 31,8 61,0 55,7 42,3 18,1 71,6 43,1 41,1 38,6 47,1 43,6 41,9 60,6 52,8 46,5 44,8

W
it

h 
te

rm
in

al
 a

ld
o

he
xo

ni
c 

ac
id

o1 X 195,1 [M-H]- 13.3 62,3 1,6 1,0 2,0 3,1 18,6 8,9 13,9 0,9 - - - 1,1 2,2 + 1,4 10,2

o2 HX 357,2 [M-H]- 19.2 0,8 17,3 3,0 2,2 27,9 37,0 1,5 12,8 1,3 1,0 - 1,3 0,2 0,9 1,8 1,1 7,4

o3 SX 486,1 [M-H]- 26.4 0,2 0,1 - 0,2 0,2 0,1 - 0,2 0,4 0,5 - - 0,4 - - 0,4 0,3

o4 H
2
X 519,2 [M-H]- 22.6 0,3 0,9 - - 1,5 0,5 - 0,8 1,5 1,6 2,3 - - 1,5 - 1,7 1,3

o5 HNX 560,2 [M-H]- 24.3 0,2 0,1 6,1 0,3 0,9 0,2 0,5 1,2 0,1 0,7 0,4 0,6 0,3 - 0,6 0,4 0,8

o6 HSX 648,5 [M-H]- 26.0 - - 0,8 0,5 2,7 3,8 - 1,9 - - - - - - - 1,9

o7 H
2
NX 722,4 [M-H]- 21.4 - - - - - 0,2 - 0,2 - - - - - - - 0,2

o8 HS
2
X 939,6 [M-H]- 29.4 - + 0,1 - - 0,2 0,1 0,1 - - - - - - - 0,1

o9 H
2
NSX 1013,4 [M-H]- 27.4 - - - - - 0,3 + 0,3 - - - - - - - 0,3

63,7 20,1 11,1 5,2 36,1 60,8 11,1 29,7 4,2 3,9 2,7 1,9 2,0 4,6 2,4 3,1 16,4
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Table 4-3. Oligosaccharides observed in various body fluids of galactosialidosis patients. Mean retention time, 
mass to charge ratio and relative area are given for glycans detected in urine (U), amniotic fluid (Amf) or ascitic 
fluid (Asf). H, hexose; N, N-acetylhexosamine; S, N-acetylneuraminic acid; X, aldohexonic acid; SO

3
, sulphate; +, 

trace amount; –, not detected.

Fig. 2 Composition m/z
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%

U5
%

U6
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%

Avg U
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%
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%
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Amf4
%
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%
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%

Asf2
%

Avg A
%

Avg OA
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n3 H
5
N

3
S 1727,8 [M-H]- 23.9 0,3 0,6 0,2 0,6 0,2 0,4 0,1 0,3 + 0,5 0,2 0,8 0,3 - 0,1 0,4 0,4
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1191,4 [M-2H]2- 27.4 0,5 1,3 0,5 1,1 0,4 0,4 0,1 0,6 1,2 1,4 0,9 1,4 1,5 0,4 - 1,1 0,8

n6 H
6
N

4
S

3
891,3 [M-3H]3- 31.3 0,4 1,2 0,5 1,2 0,3 0,2 0,2 0,6 5,2 4,8 3,5 3,4 4,9 1,3 2,6 3,7 2,1

14,1 45,7 26,5 36,0 19,2 20,0 17,0 25,5 53,6 56,2 48,9 53,2 53,9 33,8 41,8 48,8 37,1
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s1 H(S)NS 753,2 [M-H]- 32.0 0,3 0,6 1,4 2,3 2,3 0,6 0,3 1,1 - - - 0,4 0,7 0,7 3,0 1,2 1,1

s2 H
3
(S)N

2
S 639,7 [M-2H]2- 36.5 0,3 1,3 - 0,5 + 0,3 - 0,6 0,8 1,3 0,9 0,9 1,0 - - 1,0 0,8

s3 H
5
(S)N

3
S 903,3 [M-2H]2- 34.6 - 0,3 - 0,2 + 0,2 - 0,2 0,3 - 0,4 - - 0,4 - 0,4 0,3

s4 H
5
(S)N

3
S

2
1048,8 [M-2H]2- 39.6 + 0,2 0,1 0,2 - + - 0,1 - - - - 0,6 - - 0,6 0,3

0,6 2,4 1,5 3,2 2,4 1,1 0,3 1,6 1,1 1,3 1,4 1,3 2,2 1,1 3,0 1,6 1,6

W
it

h 
re

du
ci

ng
-e

nd
 h

ex
o

se
 

o
r 

di
sy

al
yl

 m
o

ti
f

l1 H
2

341,2 [M-H]- 7.6 1,2 1,9 5,3 3,6 4,2 1,2 39,9 8,2 0,9 0,4 - 0,7 1,5 2,3 2,3 1,3 5,0

l2 HS 470,2 [M-H]- 24.4 3,4 4,4 9,4 8,6 6,0 2,6 5,1 5,6 19,1 14,4 21,9 14,7 13,4 36,1 23,1 20,4 13,0

l3 H
3

503,2 [M-H]- 9.1 0,2 3,4 3,5 3,2 3,1 - 2,9 2,7 - - - - 0,6 - - 0,6 2,4

l4 S
2

599,2 [M-H]- 27.7 3,3 4,2 4,9 8,2 7,2 4,3 0,9 4,7 3,0 5,0 5,6 7,3 6,8 2,4 4,6 5,0 4,8

l5 H
2
N 544,2 [M-H]- 9.6 0,9 1,8 3,4 4,3 3,3 0,9 1,6 2,3 1,2 0,8 0,9 1,3 1,1 0,9 1,1 1,1 1,7

l6 H
2
S 632,2 [M-H]- 22.7 8,1 10,8 29,9 22,2 17,2 6,5 20,2 16,4 12,3 14,3 14,7 16,4 14,2 17,8 17,8 15,4 15,9

l7 H
3
N 706,2 [M-H]- 12.7 1,8 0,8 2,4 0,8 0,4 0,5 0,3 1,0 0,2 - - 0,4 0,1 - - 0,2 0,8

l8 H
2
NS 835,3 [M-H]- 22.8 1,5 4,1 2,0 4,2 0,9 1,9 0,6 2,2 4,1 3,5 4,0 2,1 3,4 1,0 3,5 3,1 2,6

l9 H
2
S

2
923,3 [M-H]- 29.1 + 0,1 - - 0,1 + + 0,1 - 0,3 - 0,2 0,4 - 0,3 0,3 0,2

l10 H
3
NS 997,3 [M-H]- 22.0 0,7 0,4 0,2 0,5 0,1 0,2 + 0,3 0,3 - - 0,3 0,3 - - 0,3 0,3

l11 H
3
NS

2
643,7 [M-2H]2- 29.5 0,4 - 0,1 0,1 - - - 0,2 - - - - 0,2 - - 0,2 0,2

21,6 31,8 61,0 55,7 42,3 18,1 71,6 43,1 41,1 38,6 47,1 43,6 41,9 60,6 52,8 46,5 44,8

W
it

h 
te

rm
in

al
 a

ld
o

he
xo

ni
c 

ac
id

o1 X 195,1 [M-H]- 13.3 62,3 1,6 1,0 2,0 3,1 18,6 8,9 13,9 0,9 - - - 1,1 2,2 + 1,4 10,2

o2 HX 357,2 [M-H]- 19.2 0,8 17,3 3,0 2,2 27,9 37,0 1,5 12,8 1,3 1,0 - 1,3 0,2 0,9 1,8 1,1 7,4

o3 SX 486,1 [M-H]- 26.4 0,2 0,1 - 0,2 0,2 0,1 - 0,2 0,4 0,5 - - 0,4 - - 0,4 0,3

o4 H
2
X 519,2 [M-H]- 22.6 0,3 0,9 - - 1,5 0,5 - 0,8 1,5 1,6 2,3 - - 1,5 - 1,7 1,3

o5 HNX 560,2 [M-H]- 24.3 0,2 0,1 6,1 0,3 0,9 0,2 0,5 1,2 0,1 0,7 0,4 0,6 0,3 - 0,6 0,4 0,8

o6 HSX 648,5 [M-H]- 26.0 - - 0,8 0,5 2,7 3,8 - 1,9 - - - - - - - 1,9

o7 H
2
NX 722,4 [M-H]- 21.4 - - - - - 0,2 - 0,2 - - - - - - - 0,2

o8 HS
2
X 939,6 [M-H]- 29.4 - + 0,1 - - 0,2 0,1 0,1 - - - - - - - 0,1

o9 H
2
NSX 1013,4 [M-H]- 27.4 - - - - - 0,3 + 0,3 - - - - - - - 0,3

63,7 20,1 11,1 5,2 36,1 60,8 11,1 29,7 4,2 3,9 2,7 1,9 2,0 4,6 2,4 3,1 16,4
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In the amniotic and ascitic fluid samples, aldohexonic acid-containing oligosaccharides o1–

o5 were detected. In the urine samples, high levels of aldohexonic acid-containing glycans were 

often observed, with the exception of U4 (Table 4-3). In U1, U6 and U7, gluconic acid (o1) has high 

abundance, and high levels of C
1
-oxidized lactose (o2) were observed in urine samples U2, U5 and U6.

4.4  DISCUSSION
Using a prototype capillary HPAEC-PAD-MS system, we observed N-glycan-derived 

oligosaccharide structures (Fig. 4-2, n1–6) in urine, amniotic fluid and ascitic fluid samples 

from various galactosialidosis patients as described previously [12]. The new set-up also 

allowed detection of new oligosaccharides in the samples from galactosialidosis patients: (a) 

O-sulfated oligosaccharide moieties, (b) carbohydrate moieties with reducing-end hexoses, 

and (c) oligosaccharides with C
1
-oxidized hexose. The detection of relatively low amounts of 

O-sulfated oligosaccharide moieties and C
1
-oxidized carbohydrate moieties, especially in the 

amniotic and ascitic fluid samples, is made possible by the sensitivity gain achieved by coupling 

of a capillary HPAEC-PAD to the MS system compared to use of a normal-bore HPAEC-PAD 

[13,19]. Importantly, the analytical setup allows analysis of glycans with reducing ends, reduced 

termini and C
1
 oxidation, which makes it more broadly applicable than methods that depend 

on reducing ends for reductive amination reactions [20]. An important aspect of HPAEC is its 

ability to separate structural isomers, as documented previously [13,15]. Hence, HPAEC-PAD-MS 

represents a valuable addition to the repertoire of LC-MS methods for oligosaccharide analysis.

Almost all carbohydrate structures described here are terminated with galactose and / or 

sialic acid residues, which can be explained by the defect of cathepsin A in galactosialidosis 

patients, resulting in insufficient protection of b-galactosidase and α-neuraminidase against 

excessive intra-lysosomal degradation [2]. Cathepsin A is one of four enzymes in a lysosomal 

multi-enzyme complex comprising N-acetylgalactosamine-6-sulfate sulfatase, b-galactosidase, 

cathepsin A and α-neuraminidase [3,4].

The enzyme N-acetylgalactosamine-6-sulfatase or galactose-6-sulfatase has been shown 

to be specific for 6-sulfated galactose and N-acetylgalactosamine [21,22]. The structures s1–

s4 (Fig. 4-2) are interpreted as being derived from complex-type N-linked carbohydrates. 6’-

sulfated sialyllactosamine (s1) has also been found on O-linked glycan moieties [18], which may 

therefore represent an alternative source of this glycan.

Tandem mass spectrometry provided evidence that at least some of the oligosaccharide 

chains with hexose at the reducing end have a Gal(b1–4)Glc (lactose) core structure. This 

group of glycans (g1–g11) shares structural features with milk oligosaccharides, plasma 

oligosaccharides and previously described urinary oligosaccharides from healthy individuals 

[23-25]. The structures g1 and g6 in Fig. 4-2 can be interpreted as lactose (g1) and sialyllactose 

(g6), which are known to be present in various body fluids [24,26-28]. Moreover, the 

tetrasaccharide g7 may be interpreted as lacto-N-tetraose, and g10 may represent a sialylated 

version thereof. As these structures are in part identical with milk sugars, they may be of limited 

diagnostic value. Several glycosyltransferases have been identified in urine and amniotic fluid 

[29-32], but no-one, to the best of our knowledge, has demonstrated that glycosyltransferases 

are active in these fluids.
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Notably, the detected structures g4 (S
2
), g8 (H

2
NS), g9 (H

2
S

2
), g10 (H

3
NS) and g11 (H

3
NS

2
) 

all exhibited structural motifs that are typically found on glycosphingolipids. g4 is interpreted 

as a predominantly glycosphingolipid-derived disialyl motif, and the oligosaccharides g8, 

g9, g10 and g11 are postulated to represent, at least in part, reducing-end glycan moieties of 

the gangliosides GM2, GD3, GM1 and GD1b, respectively (Fig. 4-2, g8–g11). In addition, the 

structures g5 and g7 may also be interpreted as partly glycosphingolipids derived (ganglio-, 

lacto- or lactoneo- series).

To our knowledge, such intact oligosaccharide moieties have hitherto not been described 

as glycosphingolipids degradation products. According to the literature, catabolism of 

glycosphingolipids starts from the non-reducing end while the glycan is still bound to the 

ceramide, and is performed by a variety of exoglycosidases, which are often also involved in 

the degradation of N-glycans and O-glycans [33,34]. This process leads to the release of 

monosaccharides and results in glucosylceramide and galactosylceramide, which may be 

degraded further by glycosidic bond cleavage. Additional proteins such as saposins (sphingolipid 

activator proteins) are required for the catabolism of glycosphingolipids [35]. A blockage of 

glycosphingolipid degradation, as occurs in Fabry’s disease as a result of a lack of α-galactosidase 

activity, leads to accumulation of the glycosphingolipid substrate, which in Fabry’s disease is 

globotriaosylceramide [34]. Consequently, in galactosialidosis, only intact glycosphingolipids 

would be expected to be secreted, not the glycan moieties as described here. Our finding of 

free oligosaccharide moieties presumably derived from glycosphingolipids implies the existence 

of an endoglycosylceramidase involved in an alternative glycosphingolipid catabolic pathway. 

While such an enzyme has not been described for vertebrates, endoglycoceramidases (EC 

3.2.1.123) have been found and characterized for invertebrates [36-39]. The enzymatic activity 

of the postulated endoglycoceramidase may depend on saposins [35], and may represent a side 

activity of glucosylceramidase (EC 3.2.1.45) facilitated by specific saposins. With regard to the 

disaccharide of two sialic acid residues (Fig. 4-2, g4), it is unclear which enzyme would catalyze 

the release of this disaccharide unit from gangliosides.

The last group of newly found oligosaccharides is characterized by C
1
-oxidized hexose 

residues (o1–o9). This group of glycans appears to be strongly related to the above-described 

glycans with reducing-end hexoses (g1–g11), suggesting C
1
 oxidation of these oligosaccharide 

moieties. The glycans o8 and o9 may be interpreted as C
1
-oxidized versions of ganglioside-

derived glycan moieties (Fig. 4-2). The C
1
-oxidized oligosaccharides were found in urine samples 

at relatively high amounts (mean 30%; Table 4-3). C
1
-oxidized carbohydrate moieties were also 

found in amniotic fluid samples, albeit at lower relative amounts (mean 3%; Table 4-3). The cause 

of C
1
 oxidation of the reducing end is unknown. We can exclude the possibility that these species 

were observed due to oxidation of reducing sugars during the chromatographic process and the 

subsequent MS detection, as we observed chromatographic separation of the reducing glycans 

from the C
1
-oxidized species, clearly indicating that these species were already present in the 

samples prior to HPAECPAD-MS analysis. With regard to the origin of the C
1
-oxidized glycans, 

it is possible to speculate about a non-enzymatic oxidation reaction that may have occurred 

before the urine and amniotic samples were collected, or during sample storage. Alternatively, 

an enzymatic oxidation may be postulated. The possibility that an enzyme of microbial origin is 

responsible, as described for Escherichia coli [40-44], appears not to be likely, as the oxidation 

products were not only observed in urine samples, but also in amniotic fluid, which is considered 
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to be sterile. Alternatively, it could be speculated that a human enzymatic activity might be 

present in the liver or kidney, for example, that causes C
1
 oxidation of glycosphingolipid glycan 

moieties. This enzyme may act in conjunction with the postulated endoglycoceramidase.

Together with our previous study on G
M1

 gangliosidosis [13], this study shows the potential 

value of capillary HPAEC-PAD-MS for analyzing oligosaccharides from clinical samples. This 

prototype analytical system features femtomolar sensitivity for both pulsed amperometric 

detection and mass spectrometric detection [13]. Moreover, it allows the analysis of 

oligosaccharides in both positive-ion mode [13] and negative-ion mode, as shown here. Based 

on the excellent MS/MS features of the ion trap mass spectrometer, informative fragment 

spectra of sodium adducts [13] and deprotonated species (this study) can be obtained with 

minute amounts of material, thus allowing insights into defects of glycoconjugate degradation 

and lysosomal storage diseases.

4.5  EXPERIMENTAL PROCEDURES

4.5.1 Materials
Analytical reagent-grade sodium hydroxide (50% w/w), sodium acetate, sulfuric acid and 

sodium chloride were obtained from J.T. Baker (Deventer, The Netherlands). Acetonitrile was 

obtained from Biosolve (Valkenswaard, The Netherlands). All solutions were prepared using 

water from a Milli-Q synthesis system from Millipore BV (Amsterdam, The Netherlands). Details 

of the urine, amniotic fluid and ascitic fluid samples are given in Table 4-1.

4.5.2 Capillary HPAEC
The capillary chromatographic system consists of a modified BioLC system from Dionex 

(Sunnyvale, CA), comprising a microbore GP40 gradient pump, a Famos micro autosampler with 

a full polyaryletherketone (PAEK) injector equipped with a 1 μL loop, and an ED40 electrochemical 

detector. BioLC control, data acquisition from the ED40 detector and signal integration are 

supported by chromeleon software (Dionex). This modified system has been described in detail 

previously [13]. A prototype capillary column 250 mm long with internal diameter 0.4 mm, packed 

with CarboPac PA200 resin, was manufactured by Dionex. The GP40 flow rate was 0.53 mL·min−1, and 

the eluent flow was split using a custom-made polyether ether ketone (PEEK) splitter to 10 μL·min−1. 

The pump was provided with the following eluents: eluent A, water; eluent B, 500 mM NaOH; eluent 

C, 500 mM NaOAc. All separations were performed at room temperature. The following ternary 

gradient was used for the separation: 76% A + 24% B (−20 to −14 min), isocratic sodium hydroxide 

wash; 88% A + 12% B (−14 to 0 min), isocratic equilibration of the column; 42.6% A + 12% B + 45.4% C 

(0–40 min), linear sodium acetate gradient was used for the separation. The ED40 detector applies 

the following waveform to the electrochemical cell: E
1
 = 0.1 V (t

d
 = 0.00–0.20 s, t

1
 = 0.20–0.40 s), 

E
2
 = −2.0 V (t

2
 = 0.41–0.42 s), E

3
 = 0.6 V (t

3
 = 0.43 s), E

4
 = −0.1 V (t

4
 = 0.44–0.50 s) versus an Ag/AgCl 

reference electrode [45]. A gold work electrode and a 25 μm gasket were installed.

4.5.3 Mass spectrometry
Coupled to the chromatographic system was an Esquire 3000 ion-trap mass spectrometer 

from Bruker Daltonics (Bremen, Germany), equipped with an electrospray ionization source. 
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To convert the HPAEC eluate into an ESI-compatible solution, an in-line prototype desalter 

(Dionex) was used, continuously regenerated with diluted sulfuric acid [13]. A modified 

microbore AGP-1 from Dionex was used as an auxiliary pump: to obtain efficient ionization of 

the eluted carbohydrates, 50% acetonitrile was pumped into the eluent flow via a MicroTEE 

(P-775, Upchurch Scientific, Oak Harbor, WA, USA) at a flow rate of 4.6 μl·min−1. The mixture was 

directed to the electrospray ionization interface of the Esquire 3000. The carbohydrates were 

detected using the MS in the negative-ion mode. The MS was operated under the following 

conditions: dry temperature 325 °C, nebulizer 103 kPa, dry gas 7 L·min−1, target mass m/z 850, 

scan speed 13 000 m/z per s in MS and MS/MS mode. For tandem MS, automatic selection of 

three precursors was applied.

4.5.4 Sample preparation
Oligosaccharides of the samples were isolated by graphitized carbon solid-phase extraction, 

as described previously [46]. A 200 μL sample was diluted with 1800 μL demineralized water 

and loaded on a Carbograph SPE (210142) from Alltech Associates Inc. (Deerfield, IL, USA). The 

cartridge was washed with 6 mL of demineralized water. The oligosaccharides were eluted from 

the column using 3 mL of 25% acetonitrile containing 0.05% trifluoroacetic acid. The eluate was 

evaporated under a nitrogen stream at room temperature until the volume had decreased by 

50%. The remaining solution was lyophilized and reconstituted with 200 μL demineralized water.
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ANALYSIS OF URINARY OLIGOSACCHARIDES  
IN LYSOSOMAL STORAGE DISORDERS  
BY CAPILLARY HIGH-PERFORMANCE 
ANION-EXCHANGE CHROMATOGRAPHY-
MASS SPECTROMETRY



5.1  ABSTRACT
Many lysosomal storage diseases are characterized by an increased urinary excretion of 

glycoconjugates and oligosaccharides that are characteristic for the underlying enzymatic defect. 

Here, we have used capillary high-performance anion-exchange chromatography (HPAEC) 

hyphenated to mass spectrometry to analyze free oligosaccharides from urine samples of patients 

suffering from the lysosomal storage disorders fucosidosis, α-mannosidosis, G
M1

-gangliosidosis, 

G
M2

-gangliosidosis, and sialidosis. Glycan fingerprints were registered, and the patterns of 

accumulated oligosaccharides were found to reflect the specific blockages of the catabolic 

pathway. Our analytical approach allowed structural analysis of the excreted oligosaccharides 

and revealed several previously unpublished oligosaccharides. In conclusion, using online 

coupling of HPAEC with mass spectrometric detection, our study provides characteristic urinary 

oligosaccharide fingerprints with diagnostic potential for lysosomal storage disorders.

Cees Bruggink1,2, Ben J. H. M. Poorthuis3, André M. Deelder1, Manfred Wuhrer1

1  Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, 
The Netherlands.

2 Thermo Fisher Scientific, Amsterdam, The Netherlands.
3 Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.

Analytical and Bioanalytical Chemistry (2012) 403; 1671–1683. 
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5.2  INTRODUCTION
Fucosidosis, α-mannosidosis, G

M1
-gangliosidosis, G

M2
-gangliosidosis, and sialidosis are autosomal 

recessive lysosomal storage diseases (LSD). These LSDs are the result of defects of one or more 

enzymes or cofactors involved in the catabolism of glycoconjugates that takes place in the lysosome. 

Fucosidosis is caused by a deficient lysosomal α-L-fucosidase (EC 3.2.1.51) and results in secretion 

of fucosyl-oligosaccharides [1,2]. Deficient lysosomal α-D-mannosidase (EC 3.2.1.24) causes 

α-mannosidosis and excessive urinary excretion of oligomannosidic glycans [3-5]. Sialidosis is caused 

by deficient acid exo-α-sialidase (EC 3.2.1.18) [6]. The urinary excretion of sialyloligosaccharides is 

similar to that found in galactosialidosis [1,7]. G
M1

-gangliosidosis is a neurosomatic disease due to the 

deficient activity of b-galactosidase (EC 3.2.1.23) [8,9]. In addition to the storage of G
M1

-gangliosides, 

glycoconjugates with b-galactose at the non-reducing end are increased in patients’ urine.

G
M2

-gangliosidosis is a group of three disorders (1) Tay-Sachs disease, (2) Sandhoff 

disease, and (3) AB variant. For all variants of G
M2

-gangliosidosis, the major neural storage 

compound is ganglioside G
M2

 [10-12]. Only in Sandhoff disease oligosaccharides derived from 

glycoproteins accumulate due to the deficiency of b-hexosaminidase A in addition to the 

(functional) deficiency of b-hexosaminidase B [13]. Blockage of the N-glycan catabolism results 

in accumulation of oligosaccharides carrying a single N-acetylglucosamine residue at the 

non-reducing end in tissues and urine of Sandhoff disease patients [14-16]. The current study 

includes the analysis of urine samples of patients suffering from Sandhoff disease.

Biochemical screening of these LSDs is usually performed using thin-layer chromatography 

(TLC) [17-19], since TLC is relatively easy to perform and does not require expensive equipment. 

However, interpretation of a TLC pattern of excreted oligosaccharides requires much 

experience in pattern recognition. On the other hand, liquid chromatography combined with 

UV [20] or fluorescence [21] detection is easier to reproduce and to interpret [22,23].

Hyphenation of liquid chromatography with mass spectrometry allows the detailed 

characterization of oligosaccharides [24]. We have previously described a capillary high-

performance anion-exchange chromatograph (HPAEC) setup with combined integrated pulsed 

amperometric detection (IPAD) and ion-trap mass spectrometric detection which was used to 

characterize oligosaccharides from urine of G
M1

-gangliosidosis [25] and galactosialidosis [26] 

patients. This combination of chromatography IPAD and mass spectrometric detection allows 

detailed glycan analysis and characterization, when compared with TLC, HPLC, or HPAEC-

IPAD without mass spectrometry (MS). Using this analytical setup we report on the analysis 

of oligosaccharides in urine samples of fucosidosis, α-mannosidosis, G
M1

-gangliosidosis, G
M2

-

gangliosidosis, and sialidosis patients. The results provided in glycan fingerprints that are found 

to be characteristic for the individual diseases and reflect the specific enzymatic defects.

5.3  MATERIALS AND METHODS

5.3.1 Materials
Analytical-reagent-grade sodium hydroxide (50% w/w), sodium acetate, sulfuric acid, and 

sodium chloride were obtained from J.T. Baker (Deventer, The Netherlands). Acetonitrile was 
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from Biosolve (Valkenswaard, The Netherlands). All solutions were prepared using water from 

a Milli-Q synthesis system from Millipore BV (Amsterdam, The Netherlands). Details on urine 

samples are given in Table 5-1.

5.3.2 Sample preparation
Oligosaccharides of the samples were isolated with graphitized carbon solid-phase extraction, 

as described previously [27]. A 200-μL sample was diluted with 1800 μL water and loaded on a 

Carbograph SPE (210142) from Alltech Associates Inc. (Deerfield, IL). The cartridge was washed 

with 6 mL of demineralized water. The oligosaccharides were eluted from the column with 3 mL 

of 25% acetonitrile containing 0.05% trifluoroacetic acid. The eluate was evaporated under a 

nitrogen stream at room temperature until the volume was decreased by 50%. The remaining 

solution was lyophilized and reconstituted with 200 μL water.

5.3.3 Capillary HPAEC
The capillary chromatographic system consists of a modified Dionex BioLC system from 

Thermo Fisher Scientific (Sunnyvale, CA, USA) comprising a microbore GP40 gradient pump, 

a Famos micro-autosampler with a full PEEK (polyether ether ketone) injector equipped with 

a 1 μL loop and an ED40 electrochemical detector. BioLC control, data acquisition from the 

ED40 detector, and signal integration was supported by Dionex Chromeleon software (Themo 

Fisher Scientific). This modified system has been described in detail before [25]. A prototype 

capillary column (250 x 0.4 mm I.D.) packed with CarboPac PA200 resin was manufactured by 

Thermo Fisher Scientific. The GP40 eluent flow was split by a homemade PEEK splitter to 10 

μL·min-1. The pump was provided with the following eluents: eluent A, water; eluent B, 500 

mM sodium hydroxide; eluent C, 500 mM sodium acetate. All separations were performed at 

room temperature. The following ternary gradient was used for separating oligosaccharides of 

fucosidosis, G
M2

-gangliosidosis, and sialidosis: 76% A + 24% B (-20 to -14 min) isocratic sodium 

hydroxide column wash; 88% A + 12% B (-14 to 0 min) isocratic equilibration of the column; 

a linear sodium acetate gradient (0–55 min) to 25.5% A + 12% B + 62.5% C was used for the 

separation. For separating oligosaccharides of α-mannosidosis and G
M1

-gangliosidosis, the 

following ternary gradient was used: 76% A + 24% B (-20 to -14 min) isocratic sodium hydroxide 

column wash; 88% A + 12% B (-14 to 0 min) isocratic equilibration of the column; linear sodium 

hydroxide gradient (0 to 9.1 min) to 60% A + 40% B; 60% A + 40% B (9.1 to 12.5 min) isocratic; 

Table 5-1. Information about the urine samples. The age at the time point of sample gathering is given.

Sample code Disorder Sex Age  (years) Creatinine  (mmol/L)

U1 Fucosidosis M 18 2.22

U2 G
M1

-gangliosidosis F 0.42 1.04

U3 G
M2

-gangliosidosis M 0.75 5.37

U4 G
M2

-gangliosidosis M 0.58 1.04

U5 α-Mannosidosis M 22 18.86

U6 α-Mannosidosis F 7 8.46

U7 α-Mannosidosis M 20 14.52

U8 Sialidosis F   Unknown Not determined
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linear gradient (12.5 to 21.6 min) to 85.2% A + 12% B + 2.8% C; linear sodium acetate gradient (21.6 

to 104 min) to 60.5% A + 12% B + 27.5% C. Samples were injected at time 0.0 min.

The ED40 detector applies the following waveform to the electrochemical cell: E
1
 = 0.1 V 

(t
d

 = 0.00–0.20 s, t
1
 = 0.20–0.40 s), E

2
 = –2.0 V (t

2
 = 0.41–0.42 s), E

3
 = 0.6 V (t

3
 = 0.43 s), E

4
 = –0.1 V 

(t
4

 = 0.44–0.50 s) versus an Ag/AgCl reference electrode [28]. A 1 mm gold work electrode and 

a 25 μm gasket were installed.

5.3.4 Mass spectrometry
Coupled to the chromatographic system was an Esquire 3000 ion trap mass spectrometer 

from Bruker Daltonics (Bremen, Germany), equipped with an electrospray ionization source. 

To convert the HPAEC eluate into an ESI compatible solution, an in-line prototype desalter 

(Thermo Fisher Scientific) was used which was continuously regenerated with 12.5 mM sulfuric 

acid with a flow rate of 0.8 ml/min [25]. A modified microbore AGP-1 (Thermo Fisher Scientific) 

was used as an auxiliary pump: to obtain efficient ionization of the eluted carbohydrates in the 

positive mode, 0.6 mM NaCl in 50% acetonitrile was pumped into the eluent flow via a MicroTEE 

(P-775 Upchurch Scientific, Oak Harbor, WA, USA) at a flow rate of 4.6 μL·min-1. The mixture 

was directed to the electrospray ionization interface of the Esquire 3000 used in the positive 

mode. The MS was operated at the following conditions: dry temperature 325 °C, nebulizer 103 

kPa, dry gas 7 l·min-1, capillary voltage -3,500V, target mass m/z 850, scan speed 13,000 m/z / 

s in MS, scan range 150 – 2,000 m/z, ICC target 50,000 or maximum accumulation time 50 ms, 

and MS/MS mode. For tandem MS automatic selection of three precursors was applied with 

absolute threshold 10000 or 5% relative, smart fragmentation amplification 30%–100% and 

1.40 V, fragmentation time 40 ms.

5.3.5 System suitability check
To check the correct functioning of the complete instrumental setup, every sequence started 

with analyzing a 50 nmol·ml-1 lactose solution with 60 mM NaOH as eluent. The resulting MS 

chromatogram should pass the following criteria: The retention time 7.5 min ± 15%; in the total 

ion current chromatogram, the baseline level intensity should be ≤4.5 e6, the noise intensity ≤7.5 

e5; for the extracted ion chromatogram (m/z 365 ± 0.5), the peak height intensity ≥4.5 e6 with a 

peak width at half height of ≤55 s.

5.3.6 Data analysis
MS as well as MS/MS spectra were manually interpreted using DataAnalysis (version 3.3, Bruker 

Daltonics). The extracted ion chromatograms (EIC) were used in order to determine the peak 

area of oligosaccharides present in the MS spectra. Signals of all detected charge states and 

isomers corresponding to the same compound were added up. Peak areas were normalized to 

the sum of all glycan peak areas of one sample.

5.4  RESULTS
Free oligosaccharides from eight urine samples of patients suffering from various LSDs 

including fucosidosis, α-mannosidosis, G
M1

-gangliosidosis, G
M2

-gangliosidosis, and sialidosis 
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(Table 5-1) were analyzed by HPAEC-IPAD-MS to investigate disease-related, excreted 

degradation products. A total of 54 glycans were analyzed in these urine samples as sodium 

adducts using positive ion mode mass spectrometry. The set of 54 glycans was established by 

manual assignment of glycan species from all HPAEC-MS(/MS) data. This set includes glycans 

described previously in literature for the LSDs included in this study [2,9,15,16,25,29-40] as well 

as the glycans found previously for galactosialidosis samples [26].

5.4.1 Urinary glycans in fucosidosis
Eight fucosylated oligosaccharides were detected in the urine sample of a fucosidosis 

patient, and the EIC of four of these fucosyl oligosaccharides are shown in Fig. 5-1. The 

neutral, fucosylated oligosaccharides were observed in an early retention time window (7 

to 15 min), while the acidic species HNSF resulted in signals between 22 and 25 min. In order 

to enable relative quantification of the oligosaccharides, the signals were normalized to the 

overall intensity of detected MS signals. Glycan species were characterized by tandem mass 

spectrometry as exemplified for the fucosyl disaccharide Fuc-HexNAc which had a relative 

abundance of 10.6% (Table 5-2; Fig. 5-2). The MS/MS fragmentation spectrum (Fig. 5-2) showed 

Z
1
 and B

1
 fragments as well as a prominent signal arising from the loss of water (m/z 372.1). 

Cross-ring cleavages at m/z 229.0 (0,4A
2
 ), 259.0 (0,3A

2
 ), and 289.0 (0,2A

2
 ) suggest a 1-6 linkage for 

the fucose residue [41-43]. From the total set of 54 glycan compositions observed in this study, 

17 were found to be present in the fucosidosis sample (see Supplementary materials Table S5-1) 

resulting in a glycan fingerprint as shown in Fig. 5-3a. Of the eight fucosylated oligosaccharides 

detected, three have already been previously shown to be related to fucosidosis [2,29,30,37,44].

Figure 5-1. Separation of oligosaccharides in urine of a fucosidosis patient. H = hexose, N = 
N-acetylhexosamine, F = fucose, S = N-acetylneuraminic acid, BPC = base peak chromatogram.
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Figure 5-2. Positive-ion fragmentation mass spectrum of the monosodiated disaccharide HexNAc
1
Fuc

1
 

(precursor ion at m/z 390.2) from urine of a fucosidosis patient. Red triangle = fucose, blue square = 
N-acetylglucosamine.

5.4.2 Urinary glycans in α-mannosidosis
Three urine samples of three different α-mannosidosis patients from two different families 

were analyzed. In all three samples, 17 endo-b-N-acetylglucosaminidase cleavage products 

of mannose-rich oligosaccharides of composition Hex
2-9

HexNAc
1
 were detected [33,45] (Table 

5-2, Supplementary materials Table S5-2). The proposed structures are derived from literature 

[32,33,45] as well as from the obtained tandem MS data. An example of a fragment ion spectrum 

of the major Hex
3
HexNAc

1
 isomer is shown in Fig. 5-4. The 0,2A

3
 and 2,4A

3
 ions are typical for a 

4-substituted HexNAc at the reducing end [41-43]. The cross-ring fragment 0,3A
2
 (m/z 275.2) 

is indicative for a 6-substituted hexose [41-43]. The B
2
Y

2α ion (D-ion, m/z 347.3) reveals the 

composition of the 6-antenna [42]. Histograms giving the relative abundances of the observed 

glycans are shown in Figs. 5-3b,c,d. The three urine samples resulted in very similar profiles 

including a prominent signal corresponding to Hex
2
HexNAc

1
. The whole set of oligomannosidic 

structures was detected (Hex
2-9

HexNAc
1
) showing decreasing signals with increasing size.

5.4.3 Urinary glycans in G
M1

-gangliosidosis
Extracted ion chromatograms of the disease-related glycans found in the urine of a G

M1
-

gangliosidosis patient are represented in Fig. 5-5. Twenty glycan compositions were detected, 

and six of those structures with the composition Hex
3-7

HexNAc
2-5

 are presumably disease-

related (Table 5-2, Supplementary materials Table S5-3). The compositions as well as the tandem 

mass spectrometric data (see Supplementary materials Table S5-3) suggest these glycans to be 

endo-b-N-acetylglucosaminidase cleavage products of complex type N-glycans. Composition 

Hex
3
HexNAc

2
 was interpreted as monoantennary and Hex

5
HexNAc

3
 as diantennary structure. 
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Figure 5-3. Histograms showing the relative abundance of the detected glycans in the urine sample 
(Table 5-1) of lysosomal storage disorders fucosidosis (a), α-mannosidosis (b, c, and d). H or white 
circle = hexose, N or white square = N-acetylhexosamine, F or red triangle = fucose, S or purple diamond = 
N-acetylneuraminic acid, NeuGc = N-glycolylneuraminic acid, X = hexonic acid, SO

3
 = sulfate, yellow circle 

= galactose, green circle = mannose, blue square = N-acetylglucosamine.

Species carrying additional Hex
1
HexNAc

1
 units were found to be attached resulting in 

Hex
6
HexNAc

4
 and Hex

7
HexNAc

5
 species carrying more antennae as well as LacNAc repeats 

[9,34,35]. In addition, a relatively low amount of a trisaccharide with the composition 

Hex
1
HexNAc

1
HexonA

1
 was detected (Table 5-2). A histogram showing the relative abundance 

of the observed glycans is given in Fig. 5-3e with high signals corresponding to Hex
3
HexNAc

2
 

and Hex
5
HexNAc

3
. The tandem MS spectrum of the disodiated diantennary N-glycan with the 

composition Hex
5
HexNAc

3
 (m/z 742.1) is shown in Fig. 5-6. The cross-ring fragments 0,2A

5
 and 

2,4A
5
 are typical for a 4-substituted reducing end HexNAc [41-43]. The fragment ion B

4
Y

2α (D-ion, 

m/z 712.3) reveals the composition of the 6-antenna [42]. The characterization of the two well-

separated isomers with the composition Hex
3
HexNAc

2
 has been reported earlier [25].
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Figure 5-3 Continued.  G
M1

-gangliosidosis (e), G
M2

-gangliosidosis (f and g), and sialidosis (h). H or 
white circle = hexose, N or white square = N-acetylhexosamine, F or red triangle = fucose, S or purple 
diamond = N-acetylneuraminic acid, NeuGc = N-glycolylneuraminic acid, X = hexonic acid, SO

3
 =.sulfate, 

yellow circle = galactose, green circle = mannose, blue square = N-acetylglucosamine.

5.4.4 Urinary glycans in G
M2

-gangliosidosis
The analysis of the urine samples of two G

M2
-gangliosidosis patients revealed 11 G

M2
-

gangliosidosis-related glycan isomers (Table 5-2, Supplementary materials Table S5-4) with the 

composition Hex
2-3

HexNAc
2-4

. The proposed structures reported in Supplementary materials 

Table S5-4 are based on our MS/MS results and on the known urinary oligosaccharides related 

to b-hexosaminidase deficiency in G
M2

-gangliosidos [15,16]. Hex
2
HexNAc

2
 corresponds to a 
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Figure 5-4. Positive-ion fragmentation mass spectrum of the monosodiated tetrasaccharide 
Man

3
GlcNAc

1
 (precursor ion at m/z 730.6) from urine of an α-mannosidosis patient. Green circle = 

mannose, blue square = N-acetylglucosamine.

Figure 5-5. Separation of oligosaccharides in urine of a G
M1

-gangliosidosis patient. H = hexose, N = 
N-acetylhexosamine, BPC = base peak chromatogram.
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monoantennary, Hex
2
HexNAc

3
 to a bisected monoantennary, Hex

3
HexNAc

3
 to a diantennary, 

and Hex
3
HexNAc

4
 to a triantennary or bisected diantennary structure [16]

Fig. 5-7 shows an excellent example of the isomeric separation of the two reported 

monoantennary glycans (Hex
2
HexNAc

2;
 m/z 771.5). The EIC corresponding to Hex

2
HexNAc

2
 (m/z 

771.5) shows the separation of these isobaric structures (retention times 10.3 and 11.9 min; Fig. 5-7), 

and the MS/MS spectra are shown in Fig. 5-8. The observed series of B-ions are in accordance with a 

monosaccharide sequence of HexNAc-Hex-Hex-HexNAc for both isomers. Both oligosaccharides 

contain N-acetylhexosamine at the reducing end, which shows the cross-ring fragments 0,2A
4
 

(m/z 670) and 2,4A
4
 (m/z 610) indicative for a 4-substituted N-acetylhexosamine [41-43]. The 

observed cross-ring fragments 0,2A
3
 (m/z 508), 0,3A

3
 (m/z 478), and 0,4A

3
 (m/z 448) observed for the 

adjacent hexose are typical for a 6-substitution. Based on the observed MS/MS data and literature 

data [15], glycan A was identified as the G
M2

-gangliosidosis urinary tetrasaccharide GlcNAc(b1-2)

Man(α1-6)Man(b1-4)GlcNAc. A lack of A
3
 cross-ring fragments, which is typical for a 3-substituted 

sugar, indicates that glycan B is the isomer GlcNAc(b1-2)Man(α1-3)Man(b1-4)GlcNAc. Hence, the 

linkage-specific fragmentation allowed the assignment of the observed glycans to two urinary 

glycans related to G
M2

-gangliosidosis [15]. Moreover, the isomeric separation is emphasized 

by the different elution times of the three isomers corresponding to Hex
3
HexNAc

3
 registered 

in monosodidated (m/z 1136.5) as well as disodiated (m/z 580.0) form. Figs. 5-3f and 5-3g show 

the relative abundance of the detected glycans for the two urine samples. In both samples, a 

high relative abundance of Hex
2
HexNAc

2
 (both samples 7.6%), Hex

2
HexNAc

3
 (1.3% and 1.2%), 

Hex
3
HexNAc

3
 (8.0% and 8.2%), and Hex

3
HexNAc

4
 (14.8% and 15.5%) was observed.

Figure 5-6. Positive-ion fragmentation mass spectrum of the disodiated diantennary oligosaccharide 
Hex

5
HexNAc

3
 (precursor ion at m/z 742.1) from urine of a G

M1
-gangliosidosis patient. Yellow circle = 

galactose, green circle = mannose, blue square = N-acetylglucosamine.
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Figure 5-7. Separation of oligosaccharides in urine of a G
M2

-gangliosisis patient. Fragment ion spectra 
of the species A and B is shown in Fig. 5-8. F = fucose, H = hexose, N = N-acetylhexosamine, BPC = base 
peak chromatogram.

5.4.5 Urinary glycans in sialidosis
Analysis of the urine of a sialidosis patient revealed eight disease-related sialylated 

oligosaccharides (Table 5-2, Supplementary materials Table S5-5). Structures with a high 

relative abundance such as Hex
3
HexNAc

2
 (6.5%), HexHexNAc (5.4%), Hex

3
HexNAc

2
Neu5Ac 

(18.7%), and Hex
5
HexNAc

3
Neu5Ac

2
 (8.7%) were detected (Fig. 5-3h). The presence of sulfated 

sialyloligosaccharides H
3-5

SO
3
N

2-3
S

1-2
 is noteworthy [26].

5.5  DISCUSSION
Using a prototype capillary HPAEC-IPAD-MS system for analyzing a set of 54 glycans in eight urine 

samples from patients with lysosomal storage disorders such as fucosidosis, α-mannosidosis, 

G
M1

-gangliosidosis, G
M2

-gangliosidosis, and sialidosis (Table 5-1), we were able to find disease-

related glycan structures. In addition, we identified glycan structures that are most probably 

diet- (human milk) or blood-group-related and are not related to the investigated disorders 

[37,46-51] (see Table 5-2 and Supplementary materials tables S5-1–S5-5). All urine samples, 

except for those of the mannosidosis patients, were found to contain a high relative amount 
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of dihexose which is most likely a dietary product [37,46,47]. The presence of dietary products 

in urine is not surprising. We reported in a previous research about free oligosaccharides such 

as lactose, sialylhexose, and sialyllactose that we detected as major abundant carbohydrates in 

control urine samples of four healthy individuals [26].

Detection was performed using an ion trap mass spectrometer which was operated in automatic 

tandem MS mode resulting in informative fragment ion spectra for many glycans. Linkage-specific 

fragment ions [41-43] together with the known structural selectivity of high-performance anion-

exchange chromatography [52-54] and literature knowledge on urinary oligosaccharides of LSDs 

[30,55] made it possible to assign structures to most of the observed chromatographic signals.

Literature on fucosidosis reports that fucosylglycoasparagines are the most abundant 

glycoconjugates found in the urine of these patients [2,56]. These glycoconjugates are not 

expected to show up in our analysis, as they will presumably adsorb to or pass through the 

membrane of the online desalter. This phenomenon is due to the high negative charge density of 

the fiber wall which is expected to result in strong interactions with cations such as glycopeptides 

entering the desalter [25]. Instead, we detected free fucosylsaccharides in the urine samples. The 

most abundant one is the disaccharide Fuc(α1-6)GlcNAc (Table 5-2, Supplementary materials 

Table S5-1, Figs. 5-2 and 5-3A) which is characteristic for this disorder [2,56,57]. Moreover, a 

Figure 5-8. Positive-ion fragmentation mass spectra of two isomeric monosodiated tetrasaccharides 
Hex

2
HexNAc

2
 (precursor ion at m/z 771.5) from urine of a G

M2
-gangliosisis patient. The separation of A 

and B is shown in Fig. 5-7. Green circle = mannose, blue square = N-acetylglucosamine.
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trisaccharide with composition Hex
1
HexNAc

1
Fuc

1
 was found for fucosidosis (Fig. 5-3a). This 

trisaccharide is possibly the previously reported GalNAc(α1-3)[Fucα1-2)]Gal [56]. In addition, 

Tsay et al. [58] and Nishigaki et al. [59] reported the presence of a fucosylated decasaccharide, 

however, this structure has neither been detected by us nor by Strecker et al. [56].

Moreover, 17 endo-b-N-acetylglucosaminidase cleavage products including 

chromatographically separated isomers were detected in all three urine samples of patients 

suffering from α-mannosidosis (see Supplementary materials Table S5-2). These findings are 

in agreement with previous results reported by Matsuura et al. [33]. The authors identified 

in their study a similar number of endo-b-N-acetylglucosaminidase cleavage products [33]. 

However, while we observed three Hex
4
HexNAc

1
 isomers, three Hex

5
HexNAc

1
 isomers, and 

one Hex
7
HexNAc

1
 isomer, these authors found two, two, and three isomers, respectively (see 

Supplementary materials Table S5-2).

One of the three isomers of Hex
3
HexNAc

3
 found in the urine samples from patients 

suffering from G
M2

 gangliosidosis is in accordance with the diantennary structure with the 

core trimannose previously described by Strecker et al. [15,60] while the other two isomers 

are probably monoantennary structures decorated with a GlcNAc(b1-3)Gal(b1-4)GlcNAc(b1-2) 

antenna. In the current study, we reported eight glycan structures that are related to sialidosis 

(see Supplementary materials Table S5-5). Of these eight glycans, five have been previously 

identified in sialidosis [39,40,50,61]. We interpreted the structure of the glycan with the 

composition Hex
1
HexNAc

1
Neu5Ac

1
 as Neu5Ac(α2-3/6)Gal(b1-4)GlcNAc and being related to 

sialidosis [50], although, based on our data, we cannot exclude that Neu5Ac(α2-3/6)Gal(b1-4)

GlcNAc might be sialyllactosamine from milk [37,62,63]. All sialidosis-relevant carbohydrate 

structures described here are terminated with sialic acid residues, in accordance with the primary 

defect in exo-α-sialidase. In addition, three O-sulfated oligosaccharides with terminal sialic acid 

residues were detected in the urine sample (Table 5-2) showing structures previously detected 

by us in galactosialidosis [26]. This may imply that the O-sulfated carbohydrates reported 

here are indeed related to the exo-α-sialidase deficiency found in both galactosialidosis and 

sialidosis. MS detection in the positive ion mode is known to be less sensitive for negatively 

charged glycans such as sialyl- and O-sulfated-oligosaccharides. Therefore, this sample has 

also been analyzed in the negative ion mode and indeed more sialylated-, O-sulfated-glycans, 

and glycans having reducing end aldohexonic acid residue were observed due to the improved 

sensitivity for the detection of negatively charged molecules (data not shown).

All together, this publication shows the value of capillary HPAEC-IPAD-MS for analyzing 

oligosaccharides in clinical urine samples without the need for derivatization. This prototype 

analytical system features femtomol sensitivity for both pulsed amperometric detection and 

mass spectrometric detection [25] allowing the relatively low abundant O-sulfated-glycan 

moieties to be detected. In contrast to other liquid chromatography methods relying on reducing 

end labeling for detection and/or separation [64,65] HPAEC-IPAD as well as HPAEC-MS do not 

depend on glycan labeling. Consequently, we were able to detect an oxidized oligosaccharide 

with an innermost aldohexonic acid residue in the G
M1

-ganglioside urine sample. Moreover, 

the setup used in this study enables the separation of isomeric glycans. Based on the efficient 

fragment ion analysis using an ion trap instrument, informative fragment spectra of sodium 

adducts can be obtained with minute amounts of material, allowing insights into defects of 

glycoconjugates degradation, and investigation of metabolic and catabolic pathways.
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Although the used instrumentation is a prototype, similar analyses can be performed using 

commercially available narrow bore ion chromatographs [66], with presumably less sensitivity 

due to the bigger dimensions and higher flow rates. The desalter in such a system is based on a 

flat semi-permeable cation exchange membrane and regenerated by electrolysis of water [67,68].

LC-MS in general and the here described method in particular are analytically powerful. In 

the current research paper, we demonstrated that the HPAEC-MS technology in combination 

with MS/MS information on structural isomers is suitable for determining characteristic glycan 

fingerprints in lysosomal storage diseases which may have diagnostic potential.
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Table S5-1. Oligosaccharide species detected in the fucosidosis sample U1. Comp., composition; Ret., retention; 
Rel. area., relative area.

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Rel. area

Proposed structureU1

D
is

ea
se

 r
el

at
ed

 
g

ly
ca

n
s

NF 390.2 [M+Na]+ 8.8 244.0 N; 226.0 N-18; 187.2 F; 169.1 F-18 10.6% Fuc(α1-6)GlcNAc [2,29,30,37,44]

H
2
NF 714.5 [M+Na]+ 9.1   0.3%  

H
3
N

2
F 1079.4 [M+Na]+ 9.2   1.3%  

HNSF 865.4 [M-H+2Na]+ 22.7 719.5 HNS; 552.4 HNF; 534.3 HNF-18; 516.2 HS; 498.0 
HS-18; 405.9 HN; 388.1 HN-18; 336.0 S-18; 318.1 S-2x18 

0.8% NeuAc(α2-3/6)Gal(b1-4)[Fuc(α1-3)]
GlcNAc

      24.0 552.2 HNF; 534.1 HNF-18; 516.0 HS; 498.2 HS-18; 354.2 
S; 336.0 S-18 

1.6%  

O
th

er
 g

ly
ca

n
s

H
2
NF

2
860.5 [M+Na]+ 8.9 714.4 H

2
NF; 696.1 H

2
NF-18; 657.3 H

2
F

2
; 568.3 H

2
N; 552.4 

HNF; 550.4 H
2
N-18; 534.3 HNF-18; 532.5 H

2
N-2x18; 

405.9 HN; 388.1 HN-18; 370.3 HN-2x18; 349.1 HF; 244.0 
N 

2.3% GalNAc(α1-3)[Fuc(α1-2)]Gal(b1-4)
[Fuc(α1-3)]Glc [37]

HF 349.2 [M+Na]+ 8.9   2.6% Fuc(α1-2)Gal [37]

H
2
F 511.3 [M+Na]+ 9.4   0.3% Fuc[Gal(b1-4)Glc [37,46,47]

HNF 552.5 [M+Na]+ 8.9 406.1 HN; 388.1 HN-18; 372.1 NF-18; 244.0 N; 226.0 
N-18; 208.0 N-2x18; 203.0 H; 187.1 F; 185.0 H-18; 169.0 
F-18

14.2% GalNAc(α1-3)[Fuc(α1-2)]Gal [37]

H
2

365.2 [M+Na]+ 9.7 203.0 H; 185.0 H-18 49.1%  

H
3

527.3 [M+Na]+ 11.0 365.1 H
2
; 347.1 H

2
-18; 203.1 H; 185.0 H-18 2.4%  

    12.7 365.1 H
2
; 347.1 H

2
-18; 203.1 H; 185.0 H-18 1.5%  

    23.6 365.1 H
2
; 347.1 H

2
-18; 203.0 H; 185.0 H-18 1.4%  

H
4

689.5 [M+Na]+ 23.9 527.3 H
3
; 509.2 H

3
-18; 365.3 H

2
; 346.9 H

2
-18 0.5%  

    25.3 527.3 H
3
; 509.2 H

3
-18; 365.1 H

2
; 347.0 H

2
-18 1.2%  

HN 406.2 [M+Na]+ 9.4   1.4%  

H
2
N 568.4 [M+Na]+ 9.8   0.5%  

H
2
N

2
771.5 [M+Na]+ 14.3   1.6%  

HNS 719.5/
697.2

[M+Na]+ [M-H+2Na]+ 25.2 516.2 HS; 498.1 HS-18; 406.1 HN; 354.0 S; 336.0 S-18; 
226.0 N

3.0% NeuAc(α2-3/6)Gal(b1-4)GlcNAc [50]

HS 516.1 [M-H+2Na]+ 25.6   0.8% Neu5Ac-Hex

H
2
S 678.5 [M-H+2Na]+ 25.7 498.2 HS-18; 354.0 S; 365.1 H

2
; 336.0 S-18 2.7% NeuAc(α2-3/6)Gal(b1-4)Glc [50]
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Table S5-1. Oligosaccharide species detected in the fucosidosis sample U1. Comp., composition; Ret., retention; 
Rel. area., relative area.

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Rel. area

Proposed structureU1

D
is

ea
se

 r
el

at
ed

 
g

ly
ca

n
s

NF 390.2 [M+Na]+ 8.8 244.0 N; 226.0 N-18; 187.2 F; 169.1 F-18 10.6% Fuc(α1-6)GlcNAc [2,29,30,37,44]

H
2
NF 714.5 [M+Na]+ 9.1   0.3%  

H
3
N

2
F 1079.4 [M+Na]+ 9.2   1.3%  

HNSF 865.4 [M-H+2Na]+ 22.7 719.5 HNS; 552.4 HNF; 534.3 HNF-18; 516.2 HS; 498.0 
HS-18; 405.9 HN; 388.1 HN-18; 336.0 S-18; 318.1 S-2x18 

0.8% NeuAc(α2-3/6)Gal(b1-4)[Fuc(α1-3)]
GlcNAc

      24.0 552.2 HNF; 534.1 HNF-18; 516.0 HS; 498.2 HS-18; 354.2 
S; 336.0 S-18 

1.6%  

O
th

er
 g

ly
ca

n
s

H
2
NF

2
860.5 [M+Na]+ 8.9 714.4 H

2
NF; 696.1 H

2
NF-18; 657.3 H

2
F

2
; 568.3 H

2
N; 552.4 

HNF; 550.4 H
2
N-18; 534.3 HNF-18; 532.5 H

2
N-2x18; 

405.9 HN; 388.1 HN-18; 370.3 HN-2x18; 349.1 HF; 244.0 
N 

2.3% GalNAc(α1-3)[Fuc(α1-2)]Gal(b1-4)
[Fuc(α1-3)]Glc [37]

HF 349.2 [M+Na]+ 8.9   2.6% Fuc(α1-2)Gal [37]

H
2
F 511.3 [M+Na]+ 9.4   0.3% Fuc[Gal(b1-4)Glc [37,46,47]

HNF 552.5 [M+Na]+ 8.9 406.1 HN; 388.1 HN-18; 372.1 NF-18; 244.0 N; 226.0 
N-18; 208.0 N-2x18; 203.0 H; 187.1 F; 185.0 H-18; 169.0 
F-18

14.2% GalNAc(α1-3)[Fuc(α1-2)]Gal [37]

H
2

365.2 [M+Na]+ 9.7 203.0 H; 185.0 H-18 49.1%  

H
3

527.3 [M+Na]+ 11.0 365.1 H
2
; 347.1 H

2
-18; 203.1 H; 185.0 H-18 2.4%  

    12.7 365.1 H
2
; 347.1 H

2
-18; 203.1 H; 185.0 H-18 1.5%  

    23.6 365.1 H
2
; 347.1 H

2
-18; 203.0 H; 185.0 H-18 1.4%  

H
4

689.5 [M+Na]+ 23.9 527.3 H
3
; 509.2 H

3
-18; 365.3 H

2
; 346.9 H

2
-18 0.5%  

    25.3 527.3 H
3
; 509.2 H

3
-18; 365.1 H

2
; 347.0 H

2
-18 1.2%  

HN 406.2 [M+Na]+ 9.4   1.4%  

H
2
N 568.4 [M+Na]+ 9.8   0.5%  

H
2
N

2
771.5 [M+Na]+ 14.3   1.6%  

HNS 719.5/
697.2

[M+Na]+ [M-H+2Na]+ 25.2 516.2 HS; 498.1 HS-18; 406.1 HN; 354.0 S; 336.0 S-18; 
226.0 N

3.0% NeuAc(α2-3/6)Gal(b1-4)GlcNAc [50]

HS 516.1 [M-H+2Na]+ 25.6   0.8% Neu5Ac-Hex

H
2
S 678.5 [M-H+2Na]+ 25.7 498.2 HS-18; 354.0 S; 365.1 H

2
; 336.0 S-18 2.7% NeuAc(α2-3/6)Gal(b1-4)Glc [50]
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Table S5-2. Oligosaccharide species detected in the α-mannosidosis samples U5, U6, and U7. Comp., 
composition; Ret., retention.

Comp.
Registered

m/z
Charge 

state
Ret. time 

(min) Fragment ions

Relative area

Proposed structureU5 U6 U7

D
is

ea
se

 r
el

at
ed

 g
ly

ca
n

s

H
2
N 568.4 [M+Na]+ 5.8 406.2 HN; 388.1 HN-18; 365.2 H

2
; 347.2 H

2
-18; 244.1 N; 

226.0 N-18; 203.1 H
52.9% 49.6% 53.7% Man(α1-2)Man(α1-3)Man(b1-4)GlcNAc [31-33,45]

H
3
N 730.4 [M+Na]+ 8.1 568.3 H

2
N; 550.3 H

2
N-18; 527.3 H

3
; 509.2 H

3
-18; 388.2 

HN-18; 365.1 H
2
; 347.2 H

2
-18; 329.0 H

2
-2x18; 244.1 N; 

226.0 N-18

1.2% 1.4% 1.0% Man(α1-6)[Man(α1-3)]Man(b1-4)GlcNAc [33,45]

  8.9 527.2 H
3
; 509.2 H

3
-18; 406.2 HN; 388.1 HN-18; 365.3 H

2
; 

347.2 H
2
-18; 329.2 H

2
-2x18; 244.2 N; 226.2 N-18 

12.7% 12.3% 13.9% Man(α1-2)Man(α1-3)Man(b1-4)GlcNAc [31-33,45]

H
4
N 892.5 [M+Na]+ 10.6 730.2 H

3
N; 712.3 H

3
N-18; 689.4 H

4
; 671.3 H

4
-18; 527.1 H

3
; 

509.3 H
3
-18; 406.3 HN; 347.1 H

2
-18 

0.4% 0.4% 0.3%

  12.8 730.2 H
3
N; 712.3 H

3
-18; 689.3 H

4
; 671.3 H

4
-18; 568.4 H

2
N; 

550.3 H
2
N-18; 527.2 H

3
; 509.3 H

3
-18; 491.3 H

3
-2x18; 406.2 

HN; 388.3 HN-18; 365.3 H
2
; 347.2 H

2
-18; 329.2 H

2
-2x18; 

244.2 N

10.7% 12.5% 11.1% Man(α1-2)Man(α1-2)Man(α1-3)Man(b1-4)GlcNAc [32,33,45]

  15.4 730.2 H
3
N; 712.3 H

3
N-18; 689.3 H

4
; 671.3 H

4
-18; 568.2 H

2
N; 

527.3 H
3
; 509.2 H

3
-18; 491.1 H

3
N-2x18; 406.0 HN; 388.1 

HN-18; 365.1 H
2
; 347.2 H

2
-18

0.6% 0.5% 0.9% Man(α1-3)Man(α1-6)[Man(α1-3)]Man(b1-4)GlcNAc [32]

H
5
N 1054.5 [M+Na]+ 15.9 874.5 H

4
N-18; 851.3 H

5
; 833.4 H

5
-18; 712.8 H

3
N-18; 689.3 

H
4
; 671.3 H

4
-18; 568.3 H

2
N; 550.2 H

2
N-18; 527.1 H

3
; 509.3 

H
3
-18; 491.2 H

3
-2x18

0.7% 0.6% 0.7% Man(α1-3)Man(α1-6)[Man(α1-2)Manα1-3)]Man(b1-4)GlcNAc [32,33,45]

  16.7 851.4 H
5
; 833.4 H

5
-18; 712.3 H

3
N-18; 689.4 H

4
; 671.3 H

4
-18; 

653.4 H
4
-2x18; 568.3 H

2
N; 527.1 H

3’
; 509.3 H

3
-18; 365.1 H

2’
; 

347.1 H
2
-18

2.4% 3.4% 2.4% Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-3)]Man(b1-4)GlcNAc [32,33,45]

  18.6 892.3 H
4
N; 851.3 H

5
; 833.1 H

5
-18; 730.3 H

3
N; 689.3 H

4
; 

671.4 H
4
-18; 568.4 H

2
N; 550.0 H

2
N-18; 509.2 H

3
-18; 491.1 

H
3
-2x18; 365.1 H

2’
; 346.9 H

2
-18

0.2% 0.1% 0.3%  

H
6
N 1216.5 [M+Na]+ 19.2 1054.3 H

5
N; 1036.4 H

5
N-18; 1013.4 H

6
; 995.4 H

6
-18; 892.4 

H
4
N; 874.4 H

4
N-18; 851.3 H

5
; 833.3 H

5
-18; 730.3 H

3
N; 671.4 

H
4
-18; 653.3 H

4
-2x18; 568.3 H

2
N; 527.3 H

3
; 509.3 H

3
-18; 

491.2 H
3
-2x18

0.5% 0.6% 0.4% Man(α1-2)Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-3)]Man(b1-4)
GlcNAc [32,33,45]

  19.9 1054.5 H
5
N; 1036.4 H

5
N-18; 1013.3 H

6
; 995.4 H

6
-18; 892.3 

H
4
N; 851.3 H

5
; 833.4 H

5
-18; 730.2 H

3
N; 689.3 H

4
; 671.4 

H
4
-18; 527.5 H

3
; 509.1 H

3
-18; 347.1 H

2
-18

0.7% 0.9% 0.8% Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-2)Man(α1-3)]Man(b1-4)
GlcNAc [32,33,45]

  21.4 0.1% 0.1% 0.2%  Man(α1-2)Man(1-6)[Man(α1-3)]Man(α1-6)[Manα1-3)]Man(b1-4)
GlcNAc [32,33,45]

H
7
N 700.9

1378.5
[M+2Na]2+

[M+Na]+

21.7 1198.3 H
6
N-18; 1175.4 H

7
; 1157.3 H

7
-18; 1054.5 H

5
N; 1036.4 

H
5
N-18; 1013.2 H

6
; 995.4 H

6
-18; 892.3 H

4
N; 874.3 H

4
N-18; 

851.2 H
5
; 833.1 H

5
-18; 712.4 H

3
N; 689.4 H

4
; 671.4 H

4
-18; 

509.1 H
3
-18; 491.3 H

3
-2x18 

0.6% 0.7% 0.5% Man(α1-2){Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-2)Man(α1-3)]
Man(b1-4)GlcNAc [32,33,45]

H
8
N 782.0

1540.4
[M+2Na]2+

[M+Na]+

15.8   0.1% 0.1%  

  23.9 671.1 H
4
-18; 346.9 H

2
-18 0.3% 0.4% 0.4% 2xMan(α1-2){Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-2)Man(α1-3)]

Man(b1-4)GlcNAc [32,33,45]

  25.5   0.1% 0.1%  

H
9
N 863.0

1702.8
[M+2Na]2+

[M+Na]+

25.8   0.2% 0.2% 0.3% Man(α1-2)Man(α1-6)[Man(α1-2)Man(α1-3)]Man(α1-6)[Man(α1-2)
Man(α1-2)Man(α1-3)]Man(b1-4)GlcNAc [32,33,45]
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Table S5-2. Oligosaccharide species detected in the α-mannosidosis samples U5, U6, and U7. Comp., 
composition; Ret., retention.

Comp.
Registered

m/z
Charge 

state
Ret. time 

(min) Fragment ions

Relative area

Proposed structureU5 U6 U7

D
is

ea
se

 r
el

at
ed

 g
ly

ca
n

s

H
2
N 568.4 [M+Na]+ 5.8 406.2 HN; 388.1 HN-18; 365.2 H

2
; 347.2 H

2
-18; 244.1 N; 

226.0 N-18; 203.1 H
52.9% 49.6% 53.7% Man(α1-2)Man(α1-3)Man(b1-4)GlcNAc [31-33,45]

H
3
N 730.4 [M+Na]+ 8.1 568.3 H

2
N; 550.3 H

2
N-18; 527.3 H

3
; 509.2 H

3
-18; 388.2 

HN-18; 365.1 H
2
; 347.2 H

2
-18; 329.0 H

2
-2x18; 244.1 N; 

226.0 N-18

1.2% 1.4% 1.0% Man(α1-6)[Man(α1-3)]Man(b1-4)GlcNAc [33,45]

  8.9 527.2 H
3
; 509.2 H

3
-18; 406.2 HN; 388.1 HN-18; 365.3 H

2
; 

347.2 H
2
-18; 329.2 H

2
-2x18; 244.2 N; 226.2 N-18 

12.7% 12.3% 13.9% Man(α1-2)Man(α1-3)Man(b1-4)GlcNAc [31-33,45]

H
4
N 892.5 [M+Na]+ 10.6 730.2 H

3
N; 712.3 H

3
N-18; 689.4 H

4
; 671.3 H

4
-18; 527.1 H

3
; 

509.3 H
3
-18; 406.3 HN; 347.1 H

2
-18 

0.4% 0.4% 0.3%

  12.8 730.2 H
3
N; 712.3 H

3
-18; 689.3 H

4
; 671.3 H

4
-18; 568.4 H

2
N; 

550.3 H
2
N-18; 527.2 H

3
; 509.3 H

3
-18; 491.3 H

3
-2x18; 406.2 

HN; 388.3 HN-18; 365.3 H
2
; 347.2 H

2
-18; 329.2 H

2
-2x18; 

244.2 N

10.7% 12.5% 11.1% Man(α1-2)Man(α1-2)Man(α1-3)Man(b1-4)GlcNAc [32,33,45]

  15.4 730.2 H
3
N; 712.3 H

3
N-18; 689.3 H

4
; 671.3 H

4
-18; 568.2 H

2
N; 

527.3 H
3
; 509.2 H

3
-18; 491.1 H

3
N-2x18; 406.0 HN; 388.1 

HN-18; 365.1 H
2
; 347.2 H

2
-18

0.6% 0.5% 0.9% Man(α1-3)Man(α1-6)[Man(α1-3)]Man(b1-4)GlcNAc [32]

H
5
N 1054.5 [M+Na]+ 15.9 874.5 H

4
N-18; 851.3 H

5
; 833.4 H

5
-18; 712.8 H

3
N-18; 689.3 

H
4
; 671.3 H

4
-18; 568.3 H

2
N; 550.2 H

2
N-18; 527.1 H

3
; 509.3 

H
3
-18; 491.2 H

3
-2x18

0.7% 0.6% 0.7% Man(α1-3)Man(α1-6)[Man(α1-2)Manα1-3)]Man(b1-4)GlcNAc [32,33,45]

  16.7 851.4 H
5
; 833.4 H

5
-18; 712.3 H

3
N-18; 689.4 H

4
; 671.3 H

4
-18; 

653.4 H
4
-2x18; 568.3 H

2
N; 527.1 H

3’
; 509.3 H

3
-18; 365.1 H

2’
; 

347.1 H
2
-18

2.4% 3.4% 2.4% Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-3)]Man(b1-4)GlcNAc [32,33,45]

  18.6 892.3 H
4
N; 851.3 H

5
; 833.1 H

5
-18; 730.3 H

3
N; 689.3 H

4
; 

671.4 H
4
-18; 568.4 H

2
N; 550.0 H

2
N-18; 509.2 H

3
-18; 491.1 

H
3
-2x18; 365.1 H

2’
; 346.9 H

2
-18

0.2% 0.1% 0.3%  

H
6
N 1216.5 [M+Na]+ 19.2 1054.3 H

5
N; 1036.4 H

5
N-18; 1013.4 H

6
; 995.4 H

6
-18; 892.4 

H
4
N; 874.4 H

4
N-18; 851.3 H

5
; 833.3 H

5
-18; 730.3 H

3
N; 671.4 

H
4
-18; 653.3 H

4
-2x18; 568.3 H

2
N; 527.3 H

3
; 509.3 H

3
-18; 

491.2 H
3
-2x18

0.5% 0.6% 0.4% Man(α1-2)Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-3)]Man(b1-4)
GlcNAc [32,33,45]

  19.9 1054.5 H
5
N; 1036.4 H

5
N-18; 1013.3 H

6
; 995.4 H

6
-18; 892.3 

H
4
N; 851.3 H

5
; 833.4 H

5
-18; 730.2 H

3
N; 689.3 H

4
; 671.4 

H
4
-18; 527.5 H

3
; 509.1 H

3
-18; 347.1 H

2
-18

0.7% 0.9% 0.8% Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-2)Man(α1-3)]Man(b1-4)
GlcNAc [32,33,45]

  21.4 0.1% 0.1% 0.2%  Man(α1-2)Man(1-6)[Man(α1-3)]Man(α1-6)[Manα1-3)]Man(b1-4)
GlcNAc [32,33,45]

H
7
N 700.9

1378.5
[M+2Na]2+

[M+Na]+

21.7 1198.3 H
6
N-18; 1175.4 H

7
; 1157.3 H

7
-18; 1054.5 H

5
N; 1036.4 

H
5
N-18; 1013.2 H

6
; 995.4 H

6
-18; 892.3 H

4
N; 874.3 H

4
N-18; 

851.2 H
5
; 833.1 H

5
-18; 712.4 H

3
N; 689.4 H

4
; 671.4 H

4
-18; 

509.1 H
3
-18; 491.3 H

3
-2x18 

0.6% 0.7% 0.5% Man(α1-2){Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-2)Man(α1-3)]
Man(b1-4)GlcNAc [32,33,45]

H
8
N 782.0

1540.4
[M+2Na]2+

[M+Na]+

15.8   0.1% 0.1%  

  23.9 671.1 H
4
-18; 346.9 H

2
-18 0.3% 0.4% 0.4% 2xMan(α1-2){Man(α1-6)[Man(α1-3)]Man(α1-6)[Man(α1-2)Man(α1-3)]

Man(b1-4)GlcNAc [32,33,45]

  25.5   0.1% 0.1%  

H
9
N 863.0

1702.8
[M+2Na]2+

[M+Na]+

25.8   0.2% 0.2% 0.3% Man(α1-2)Man(α1-6)[Man(α1-2)Man(α1-3)]Man(α1-6)[Man(α1-2)
Man(α1-2)Man(α1-3)]Man(b1-4)GlcNAc [32,33,45]
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O
th

er
 g

ly
ca

n
s

H
2

365.2 [M+Na]+ 5.3 7.0% 4.8% 3.2%  

H
3

527.3 [M+Na]+ 6.8 0.2% 0.1% 0.2%  

7.8 365.2 H
2
; 347.2 H

2
-18; 203.0 H 0.3% 0.8% 0.5%  

9.3   0.2%  

9.6 365.2 H
2
; 347.2 H

2
-18; 203.0 H; 185.0 H-18 0.2% 0.5% 0.2%  

15.7 0.1% 0.2%  

16.8 0.0% 0.2%  

17.5 365.2 H
2
; 347.3 H

2
-18; 203.0 H; 185.1 H-18 0.1% 0.5% 0.2%  

18.7   0.3%  

20.7   0.2%  

H
4

689.4 [M+Na]+ 8.4 527.2 H
3
; 509.3 H

3
-18; 365.2 H

2
; 347.2 H

2
-18   0.4% 0.2%  

25.7 527.3 H
3
; 509.2 H

3
-18; 365.2 H

2
; 347.2 H

2
-18 0.4% 0.6% 0.6%  

HN 406.3 [M+Na]+ 4.3 1.4% 1.0% 1.6%  

H
2
N

2
771.1 [M+Na]+ 10.2 0.2% 0.1% 0.1%  

H
3
N

2
933.5 [M+Na]+ 8 0.1% 0.2%  

H
4
N

2
1095.5 [M+Na]+ 8      

18.6      

H
5
N

3
741.9 [M+2Na]2+ 21.4     0.2%  

H
2
NF

2
860.5 [M+Na]+ 4.1 714.3 H

2
NF; 696.3 H

2
NF-18; 657.4 H

2
F

2
; 568.3 H

2
N; 552.2 

HNF; 550.2 H
2
N-18; 534.3 HNF-18; 511.3 H

2
F; 406.3 HN; 

388.2 HN-18; 349.2 HF; 331.1 HF-18; 244.1 N 

0.7% 3.1% 0.7% GalNAc(α1-3)[Fuc(α1-2)]Gal(b1-4)[Fuc(α1-3)]Glc [37]

HF 349.2 [M+Na]+ 3.9 1.9% 1.6% 2.1%  

H
2
F 511.2 [M+Na]+ 9.8 0.2%   0.3%  

NF 390.2 [M+Na]+ 3.1 0.1%    

HNF 552.4 [M+Na]+ 3.8 406.2 HN; 388.1 HN-18; 349.3 HF; 243.8 N; 226.2 N-18; 
203.1 H

0.6% 0.2% 1.2% GalNAc(α1-3)[Fuc(α1-2)]Gal [37]

HS 516.2 [M-
H+2Na]+

23.8   0.1% 0.1%  

H
2
NF 714.4 [M+Na]+ 4.6   0.9% 0.2% 0.9%  

HNS 697.4
719.4

[M+Na]+

[M-
H+2Na]+

22.5   0.4% 0.6% 0.5%  

H
2
S 656.5

678.3
[M+Na]+

[M-
H+2Na]+

25.0 516,7 HS; 498,0/476,2 HS-18; 365.3 H
2
; 347.0 H

2
-18; 

354,3/332.3 S; 336,2/314.1 S-18
0.7% 0.5% 0.6% Neu5Ac(α2-3)Gal(b1-4)Glc [50]

Table S5-2. continued

Comp.
Registered

m/z
Charge 

state
Ret. time 

(min) Fragment ions

Relative area

Proposed structureU5 U6 U7
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O
th

er
 g

ly
ca

n
s

H
2

365.2 [M+Na]+ 5.3 7.0% 4.8% 3.2%  

H
3

527.3 [M+Na]+ 6.8 0.2% 0.1% 0.2%  

7.8 365.2 H
2
; 347.2 H

2
-18; 203.0 H 0.3% 0.8% 0.5%  

9.3   0.2%  

9.6 365.2 H
2
; 347.2 H

2
-18; 203.0 H; 185.0 H-18 0.2% 0.5% 0.2%  

15.7 0.1% 0.2%  

16.8 0.0% 0.2%  

17.5 365.2 H
2
; 347.3 H

2
-18; 203.0 H; 185.1 H-18 0.1% 0.5% 0.2%  

18.7   0.3%  

20.7   0.2%  

H
4

689.4 [M+Na]+ 8.4 527.2 H
3
; 509.3 H

3
-18; 365.2 H

2
; 347.2 H

2
-18   0.4% 0.2%  

25.7 527.3 H
3
; 509.2 H

3
-18; 365.2 H

2
; 347.2 H

2
-18 0.4% 0.6% 0.6%  

HN 406.3 [M+Na]+ 4.3 1.4% 1.0% 1.6%  

H
2
N

2
771.1 [M+Na]+ 10.2 0.2% 0.1% 0.1%  

H
3
N

2
933.5 [M+Na]+ 8 0.1% 0.2%  

H
4
N

2
1095.5 [M+Na]+ 8      

18.6      

H
5
N

3
741.9 [M+2Na]2+ 21.4     0.2%  

H
2
NF

2
860.5 [M+Na]+ 4.1 714.3 H

2
NF; 696.3 H

2
NF-18; 657.4 H

2
F

2
; 568.3 H

2
N; 552.2 

HNF; 550.2 H
2
N-18; 534.3 HNF-18; 511.3 H

2
F; 406.3 HN; 

388.2 HN-18; 349.2 HF; 331.1 HF-18; 244.1 N 

0.7% 3.1% 0.7% GalNAc(α1-3)[Fuc(α1-2)]Gal(b1-4)[Fuc(α1-3)]Glc [37]

HF 349.2 [M+Na]+ 3.9 1.9% 1.6% 2.1%  

H
2
F 511.2 [M+Na]+ 9.8 0.2%   0.3%  

NF 390.2 [M+Na]+ 3.1 0.1%    

HNF 552.4 [M+Na]+ 3.8 406.2 HN; 388.1 HN-18; 349.3 HF; 243.8 N; 226.2 N-18; 
203.1 H

0.6% 0.2% 1.2% GalNAc(α1-3)[Fuc(α1-2)]Gal [37]

HS 516.2 [M-
H+2Na]+

23.8   0.1% 0.1%  

H
2
NF 714.4 [M+Na]+ 4.6   0.9% 0.2% 0.9%  

HNS 697.4
719.4

[M+Na]+

[M-
H+2Na]+

22.5   0.4% 0.6% 0.5%  

H
2
S 656.5

678.3
[M+Na]+

[M-
H+2Na]+

25.0 516,7 HS; 498,0/476,2 HS-18; 365.3 H
2
; 347.0 H

2
-18; 

354,3/332.3 S; 336,2/314.1 S-18
0.7% 0.5% 0.6% Neu5Ac(α2-3)Gal(b1-4)Glc [50]

Table S5-2. continued

Comp.
Registered

m/z
Charge 

state
Ret. time 

(min) Fragment ions

Relative area

Proposed structureU5 U6 U7
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Table S5-3. Oligosaccharide species detected in the G
M1

-gangliosidosis sample U2. X, hexonic acid; GluconA, 
gluconic acid; Comp., composition; Ret., retention; Rel. area., relative area.

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Rel. area

Proposed structureU2

D
is

ea
se

 r
el

at
ed

 g
ly

ca
n

s

H
3
N

2
933.5
478.3

[M+Na]+

[M+2Na]2+

8.8 730.4 H
3
N; 712.3 H

3
N-18; 568.3 H

2
N; 550.3 H

2
N-18; 

406.2 HN; 388.2 HN-18; 365.2 H
2
; 347.2 H

2
-18

8.5% Gal(b1-4)GlcNAc(b1-2)Man(α1-6)
Man(b1-4)GlcNAc [9,25,34-36,44]

933.5
478.3

[M+Na]+

[M+2Na]2+

12.8 730.4 H
3
N; 712.4 H

3
N-18; 568.3 H

2
N; 550.3 H

2
N-18; 

406.2 HN; 388.2 HN-18; 365.1 H
2
; 347.2 H

2
-18

7.2% Gal(b1-4)GlcNAc(b1-2)Man(α1-3)
Man(b1-4)GlcNAc [9,25,34-36,44]

H
4
N

2
1095.5 [M+Na]+ 15.0 933.3 H

3
N

2
; 915.1 H

4
N

2
-18; 892.2 H

4
N; 874.3 H

4
N-18; 

753.4 H
2
N

2
-18; 730.3 H

3
N; 712.1 H

3
N-18; 568.2 H

2
N; 550.3 

H
2
N-18; 532.2 H

2
N-2x18; 527.3 H

3
; 509.0 H

3
-18; 406.4 

HN; 388.2 HN-18; 365.1 H
2

0.2% Gal(b1-4)GlcNAc(b1-2)Man(α1-6)
[Man(α1-3)]Man(b1-4)GlcNAc [9]

1095.5 [M+Na]+ 16.1 933.3 H
3
N

2
; 892.2 H

4
N; 874.4 H

4
N-18; 730.3 H

3
N; 568.2 

H
2
N; 550.3 H

2
N-18; 509.2 H

3
-18; 388.1 HN-18

0.1% Man(α1-6)[Gal(b1-4)GlcNAc(b1-2)
Man(α1-3)]Man(b1-4)GlcNAc 
Yamashita, 1981 49 /id}[44]

1095.5 [M+Na]+ 21.0 0.3%  

H
4
N

3
1298.5
660.9

[M+Na]+

[M+2Na]2+

15.8 0.2%  

1298.5
660.9

[M+Na]+

[M+2Na]2+

17.3 1077.7/550.3 H
4
N

2
-18; 933.3 H

3
N2; 550.3 H

2
N-18 or 

H
4
N

2
-9; 388.1 HN-18 or H

2
N

2
-9

0.4% Gal(b1-4)GlcNAc(b1-2)[Gal(b1-4)
GlcNAc(b1-4)]Man(α1-3)Man(b1-4)
GlcNAc [35]

H
5
N

3
1460.6/

742.1
[M+Na]+

[M+2Na]2+

20.9 1298.6 H
4
N

3
; 1280.5 H

4
N

3
-18; 1257.6 H

5
N

2
; 1239.6 

H
5
N

2
-18; 1095.6 H

4
N

2
; 1077.6 H

4
N

2
-18; 1059.6 H

4
N

2
-2x18; 

933.5 H
3
N

2
; 915.4 H

3
N

2
-18; 892.5 H

4
N; 874.6 H

4
N-

18;771.4 H
2
N

2
; 730.5 H

3
N; 712.4 H

3
N-18; 694.3 H

3
N-2x18; 

568.4 H
2
N; 550.3 H

2
N-18; 532.4 H

2
N-2x18; 527.3 H

3
; 514.1 

H
2
N-3x18; 509.3 H

3
-18; 405.9 HN; 388.2 HN-18; 370.2 

HN-2x18; 365.3 H
2
; 347.2 H

2
-18; 329.2 H

2
-2x18; 244.0 N; 

226.0 N-18; 208.1 N-2x18

26.2% Gal(b1-4)GlcNAc(b1-2)Man(α1-6)
[Gal(b1-4)GlcNAc(b1-2)Man(α1-3)]
Man(b1-4)GlcNAc [9,34-36,44]

H
6
N

4
924.5 [M+2Na]2+ 22.7 1442.7 H

5
N

3
-18; 1257.4 H

5
N

2
; 1239.5 H

5
N

2
-18; 892.3 H

4
N; 

651.7 H
4
N

3
-9; 570.8 H

3
N

3
-9; 388.2 HN-18

0.2%  

924.5 [M+2Na]+ 24.4 1622.4 H
6
N

3
; 1501.4 H

4
N

4
; 1460.5 H

5
N

3
; 1442.5 H

5
N

3
-18; 

1424.4 H
5
N

3
-2x18; 1303.6 H

3
N

4
-2x18; 1298.6 H

4
N

3
; 

1280.6 H
4
N

3
-18; 1257.6 H

5
N

2
; 1239.5 H

5
N

2
-18; 1118.5 

H
3
N

3
-18; 1095.4 H

4
N

2
; 1077.6 H

4
N

2
-18; 1059.3 H

4
N

2
-2x18; 

915.4 H
3
N

2
-18; 892.2 H

4
N; 874.4 H

4
N-18; 843.4 H

5
N

4
; 

838.2 H
4
N-3x18; 822.9 H

6
N

3
; 813.7 H

6
N

3
-9; 762.4 H

4
N

4
; 

753.2 H
2
N

2
-18, H

4
N

4
-9; 741.9 H

5
N

3
; 735.2 H

2
N

2
-2x18; 

732.9 H
5
N

3
-9; 730.2 H

3
N; 712.3 H

3
N-18; 660.8 H

4
N

3
; 

640.3 H
5
N

2
; 570.3 H

3
N

3
; 568.3 H

2
N; 559.3 H

4
N

2
; 552.6 

H
3
N

3
-3x9;550.2 H

2
N-18; 406.2 HN; 388.2 HN-18; 347.2 

H
2
; 329.2 H

2
-18

2.5% Gal(b1-4)GlcNAc(b1-2)Man(α1-6)
[Gal(b1-4)GlcNAc(b1-2)][Gal(b1-4)
GlcNAc(b1-4)]Man(α1-3)]Man(b1-4)
GlcNAc [9,34-36]

924.5 [M+2Na]+ 25.7 1604.5 H
6
N

3
-18; 1442.4 H

5
N

3
-18; 1257.4 H

5
N

2
; 1239.2 

H
5
N

2
-18; 1095.4 H

4
N

2
; 1077.5 H

4
N

2
-18; 892.5 H

4
N 874.4 

H
4
N-18; 822.8 H

6
N

3
; 753.3 H

2
N

2
-18; 730.3 H

3
N; 550.2 

H
4
N

2
; 388.2 HN-18

0.2% Gal(b1-4)GlcNAc(b1-3)Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)[Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [9,34-36]

H
7
N

5
1107.0 [M+2Na]2+ 25.9 1825.7 H

6
N

3
; 1807.6 H

6
N

3
-18; 1663.6/843.4 H

5
N

4
; 

1627.5 H
5
N

4
-2x18; 1622.6/822.7 H

6
N

3
; 1501.9 H

4
N

4
; 

1460.6/741.7 H
5
N

3
; 1442.5 H

5
N

3
-18; 1298.5 H

4
N

3
; 

1257.7 H
5
N

2
; 1239.5/631.4 H

5
N

2
-18; 1095.5 H

4
N

2
; 1077.4 

H
4
N

2
-18; 1059.3 H

4
N

2
-2x18; 1016.9 H

6
N

5
-9; 1005.3 H

7
N

4
; 

933.4/478.1 H
3
N

2
; 924.3 H

6
N

4
; 915.4 H

6
N

4
-9; 813.8 

H
6
N

3
-9; 804.8 H

6
N

3
-2x9; 771.1 H

2
N

2
; 753.3 H

2
N

2
-18; 

550.4 H
2
N-18; 388.2 HN-18 

0.2% Gal(b1-4)GlcNAc(b1-6)][Gal(b1-4)
GlcNAc(b1-2)]Man(α1-6)[[Gal(b1-4)
GlcNAc(b1-4)][Gal(b1-4)GlcNAc(b1-
2)]Man(α1-3)]Man(b1-4)GlcNAc 
[9,34,36]
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Table S5-3. Oligosaccharide species detected in the G
M1

-gangliosidosis sample U2. X, hexonic acid; GluconA, 
gluconic acid; Comp., composition; Ret., retention; Rel. area., relative area.

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Rel. area

Proposed structureU2

D
is

ea
se

 r
el

at
ed

 g
ly

ca
n

s

H
3
N

2
933.5
478.3

[M+Na]+

[M+2Na]2+

8.8 730.4 H
3
N; 712.3 H

3
N-18; 568.3 H

2
N; 550.3 H

2
N-18; 

406.2 HN; 388.2 HN-18; 365.2 H
2
; 347.2 H

2
-18

8.5% Gal(b1-4)GlcNAc(b1-2)Man(α1-6)
Man(b1-4)GlcNAc [9,25,34-36,44]

933.5
478.3

[M+Na]+

[M+2Na]2+

12.8 730.4 H
3
N; 712.4 H

3
N-18; 568.3 H

2
N; 550.3 H

2
N-18; 

406.2 HN; 388.2 HN-18; 365.1 H
2
; 347.2 H

2
-18

7.2% Gal(b1-4)GlcNAc(b1-2)Man(α1-3)
Man(b1-4)GlcNAc [9,25,34-36,44]

H
4
N

2
1095.5 [M+Na]+ 15.0 933.3 H

3
N

2
; 915.1 H

4
N

2
-18; 892.2 H

4
N; 874.3 H

4
N-18; 

753.4 H
2
N

2
-18; 730.3 H

3
N; 712.1 H

3
N-18; 568.2 H

2
N; 550.3 

H
2
N-18; 532.2 H

2
N-2x18; 527.3 H

3
; 509.0 H

3
-18; 406.4 

HN; 388.2 HN-18; 365.1 H
2

0.2% Gal(b1-4)GlcNAc(b1-2)Man(α1-6)
[Man(α1-3)]Man(b1-4)GlcNAc [9]

1095.5 [M+Na]+ 16.1 933.3 H
3
N

2
; 892.2 H

4
N; 874.4 H

4
N-18; 730.3 H

3
N; 568.2 

H
2
N; 550.3 H

2
N-18; 509.2 H

3
-18; 388.1 HN-18

0.1% Man(α1-6)[Gal(b1-4)GlcNAc(b1-2)
Man(α1-3)]Man(b1-4)GlcNAc 
Yamashita, 1981 49 /id}[44]

1095.5 [M+Na]+ 21.0 0.3%  

H
4
N

3
1298.5
660.9

[M+Na]+

[M+2Na]2+

15.8 0.2%  

1298.5
660.9

[M+Na]+

[M+2Na]2+

17.3 1077.7/550.3 H
4
N

2
-18; 933.3 H

3
N2; 550.3 H

2
N-18 or 

H
4
N

2
-9; 388.1 HN-18 or H

2
N

2
-9

0.4% Gal(b1-4)GlcNAc(b1-2)[Gal(b1-4)
GlcNAc(b1-4)]Man(α1-3)Man(b1-4)
GlcNAc [35]

H
5
N

3
1460.6/

742.1
[M+Na]+

[M+2Na]2+

20.9 1298.6 H
4
N

3
; 1280.5 H

4
N

3
-18; 1257.6 H

5
N

2
; 1239.6 

H
5
N

2
-18; 1095.6 H

4
N

2
; 1077.6 H

4
N

2
-18; 1059.6 H

4
N

2
-2x18; 

933.5 H
3
N

2
; 915.4 H

3
N

2
-18; 892.5 H

4
N; 874.6 H

4
N-

18;771.4 H
2
N

2
; 730.5 H

3
N; 712.4 H

3
N-18; 694.3 H

3
N-2x18; 

568.4 H
2
N; 550.3 H

2
N-18; 532.4 H

2
N-2x18; 527.3 H

3
; 514.1 

H
2
N-3x18; 509.3 H

3
-18; 405.9 HN; 388.2 HN-18; 370.2 

HN-2x18; 365.3 H
2
; 347.2 H

2
-18; 329.2 H

2
-2x18; 244.0 N; 

226.0 N-18; 208.1 N-2x18

26.2% Gal(b1-4)GlcNAc(b1-2)Man(α1-6)
[Gal(b1-4)GlcNAc(b1-2)Man(α1-3)]
Man(b1-4)GlcNAc [9,34-36,44]

H
6
N

4
924.5 [M+2Na]2+ 22.7 1442.7 H

5
N

3
-18; 1257.4 H

5
N

2
; 1239.5 H

5
N

2
-18; 892.3 H

4
N; 

651.7 H
4
N

3
-9; 570.8 H

3
N

3
-9; 388.2 HN-18

0.2%  

924.5 [M+2Na]+ 24.4 1622.4 H
6
N

3
; 1501.4 H

4
N

4
; 1460.5 H

5
N

3
; 1442.5 H

5
N

3
-18; 

1424.4 H
5
N

3
-2x18; 1303.6 H

3
N

4
-2x18; 1298.6 H

4
N

3
; 

1280.6 H
4
N

3
-18; 1257.6 H

5
N

2
; 1239.5 H

5
N

2
-18; 1118.5 

H
3
N

3
-18; 1095.4 H

4
N

2
; 1077.6 H

4
N

2
-18; 1059.3 H

4
N

2
-2x18; 

915.4 H
3
N

2
-18; 892.2 H

4
N; 874.4 H

4
N-18; 843.4 H

5
N

4
; 

838.2 H
4
N-3x18; 822.9 H

6
N

3
; 813.7 H

6
N

3
-9; 762.4 H

4
N

4
; 

753.2 H
2
N

2
-18, H

4
N

4
-9; 741.9 H

5
N

3
; 735.2 H

2
N

2
-2x18; 

732.9 H
5
N

3
-9; 730.2 H

3
N; 712.3 H

3
N-18; 660.8 H

4
N

3
; 

640.3 H
5
N

2
; 570.3 H

3
N

3
; 568.3 H

2
N; 559.3 H

4
N

2
; 552.6 

H
3
N

3
-3x9;550.2 H

2
N-18; 406.2 HN; 388.2 HN-18; 347.2 

H
2
; 329.2 H

2
-18

2.5% Gal(b1-4)GlcNAc(b1-2)Man(α1-6)
[Gal(b1-4)GlcNAc(b1-2)][Gal(b1-4)
GlcNAc(b1-4)]Man(α1-3)]Man(b1-4)
GlcNAc [9,34-36]

924.5 [M+2Na]+ 25.7 1604.5 H
6
N

3
-18; 1442.4 H

5
N

3
-18; 1257.4 H

5
N

2
; 1239.2 

H
5
N

2
-18; 1095.4 H

4
N

2
; 1077.5 H

4
N

2
-18; 892.5 H

4
N 874.4 

H
4
N-18; 822.8 H

6
N

3
; 753.3 H

2
N

2
-18; 730.3 H

3
N; 550.2 

H
4
N

2
; 388.2 HN-18

0.2% Gal(b1-4)GlcNAc(b1-3)Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)[Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [9,34-36]

H
7
N

5
1107.0 [M+2Na]2+ 25.9 1825.7 H

6
N

3
; 1807.6 H

6
N

3
-18; 1663.6/843.4 H

5
N

4
; 

1627.5 H
5
N

4
-2x18; 1622.6/822.7 H

6
N

3
; 1501.9 H

4
N

4
; 

1460.6/741.7 H
5
N

3
; 1442.5 H

5
N

3
-18; 1298.5 H

4
N

3
; 

1257.7 H
5
N

2
; 1239.5/631.4 H

5
N

2
-18; 1095.5 H

4
N

2
; 1077.4 

H
4
N

2
-18; 1059.3 H

4
N

2
-2x18; 1016.9 H

6
N

5
-9; 1005.3 H

7
N

4
; 

933.4/478.1 H
3
N

2
; 924.3 H

6
N

4
; 915.4 H

6
N

4
-9; 813.8 

H
6
N

3
-9; 804.8 H

6
N

3
-2x9; 771.1 H

2
N

2
; 753.3 H

2
N

2
-18; 

550.4 H
2
N-18; 388.2 HN-18 

0.2% Gal(b1-4)GlcNAc(b1-6)][Gal(b1-4)
GlcNAc(b1-2)]Man(α1-6)[[Gal(b1-4)
GlcNAc(b1-4)][Gal(b1-4)GlcNAc(b1-
2)]Man(α1-3)]Man(b1-4)GlcNAc 
[9,34,36]
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O
th

er
 g

ly
ca

n
s

H
2

365.1 [M+Na]+ 3.0 203.0 H 1.4%  

4.6 203.0 H 0.1%  

5.6 203.0 H; 185.0 H-18 30.4%  

7.1 203.1 H; 185.1 H-18 0.5%  

9.0 203.1 H; 185.0 H-18 2.3%  

HN 406.3 [M+Na]+ 5.3 226.1 N; 203.0 H; 185.0 H-18 1.8%  

H
3

527.3 [M+Na]+ 3.8 365.1 H
2
, 3471,1 H

2
-18; 202.9 H 0.2%  

6.5 365.2 H
2
; 347.1 H

2
-18; 203.0 H; 185.0 H-18 1.1%  

7.5 365.1 H
2
; 347.2 H

2
-18; 203.1 H 0.2%  

14.0 365.2 H
2
; 347.2 H

2
-18; 185.0 H-18 0.3%  

15.4 365.1 H
2
; 347.2 H

2
-18; 203.0 H; 184.8 H-18 1.3%  

16.5 365.2 H
2
; 347.1 H

2
-18; 202.9 H; 185.0 H-18 0.3%  

19.2 365.2 H
2
; 347.0 H

2
-18; 203.0 H 0.2%  

H
4

689.4 [M+Na]+ 22.1 527.1 H
3
; 509.2 H

3
-18; 347.2 H

2
-18; 203.0 H 0.1%  

527.2 H
3
; 509.2 H

3
-18; 365.3 H

2
; 347.2 H

2
-18; 203.1 H 0.4%  

HF 349.2 [M+Na]+ 2.9 0.2%  

  4.6 0.4%  

H
2
F 511.3 [M+Na]+ 4.6 365.2 H

2
, 347.2 H

2
-18; 203.1 H; 185.1 H-18 4.2% Fuc{Gal(b1-4)Glc [37,46,47,56]

H
2
N 568.3 [M+Na]+ 6.2 0.3%  

H
3
N 730.4 [M+Na]+ 9.0 550.2 H

2
N; 406.2 HN; 388.2 HN-18 0.5%  

14.8 568.2 H
2
N; 550.3 H

2
N-18; 406.2 HN; 388.2 HN-18; 203.1 H 3.2%  

H
2
NF 714.4 [M+Na]+ 3.8 568.3 H

2
N; 550.4 H

2
N-18; 406.2 HN; 388.2 HN-18; 226.1 

N; 203.0 H
0.9%  

HNF 552.3 [M+Na]+ 3.8 406.2 HN; 388.2 HN-18; 203.1 H 0.6% GalNAc(α1-3)[Fuc(α1-2)]Gal [37]

H
2
S 656.4

678.4
[M+Na]+

[M–H+2Na]+

25.3 476.1 HS-18; 365.3 H
2
; 347.2 H

2
-18; 314.3 S-18; 202.9 H 1.4% NeuAc(α2-3)Gal(b1-4)Glc [37,50]

HNS 697.4
719.4

[M+Na]+

[M-H+2Na]+

23.5 516.2 HS; 336.1 S-18 0.2% NeuAc(α2-6)Gal(b1-4)GlcNAc [37,50]

[M+Na]+

[M–H+2Na]+

25.0 539.1 NS-18; 406.5 HN; 226.0 N 0.4%  

H
5
N

3
S 887.8 [M+2Na]2+ 20.7   0.2%  

HNX 584.3/
606.5

[M+Na]+

[M–H+2Na]+

20.6   0.4%  

Table S5-3. continued

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Rel. area

Proposed structureU2
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O
th

er
 g

ly
ca

n
s

H
2

365.1 [M+Na]+ 3.0 203.0 H 1.4%  

4.6 203.0 H 0.1%  

5.6 203.0 H; 185.0 H-18 30.4%  

7.1 203.1 H; 185.1 H-18 0.5%  

9.0 203.1 H; 185.0 H-18 2.3%  

HN 406.3 [M+Na]+ 5.3 226.1 N; 203.0 H; 185.0 H-18 1.8%  

H
3

527.3 [M+Na]+ 3.8 365.1 H
2
, 3471,1 H

2
-18; 202.9 H 0.2%  

6.5 365.2 H
2
; 347.1 H

2
-18; 203.0 H; 185.0 H-18 1.1%  

7.5 365.1 H
2
; 347.2 H

2
-18; 203.1 H 0.2%  

14.0 365.2 H
2
; 347.2 H

2
-18; 185.0 H-18 0.3%  

15.4 365.1 H
2
; 347.2 H

2
-18; 203.0 H; 184.8 H-18 1.3%  

16.5 365.2 H
2
; 347.1 H

2
-18; 202.9 H; 185.0 H-18 0.3%  

19.2 365.2 H
2
; 347.0 H

2
-18; 203.0 H 0.2%  

H
4

689.4 [M+Na]+ 22.1 527.1 H
3
; 509.2 H

3
-18; 347.2 H

2
-18; 203.0 H 0.1%  

527.2 H
3
; 509.2 H

3
-18; 365.3 H

2
; 347.2 H

2
-18; 203.1 H 0.4%  

HF 349.2 [M+Na]+ 2.9 0.2%  

  4.6 0.4%  

H
2
F 511.3 [M+Na]+ 4.6 365.2 H

2
, 347.2 H

2
-18; 203.1 H; 185.1 H-18 4.2% Fuc{Gal(b1-4)Glc [37,46,47,56]

H
2
N 568.3 [M+Na]+ 6.2 0.3%  

H
3
N 730.4 [M+Na]+ 9.0 550.2 H

2
N; 406.2 HN; 388.2 HN-18 0.5%  

14.8 568.2 H
2
N; 550.3 H

2
N-18; 406.2 HN; 388.2 HN-18; 203.1 H 3.2%  

H
2
NF 714.4 [M+Na]+ 3.8 568.3 H

2
N; 550.4 H

2
N-18; 406.2 HN; 388.2 HN-18; 226.1 

N; 203.0 H
0.9%  

HNF 552.3 [M+Na]+ 3.8 406.2 HN; 388.2 HN-18; 203.1 H 0.6% GalNAc(α1-3)[Fuc(α1-2)]Gal [37]

H
2
S 656.4

678.4
[M+Na]+

[M–H+2Na]+

25.3 476.1 HS-18; 365.3 H
2
; 347.2 H

2
-18; 314.3 S-18; 202.9 H 1.4% NeuAc(α2-3)Gal(b1-4)Glc [37,50]

HNS 697.4
719.4

[M+Na]+

[M-H+2Na]+

23.5 516.2 HS; 336.1 S-18 0.2% NeuAc(α2-6)Gal(b1-4)GlcNAc [37,50]

[M+Na]+

[M–H+2Na]+

25.0 539.1 NS-18; 406.5 HN; 226.0 N 0.4%  

H
5
N

3
S 887.8 [M+2Na]2+ 20.7   0.2%  

HNX 584.3/
606.5

[M+Na]+

[M–H+2Na]+

20.6   0.4%  

Table S5-3. continued

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Rel. area

Proposed structureU2
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Table S5-4. Oligosaccharide species detected in the G
M2

-gangliosidosis samples U3 and U4. Comp., composition; 
Ret., retention.

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Relative Area

Proposed structureU3 U4

D
is

ea
se

 r
el

at
ed

 g
ly

ca
n

s

H
2
N

2
771.5 [M+Na]+ 10.3 568.3 H

2
N; 550.3 H

2
N-18; 406.1 HN; 388.1 

HN-18; 365.1 H
2
; 347.1 H

2
-18

  1.6% GlcNAc(b1-2)Man(α1-3)Man(b1-4)
GlcNAc [15,16,44]

771.5 [M+Na]+ 11.9 568.3 H
2
N; 550.3 H

2
N-18; 406.1 HN; 388.1 

HN-18; 365.1 H
2
; 347.1 H

2
N-18; 244.0 N; 

226.0 N-18

7.6% 6.0% GlcNAc(b1-2)Man(α1-6)Man(b1-4)
GlcNAc [15]

H
3
N

3
1136.5
580.0

[M+Na]+

[M+2Na]2+

15.1 933.4 H
3
N

2
; 915.3 H

3
N

2
-18; 771.5 H

2
N

2
; 730.4 

H
3
N; 712.3 H

3
N-18; 568.2 H

2
N; 550.2 H

2
N-18

0.6% 1.1% GlcNAc(b1-2)Man(α1-6)[GlcNAc(b1-2)
Man(α1-3)]Man(b1-4)GlcNAc [15,16,44]

1136.5
580.0

[M+Na]+

[M+2Na]2+

16.8 933.4 H
3
N

2
; 915.3 H

3
N

2
-18; 730.5 H

3
N; 712.4 

H
3
N-18; 550.3 H

2
N-18

3.6% 1.3%  

1136.5
580.0

[M+Na]+

[M+2Na]2+

18.1 933.5 H
3
N

2
; 915.3 H

3
N

2
-18; 730.5 H

3
N; 712.3 

H
3
N-18; 568.3 H

2
N; 550.2 H

2
N-18; 347.1 H

2
-18

3.8% 5.8%  

H
3
N

4
681.2 [M+2Na]2+ 10.0 0.4%  

1339.4
681.2

[M+Na]+

[M+2Na]2+

12.9 1136.4 H
3
N

3
; 1118.5 H

3
N

3
-18; 974.6 H

2
N

3
; 

933.3 H
3
N

2
; 915.4 H

3
N

2
-18; 730.6 H

3
N; 712.3 

H
3
N-18; 568.4 H

2
N; 550.4 H

2
N-18; 532.3 

H
2
N-2x18; 406.1 HN; 387.9 HN-18

5.5% GlcNAc(b1-2)Man(α1-6)[GlcNAc(b1-2)
[GlcNAc(b1-4)]Man(α1-3)]Man(b1-4)
GlcNAc [44,44,60]

681.2 [M+2Na]2+ 14.0 1136.4/579.8 H
3
N

3
; 1118.5/570.9 H

3
N

3
-18; 

974.3 H
2
N

3
; 933.4/478.2 H

3
N

2
; 915.3 

H
3
N

2
-18; 897.4 H

3
N

2
-2x18; 771.3 H

2
N

2
; 753.4 

H
2
N

2
-18; 712.2 H

3
N-18; 591.4 HN

2
-18; 568.4 

H
2
N; 388.2 HN-18; 244.0 N; 226.0 N-18

7.1% 15.5% GlcNAc(b1-2)[GlcNAc(b1-4)]Man(α1-6)
[GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [15]

681.2 [M+2Na]2+ 17.5 1136.4/579.8 H
3
N

3
; 1118.4/570.8 H

3
N

3
-18; 

974.3 H
2
N

3
; 933.3/478.2 H

3
N

2
; 915.3/469.2 

H
3
N

2
-18; 771.5 H

2
N

2
; 730.4 H

3
N; 591.3 

HN
2
-18; 489.7 H

2
N

3
-9; 388.1 HN-18; 364.8 

H
2
; 347.1 H

2
-18; 226.0 N-18

1.7%  

1339.4
681.2

[M+Na]+

[M+2Na]2+

20.0 1136.4 H
3
N

3
; 1118.5 H

3
N

3
-18; 974.3 H

2
N

3
; 

933.4 H
3
N

2
; 915.3 H

3
N

2
-18; 897.4 H

3
N

2
-2x18; 

771.3 H
2
N

2
; 753.4 H

2
N

2
-18; 712.2 H

3
N-18; 

591.4 HN
2
-18; 568.4 H

2
N; 388.2 HN-18; 

244.0 N; 226.0 N-18

0.1%  

H
2
N

3
974.6 [M+Na]+ 1.1 771.4 H

2
N

2
; 753.4 H

2
N

2
-18; 609.4 HN

2
; 568.3 

H
2
N; 550.3 H

2
N-18; 365.0 H

2
; 347.1 H

2
-18

1.3% 1.2% GlcNAc(b1-2)Man(α1-3)[GlcNAc(b1-4)]
Man(b1-4)GlcNAc [16,44]
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Table S5-4. Oligosaccharide species detected in the G
M2

-gangliosidosis samples U3 and U4. Comp., composition; 
Ret., retention.

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Relative Area

Proposed structureU3 U4

D
is

ea
se

 r
el

at
ed

 g
ly

ca
n

s

H
2
N

2
771.5 [M+Na]+ 10.3 568.3 H

2
N; 550.3 H

2
N-18; 406.1 HN; 388.1 

HN-18; 365.1 H
2
; 347.1 H

2
-18

  1.6% GlcNAc(b1-2)Man(α1-3)Man(b1-4)
GlcNAc [15,16,44]

771.5 [M+Na]+ 11.9 568.3 H
2
N; 550.3 H

2
N-18; 406.1 HN; 388.1 

HN-18; 365.1 H
2
; 347.1 H

2
N-18; 244.0 N; 

226.0 N-18

7.6% 6.0% GlcNAc(b1-2)Man(α1-6)Man(b1-4)
GlcNAc [15]

H
3
N

3
1136.5
580.0

[M+Na]+

[M+2Na]2+

15.1 933.4 H
3
N

2
; 915.3 H

3
N

2
-18; 771.5 H

2
N

2
; 730.4 

H
3
N; 712.3 H

3
N-18; 568.2 H

2
N; 550.2 H

2
N-18

0.6% 1.1% GlcNAc(b1-2)Man(α1-6)[GlcNAc(b1-2)
Man(α1-3)]Man(b1-4)GlcNAc [15,16,44]

1136.5
580.0

[M+Na]+

[M+2Na]2+

16.8 933.4 H
3
N

2
; 915.3 H

3
N

2
-18; 730.5 H

3
N; 712.4 

H
3
N-18; 550.3 H

2
N-18

3.6% 1.3%  

1136.5
580.0

[M+Na]+

[M+2Na]2+

18.1 933.5 H
3
N

2
; 915.3 H

3
N

2
-18; 730.5 H

3
N; 712.3 

H
3
N-18; 568.3 H

2
N; 550.2 H

2
N-18; 347.1 H

2
-18

3.8% 5.8%  

H
3
N

4
681.2 [M+2Na]2+ 10.0 0.4%  

1339.4
681.2

[M+Na]+

[M+2Na]2+

12.9 1136.4 H
3
N

3
; 1118.5 H

3
N

3
-18; 974.6 H

2
N

3
; 

933.3 H
3
N

2
; 915.4 H

3
N

2
-18; 730.6 H

3
N; 712.3 

H
3
N-18; 568.4 H

2
N; 550.4 H

2
N-18; 532.3 

H
2
N-2x18; 406.1 HN; 387.9 HN-18

5.5% GlcNAc(b1-2)Man(α1-6)[GlcNAc(b1-2)
[GlcNAc(b1-4)]Man(α1-3)]Man(b1-4)
GlcNAc [44,44,60]

681.2 [M+2Na]2+ 14.0 1136.4/579.8 H
3
N

3
; 1118.5/570.9 H

3
N

3
-18; 

974.3 H
2
N

3
; 933.4/478.2 H

3
N

2
; 915.3 

H
3
N

2
-18; 897.4 H

3
N

2
-2x18; 771.3 H

2
N

2
; 753.4 

H
2
N

2
-18; 712.2 H

3
N-18; 591.4 HN

2
-18; 568.4 

H
2
N; 388.2 HN-18; 244.0 N; 226.0 N-18

7.1% 15.5% GlcNAc(b1-2)[GlcNAc(b1-4)]Man(α1-6)
[GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [15]

681.2 [M+2Na]2+ 17.5 1136.4/579.8 H
3
N

3
; 1118.4/570.8 H

3
N

3
-18; 

974.3 H
2
N

3
; 933.3/478.2 H

3
N

2
; 915.3/469.2 

H
3
N

2
-18; 771.5 H

2
N

2
; 730.4 H

3
N; 591.3 

HN
2
-18; 489.7 H

2
N

3
-9; 388.1 HN-18; 364.8 

H
2
; 347.1 H

2
-18; 226.0 N-18

1.7%  

1339.4
681.2

[M+Na]+

[M+2Na]2+

20.0 1136.4 H
3
N

3
; 1118.5 H

3
N

3
-18; 974.3 H

2
N

3
; 

933.4 H
3
N

2
; 915.3 H

3
N

2
-18; 897.4 H

3
N

2
-2x18; 

771.3 H
2
N

2
; 753.4 H

2
N

2
-18; 712.2 H

3
N-18; 

591.4 HN
2
-18; 568.4 H

2
N; 388.2 HN-18; 

244.0 N; 226.0 N-18

0.1%  

H
2
N

3
974.6 [M+Na]+ 1.1 771.4 H

2
N

2
; 753.4 H

2
N

2
-18; 609.4 HN

2
; 568.3 

H
2
N; 550.3 H

2
N-18; 365.0 H

2
; 347.1 H

2
-18

1.3% 1.2% GlcNAc(b1-2)Man(α1-3)[GlcNAc(b1-4)]
Man(b1-4)GlcNAc [16,44]

119

URINARY OLIGOSACCHARIDES IN LYSOSOMAL STORAGE DISORDERS. SUPPLEMENTARY MATERIAL



O
th

er
 g

ly
ca

n
s

H
2

365.2 [M+Na]+ 7.8 203.0 H   0.3%  

9.4 203.0 H; 185.0 H-18 47.0% 30.3%

11.3 203.0 H; 185.0 H-18   0.8%

HN 406.2 [M+Na]+ 8.8 244.0 N; 226.0 N-18; 203.0 H; 185.2 H-18 3.6% 2.5%  

H
3

527.3 [M+Na]+ 7.8     0.2%  

11.1 365.1 H
2
; 347.0 H

2
-18; 185.2 H-18 1.6% 0.8%

12.1 365.0 H
2
; 347.0 H

2
-18; 203.1 H; 184.9 H-18 0.7% 1.3%

14.2 0.8% 0.5%

16.2 365.1 H
2
; 347.0 H

2
-18; 203.0 H; 185.1 H-18 0.4% 1.4%

18.7 365.1 H
2
; 203.0 H; 185.0 H-18 0.7% 0.7%

23.1 365.1 H
2
; 347.0 H

2
-18; 202.9 H; 185.0 H-18 2.0% 0.7%

H
4

689.5 [M+Na]+ 22.7 527.2 H
3
; 509.2 H

3
-18; 365.0 H

2
; 347.0 H

2
-18; 

203.0 H
0.7% 0.3%  

23.2 527.2 H
3
; 509.3 H

3
-18; 365.0 H

2
; 347.0 H

2
-18 1.5% 0.4%

HF 349.2 [M+Na]+ 8.8 203.0 H; 185.1 H-18; 169.1 F-18 0.7% 15.5%  

H
2
F 511.3 [M+Na]+ 9.8 365.1 H

2
; 347.1 H

2
-18; 330.8 HF-18 0.6% 0.7%  

NF 390.2 [M+Na]+ 8.3 0.2%  

H
2
N 568.4 [M+Na]+ 9.7 347.1 H

2
-18 0.9% 1.7%  

11.9 0.1%

H
3
N 730.4 [M+Na]+ 9.3 0.4% 0.5%  

H
4
N 892.4 [M+Na]+ 9.8 0.3% 0.3%  

H
5
N 1054.5 [M+Na]+ 11.0 0.2%  

H
2
NF 714.5 [M+Na]+ 9.4 568.4 H

2
N; 552.4 HNF; 550.3 H

2
N-18; 534.3 

HNF-18; 406.2 HN; 389.9 NF; 388.1 HN-18; 
372.1 NF-18; 365.1 H

2
; 244.1 N; 203.0 H

0.6% 0.8%  

H
2
NF

2
860.4 [M+Na]+ 7.6 0.2% 0.1%  

HNF 552.5 [M+Na]+ 8.8 406.1 HN; 388.1 HN-18; 226.0 N-18; 207.8 
N-2x18; 203.0 H; 185.1 H-18

0.5% 0.2%  

H
2
S 656.5

678.5
[M+Na]+

[M–H+2Na]+

23.8 498.2 HS-18; 364.8 H
2
; 336.0 S-18 2.3% 2.2%  

N
2
S 738.4

760.3
[M+Na]+

[M–H+2Na]+

25.1   0.1% 0.1%  

HNS 719.4 [M–H+2Na]+ 23.5 516.2 HS; 498.3 HS-18; 406.0 HN; 388.1 
HN-18; 353.9 S; 336.0 S-18

1.6% 1.5% NeuAc(α2-6)Gal(b1-4)GlcNAc [37,50]

HNSF 865.4 [M–H+2Na]+ 22.3   0.2%  

865.4 [M–H+2Na]+ 24.3   0.1%

HS 516.4 [M–H+2Na]+ 23.8 353.7 S; 335.9 S-18 0.2% 0.4%  

HX 381.2
403.2

[M+Na]+

[M–H+2Na]+

20.4 240.9 X; 203.0 H   3.6% Gal(b1-4)GluconA [26]

Table S5-4. continued

Comp.
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m/z Charge state Ret. time (min) Fragment ions

Relative Area

Proposed structureU3 U4
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n
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H
2

365.2 [M+Na]+ 7.8 203.0 H   0.3%  

9.4 203.0 H; 185.0 H-18 47.0% 30.3%

11.3 203.0 H; 185.0 H-18   0.8%

HN 406.2 [M+Na]+ 8.8 244.0 N; 226.0 N-18; 203.0 H; 185.2 H-18 3.6% 2.5%  

H
3

527.3 [M+Na]+ 7.8     0.2%  

11.1 365.1 H
2
; 347.0 H

2
-18; 185.2 H-18 1.6% 0.8%

12.1 365.0 H
2
; 347.0 H

2
-18; 203.1 H; 184.9 H-18 0.7% 1.3%

14.2 0.8% 0.5%

16.2 365.1 H
2
; 347.0 H

2
-18; 203.0 H; 185.1 H-18 0.4% 1.4%

18.7 365.1 H
2
; 203.0 H; 185.0 H-18 0.7% 0.7%

23.1 365.1 H
2
; 347.0 H

2
-18; 202.9 H; 185.0 H-18 2.0% 0.7%

H
4

689.5 [M+Na]+ 22.7 527.2 H
3
; 509.2 H

3
-18; 365.0 H

2
; 347.0 H

2
-18; 

203.0 H
0.7% 0.3%  

23.2 527.2 H
3
; 509.3 H

3
-18; 365.0 H

2
; 347.0 H

2
-18 1.5% 0.4%

HF 349.2 [M+Na]+ 8.8 203.0 H; 185.1 H-18; 169.1 F-18 0.7% 15.5%  

H
2
F 511.3 [M+Na]+ 9.8 365.1 H

2
; 347.1 H

2
-18; 330.8 HF-18 0.6% 0.7%  

NF 390.2 [M+Na]+ 8.3 0.2%  

H
2
N 568.4 [M+Na]+ 9.7 347.1 H

2
-18 0.9% 1.7%  

11.9 0.1%

H
3
N 730.4 [M+Na]+ 9.3 0.4% 0.5%  

H
4
N 892.4 [M+Na]+ 9.8 0.3% 0.3%  

H
5
N 1054.5 [M+Na]+ 11.0 0.2%  

H
2
NF 714.5 [M+Na]+ 9.4 568.4 H

2
N; 552.4 HNF; 550.3 H

2
N-18; 534.3 

HNF-18; 406.2 HN; 389.9 NF; 388.1 HN-18; 
372.1 NF-18; 365.1 H

2
; 244.1 N; 203.0 H

0.6% 0.8%  

H
2
NF

2
860.4 [M+Na]+ 7.6 0.2% 0.1%  

HNF 552.5 [M+Na]+ 8.8 406.1 HN; 388.1 HN-18; 226.0 N-18; 207.8 
N-2x18; 203.0 H; 185.1 H-18

0.5% 0.2%  

H
2
S 656.5

678.5
[M+Na]+

[M–H+2Na]+

23.8 498.2 HS-18; 364.8 H
2
; 336.0 S-18 2.3% 2.2%  

N
2
S 738.4

760.3
[M+Na]+

[M–H+2Na]+

25.1   0.1% 0.1%  

HNS 719.4 [M–H+2Na]+ 23.5 516.2 HS; 498.3 HS-18; 406.0 HN; 388.1 
HN-18; 353.9 S; 336.0 S-18

1.6% 1.5% NeuAc(α2-6)Gal(b1-4)GlcNAc [37,50]

HNSF 865.4 [M–H+2Na]+ 22.3   0.2%  

865.4 [M–H+2Na]+ 24.3   0.1%

HS 516.4 [M–H+2Na]+ 23.8 353.7 S; 335.9 S-18 0.2% 0.4%  

HX 381.2
403.2

[M+Na]+

[M–H+2Na]+

20.4 240.9 X; 203.0 H   3.6% Gal(b1-4)GluconA [26]

Table S5-4. continued
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Relative Area
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Table S5-5. Oligosaccharide species detected in the sialidosis samples. Comp., composition; Ret., retention; Rel. 
area., relative area.

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Rel. area

Proposed structureU8

D
is

ea
se

 r
el

at
ed

 g
ly

ca
n

s

HNS 697.6
719.5

[M+Na]+

[M–H+2Na]+

21.3 516.2 HS; 498.2 HS-18; 406.1 HN; 388.1 HN-18; 354.0 S; 
336.1 S-18; 318.0 S-2x18; 226.0 N-18

2.7% NeuAc(α2-6)Gal(b1-4)GlcNAc 
[37,50]

H
3
N

2
S 1224.5

1246.8
624.1
635.1

[M+Na]+

[M–H+2Na]+

[M+2Na]2+

[M–H+3Na]2+

21.8 1043.4/533.3 H
3
NS; 1025.4/524.3 H

3
NS-18; 933.4/477.9 

H
3
N

2
; 915.4 H

3
N

2
-18; 881.5/452.3 H

2
NS; 863.3/443.0 

H
2
NS-18; 771.4 H

2
N

2
; 753.5 H

2
N

2
-18; 730.4 H

3
N; 712.5 

H
3
N-18; 719.4 HNS; 701.4 HNS-18; 568.4 H

2
N; 550.2 

H
2
N-18; 516.3 HS; 498.3 HS-18; 406.1 HN; 388.1 HN-18; 

365.0 H
2
; 347.3 H

2
-18; 354.0 S; 336.0 S-18; 243.9 N; 226.0 

N-18; 208.0 N-2x18; 203.1 H; 185.0 H-18

18.7% Neu5Ac(α2-3)Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)Man(b1-4)
GlcNAc [38-40]

H
5
N

3
S 887.6

898.3
[M+2Na]2+

[M–H+3Na]2+

23.7 1460.5 H
5
N

3
; 1442.6 H

5
N

3
-18; 1408.6 H

4
N

2
S; 1390.3 

H
4
N

2
S-18; 1257.6 H

5
N

2
; 1095.5 H

4
N

2
; 1077.6 H

4
N

2
-18; 

1025.2 H
3
NS-18; 915.4 H

3
N

2
-18; 892.2 H

4
N; 881.3 H

2
NS; 

797.4 H
4
N

3
S-9; 796.9 H

5
N

2
S; 771.5 H

2
N

2
; 694.5 H

3
N-2x18; 

640.5 H
5
N

2
; 605.0 H

4
NS-9; 568.2 H

2
N; 541.0 H

4
N

2
-2x9; 

388.2 HN-18; 336.1/314.0 S-18

3.2% Neu5Ac(α2-3/6)Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)[Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [38,39]

H
5
N

3
S

2
1033.1
1044.1
1055.1

[M+2Na]2+

[M–H+3Na]2+

[M–2H+4Na]2+

29.1 1773.4/898.5 H
5
N

3
S; 1733.1/1755.3/889.4 H

5
N

3
S-18; 

1571.4/797.5 H
4
N

3
S-18; 1570.5 H

5
N

2
S; 1460.2/741.9 H

5
N

3
; 

1408.4 H
4
N

2
S; 1368.8 H

4
N

2
S-18; 1095.5 H

4
N

2
; 953.4 

H
5
N

2
S

2
; 915.5 H

3
N

2
-18; 892.1 H

4
N; 701.2 HNS-18; 694.4 

H
3
N-2x18; 605.3 H

4
NS-9; 596.1 H

4
NS-2x9; 313.9 S

8.7% Neu5Ac(α2-3/6)Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)
[Neu5Ac(α2-3/6)Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [38-40]

H
6
N

4
S

2
1237.4 [M–2H+4Na]2+ 28.8   0.0%  

H
3
SO

3
N

2
S 1304.3

1348.2
664.0
674.5
685.8

[M+Na]+

[M–2H+3Na]+

[M+2Na]2+

[M-H+3Na]2+

[M-2H+4Na]2+

21.8 933.5 H
3
(SO

3
)N

2
; 701.4 H(SO

3
)NS-18; 645.6/634.9 H

3
N

2
S; 

634.5 H
2
(SO

3
)N; 516.3 H(SO

3
)S; 196.0 HN 

2.4% Neu5Ac(α2-3)Gal(6SO3)(b1-4)
GlcNAc(b1-2)Man(α1-3/6)
Man(b1-4)GlcNAc [26]

H
5
SO

3
N

3
S 1854.3

1876.3
927.2
938.3
949.4

[M-H+2Na]+

[M-2H+3Na]+

[M+2Na]2+

[M-H+3Na]2+

M-2H+4Na]2+

22.0   0.9% Neu5Ac, SO3(6){Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)[Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [26]

H
5
SO

3
N

3
S

2
2166.6
1083.8

[M-2H+3Na]+

[M–H+3Na]2+

33.8   1.0% 2xNeu5Ac, SO3(6){Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)[Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [26]
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Table S5-5. Oligosaccharide species detected in the sialidosis samples. Comp., composition; Ret., retention; Rel. 
area., relative area.

Comp.
Registered

m/z Charge state Ret. time (min) Fragment ions

Rel. area

Proposed structureU8

D
is

ea
se

 r
el

at
ed

 g
ly

ca
n

s

HNS 697.6
719.5

[M+Na]+

[M–H+2Na]+

21.3 516.2 HS; 498.2 HS-18; 406.1 HN; 388.1 HN-18; 354.0 S; 
336.1 S-18; 318.0 S-2x18; 226.0 N-18

2.7% NeuAc(α2-6)Gal(b1-4)GlcNAc 
[37,50]

H
3
N

2
S 1224.5

1246.8
624.1
635.1

[M+Na]+

[M–H+2Na]+

[M+2Na]2+

[M–H+3Na]2+

21.8 1043.4/533.3 H
3
NS; 1025.4/524.3 H

3
NS-18; 933.4/477.9 

H
3
N

2
; 915.4 H

3
N

2
-18; 881.5/452.3 H

2
NS; 863.3/443.0 

H
2
NS-18; 771.4 H

2
N

2
; 753.5 H

2
N

2
-18; 730.4 H

3
N; 712.5 

H
3
N-18; 719.4 HNS; 701.4 HNS-18; 568.4 H

2
N; 550.2 

H
2
N-18; 516.3 HS; 498.3 HS-18; 406.1 HN; 388.1 HN-18; 

365.0 H
2
; 347.3 H

2
-18; 354.0 S; 336.0 S-18; 243.9 N; 226.0 

N-18; 208.0 N-2x18; 203.1 H; 185.0 H-18

18.7% Neu5Ac(α2-3)Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)Man(b1-4)
GlcNAc [38-40]

H
5
N

3
S 887.6

898.3
[M+2Na]2+

[M–H+3Na]2+

23.7 1460.5 H
5
N

3
; 1442.6 H

5
N

3
-18; 1408.6 H

4
N

2
S; 1390.3 

H
4
N

2
S-18; 1257.6 H

5
N

2
; 1095.5 H

4
N

2
; 1077.6 H

4
N

2
-18; 

1025.2 H
3
NS-18; 915.4 H

3
N

2
-18; 892.2 H

4
N; 881.3 H

2
NS; 

797.4 H
4
N

3
S-9; 796.9 H

5
N

2
S; 771.5 H

2
N

2
; 694.5 H

3
N-2x18; 

640.5 H
5
N

2
; 605.0 H

4
NS-9; 568.2 H

2
N; 541.0 H

4
N

2
-2x9; 

388.2 HN-18; 336.1/314.0 S-18

3.2% Neu5Ac(α2-3/6)Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)[Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [38,39]

H
5
N

3
S

2
1033.1
1044.1
1055.1

[M+2Na]2+

[M–H+3Na]2+

[M–2H+4Na]2+

29.1 1773.4/898.5 H
5
N

3
S; 1733.1/1755.3/889.4 H

5
N

3
S-18; 

1571.4/797.5 H
4
N

3
S-18; 1570.5 H

5
N

2
S; 1460.2/741.9 H

5
N

3
; 

1408.4 H
4
N

2
S; 1368.8 H

4
N

2
S-18; 1095.5 H

4
N

2
; 953.4 

H
5
N

2
S

2
; 915.5 H

3
N

2
-18; 892.1 H

4
N; 701.2 HNS-18; 694.4 

H
3
N-2x18; 605.3 H

4
NS-9; 596.1 H

4
NS-2x9; 313.9 S

8.7% Neu5Ac(α2-3/6)Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)
[Neu5Ac(α2-3/6)Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [38-40]

H
6
N

4
S

2
1237.4 [M–2H+4Na]2+ 28.8   0.0%  

H
3
SO

3
N

2
S 1304.3

1348.2
664.0
674.5
685.8

[M+Na]+

[M–2H+3Na]+

[M+2Na]2+

[M-H+3Na]2+

[M-2H+4Na]2+

21.8 933.5 H
3
(SO

3
)N

2
; 701.4 H(SO

3
)NS-18; 645.6/634.9 H

3
N

2
S; 

634.5 H
2
(SO

3
)N; 516.3 H(SO

3
)S; 196.0 HN 

2.4% Neu5Ac(α2-3)Gal(6SO3)(b1-4)
GlcNAc(b1-2)Man(α1-3/6)
Man(b1-4)GlcNAc [26]

H
5
SO

3
N

3
S 1854.3

1876.3
927.2
938.3
949.4

[M-H+2Na]+

[M-2H+3Na]+

[M+2Na]2+

[M-H+3Na]2+

M-2H+4Na]2+

22.0   0.9% Neu5Ac, SO3(6){Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)[Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [26]

H
5
SO

3
N

3
S

2
2166.6
1083.8

[M-2H+3Na]+

[M–H+3Na]2+

33.8   1.0% 2xNeu5Ac, SO3(6){Gal(b1-4)
GlcNAc(b1-2)Man(α1-6)[Gal(b1-4)
GlcNAc(b1-2)Man(α1-3)]Man(b1-4)
GlcNAc [26]
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O
th

er
 g

ly
ca

n
s

H
2

365.2 [M+Na]+ 6.2 203.0 H 1.5%  

  7.4 203.0 H;185.1 H-18 18.9%  

  8.7 202.9 H;185.1 H-18 3.5%  

  10.2 203.0 H;185.0 H-18 2.4%  

  13.5 203.0 H;185.1 H-18 0.3%  

HS 516.3 [M–H+2Na]+ 21.7   1.0%  

H
3

527.3 [M+Na]+ 8.9 365.2 H
2
; 347.1 H

2
-18; 203.1 H; 185.0 H-18 3.2%  

  13.5 365.1 H
2
; 347.0 H

2
-18; 203.1 H; 185.1 H-18 0.3%  

  18.2 365.1 H
2
; 347.0 H

2
-18; 203.1 H; 185.1 H-18 0.6%  

  20.8   0.6%  

  22.5 365.1 H
2
; 347.1 H

2
-18; 203.1 H; 185.0 H-18 0.9%  

  28.1   0.7%  

H
4

689.5 [M+Na]+ 19.4   0.0%  

  21.2 527.3 H
3
; 509.3 H

3
-18; 365.0 H

2
; 347.0 H

2
-18; 203.0 H 2.8%  

HN 406.2 [M+Na]+ 7.4 244.0 N; 226.0 N-18; 203.0 H; 185.1 H-18 5.4%  

H
2
N 568.5 [M+Na]+ 7.5 365 H

2
; 347.0 H

2
-18; 244.2 N 1.1%  

H
3
N 730.6 [M+Na]+ 8.5 568.4 H

2
N; 550.2 H

2
N-18; 527.4 H

3
; 509.3 H

3
-18; 406.0 

HN; 388.2 HN-18; 364.9 H
2
; 347.0 H

2
-18

1.3%  

  12.1 568.3 H
2
N; 550.3 H

2
N-18; 509.3 H

3
-18; 406.1 HN; 388.1 

HN-18; 365.1 H
2
; 347.2 H

2
-18; 244.1 N; 226.0 N-18; 203.0 H

 

H
4
N 892.6 [M+Na]+ 10.3 730.4 H

3
N; 689.4 H

4
; 671.2 H

4
-18; 568.3 H

2
N; 550.3 

H
2
N-18; 509.4 H

3
-18; 406.0 HN; 347.1 H

2
-18

1.4%  

H
2
N

2
771.3 [M+Na]+ 9.9 388.1 HN-18 0.3%  

H
3
N

2
933.5
478.4

[M+Na]+

[M+2Na]2+

11.1 771.5 H
2
N

2
; 753.5 H

2
N

2
-18; 730.5 H

3
N; 712.4 H

3
N-18; 609.4 

HN
2
; 568.4 H

2
N; 550.3 H

2
N-18; 527.3 H

3
; 509.2 H

3
-18; 

406.2 HN; 388.2 HN-18; 365.1 H
2
; 347.2 H

2
-18

2.1%  

933.5
478.4

[M+Na]+

[M+2Na]2+

13.4 771.4 H
2
N

2
; 753.5 H

2
N

2
-18; 730.4 H

3
N; 712.4 H

3
N-18; 

568.4 H
2
N; 550.4 H

2
N-18; 509.4.3 H

3
-18; 406.1 HN; 388.2 

HN-18; 365.1 H
2
; 347.1 H

2
-18

4.4%  

H
5
N

3
742.0 [M+2Na]2+ 18.4 1298.5 H

4
N

3
; 1280.3/651.6 H

4
N

3
-18; 1257.4/640.2 H

5
N

2
; 1239.4 

H
5
N

2
-18;1095.4 H

4
N

2
; 1077.4/550.2 H

4
N

2
-18; 933.4 H

3
N

2
; 

694.4 H
3
N-2x18; 568.4 H

2
N; 550.2 H

2
N-18; 509.0 H

3
-18; 451.0 

H
3
N

2
-3x9; 388.1 HN-18; 329.0 H

2
-2x18; 226.0 N-18

0.3%  

H
2
S 656.5

678.5
[M+Na]+

[M–H+2Na]+

12.8   0.4%  

  21.8 516.3 HS; 498.2 HS-18; 480.1 HS-2x18; 365.0 H
2
; 

354.1/332.1 S; 336.0/313.9 S-18; 317.9/296.0 S-2x18
1.7%  

HF 349.2 [M+Na]+ 5.9   1.7%  

H
2
F 511.4 [M+Na]+ 7.0 365.1 H

2
; 349.1 HF; 347.1 H

2
-18; 331.1 HF-18; 203.0 H; 185.0 H-18 2.8% Fuc{Gal(b1-4)Glc [37,46,47]

NF 390.2 [M+Na]+ 6.5   0.3%  

HNF 552.5 [M+Na]+ 6.7 406.1 HN;388.2 HN-18; 349.1 HF; 243.9 N; 226.1 N-18; 
203.0 H

0.0% GalNAc(α1-3)[Fuc(α1-2)]Gal [37]

  7.0 406.1 HN; 390.2 NF; 388.2 HN-18; 372.0 NF-18; 226.0 
N-18; 203.0 H

1.2%

H
2
NF 714.5 [M+Na]+ 6.7 568.3 H

2
N; 552.1 HNF; 550.4 H

2
N-18; 534.3 HNF-18; 406.1 

HN; 388.2 HN-18; 372.1 NF-18; 226.1 N-18; 208.0 N-2x18; 
203.0 H 

1.1%  

Table S5-5. continued

Comp.
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H
2

365.2 [M+Na]+ 6.2 203.0 H 1.5%  

  7.4 203.0 H;185.1 H-18 18.9%  

  8.7 202.9 H;185.1 H-18 3.5%  

  10.2 203.0 H;185.0 H-18 2.4%  

  13.5 203.0 H;185.1 H-18 0.3%  

HS 516.3 [M–H+2Na]+ 21.7   1.0%  

H
3

527.3 [M+Na]+ 8.9 365.2 H
2
; 347.1 H

2
-18; 203.1 H; 185.0 H-18 3.2%  

  13.5 365.1 H
2
; 347.0 H

2
-18; 203.1 H; 185.1 H-18 0.3%  

  18.2 365.1 H
2
; 347.0 H

2
-18; 203.1 H; 185.1 H-18 0.6%  

  20.8   0.6%  

  22.5 365.1 H
2
; 347.1 H

2
-18; 203.1 H; 185.0 H-18 0.9%  

  28.1   0.7%  

H
4

689.5 [M+Na]+ 19.4   0.0%  

  21.2 527.3 H
3
; 509.3 H

3
-18; 365.0 H

2
; 347.0 H

2
-18; 203.0 H 2.8%  

HN 406.2 [M+Na]+ 7.4 244.0 N; 226.0 N-18; 203.0 H; 185.1 H-18 5.4%  

H
2
N 568.5 [M+Na]+ 7.5 365 H

2
; 347.0 H

2
-18; 244.2 N 1.1%  

H
3
N 730.6 [M+Na]+ 8.5 568.4 H

2
N; 550.2 H

2
N-18; 527.4 H

3
; 509.3 H

3
-18; 406.0 

HN; 388.2 HN-18; 364.9 H
2
; 347.0 H

2
-18

1.3%  

  12.1 568.3 H
2
N; 550.3 H

2
N-18; 509.3 H

3
-18; 406.1 HN; 388.1 

HN-18; 365.1 H
2
; 347.2 H

2
-18; 244.1 N; 226.0 N-18; 203.0 H

 

H
4
N 892.6 [M+Na]+ 10.3 730.4 H

3
N; 689.4 H

4
; 671.2 H

4
-18; 568.3 H

2
N; 550.3 

H
2
N-18; 509.4 H

3
-18; 406.0 HN; 347.1 H

2
-18

1.4%  

H
2
N

2
771.3 [M+Na]+ 9.9 388.1 HN-18 0.3%  

H
3
N

2
933.5
478.4

[M+Na]+

[M+2Na]2+

11.1 771.5 H
2
N

2
; 753.5 H

2
N

2
-18; 730.5 H

3
N; 712.4 H

3
N-18; 609.4 

HN
2
; 568.4 H

2
N; 550.3 H

2
N-18; 527.3 H

3
; 509.2 H

3
-18; 

406.2 HN; 388.2 HN-18; 365.1 H
2
; 347.2 H

2
-18

2.1%  

933.5
478.4

[M+Na]+

[M+2Na]2+

13.4 771.4 H
2
N

2
; 753.5 H

2
N

2
-18; 730.4 H

3
N; 712.4 H

3
N-18; 

568.4 H
2
N; 550.4 H

2
N-18; 509.4.3 H

3
-18; 406.1 HN; 388.2 

HN-18; 365.1 H
2
; 347.1 H

2
-18

4.4%  

H
5
N

3
742.0 [M+2Na]2+ 18.4 1298.5 H

4
N

3
; 1280.3/651.6 H

4
N

3
-18; 1257.4/640.2 H

5
N

2
; 1239.4 

H
5
N

2
-18;1095.4 H

4
N

2
; 1077.4/550.2 H

4
N

2
-18; 933.4 H

3
N

2
; 

694.4 H
3
N-2x18; 568.4 H

2
N; 550.2 H

2
N-18; 509.0 H

3
-18; 451.0 

H
3
N

2
-3x9; 388.1 HN-18; 329.0 H

2
-2x18; 226.0 N-18

0.3%  

H
2
S 656.5

678.5
[M+Na]+

[M–H+2Na]+

12.8   0.4%  

  21.8 516.3 HS; 498.2 HS-18; 480.1 HS-2x18; 365.0 H
2
; 

354.1/332.1 S; 336.0/313.9 S-18; 317.9/296.0 S-2x18
1.7%  

HF 349.2 [M+Na]+ 5.9   1.7%  

H
2
F 511.4 [M+Na]+ 7.0 365.1 H

2
; 349.1 HF; 347.1 H

2
-18; 331.1 HF-18; 203.0 H; 185.0 H-18 2.8% Fuc{Gal(b1-4)Glc [37,46,47]

NF 390.2 [M+Na]+ 6.5   0.3%  

HNF 552.5 [M+Na]+ 6.7 406.1 HN;388.2 HN-18; 349.1 HF; 243.9 N; 226.1 N-18; 
203.0 H

0.0% GalNAc(α1-3)[Fuc(α1-2)]Gal [37]

  7.0 406.1 HN; 390.2 NF; 388.2 HN-18; 372.0 NF-18; 226.0 
N-18; 203.0 H

1.2%

H
2
NF 714.5 [M+Na]+ 6.7 568.3 H

2
N; 552.1 HNF; 550.4 H

2
N-18; 534.3 HNF-18; 406.1 

HN; 388.2 HN-18; 372.1 NF-18; 226.1 N-18; 208.0 N-2x18; 
203.0 H 

1.1%  
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GENERAL DISCUSSION





6.1   LIQUID CHROMATOGRAPHY HYPHENATED TO 
MASS SPECTROMETRIC DETECTION

Glycoconjugates have different biological functions which often depend on the structure of 

the glycan part. Hence, for fully determining structure-function relationships the elucidation 

of the glycan structure is essential. Isomeric carbohydrates often have different biological 

functions too, and it is therefore critical to be able to distinguish between these forms, for 

example by separating them chromatographically prior to performing mass spectrometric 

analysis. Liquid chromatography is the technique most commonly used for separating 

carbohydrates, the major separation principles being reversed-phase chromatography 

(RPLC), porous-graphitized-carbon chromatography (PGC), hydrophilic interaction liquid 

chromatography (HILIC), ion-exchange chromatography (IEC), and high-performance anion-

exchange chromatography (HPAEC). Of these methods, RPLC, PGC and HILIC are well suitable 

for MS coupling, while MS coupling of IEC and HPAEC has so far not been straightforward. 

This thesis reports on major advances in HPAEC-PAD-MS with the successful development and 

application of the first capillary scale system (column 400 μm I.D.) with online desalting and 

online ESI-MS coupling suitable for high-sensitivity analysis of glycans. Together with the well-

established high separation power and selectivity of HPAEC, this has resulted in an attractive 

glycoanalytical tool which may be broadly applied in the future.

Several components of the system had to be adapted to fulfill the requirements of capillary 

HPAEC-PAD. The original amperometric detection cell was modified to minimize its void volume. 

The band dispersion, caused by the modified amperometric cell, was investigated by separating 

an inulin solution with an acetate gradient, and comparing its chromatographic resolution with 

that obtained by a standard HPAEC-PAD equipped with a narrow-bore column (2 mm I.D.). The 

obtained chromatograms from these two systems showed very similar band dispersion, indicating 

that the minimization of the void volume made the electrochemical detection cell suitable for 

capillary-scale use (Chapters 2 and 3). While with the narrow-bore system (chapter 2) a minimum 

detection limit (MDL) of 120 fmol was obtained, the capillary-scale setup resulted in an MDL of 22 

fmol (Chapter 3), indicating that the capillary-scale setup resulted in increased sensitivity when 

employing PAD detection. Finally, the modified amperometric cell proved to be appropriate for 

the sensitive detection of native carbohydrates in capillary-scale chromatography.

A bigger challenge than the PAD analysis was the development of a capillary desalter to 

make hyphenation of capillary HPAEC to MS possible. To enable an online setup, the desalter 

had to convert the eluting solution into an MS-compatible solvent. The challenge was to obtain 

enough desalting efficacy to remove from the solution the sodium ions – arising from sodium 

hydroxide and sodium acetate present in the applied eluents - without sacrificing too much 

of the obtained chromatographic resolution. The desalting capacity obtained was 225 mM 

Na+ at 10 μl/min flow rate (Chapter 3). This capacity is high enough to desalt eluents used for 

the elution of glycans with a maximum of three negative charges, e.g. three sialic acid groups 

contained in oligosaccharide structures (Chapter 4). The change in resolution caused by the 

developed desalter was determined by comparing the results of a gradient separation of an 

inulin solution with the capillary amperometric detection cell directly following the capillary 

column, with that of the same separation with the desalter installed between the column and 

the amperometric cell. This comparison demonstrated that the capillary-scale online desalter 
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only resulted in a minor loss of chromatographic resolution and was, therefore, suitable for MS 

coupling of capillary-scale HPAEC in oligosaccharide analysis (Chapter 3).

By downscaling the column dimension to 400 μm I.D. an important sensitivity gain was 

obtained in electrospray ionization and MS detection. This improved sensitivity can be essential 

for biomedical research. The minimum detection limit (MDL) obtained for underivatized glycans 

with capillary-scale HPAEC-MS was found to be 160 fmol using a conventional electrospray 

ionization source (Chapter 3), while nano-scale HILIC-MS approximately with an online-nano 

electrospray ionization source gives an MDL of 5 fmol [1]. This difference in MDL largely reflects 

the difference in column diameters (400 μm I.D. for HPAEC, 75 μm I.D. for HILIC) indicating that 

the sensitivity of HPAEC-MS and HILIC-MS might be similar if both techniques are performed 

with identical column dimensions, and identical mass spectrometric detectors.

The high pH of the eluent used in HPAEC causes a fast conversion of anomers, which suppresses 

anomer separation completely, resulting in an excellent peak performance [2]. PGC often separates 

anomeric forms [3], which phenomenon can interfere with the necessary resolution between 

different carbohydrates. This effect can often be reduced by elevating the column temperature. 

Likewise, HILIC separations of reducing-end oligosaccharides performed at acidic pH show at least 

partial anomer separation, thereby complicating the analysis of complex samples [1].

The analysis of urinary oligosaccharides by HPAEC-MS as performed in this thesis required 

only a single sample pretreatment step, namely solid-phase extraction with porous graphitized 

carbon material. Eluates were dried and reconstituted in small volumes of water, allowing 

the injection of analytes in high concentrations, as a result of which we obtained an in-depth 

analysis of complex samples. In contrast, HILIC separations of oligosaccharides are performed 

with very high concentrations (80% and higher) of organic solvents as starting condition [4], 

which reduces the solubility of oligosaccharides and may cause problems in the event of high 

concentrations of glycans, especially at low temperatures (such as may occur in the cooled 

tray of an autosampler). During the phase of method development, our group has indeed 

experienced irreproducibility of results due to the initial high organic solvent concentration. 

HPAEC is known for its ability to separate glycan isomers differing in linkage type and 

compositional order [2,5-7], and the capillary HPAEC-PAD-MS indeed gave a complete 

separation of the 6-arm and the 3-arm monoantennary complex oligosaccharides both with 

galactose and with N-acetylglucosamine at the non-reducing end (Chapters 3 and 5). Many 

other examples of the separation of structural isomers of complex N-glycans are reported in 

Chapter 4. This chapter reports mainly about the separation of sialylated glycans. The observed 

separation order of oligosaccharides with α2-3- or α2-6 linked sialic acid was in accordance 

with that described in literature [8]. In addition, we observed charge-based separation of 

oligosaccharides with a terminal, reducing-end hexose and of related species with a terminal 

aldohexonic acid instead (Chapter 4): the additional charge caused by the aldohexonic acid 

(generated by C
1
-oxidation of hexose) consistently resulted in an increase of retention time, 

which is primarily based on ionic interactions. At least two features are responsible for the 

selectivity of glycans in HPAEC: (i) the difference in acidity of the various hydroxyl groups [9] 

and (ii) the accessibility of oxyanions of the oligosaccharides to the functional groups of the 

stationary phase [5]. PGC and HILIC also show separation of glycan isomers, but this isomer 

separation has been determined to be based on other interaction mechanisms than that of 

HPAEC. In general, PGC shows selectivity on the basis of glycan size, charge of acidic glycans, 
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and the 3D-structure of glycans resulting from linkage between the sugar monomers [10-12]. A 

glycan with a relatively planar structure tends to have a longer retention with PGC material than 

glycans with a more globular structure, which is due to differences in contact area between 

analyte and graphite surfaces [10,13]. The selectivity of HILIC for glycans is mainly based on 

hydrophilic interaction between the bulk eluent and a water-rich layer, partially immobilized 

on the stationary phase [14,15]. The observed selectivity rules for glycans in HILIC show 

separation on glycan size, and linkage between the sugar monomers [16,17]. So, the isomer 

separation of HPAEC is different from that of PGC and HILIC, and therefore these three kinds of 

chromatography selectivities are orthogonal to each other.

The research described in this thesis was done on a prototype capillary ion chromatograph. 

Our challenge in the coming years will be to make capillary-scale HPAEC-MS more generally 

available. In 2010 the first commercially available capillary ion chromatograph was introduced 

[18], but this system did not yet provide all the modules necessary for HPAEC-MS of 

oligosaccharides, such as a capillary-scale ternary gradient pump and the required capillary-

scale HPAEC separation columns. The main field of application for the present instrument is 

the analysis of small anions and cations and this field can be of potential value for the analysis 

of smaller ionic compounds such as nucleotides, sugar phosphates, and organic acids in the 

fields of metabolomics and metabonomics [19]. The instrument includes a capillary desalter, 

a capillary amperometric detection cell, a capillary eluent generator, and an isocratic capillary 

pump, and this combination of modules is suitable for analyzing mono- and disaccharides with 

capillary HPAEC-PAD-MS [20,21], but not for larger, potentially charged oligosaccharides.

Instead of manually checking the desalting efficacy prior to the start of a sample analysis 

sequence only once, a more robust approach would be an online desalting monitor that 

protects the mass spectrometer from possible contamination caused by insufficient desalting. 

Such a monitor could contain the desalter, a connection for introducing make-up liquid, 

and an electronic output to stop the chromatograph to prevent salt from entering into the 

electrospray ionization source, thus contaminating the mass spectrometer.

To obtain a higher sample throughput while retaining selectivity and resolution, a faster 

separation would be desirable. One possible way to achieve this would be the development of ion 

exchange monolithic columns [22], which has already started for small ions [23]. Another possibility 

would be the use of smaller particles than the 4-μm materials which have just been introduced for 

IC. Particles of the envisaged size (≤ 2-μm) are already in use for HPLC [24] in RP and HILIC columns, 

resulting in vastly increased peak capacities [25,26]. However, the use of ion exchange columns 

packed with smaller particles requires an ion chromatography system capable of running at higher 

pressures than 34.5 MPa, which is the present pressure limit of ion chromatographs.

To develop optimal LC methods for monolithic columns and columns packed with smaller 

particles, the kinetic-plot method is a valuable tool [27]. A kinetic-plot is a graphical approach 

allowing the selection of column specifications (i.e. optimum particle size and column length) 

and LC conditions (operating pressure and temperature) to generate a specific number of plates 

or peak capacity in the shortest possible analysis time [27]. Kinetic plot measurements for small 

ions have been published by Causon et al. [28,29] for an analytical-scale column. Wouters et 

al. are now carrying out similar measurements for a capillary-scale ion-exchange column [30].

An important part of the instrumental setup for this work obviously was the MS. Again, 

enhanced sensitivity is vital in cases where only very small sample amounts are available. In 
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the last decades many developments in mass spectrometers have led to a strongly improved 

sensitivity of MS instruments by decreasing the noise level and increasing the signal. The 

expected gain in sensitivity which would be realized by using a state of the art MS instrument 

instead of the MS used for the research reported in this thesis is approximately two orders of 

magnitude and should make new high-sensitivity applications accessible. Further enhancement 

of the sensitivity could be realized by further miniaturization of the column. Biomedical research 

makes a more and more frequent use of nano-scale liquid chromatographs, and a similar 

development is expected for ion chromatography. The main challenge here is to minimize the 

void volume, caused in particular by the desalter. A possible approach would be to integrate 

the separator column and the desalter, thus avoiding fitting and tubing materials [31]. The 

improvements in instrumentation setup, as described above, could be of high value for limited 

sample amounts, such as in studies on posttranslational modification of proteins. An example 

of such a modification would be provided by glycans released from extracted electrophoretic 

bands. Another example of applications where sensitivity is of importance is in the analysis of 

ionic compounds and carbohydrates in smaller objects, such as biopsy samples.

6.2  LYSOSOMAL STORAGE DISORDERS
The capillary-scale HPAEC-PAD-MS system developed in this study was used for the 

characterization of free glycans in urine, amniotic fluid and ascitic fluid samples. The analyses 

have highlighted relevant glycan structures which are potential markers for each of the 

different lysosomal storage disorders examined. While we here applied our newly developed 

capillary-scale HPAEC-PAD-MS for the characterization of disease-associated urinary glycans, 

it should be stated that other modern glycoanalytical techniques would most likely be similarly 

suitable to reveal the characteristic urinary glycan profiles from urine as well as other body 

fluids. Such alternative techniques include the analysis of fluorescently labeled glycans by 

e.g. UPLC with fluorescence detection (HILIC, reverse-phase or graphitized carbon), capillary 

gel electrophoresis with laser-induced fluorescence (CGE-LIF) as well as various types of 

mass spectrometry including MALDI-TOF-MS of native or derivatized glycans, and various 

LC-MS approaches [11,32]. It should be stated, however, that the distinct properties of these 

detection methods are certainly expected to influence the (sub-)set of urinary glycans which 

is amenable to analysis by the various methods. For example, relying on reducing-end labeling 

via aldehyde groups will preclude the detection of the C
1
-oxidized glycans described in this 

thesis. Moreover, the use of a powerful separation technique (such as in LC-MS, UPLC with 

fluorescence detection, or CGE-LIF) will favor isomer differentiation [16,25,33].

On another note, when aiming at the glycan analysis from a large set of urinary samples, 

a two-step analytical approach may be advantageous: analysis of the urinary glycan profiles 

may be achieved by a fast, high-throughput method such as HPLC with fluorescence detection 

or CGE-LIF, and only a selected set of samples where the structural assignment cannot be 

performed satisfactorily using the profiling methods would be subjected to (tandem) mass 

spectrometry as a more costly and time-consuming in-depth analytical method.

While many of glycan structures which were identified in this thesis had already been reported 

in the literature for the different disorders investigated, it is remarkable that in the various body 
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fluids from galactosialidosis patients new glycan structures with a reducing-end hexose were 

found, which structures are assumed to be derived from glycolipids. The levels of oligosaccharides 

with reducing-end hexose found in the body fluids were surprisingly high and they are comparable 

to the levels of glycans derived from glycoproteins. It is unclear why these oligosaccharides have 

not been observed in earlier studies. A possible explanation can be the strong focus in earlier 

research on N-glycans and O-glycans [34] and the use of a different analytical approach than 

in this thesis [35-37]. The analytical approach used in earlier studies required extensive sample 

cleanup and was targeted to sialyl-oligosaccharides [35,36,38]. In another study the urine sample 

to be analyzed was first fractionated by gel permeation chromatography (GPC). Structural 

eludication of one fraction by NMR analysis was reportedly not successful [37]. Obviously, in these 

studies some glycan may have been missed due to extensive sample cleanup procedures and the 

targeted nature of the approaches. In contrast, the approach used in this thesis, only requires 

desalting of the urine samples with PGC material and no further fractionation.

The observed glycan structures which would appear to be derived from glycolipids could be 

explained by the possible existence of an endoglycosylceramidase. This endoglycosylceramidase 

would be involved in an alternative glycosphingolipid catabolic pathway, although such an enzyme 

has not yet been described for vertebrates, as discussed in Chapter 4 of this thesis. In addition to the 

glycan structures mentioned, the same samples were also observed to contain the aldohexonic acid 

forms of these glycolipid-derived glycans. Furthermore, some aldohexonic acid glycans were also 

detected in the sialidosis urine when the MS was operated in the negative mode.

It should be emphasized that in the studies done for this thesis, only free glycans in body 

fluids were examined. It would be worthwhile to investigate the possible presence of urinary 

glycopeptides in various lysosomal storage disorders. Additionally, the analysis of intact glycolipids in 

the urines would help to obtain a comprehensive picture of storage products. Further investigation 

of the postulated endoglycosylceramidase would be helpful to gain better understanding of the 

catabolism of glycolipids in the human body. With the investigation into glycopeptides and the 

endoglycosylceramidase activity in combination with the enzyme defect, more could be learned 

about the catabolism in the lysosomes. Another potentially valuable approach would be to examine 

the oxidation reaction of glycans derived from glycolipids into their aldohexonic acid form to 

potentially reveal new insights in glycoconjugate degradation pathways.

In conclusion, using the newly developed capillary HPAEC-PAD-MS setup we were able to 

determine and characterize a number of oligosaccharides that had not previously been reported 

in various types of body fluids. The increased sensitivity achieved by using the capillary-scale 

HPAEC-MS also allowed detection of a number of sulfated N-glycans. The developed analytical 

method together with the semi-targeted approach to the MS data analysis were successfully 

applied to urine and ascitic fluid samples of patients suffering from lysosomal storage diseases 

and to amniotic fluid samples from the mothers carrying a fetus suffering from an LSD. Finally 

it can be stated that detection of urinary oligosaccharides may not only represent a suitable 

method for the diagnosis of lysosomal storage diseases, but that, in addition, monitoring of the 

profiles and amounts of these glycans during the therapy of LSDs may provide a powerful tool 

for assessing therapeutic efficacy.
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SUMMARY
The research described in this thesis is structured in two parts which are both introduced 

in Chapter 1. The first part of the research focuses on method development with regard 

to the hyphenation of mass spectrometry (MS) with high performance anion exchange 

chromatography and pulsed amperometric detection (HPAEC-PAD) for carbohydrate 

analysis. For many decades HPAEC-PAD has been successfully applied for the analysis of 

oligosaccharides, and its combination with mass spectrometric detection allows the resolved 

analysis of complex mixtures and provides a plethora of structural information. This thesis has 

addressed the challenge of improving the sensitivity of HPAEC-PAD-MS by miniaturization 

in order to make the method applicable for the analysis of biological samples which may be 

available in only limited amounts.

The second part of the thesis describes the application of the developed capillary HPAEC-

PAD-MS system for a specific biomedical research question. The aim was to characterize the 

oligosaccharides excreted in urine and other body fluids from patients suffering from lysosomal 

storage diseases. In these patients the catabolism of glycoproteins and glycolipids is disturbed 

by specific enzymatic defects, and the structural analysis of the excreted urinary glycans 

provided insights into the catabolisms of glycoconjugates under these disease conditions.

The results section of this thesis starts with the description of the hyphenation of a standard 

ion chromatograph with a quadrupole mass spectrometer (Chapter 2). This system was 

successfully tested for the analysis of native carbohydrates with the aid of a membrane desalter. 

This desalter is necessary to overcome the incompatibility of the eluent needed for HPAEC-PAD 

with electrospray-MS (ESI-MS). The desalter removes cations from the column eluate thereby 

making the eluate compatible with MS detection. After the desalter, a make-up liquid is added to 

the eluate which enhances the sensitivity of the mass spectrometric detection of glycans, while 

the composition of the make-up liquid also influences glycan adduct formation. The performance 

of this system was tested by comparing the chromatograms obtained with both detectors. When 

applying isocratic elution, slightly broader peaks were observed with MS than with PAD detection; 

however, this peak broadening was found to be still acceptable. Tests with gradient elution also 

showed satisfactory resolution, when tested for the separation of native chicory inulin. The 

sensitivity of this system was investigated with glucose, fructose and sucrose and the result was 

a minimum detection limit of <0.2 pmol for PAD and of <1.5 pmol for MS in single ion monitoring 

(SIM). The formed glycan lithium adducts were readily fragmented by in-source decay which 

allowed the search for carbohydrates in the chromatogram based on specific fragment ions.

While the system described in Chapter 2 was found to be suitable for analyzing rather 

complex oligosaccharide mixtures such as inulin, its sensitivity was judged to be limiting for 

various biomedical applications. Therefore, in order to increase the sensitivity, a capillary 

format ion chromatographic system hyphenated to an MS was developed. The details of this 

system are described in Chapter 3. The necessary prototype capillary anion exchange column 

and prototype desalter were made available by the research and development department of 

Dionex. The capillary ion chromatograph was hyphenated to an ion trap mass spectrometer 

and instead of lithium adducts, sodium adducts of carbohydrates were formed and detected 

by positive ion mode MS. The performance test of this capillary system was mainly focused on 

the obtained resolution and desalting capacity. As described in Chapter 2, the peak broadening 

was studied by comparing the chromatograms obtained from the MS and the PAD and was 
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expressed as resolution. The chromatogram obtained with MS detection showed very limited 

peak broadening compared with that of the PAD. The desalting capacity was determined by 

pumping a sodium hydroxide solution at 10 μl/min flow rate and monitoring the conductivity 

and pH of the eluate. The desalting capacity was found to be 225 mmol/l Na+-ions, which is 

equal to a capacity of 2.25 meq/min. In view of the biomedical character of the envisioned 

research the response of both detectors was examined with a complex type asialo diantennary 

glycan. The response of the detectors was investigated in the range of 0.16 – 100 pmol. The 

signal of the PAD was found to be linear up to 20 pmol and for the MS over the whole range. 

The minimum detection limit as compared to the earlier published ion chromatograph-mass 

spectrometer combination was found to be about two orders of magnitude better, namely 160 

fmol for the MS and 50 fmol for PAD respectively.

The focus of the second part of this thesis was on the application of the developed ion 

chromatograph to biomedical research questions. To this end, oligosaccharides in urine 

samples from patients suffering from various lysosomal storage disorders were analyzed. The 

lysosome is a cellular organelle digesting all kinds of materials which are either produced by 

the cell itself or taken up by the cell. This digestion is enzymatically catalyzed in an acidic 

environment. When one or more enzymes are defect the degradation of a product will not be 

completed and storage of these undegraded fragments will be accumulated in the lysosome. 

The stored products will eventually be released in various body fluids. After excretion, increased 

concentrations of these partly degraded products can be detected in urine. In this study the 

excretion of free glycans derived from glycoproteins and glycolipids was analyzed for various 

lysosomal storage diseases.

First, the applicability of the developed capillary IC-PAD-MS was tested with a urine sample 

derived from a G
M1

 gangliosidosis patient and this is described in Chapter 3. The result illustrates 

the excellent selectivity of anion exchange chromatography in separating glycan isomers and 

the possibility to elucidate structures on the basis of tandem mass spectrometric data. While 

tandem mass spectrometric analysis routinely reveals structural features of the detected 

oligosaccharides, full structural elucidation is often not possible with mass spectrometry 

alone. Instead, by combining information obtained from mass spectrometry, from the known 

selectivity behavior of the chromatographic system with the knowledge from literature on 

glycan structures in specific biological sources it is often possible to assign structures to 

observed mass spectrometric signals.

Chapter 4 describes the research performed on urinary oligosaccharides of galactosialidosis 

patients with the mass spectrometer operated in negative ion mode. Urine from galactosialidosis 

patients contains sialylated glycans which could be detected with high selectivity by negative ion 

mode mass spectrometry. Unexpectedly, free glycan structures derived from glycolipids were 

detected in addition to glycoprotein-derived N-glycan degradation products that are known to 

be characteristic for galactosialidosis. These free, glycolipid-derived glycan structures were found 

in various urine samples as well as in ascitic fluid and amniotic fluid samples from galactosialidosis 

patients. The occurrence of glycolipid-derived free oligosaccharides in patients’ body fluids 

cannot be explained by the known catabolic pathway for glycolipids. Therefore, to explain this 

observation, a possible endoglycosylceramidase activity is postulated in Chapter 4. Interestingly, 

oxidized versions of many of these glycans were likewise detected, exhibiting a carboxylic acid 

group at the C
1
 position of the innermost hexose, thereby forming an aldohexonic acid. The 
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mechanism causing this oxidation is unknown, and one could speculate about an enzymatic as 

well as non-enzymatic process underlying the occurrence of these glycans.

A comparative study of urinary oligosaccharides from five different lysosomal storage 

disorders (fucosidosis, α-mannosidosis, G
M1

 gangliosidosis, G
M2

 gangliosidosis, and sialidosis) 

is reported in Chapter 5. For each disease a characteristic glycan pattern was observed 

that reflected the specific blockage of the glycan catabolic pathway, indicating that mass 

spectrometric detection of urinary oligosaccharide profiles may have diagnostic potential for 

lysosomal storage diseases.

The general discussion in Chapter 6 points out that the observation of glycolipid-derived 

oligosaccharides at high relative abundances is surprising, as one would expect that these 

glycans should have been noted and described in earlier reports on urinary oligosaccharides 

– which is not the case.

Likewise, the technological progress achieved in this thesis is evaluated in Chapter 6. It is 

concluded that, due to the successful miniaturization of HPAEC-PAD-MS, for glycan analysis 

the method presents a valuable addition to other LC-MS methods. The added value of 

HPAEC is based on its unique separation principle, making it orthogonal to other separation 

techniques such as hydrophilic interaction liquid chromatography (HILIC) and porous 

graphitized carbon chromatography (PGC). Also, HPAEC is particularly suitable for separating 

native oligosaccharides, as anomer separation is efficiently suppressed under the applied 

chromatographic conditions. In conclusion, capillary-scale HPAEC-PAD-MS as developed in this 

thesis was found to be suitable for analyzing the glycosylation of biological samples available 

in only limited amounts. In order to make the system available to a broader group of analytical 

scientists, it should be brought from a prototype to commercially available instrumentation 

which will hopefully take place in the near future. 
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SAMENVATTING
Het onderzoek beschreven in dit proefschrift omvat twee hoofdlijnen, zoals geïntroduceerd 

in Hoofdstuk 1. De eerste lijn betreft het koppelen van massaspectrometrie (MS) aan “high 

performance” anionenchromatografie en “pulsed amperometric” detectie (HPAEC-PAD). 

HPAEC-PAD wordt al vele decennia met succes gebruikt voor de analyse van oligosaccharides. 

Door het combineren van deze analysetechniek met massaspectrometrie wordt het 

mogelijk om monsters te analyseren die complexe oligosaccharides bevatten en levert 

naast selektiviteit structuurinformatie van de eluerende oligosaccharides op. Om de analyse 

van biologische monsters die slechts in kleine hoeveelheden voorhanden zijn mogelijk te 

maken, was het echter noodzakelijk de gevoeligheid te verbeteren van HPAEC-PAD-MS. Deze 

gevoeligheidsverbetering is bereikt door het miniaturiseren van de HPAEC-PAD, zoals in dit 

proefschrift beschreven.

De tweede hoofdlijn van het onderzoek betreft het inzetten van de ontwikkelde 

capillaire HPAEC-PAD-MS bij biomedisch onderzoek. Hierbij is gekozen voor de analyse van 

oligosaccharides in urine en andere lichaamsvloeistoffen van patiënten die lijden aan een 

lysosomale stapelingsziekte. Bij deze patiënten is de afbraak van glycoproteïnen en glycolipiden 

verstoord door een defect in specifieke enzymen. Structuuranalyse van de uitgescheiden 

glycanen in urine geeft inzicht in het katabolisme van glycoconjugaten bij deze patiënten.

Dit deel van het proefschrift begint met het beschrijven van de koppeling van een standaard 

ionenchromatograaf aan een quadrupole massa spectrometer in Hoofdstuk 2. Dit systeem is 

getest met ongederivatiseerde koolhydraten en de koppeling tussen de ionenchromatograaf en 

de MS gaat middels een membraanontzouter. De ontzouter is nodig omdat de voor HPAEC-PAD 

gebruikelijke eluent samenstellingen niet verenigbaar zijn met elektrospray-MS (ESI-MS). De 

ontzouter verwijdert kationen uit het kolom eluaat wat de matrix voor MS-detectie geschikt 

maakt. Na de ontzouter wordt aan het eluaat een make-up vloeistof toegevoegd, waardoor de 

gevoeligheid van de MS-detectie verbetert. Door de samenstelling van de make-up vloeistof 

kan tevens de adductvorming van de koolhydraten worden beïnvloed. Dit systeem is getest 

op zijn prestaties door de signalen van beide detectoren te evalueren. Uit de vergelijking 

van de MS en PAD signalen bleek de piekverbreding onder isocratische eluent condities 

minimaal te zijn. Ook de test met gradiënt-elutie waarbij polyfructanen werden gescheiden 

gaf een uitstekend resultaat, zoals aangetoond met een monster natieve chicorei inuline. Het 

signaalgedrag van glucose, fructose en sucrose is onderzocht in een range van 2.5 – 1000 pmol 

en de aantoonbaarheidsgrens bleek met PAD < 0.2 pmol en met MS in “single ion monitoring” 

(SIM) <1.5 pmol te zijn. De lithium glycaan adducten werden gefragmenteerd met behulp van 

in-source fragmentatie wat het zoeken naar koolhydraten in het chromatogram op basis van 

specifieke fragmentionen mogelijk maakte.

Hoewel het systeem dat is beschreven in Hoofdstuk 2 geschikt bleek voor het analyseren 

van complexe monsters, zoals inuline, is een betere gevoeligheid nodig voor biomedische 

toepassingen. Hiertoe is een ionenchromatograaf in capillair formaat ontwikkeld, die 

gekoppeld is aan een MS, hetgeen in Hoofdstuk 3 is beschreven. Prototypes van een capillaire 

scheidingskolom en een ontzouter werden beschikbaar gesteld door de afdeling onderzoek 

en ontwikkeling van de firma Dionex. De capillaire ionenchromatograaf was gekoppeld 

aan een “ion-trap” massaspectrometer en bij de experimenten met dit systeem worden 

in plaats van lithiumadducten, natriumadducten van de koolhydraten gevormd terwijl de 

147

SAMENVATTING



massaspectrometer in de positieve “ion mode” is gebruikt. Het testen van de prestaties van deze 

capillaire ionenchromatograaf was vooral gericht op het bepalen van de ontzoutingscapaciteit 

en de piekverbreding die de capillaire ontzouter veroorzaakt. Net als in Hoofdstuk 2 werd de 

piekverbreding bestudeerd door het MS-signaal te vergelijken met het signaal van de PAD en 

het effect van de piekverbreding op de scheiding werd uitgedrukt in resolutie. In het MS-signaal 

werd in vergelijking tot het PAD-signaal een zeer geringe piekverbreding waargenomen, 

waardoor de scheiding ruim voldoende bleef voor het met MS verkregen chromatogram. De 

ontzoutingscapaciteit werd bepaald door het verpompen van een natriumhydroxide oplossing 

met een debiet van 10 μl/min terwijl na de ontzouter de geleidbaarheid en de pH werden 

gemonitoord. Een oplossing van 225 mmol/l Na+ ionen kon worden ontzout wat overeenkomt 

met een capaciteit van 2.25 μeq/min. Gelet op het biomedische kader van het vervolgonderzoek 

is de respons van beide detectoren onderzocht met een complex type asialo diantenne glycaan 

over een bereik van 0.16 – 100 pmol. Het signaal voor de PAD bleek lineair tot 20 pmol en voor 

de MS over het gehele onderzochte gebied. De aantoonbaarheidsgrens was ongeveer twee 

grootte orders beter dan dat van eerder beschreven ionenchromatograaf-massaspectrometer 

combinaties voor koolhydratenonderzoek, namelijk 160 fmol voor MS en 50 fmol voor PAD.

De tweede onderzoekslijn in dit proefschrift beschrijft het toepassen van de ontwikkelde 

ionenchromatograaf voor biomedisch onderzoek. Voor dit biomedisch onderzoek waren 

urinemonsters afkomstig van patiënten met diverse lysosomale stapelingsziektes beschikbaar. 

Het lysosoom is een organel in de cel waarin afbraak plaatsvindt van allerlei componenten 

afkomstig van of opgenomen door de cel. Deze degradatie vindt plaats met behulp van enzymen. 

Als een of meerdere enzymen defect zijn vindt geen volledige afbraak plaats en stapelen deze 

producten zich op in het lysosoom. De gestapelde producten komen uiteindelijk vrij in diverse 

lichaamsvloeistoffen. Na uitscheiding in urine worden verhoogde concentraties van deze 

producten teruggevonden. In dit onderzoek werden de gestapelde vrije glycanen die afkomstig 

zijn van glycoproteinen en glycolipiden bepaald bij diverse lysosomale stapelingsziekten.

In Hoofdstuk 3 is de praktische toepasbaarheid van de ontwikkelde capillaire IC-PAD-MS 

onderzocht met een urine monster van een G
M1

 gangliosidose patiënt. De resultaten 

tonen de speciale selectiviteit voor het scheiden van glycaan isomeren met behulp van 

anionenchromatografie en de mogelijkheden voor structuuropheldering met behulp van 

tandem massaspectrometrie aan. Massaspectrometrie alleen leidt vaak niet tot volledige 

structuuropheldering, maar door het combineren van gepubliceerde glycaanstructuren, 

de beschreven selectiviteit van het scheidingssysteem en de tandem massaspectrometrie 

resultaten is het vaak mogelijk om een structuur toe te wijzen aan een glycaan.

In Hoofdstuk 4 wordt onderzoek beschreven verricht aan urines van galactosialidose 

patiënten. In deze urines werden sialylglycanen gevonden waarbij de massaspectrometer 

in de negatieve “ion mode” gebruikt werd om deze sialylglycanen met hoge selectiviteit te 

detecteren. Naast de verwachte N-glycanen, die relevant zijn voor galactosialidose, werden 

onverwacht ook vrije glycaanstructuren gevonden van glycolipiden, die niet verklaard konden 

worden met hetgeen er bekend is over het mechanisme van de afbraak van glycolipiden. Na het 

beschikbaar komen van additionele monsters urine, buikvocht en vruchtwater, konden deze 

resultaten worden bevestigd. In dit hoofdstuk is naast de mogelijkheid voor het onderzoeken 

van glycaanstructuren, een mogelijke endoglycosylceramidase-activiteit gepostuleerd 

om de gevonden glycaanstructuren van glycolipiden te verklaren. Van deze gevonden 
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glycaanstructuren werden tevens de geoxideerde vormen gedetecteerd. Het opvallende aan 

deze glycanen is dat ze een carboxylgroep op de C
1
 plaats hebben en daardoor tot de groep 

aldohexonzuren behoren. Het achterliggend oxidatie mechanisme is onbekend en kan zowel 

enzymatisch als niet-enzymatisch van aard zijn.

In Hoofdstuk 5 worden de resultaten beschreven van een vergelijkend onderzoek van 

glycanen in urine van vijf lysosomale stapelingsziekten, fucosidose, α-mannosidose, G
M1

 

gangliosidose, G
M2

 gangliosidose en sialidose. Voor elke ziekte is een histogram gemaakt van 

de gevonden relatieve hoeveelheid van elk glycaan en het patroon dat zo ontstond toont een 

goed beeld van de blokkade die optreedt in het katabolisme van de glycanen. De uitbreiding 

met tandem MS-detectie voor de karakterisering van glycanen in urine is mogelijk een 

aanvullende methode voor de diagnostiek van lysosomale stapelingziekten.

Het is verrassend dat de relatief grote hoeveelheid oligosaccharides afkomstig van 

glycilipiden niet is gevonden in eerdere onderzoeken. Hierover wordt gediscussieerd 

in Hoofdstuk 6. In hetzelfde hoofdstuk wordt de in dit promotieonderzoek bereikte 

technologische vooruitgang besproken. De conclusie is dat door het miniaturiseren van HPAEC-

PAD-MS met succes een waardevolle methode kon worden toegevoegd aan reeds bestaande 

LC-MS methoden voor het analyseren van glycanen. De toegevoegde waarde van HPAEC ligt 

vooral in het unieke scheidingsprincipe die orthogonaal is met andere scheidingstechnieken, 

zoals “hydrophilic interaction liquid chromatography” (HILIC) en “porous graphitized 

carbon chromatography” (PGC). HPAEC is in het bijzonder geschikt voor de scheiding van 

ongederivatiseerde oligosacchariden, omdat anomere scheiding niet plaats vindt onder de 

gebruikte chromatografische condities. Samenvattend kan gesteld worden dat capillaire 

HPAEC-PAD-MS zoals ontwikkeld tijdens dit promotieonderzoek, geschikt is gebleken voor 

het analyseren van glycanen in biologische monsters, waarbij de hoeveelheid monster beperkt 

mag zijn. Om dit capillaire systeem meer algemeen beschikbaar te hebben voor onderzoek, 

moet het wel van prototype tot een commercieel beschikbaar instrument worden ontwikkeld, 

wat hopelijk spoedig zal gebeuren.
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ABBREVIATIONS
Asn Asparagine

ASRS Anion self regeneration suppressor

Cer Ceramide

CMD Carbohydrate membrane desalter

Da Dalton (atomic mass unit)

DP Degree of polymerization

DNA Deoxyribonucleic acid

EIC Extracted ion chromatogram

ESI Electrospray ionization

F, Fuc Fucose

FOS Fructan oligosaccharide

FUCA1 Gene symbol for α-L-fucosidase

Gal Galactose

GalNAc N-acetylgalactosamine

GALNS N-acetylgalactosamine-6-sulfate sulfatase

GD1b Gal(b1-3)GalNAc(b1-4)(Neu5Ac(α2-8) Neu5Ac(α2-3))Gal(b1-4)Glc

GD3 Neu5Ac(α2-8)Neu5Ac(α2-3)Gal(b1-4)Glc

Glc Glucose

GlcNAc N-acetylglucosamine

GluconA Gluconic acid

GM
1

Monosialotetrahexosylganglioside; Neu5Ac(α2-3)Gal(b1-3)GalNAc(b1-4)

Gal(b1-4)Glc

GM
2

Monosialotrihexosylganglioside; GalNAc(b1-4)(Neu5Ac(α2-3))Gal(b1-4)Glc

GM
3

Monosialodihexosylganglioside

GPC Gel permeation chromatography

GSL Glycosphingolipid

H, Hex Hexose

HexA Hexonic Acid

HexNAc N-acetylhexosamine

HexonA Aldohexonic acid

HexSO
3

O-Sulfated hexose

HILIC Hydrophilic interaction chromatography see NPLC

HPAEC High performance anion exchange chromatography

HPLC High performance liquid chromatography

I.D. Internal diameter

IEC Ion exchange chromatography

IPAD Integrated amperometric detection, see also PAD

LC Liquid chromatography

LSD Lysosomal storage disorder

Man Mannose

MDL Minimum detection limit

MPS Mucopolysaccharidosis
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MS Mass spectrometry

N N-acetylhexosamine

Neu5Ac N-acetylneuraminic acid

NMR Nuclear magnetic resonance spectroscopy

NPLC Normal phase liquid chromatography see HILIC

PAD Pulsed amperometric detection see also IPAD

PGC Porous graphitized carbon

pH Potentia hydrogenii -log[H+]

pK
a

-log of the dissociation constant

RNA Ribonucleic acid

PPCA Cathepsin A, protective protein/carboxypeptidase C

RPLC Reversed phase liquid chromatography

R
s

Resolution

S Sialic acid or N-acetylneuraminic acid

Sap Saposin

SEM Scanning electron microscope

Ser Serine

SIM Selected ion monitoring

SO
3

Sulfate

TFA Trifluoroacetic acid

Thr Threonine

TLC Thin layer chromatography

UV Ultra violet

X Aldohexonic acid

Xyl Xylose
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