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The rapid development of “omics” technologies (genomics, transcriptomics, proteomics, 
metabolomics, and others) has allowed for a more detailed understanding of complex bio-
logical systems. However, analytical approaches for meaningful interpretation of multi-

layer omics datasets are lagging behind the technological advancements. The sparse, amorphous, 
distributed, and poorly reproducible state of omics datasets and the lack of standard for gener-
ating such data in many disciplines further complicate the analysis of these datasets (Ioanni-
dis, 2005). These bottlenecks pose the importance of developing stringent computational strate-
gies and a validation regime that can distinguish between true signals and noise (Ioannidis and 
Khoury, 2011). Interdisciplinary approaches are required to bridge the growing gap between 
technological development, biomedical research, and computational biology. Thus, converging 
loops between theory and experiment should help to understand the dynamics of biological net-
works and processes. Integrative analyses of different and multifaceted biological datasets should 
facilitate the study of human genetic disorders. 

In this Outlook, I firstly discuss the scientific rationale for carrying out multi-disciplinary re-
search on a rare human genetic disorder and further outline how that can benefit society. I then 
describe and provide an overview on some of the key mechanistic insights unravelled by my 
colleagues and myself through the course of our studies. Finally, some directions which could 
enhance the evolution of the field of systems biology are discussed.

Remarkable insights from a rare event
DNA sequence polymorphisms contribute to individual differences in disease susceptibility. As 
genetic information can be passed onto mRNA and proteins that perform cellular functions, ge-
netic studies have often focused on the one-to-one relationship between phenotype and genomic 
variation as the basis for knowledge discovery. There are, however, common patterns that under-
lie the diversity, complexity, development and progression of genetic diseases. Hence, looking 
for shared molecular activities, across organisms or processes with similar characteristics (such 
as ageing, late-onset neuromuscular and protein aggregation disorders), can lead to uncovering 
new insights into mechanisms that are important for diverse biological conditions. In particular, 
such combined strategies would facilitate the study of rare diseases. There are an estimated 8,000 
rare disorders, many of which are known to be of genetic origin (Stolk et al., 2006; Schieppati et 
al., 2008). Given the low prevalence of rare diseases, it is particularly difficult to employ tradi-
tional approaches and, therefore, they require special integrative efforts to improve discovery of 
underlying mechanisms. Notably, in spite of the low prevalence of each rare disease, about 30 
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million people are estimated to be affected by a rare disease in Europe (Kaplan and Laing, 2004). 
In the work presented in this thesis, my colleagues and I have mainly focused on developing 
computational approaches and conducting an interdisciplinary study to unravel novel associa-
tions based on shared functional features. Here, I discuss an outlook on how such strategies can 
lead to significant findings that benefit society. I do this based on the result of our investigations 
on Oculopharyngeal muscular dystrophy (OPMD).

PABPN1, the protein mutated in OPMD, regulates poly(A) tail length and RNA stability (Lemay 
et al., 2010; Kuhn et al., 2009). As such, PABPN1 plays an important role in a variety of cellular 
processes (Kuhn et al., 2009; Wahle, 1991; Wahle, 1995; Lemieux and Bachand, 2009; Calado et 
al., 2000; Apponi et al., 2010). It has been shown that manipulation of PABPN1 or expanded PAB-
PN1 (expPABPN1) expression levels in muscle cells, i.e. high over-expression or complete gene 
knockdown, leads to muscle defects including muscle weakness and muscle atrophy, impaired 
cell growth and apoptosis, and impaired cell fusion (Apponi et al., 2010; Chartier et al., 2006; Da-
vies et al., 2006; Trollet et al., 2010). We have shown that expPABPN1 expression in muscle fibres 
leads to substantial gene deregulation in OPMD patients and in OPMD model systems (Anvar 
et al., 2011a; Raz et al., 2011; Trollet et al., 2010). In the OPMD mouse model, by performing an 
integrative analysis empowered by a number of computational and data-mining methods, we re-
ported muscle atrophy as the major contributor to muscle weakness. This was evident from both 
the reduction of muscle mass and loss of contractile force due to increased fibrosis, mitochondrial 
defects, oxidative stress, and deregulation of the ubiquitin-proteasome system (see Chapter one). 
In this mouse model, these observations were mainly restricted to the glycolytic fibres. Despite 
some pathological similarities between OPMD patients and the mouse model, muscle atrophy is 
rare among OPMD patients. It is possible that the severe atrophy in glycolytic fibres of OPMD 
mice is the result of the high overexpression of expPABPN1 rather than the mutation itself. To 
correct for potential artefacts, an integrative approach was designed in which microarray datasets 
from three different organisms were combined to gain insight in the common molecular path-
ways that underlie OPMD. The result of such an extensive strategy, presented in Chapter two, was 
the identification of the ubiquitin-proteasome system (UPS) as the most prominently deregulated 
molecular pathway in OPMD model systems and patients (Anvar et al., 2011a). Transcriptome 
studies in non-muscle cells expressing expPABPN1 did not reveal prominent deregulation of 
UPS genes (Corbeil-Girard et al., 2005). This suggests that the effect of expPABPN1 on UPS 
deregulation is specific to muscle cells or to post-mitotic cells. Deregulation of the UPS has also 
been reported in myotonic dystrophy type 1 (Vignaud et al., 2010) and in muscle atrophy in mice 
(Cao et al., 2005; Bodine et al., 2001; Sandri, 2008). In addition, altered UPS activity has been 
associated with muscle ageing (Combaret et al., 2009; Lee et al., 1999). Together, these studies 
suggest that muscle cell function is tightly regulated by the UPS.

The UPS is the main regulator of protein homeostasis (also referred to as proteostasis) and is 
involved in a wide spectrum of human diseases including cancer, neurodegenerative disorders 
and diabetes (Hoeller and Dikic, 2009; Liu et al., 2000; Combaret et al., 2009; Taillandier et al., 
2004; Ciechanover and Brundin, 2003). To maintain protein homeostasis, it is essential to up-
hold balance between activities of protein quality-control machineries, the UPS and autophagy-
lysosome (Powers et al., 2009). These machineries can adequately respond to damaged proteins 
and organelles through adjustment of the level of chaperones and proteases (Goldberg, 2003; 
Meusser et al., 2005; Guisbert et al., 2008; Morimoto, 2008; Ron and Walter, 2007). However, 
progressive exhaustion of these quality-control systems, owing to ageing (Hipkiss, 2006; Wang et 
al., 2009; Munch and Bertolotti, 2010; Ben-Zvi et al., 2009) or genetic mutation (Olzmann et al., 
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2007), would lead to accumulation of altered proteins as the accumulation of misfolded proteins 
surpasses the system’s capacity (Tyedmers et al., 2010). It has been suggested that the aggregation 
of proteins can spread to other proteins of mainly the same type (Gidalevitz et al., 2006; Rajan et 
al., 2001; Ben-Zvi and Goloubinoff, 2002) which could explain the age-dependent and progres-
sive nature of protein aggregation phenomena. Excessive aggregation of proteins could lead to a 
progressive decline in the level of soluble proteins available in cells. This may result in reduced 
level of functional protein and, consequently, lead to pathophysiological abnormalities. Thus, 
understanding the molecular processes regulating cellular homeostasis may unravel mechanistic 
insights in pathological aspects of various protein aggregation and late-onset diseases.

The UPS involves an enzymatic cascade of ubiquitination and degradation steps. From the six 
UPS components, only E3-ligases, deubiquitinating enzymes and the proteasome were found to 
be consistently and prominently deregulated in OPMD model systems and patients (Figure 1). 
Particularly, E3-ligases are fundamental to the specificity of this system and are classified into the 
RING finger, HECT, and U-Box domains (Deshaies and Joazeiro, 2009). Moreover, many of the 
E3-ligases play an important role in maintaining genomic integrity (Lipkowitz and Weissman, 
2011). Therefore, it is essential to understand what type of E3-ligases are involved in forming 
the E2-E3 complex to specify the fate of proteins involved in protein aggregation disorders. In 
OPMD, we found that a subset of the deregulated E3-ligases co-localize with the aggregates of 
mutant PABPN1. Moreover, their RNA expression profiles correlate with their sequential entrap-
ment in intranuclear inclusion (INI) (Anvar et al., 2011a). It would be essential to look for pos-
sible E3-ligases that differentially bind and/or regulate wild-type and mutant PABPN1 in OPMD. 
This is important since differential regulation of PABPN1 may in part explain the enhanced level 
of PABPN1 aggregates and reduced level of soluble proteins in OPMD patients. Intriguingly, E3-
ligases are also recognised as potential drug targets (Nalepa et al., 2006; Xu and Jaffrey, 2011). 

Figure 1 – Schematic overview of the ubiq-
uitin-proteasome system. A) Protein deg-
radation through the ubiquitin-proteasome 
system involves several steps. Firstly, the 
ubiquitin (Ub) is being activated by ubiquitin-
activating enzyme (E1). Next, ubiquitin is de-
livered to ubiquitin-conjugation enzyme (E2) 
for formation of the E2-Ub, ubiquitin ligase 
(E3) and substrate complex. Consequently, 
ubiquitins are being transferred to the sub-
strate in order to tag the substrate with the 
polyubiquitin chain. In the fourth step, E3 
releases the polyubiquitylated substrate. 
The proteasome recognises the polyubiqui-
tin chain as a degradation signal. Therefore, 
substrate is deubiquitinated and destroyed 
by the proteasome in ATP-manner. B) Within 
the ubiquitin-proteasome system, E2, E3, 
deubiquitinating enzymes and proteasome 
show significant deregulation. Pie charts il-
lustrate the relative distribution of the deregu-
lated genes widespread throughout different 
components of the ubiquitin-proteasome sys-
tem across species. A fraction of deregulat-
ed genes within individual species are shown 
in dark colours.
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Hence, focused profiling efforts can lead to the identification of ubiquitination events that are 
regulated by potential therapeutic compounds (Kim et al., 2011; Emanuele et al., 2011).

The process of ubiquitination and degradation through UPS machinery is a modifiable process 
that can be tuned by the manipulation of specific deubiquitinating enzymes or proteasome ac-
tivity. This possibility further provides opportunities for therapeutic interventions (Lipkowitz 
and Weissman, 2011; Crawford et al., 2011). Relevant to OPMD, proteasome activity is reduced 
during muscle aging (Combaret et al., 2009; Lee et al., 1999; Ferrington et al., 2005) and perhaps, 
consequently, leads to accumulation of altered proteins. Concordantly, the expression of many 
aggregation-prone proteins was found to be deregulated in OPMD as well as in other protein 
aggregation disorders (Anvar et al., 2011a; Corbeil-Girard et al., 2005). Our analysis revealed 
that the core subunit of the proteasome was consistently down-regulated in OPMD (Anvar et al., 
2011a). Additionally, we have shown that expPABPN1 expression in myotubes leads to down-
regulation of proteasome-encoding genes and affects the accumulation of expPABPN1 protein 
(Raz et al., 2011). In turn, manipulation of proteasome activity also affects the accumulation and 
aggregation of expPABPN1 (Anvar et al., 2011a; Raz et al., 2011). In spite of this prominent link 
between proteasome activity, expPABPN1 accumulation and INI formation, this process is not 
specific to muscle cells (Abu-Baker et al., 2003). Since the onset of OPMD coincides with pro-
teasomal down-regulation in ageing muscle, it is possible that the decline in proteasome activity 
during muscle aging triggers or accelerates expPABPN1 accumulation. Subsequently, in OPMD, 
aggregation of mutant PABPN1 leads to extensive proteasome down-regulation and entrapment 
of proteasomal proteins in INIs. This feed forward model along with the onset of skeletal muscle 
ageing could explain the muscle-specific and INI formation in OPMD (Figure 2). Notably, de-
crease in skeletal muscle performance, as measured by muscle strength, strongly correlates with 
chronological ageing (Beenakker et al., 2010). Loss of muscle function during ageing is regulated 
by numerous genetic and environmental factors (Roth et al., 2002) which may explain the differ-
ences in muscle performance among individuals (Kostek and Delmonico, 2011). Ageing associ-
ated physiological changes can be accompanied by an increased susceptibility to degenerative 
disorders (Kirkwood and Austad, 2000). Although in most tissues ageing is marked by a progres-
sive decline of cellular functions starting at mid-life (Kirkwood, 2005; Lexell et al., 1988; Lindle 
et al., 1997; Sahin and Depinho, 2010), the rate of functional changes is tissue-specific (Kirkwood 
and Austad, 2000).

We found substantial similarities in transcriptional changes between muscle ageing and OPMD. 
The most striking finding, based on the analysis of expression profiles, was the significant decline 
in PABPN1 expression during the first half of the fifth decade. Since changes in skeletal muscle 
performance commence at the fifth decade (Lindle et al., 1997; Roth et al., 2002) our results sug-
gest a correlation between PABPN1 expression and the onset of muscle ageing. Moreover, among 
controls, PABPN1 expression in females was significantly lower than in males. This observation is 
in agreement with previous studies indicating that ageing-associated changes in muscle strength 
are more pronounced in females (Kent-Braun et al., 2002; Roth et al., 2002). Concordantly, the 
OPMD prevalence of the Uruguayan population is estimated to be higher in females (Medici 
et al., 1997). Thus, the PABPN1 expression profile could additionally mark gender-associated 
decline in muscle performance. Together, the progressive decline in PABPN1 expression during 
muscle ageing and the accelerated reduction of its expression in OPMD indicate a strong correla-
tion with muscle weakness. The early mid-life onset of PABPN1 down-regulation (as compared to 
that of frontal cortex brain tissues (Lu et al., 2004) with the onset of 85 years; and Rectus Abdomi-
nis (Zahn et al., 2006) tissues with unchanged expression) suggests temporal-spatial specific-
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ity. However, some reports have indicated mental retardation, cognitive impairment, spinal cord 
involvement, and dementia in some OPMD patients (Millefiorini and Filippini, 1967; Sarkar et 
al., 1995; Blumen et al., 2009; Linoli et al., 1991; Mizoi et al., 2011; Dubbioso et al., 2011). Thus, 
it would be interesting to assess PABPN1 expression in respect to the central nervous system.

Age-dependent progressive decline of PABPN1 expression and loss of muscle function suggests 
that PABPN1 may play a role in ageing of skeletal muscles (see Chapter three). PABPN1 expres-
sion in OPMD patients is only 30% of that found in young healthy controls. In immortalized 
human myoblast cultures, this expression level leads to progressive cellular defects including 
reduced cell growth and fusion and induced cell senescence. Heterochromatic foci (HF), the 
hallmark of cellular senescence (Spector and Gasser, 2003), could be observed in cells with 70% 
PABPN1 down-regulation. Notably, PABPN1 expression was undetectable in nuclei with HF. We 
suggest that the effect of PABPN1 down-regulation on cellular senescence is more pronounced 
in non-mitotic cells as they exhibit a three-fold higher amount of cells with HF. Myotube cul-
tures from OPMD muscles also show premature senescence and reduced cell fusion (Perie et 
al., 2006). Relevant to reduced muscle performance, the expression of muscle contraction genes 
highly depend on PABPN1 expression level. Recently, we showed that increased PABPN1 protein 
accumulation in muscle cells results in a reduced amount of the soluble and functional protein 
(Raz et al., 2011). Since PABPN1 regulates mRNA stability it is expected that decline in functional 
PABPN1 would have a broad effect on cellular functions as demonstrated here and by Apponi et 
al. (Apponi et al., 2010).  Together, for the first time, our data indicates the progressive response of 
muscle cell function to the level of PABPN1 in a spatial-temporal manner, highlighting PABPN1 
role as a key regulator of muscle ageing.

Ageing cells exhibit distinctive features ranging from the accumulation of damaged macromol-
ecules to changes in nuclear architecture (Campisi and Vijg, 2009; Oberdoerffer and Sinclair, 

Figure 2 – A model for molecular mech-
anisms involved in OPMD pathology. 
In muscles, age-associated proteasome 
down-regulation triggers expPABPN1 pro-
tein accumulation. Subsequently, elevated 
expPABPN1 aggregation leads to protea-
some deregulation during disease onset. 
This feed forward loop and the onset of 
muscle ageing leads to loss of proteostasis 
and INI formation. As part of ageing-related 
transcriptional changes, there is a signifi-
cant reduction in the expression of PABPN1. 
This age-associated decline is accelerated 
in OPMD patients. In cell cultures, reduced 
expression of PABPN1 during ageing of 
skeletal muscles leads to progressive cell 
senescence and defects in cell fusion and 
growth. The effect on the expression of mus-
cle contraction genes highly depends on the 
level of PABPN1 expression. The decline in 
PABPN1 expression may partially explain 
the progressive decline in muscle perfor-
mance during ageing and accelerated mus-
cle weakness in OPMD patients.
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2007). In particular, it has been suggested 
that ageing and age-related disorders are 
strongly associated with mechanisms 
that control chromatin structure through 
DNA methylation, RNA interference, 
histone variants, and post-translational 
modifications (Oberdoerffer and Sinclair, 
2007; Campisi and Vijg, 2009; Rakyan et 
al., 2010; Teschendorff et al., 2010; Estell-
er, 2007; Pogribny et al., 2006; Tryndyak 
et al., 2006; Ronn et al., 2008; Tohgi et al., 
1999; Martin, 2009; Rando and Chang, 
2012). Nuclear chromatin is associated 
with processes that mediate DNA repli-
cation and transcription (Trinkle-Mulca-
hy and Lamond, 2007). Markedly, gene 
transcription is strongly modulated by its 
relative position within the nucleus (Sex-
ton et al., 2007). This suggests that dis-
ruption of the positioning of the chroma-
tin at the nuclear envelop can affect the 
regulation of gene expression (Akhtar 
and Gasser, 2007). Furthermore, DNA 
and chromatin modifications are recog-
nized as both responsive and effectors of 
the ageing process (Martin, 2009; Rando 
and Chang, 2012). Therefore, the spatial 
distribution of genes across the nuclear 
envelop can significantly contribute to 
the transcriptional control. Aged cells, in 
particular, show several changes on their chromatin and nuclear envelop structure that contrib-
ute to the lineage and tissue-specific gene expression (Krishnamurthy et al., 2004; Rando and 
Chang, 2012). It will be interesting to investigate the possibility in which epigenetic changes play 
a role in mechanisms that underlie the onset and progression of OPMD. Identification of possible 
epigenetic factors that may be functionally associated with the OPMD phenotype can provide 
insights on the relationship between the genome and environment. This would potentially lead 
to a better understanding and characterization of the severity of symptoms in OPMD patients.

PABPN1 is involved in pre-mRNA polyadenylation, where it stimulates poly(A) polymerase and 
regulates poly(A) tail length and RNA stability (Lemay et al., 2010; Kuhn et al., 2009). It is now 
widely accepted that alternative processing of pre-mRNA can result in structural variation and 
differing function of encoded proteins (Moore and Silver, 2008; Birzele et al., 2008), as well as 
regulation of gene expression. Elongation or shortening of the 3’ un-translated region (UTR), 
as a consequence of alternative polyadenylation, can lead to changes in binding of miRNAs and, 
therefore, differential regulation of mRNAs. Considering the role of PABPN1 in regulating the 
poly(A) tail and initial indications regarding a widespread discordance between deregulated 
transcripts of genes, it is crucial to pursue such investigation using next-generation sequencing. 
Moreover, mechanisms that regulate the 3’ UTR are controlled in a tissue-specific manner. There-

Figure 3 – Probabilistic network integration. Datasets 
from multiple sets of independent experiments on differ-
ent species are individually tested and optimised for their 
association with a given phenotype. Various statistical ap-
proaches can be used to infer confidence weight for any giv-
en intraspecies regulatory relationship. These weights can 
then be used to integrate network structures across species. 
Graphical networks can be derived from the final weighted 
matrix after applying a confidence threshold.
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fore, it is essential to pinpoint how ageing-associated decline of soluble PABPN1 and induced 
aggregation of the mutant PABPN1 may lead to tissue-specific changes in poly(A) site usage. In 
addition, diversification of RNA, and consequently protein function and structure, is regulated 
through processes of which alternative splicing plays a central role. In particular, skeletal muscle 
is reported as one of the tissues with the highest rate of alternative splicing (Pan et al., 2008; Wang 
et al., 2008; Castle et al., 2008). It is not surprising that genetic mutations may lead to deregula-
tion of this process and consequently cause a widespread transcriptional changes (Cooper et al., 
2009; Wang and Cooper, 2007; Tazi et al., 2009). Thus, it is important to pursue the possibility 
that alternative splicing is differentially regulated in OPMD patients and model systems.

The work, presented in this thesis, strongly highlights the fascinating nature and value of interdis-
ciplinary studies. We have shown that the concept of a universality of biological processes in the 
light of evolutionary mechanisms and common functional processes can lead to novel discover-
ies. Engaging in the study of a variety of organisms or biological behaviours, looking for shared 
molecular features in a rare disease such as OPMD, enabled us to uncover insights on a broader 
spectrum of conditions and phenomena such as ageing of skeletal muscles and protein aggrega-
tion disorders.

Figure 4 – Schematic overview of the 
Dandelion algorithm for disease network 
analysis. The Dandelion algorithm involves 
three recurring stages of training and an 
independent testing regime with the use 
of multiple datasets derived from different 
species. In the first step, disease modules 
are defined based on prior knowledge. The 
next step involves reiterative selection of 
one species for which the gene regulatory 
network is constructed while others are left 
aside for independent testing and valida-
tion of the learnt disease networks. For the 
construction of an intraspecies disease 
network, the dataset is divided into k-folds, 
using cross-validation. Subsequent, regu-
latory relationships between gene tran-
scripts are learnt using a Bayesian network 
methodology based upon simulated an-
nealing optimization of the network Bayes 
Information Criterion (BIC) score. After ap-
plying confidence thresholds on relation-
ships between genes, the disease network 
is translated to the expected interspecies 
disease network. This is achieved by the 
use of the cross-validation and network 
optimization procedure. The algorithm 
searches through the relationships found 
in the training dataset to find the best fit 
for the interspecies representation of the 
disease network. These networks are then 
integrated by removing all the links with low 
confidence score across species.
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The inner workings of complex biological networks
Functional interdependencies and the modular nature of cell’s molecular components imply the 
indispensable role of network-based approaches to human diseases. It is widely established that 
these dependencies revealed by regulatory networks can provide valuable information regarding 
underlying biological processes (Avery and Wasserman, 1992; Tong et al., 2004; Costanzo et al., 
2010; St Onge et al., 2007; Schuldiner et al., 2008; Collins et al., 2007; Segre et al., 2005; Drees 
et al., 2005; Guarente, 1993; Hartman et al., 2001; Jonikas et al., 2009). Despite the generation 
of vast quantities of data by high-throughput technologies, biological data are usually sparse, 
noisy and ambiguous, limited in number of samples, and high-dimensional. Thus, integration of 
data and genomic information from human and various model systems can ultimately provide a 
better indication of common molecular mechanisms that underlie a given phenotype. However, 
the presence of noise and technical artefacts specific to model systems usually leads to limited 
overlap between results obtained in cross-species comparison (Lu et al., 2009; Zhou and Gibson, 
2004; Oliva et al., 2005; Blake et al., 2003; Jelier et al., 2008). Additionally, integrative approaches 
are far from trivial and are complicated due to our limited knowledge of true protein orthologues, 
transcript variants coding for proteins with similar function, and evolutionary conservation of 
biological processes. These bottlenecks further require fine tuning and optimization of the inte-
gration strategy. Another aspect of complexity arises from the generation of large-scale networks 
(having thousands of nodes and millions of possible interactions), owing to limited computation-
al power and intelligent algorithms for scalability and reducing dimensionality (Venkatesan et al., 
2009; Barabasi et al., 2011). Markedly, such stochastic systems require a probabilistic approach at 
the core for modelling regulatory networks. 

We first established, in Chapter four, a way in which gene networks that are highly informative 
for determining “muscle differentiation” can be robustly identified from multiple independent 
datasets with increasing level of complexity and stochasticity (Anvar et al., 2010). We showed 
that the proper use of a modelling strategy in combination with multiple datasets leads to the 
construction of gene networks that can explain the myogenesis-related genes significantly better 
than those that have less involvement in myogenesis. This approach resulted in networks that 
were consistently more parsimonious to myogenesis-related genes. Moreover, these models pro-
vide the robust prediction of biological outcome and expression profiles. Establishing a strategy 
which can accommodate the integration of multiple datasets enables the possibility of overcom-
ing the limitations of cross-species integrative studies. Such exploitation would lead to more ro-
bust regulatory mechanisms to be identified and predictions to be made across various platforms 
and organisms (Figure 3 and Figure 4). In Chapter five, we showed that the integration and 
analysis of microarray datasets from various species increase the robustness of the constructed 
networks and the predictive accuracy of the disease state (Anvar et al., 2011b). We also demon-
strated that the interspecies translation of these networks helps to avoid overfitting. In addition, 
this approach provides a state-of-the-art model-driven selection of transcript isoforms that are 
most likely to be coding for orthologous proteins. Notably, another fascinating application of this 
strategy would be the identification of alternative splicing events and their regulators (Zhang et 
al., 2010). These powerful features are essential for understanding the phenotypic implications 
of such strong relationships as part of evaluating the conservation and dynamics of interspecies 
disease networks. Moreover, the high level of specificity and sensitivity of these models enables 
the prioritization of candidate regulators of the disease molecular mechanisms to be studied in 
follow-up validation experiments. In particular, it is crucial to carry out additional experiments 
to investigate the tissue-specificity of the network (Reverter et al., 2008; Lage et al., 2010) and the 
functional relevance of encoded proteins dysregulation to the disease pathology. This can also 
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be achieved by re-constructing tissue- 
or cell-specific sub-networks from the 
model by integrating a variety of tissue-
specific data sources (Jerby et al., 2010; 
Kirouac et al., 2010).

Our approach for Bayesian modelling 
of datasets on a similar phenotype from 
different model systems and patients is 
unique. Several approaches have been de-
scribed to avoid overfitting and increase 
the robustness of Bayesian networks. For 
example, informative priors derived from 
protein-protein interaction (PPI) data 
or from the literature have been used to 
generate more stable and biologically 
meaningful networks (Segal et al., 2003; 
Pe’er et al., 2002; Steele et al., 2009; Jansen 
et al., 2003). While these methods obvi-
ously bias the results towards well-known 
regulatory interactions and are less likely 
to detect novel relationships (Sprinzak et 
al., 2003; Joyce and Palsson, 2006), they 
may ultimately be combined with our 
modelling approach to obtain regulatory 
networks with a more straightforward 
biological interpretation. 

Our method was applied to an a priori 
defined gene module coding for a well-
known biological structure, the pro-
teasome. Several studies in S. cerevisiae 
(Zhang et al., 2005; Tanay et al., 2004; 
Luscombe et al., 2004; Han et al., 2004) 
have demonstrated the value of an in-
tegrative modelling approach provid-
ing modularized interaction networks 
without prior assumptions. Zhang et al. 
(Zhang et al., 2005), for instance, took 
an approach in which they integrated a 
number of different available data sourc-
es, from PPIs to sequence homology and 
gene co-expression, while Tanay et al. 
(Tanay et al., 2004) and others (Luscombe 
et al., 2004; Han et al., 2004) expanded on 
the statistical analysis of network prop-
erties and identified modules within the 
network structure. The performance of 

Figure 5 – Schematic illustration of Dandelion module 
networks. In a bottom-up approach, gene modules are cu-
rated on the basis of their literature-aided and cross-species 
association or according to predefined ontologies. The al-
gorithm involves three recurring phases of training and an 
independent testing regime with the use of multiple datasets 
from different platforms, experiments, or organisms. First, 
consensus networks are constructed for individual modules 
using our previously described Dandelion algorithm (Chap-
ter five). These sub-networks are then overlaid based on 
common nodes and relationships within different network 
structures. Finally, using protein-protein interaction databas-
es or associations in co-expression networks, the Dandelion 
algorithm attempts to assemble and optimise the full module 
network by adding relationships and nodes to interlink sub-
networks. Additionally, the Dandelion algorithm would allow 
for novel nodes and relationships to be added to the global 
module network structure. The growth of module networks is 
constrained on the overall improvement of the network per-
formance.
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these models depends on the availability of high quan-
tities of samples and may be prone to overfitting due 
to the presence of noise and other model-specific arte-
facts. Therefore, a combination of their approach with 
our interspecies translation may enable the discovery 
of larger gene regulatory networks with multiple gene 
modules and connections between them.

Understanding the dynamics of network structure is 
essential for determining causal interdependencies as 
well as characterization of network modularity and 
gene spatial properties. In model organisms, it has 
been shown that hub proteins are tend to be encoded 
by essential genes (Jeong et al., 2001) which are highly 
conserved (Fraser et al., 2002; Eisenberg and Levanon, 
2003; Saeed and Deane, 2006). Identification of essen-
tial genes is important for discovery of sub-networks 
that are associated with a disease phenotype, owing 
to the disease-related genes being located in the net-
work-based vicinity of the hub nodes (Goh et al., 2007; 
Feldman et al., 2008). The importance of nodes to the 
network can be estimated using the ‘betweenness cen-
trality’ measure (Yu et al., 2007) which gives some ad-
ditional insights on topology, information flow, and the 
stability of a network (Han, 2008). Topological proper-
ties of disease networks reveal clouds of densely inter-
connected nodes that can be used for gene module pre-
diction (Girvan and Newman, 2002; Palla et al., 2005; 
Ahn et al., 2010; Enright et al., 2002). In addition to 
network topology, functional characterisation of sub-
networks can improve in describing mechanisms that 
give rise to a specific phenotype.

Here, I discuss a strategy to tackle some challenges in 
bridging the gap between multi-layers of biological 
data. In a study presented in Chapter five, we developed 
a novel algorithm for constructing interspecies disease 
networks that provide an assumption-free and model-
driven selection of the most important transcript iso-
forms across species (Anvar et al., 2011b). We achieved 
this by use of prior knowledge on pathways that are 
disease-associated. This was owing to the fact that, on a 
genome-wide scale, searching the space of possible net-
works via single-arc changes is not realistic and compu-
tationally expensive. One of the possible strategies for 
reducing the high dimensionality is the use of statistical algorithms such as ridge and LASSO re-
gression (Friedman et al., 2008; Tibshirani, 1996). These algorithms apply a penalty for complex 
models that may be tuned by cross-validation. However, this would mean that the same dataset is 
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Figure 6 – A model for network recon-
struction and evaluation. Known networks, 
produced based on control experiments or 
molecular pathways, can be reconstructed 
using the Dandelion algorithm. Reconstruct-
ed networks differ in respect to nodes be-
ing incorporated (depicted in black) within 
the network structure. Moreover, the com-
parative analysis can unravel changes in 
the dynamics of such regulatory networks 
under different phenotype or experimental 
settings. Relationships with the strongest 
weights (depicted by the line thickness), 
on the basis of their confidence score, can 
be evaluated using the maximal information 
coefficient (MIC) measure. These strategies 
could uncover key regulators of a given 
pathway under specific phenotype or ex-
perimental setting.
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used, in two steps, for generating the net-
work space and construction of disease 
network which would lead to overfitting 
and other biases. Another alternative is 
based on treating functional modules as 
blocks of interconnected nodes which 
can be assembled together by the use of 
overlaying nodes and relationships. In 
conjunction with assembling overlay-
ing nodes and modules, additional links 
are added to the network for global op-
timization of the inter-module relation-
ships (Figure 5). This can be reached by 
simple hill-climbing, greedy algorithms 
or more sophisticated simulated anneal-
ing and MCMC (Markov Chain Monte 
Carlo) searching methods. Within the 
optimization step, evidences from PPI 
networks can be used for confidence 
assessment. In addition to the utility of 
PPI networks, reconstruction of known 
functional pathways, or those produced 
by alternative models on control datasets, 
can be combined with allowing for novel 
relationships (Battle et al., 2010) (Figure 
6). This strategy potentially can help au-
tomating the process of optimization and 
confidence assessment. Moreover, the 
maximal information coefficient (Reshef 
et al., 2011) can be integrated to assess the 
functional association for relationships 
in the vicinity of the essential nodes.

Finally, the evolution of these network 
properties over time would provide a 
crucial framework for better understand-
ing the causal relationship and dynamics 
of gene regulatory networks in the con-
text of human diseases. Thus, I believe 
that robust and unbiased construction 
and analysis of the interspecies networks 
for rare or complex human diseases can 
lead to novel discovery and identification 
of key regulators. The result of such exploration can ultimately offer potential targets for thera-
peutic interventions and drug developments. In the last section, I will discuss a few strategies 
that, in my view, can be pursued to enhance data integration and the ideal utility of network-
based approaches on a larger scale. This would consequently provide a disease-oriented global 
view of genomics, transcriptomics, proteomics, and newly defined field of phenomics. The term 
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Figure 7 – Network medicine, linking across multi-layers 
of biological data. Datasets from different organisms or 
platforms can be combined for enhanced identification of 
interspecies (inter-platform) networks. Time-series datas-
ets can provide information on the dynamics of biological 
networks while protein-protein interaction and co-expres-
sion networks can be used for optimization and scaling. 
Networks constructed on transcriptome data are linked to 
networks related to pharmacology, phenomics, and envi-
ronment. Genomic information, reflected in transcriptome, 
are interlinked and translated to diverse sets of phenotypes 
through environmental factors. Likewise, these multi-layers 
of densely interconnected regulatory relationships are rep-
resented through a framework of pharmacological entities.
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“phenomics” is derived from the word ‘phenome’ which was first introduced by Michael Soule 
(Soule, 1967).

From systems biology to personalized medicine
In recent years, the studies of human diseases have changed significantly, owing to advancements 
in the field of systems biology and high-throughput technologies. It is widely believed that the 
integration of genomics, transcriptomics, and large-scale phenotyping has major potential for 
novel discoveries in network biology of multi-layered human disorders (Bilder et al., 2009; Fre-
imer and Sabatti, 2003; Schilling et al., 1999; Searls, 2005). Phenotypic variations are determined 
by a complex network of genetic and environmental interactions. In the last two decades, signifi-
cant efforts have been made on genomic and transcriptomic studies. Now we have reached the 
time to invest special efforts in the field of phenomics which still requires our careful attention. 
This is due to the lack of standardisation and data available. Although limited phenotyping efforts 
for obvious disease-related features seems to be sufficient in most cases, extensive and global phe-
notyping can pave the way for better standardization of phenotypic information and mechanistic 
understanding of context-oriented genetic and environmental interactions. This would lead to 
the discovery of novel dependencies between genomics, transcriptomics, and phenomics data. 
Additionally, this combinatory framework provides an information-rich model that can distinct-
ly characterise the correlation or causal relationships and account for different sources of varia-
tion (Houle et al., 2010). The importance of the integrative approaches is evident from experi-
ments carried out in yeast that demonstrate a substantial growth from lethal or disease causing 
single-gene deletions (34%) to those that occur in conjunction with at least one environmental 
condition (97%) (Hopkins, 2008). Nevertheless, the design of an integrative strategy needs to be 
addressed with precision and care as navigating such data is extremely challenging. For instance, 
one of the basic information losses is that phenotypic data is often treated as a discretised en-
tity whereas the most vital piece of information lays in the relative and continuous changes of 
phenotypic information, phenomena which is now well-established for other data-types such as 
transcriptome.

Having established the modular network structure, the next step in exploring the interplay be-
tween transcriptomics and phenotypic states of human diseases is to determine the environmen-
tal factors through which these networks are regulated in a full range of spatial and temporal 
scale. Adequate combination of prior knowledge (Ochs, 2010) can further provide confirmatory 
insights on data-flow and ordering of causal relationships across multi-layers of biological data 
(Figure 7). Yet, the use of prior knowledge-centric approaches needs to be avoided to minimize 
the biases that can be introduced by such techniques. An intriguing possibility of such methods 
is that the construction of multifaceted biological networks may provide insights on efficacy and 
off-target toxicity of drugs in a phenotype-centric and tissue-specific manner, some of which 
can be determined by the analysis of such network structure (Albert et al., 2000; Kitano, 2007). 
Likewise, special efforts in modelling the dynamics of metabolic responses in different tissues 
can provide valuable insights into the effects of drugs and diseases (Figure 8). Another intrigu-
ing benefit of engaging in metabolomics studies is the possibility of linking different levels of 
biological organization (genomics, transcriptomics, proteomics, etc.), owing to their differing op-
erational behaviour (Holmes et al., 2008a; Holmes et al., 2008b; Nicholson and Wilson, 2003). An 
extensive review by Hopkins (Hopkins, 2008) provides valuable information on the usability of 
biological networks in drug discovery along with a brief outlook on future prospects. While some 
of these advancements seem farfetched and years in the future, a few preliminary developments 
can be pursued that provides a new basis for a global infrastructure of network medicine. For in-
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stance, the adoption of methods that deal with dynamics of these networks, in a spatial-temporal 
manner, can act as a cornerstone for robust integration of pharmaceutical data and chemical 
interactions. This combinatory strategy provides a valuable framework for drug discovery and 
personalized therapeutic interventions. Notably, recent approaches for simple characterization 
of the network topology had made a remarkable contribution in developing strategies for priori-
tization and combination of drug targets (Gerber et al., 2008; Potapov et al., 2008; Wunderlich 
and Mirny, 2006). Mining biomedical and biochemical literature in conjunction with ontologies 
(such as KEGG and GO) are also well-explored to better determine the efficacy of drug develop-
ment (Yildirim et al., 2007; Ji et al., 2007; Spiro et al., 2008; Gunther et al., 2008). Bayesian ap-
proaches can bridge between these different sources of information and provide a global network 
infrastructure in which transcriptome data, environmental factors, and phenotypic information 
can come together to provide a predictive and model-driven framework for assessing the clusters 
of chemical networks and pharmacology data (Figure 7). To conclude, the context- and case-
specific identification of the optimal point of interaction between molecules for drug discovery 
is the future of systems biology applications in the field of personalized medicine. In order to 
achieve this ambition, novel and integrative advancements are needed to better understand the 
global organisation of networks in the study of human genetic disorders.
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Figure 8 – Applications of multifaceted omics re-
search. Special efforts in combined analysis across 
multi-layers of biological data provide an infrastruc-
ture in which bioinformatics can play a central role. 
Naturally, the main applications of omics research 
can be divided into three fields of personalized med-
icine, drug discovery, and molecular epidemiology. 
Profiling of individuals can provide an enhanced 
framework for better therapeutic interventions. The 
utility of this strategy is to comprehend patients’ sus-
ceptibility to diseases or alter therapies on the basis 
of their response to different medicine. Molecular 
epidemiology studies can be enhanced by looking 
for common patterns in profiles within a population. 
This would allow for the identification of biomarkers, 
susceptibilities of specific populations to diseases, 
and health screening programmes. Finally, these 
studies can lead to uncovering new biological tar-
gets for drug discovery.
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