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NETWORKS IN BIOLOGY
beyond differential expression
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In microarray data analysis, factors such as data quality, biological variation, and the increas-
ingly multi-layered nature of more complex biological systems complicates the modelling of 
regulatory networks that can represent and capture the interactions among genes. We believe 

that the use of multiple datasets derived from related biological systems leads to more robust 
models. Therefore, we developed a novel framework for modelling regulatory networks that in-
volves training and evaluation on independent datasets. Our approach includes the following 
steps: (1) ordering the datasets based on their level of noise and informativeness; (2) selection of 
a Bayesian classifier with an appropriate level of complexity by evaluation of predictive perfor-
mance on independent data sets; (3) comparing the different gene selections and the influence of 
increasing the model complexity; (4) functional analysis of the informative genes. In this paper, 
we identify the most appropriate model complexity using cross-validation and independent test 
set validation for predicting gene expression in three published datasets related to myogenesis 
and muscle differentiation. Furthermore, we demonstrate that models trained on simpler da-
tasets can be used to identify interactions among genes and select the most informative. We 
also show that these models can explain the myogenesis-related genes (genes of interest) sig-
nificantly better than others (P < 0.004) since the improvement in their rankings is much more 
pronounced. Finally, after further evaluating our results on synthetic datasets, we show that our 
approach outperforms a concordance method by Lai et al. in identifying informative genes from 
multiple datasets with increasing complexity whilst additionally modelling the interaction be-
tween genes. We show that Bayesian networks derived from simpler controlled systems have bet-
ter performance than those trained on datasets from more complex biological systems. Further, 
we present that highly predictive and consistent genes, 
from the pool of differentially expressed genes, across 
independent datasets are more likely to be fundamen-
tally involved in the biological process under study. We 
conclude that networks trained on simpler controlled 
systems, such as in vitro experiments, can be used to 
model and capture interactions among genes in more 
complex datasets, such as in vivo experiments, where 
these interactions would otherwise be concealed by a 
multitude of other ongoing events.
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BACKGROUND 
High-throughput gene expression profiling experiments have increased our understanding of 
the regulation of biological processes at the transcriptional level. In bacteria (Bockhorst et al., 
2003) and lower eukaryotes, such as yeast (Segal et al., 2003), modeling of regulatory interac-
tions between large numbers of proteins in the form of regulatory networks has been successful. 
A regulatory network represents relationships between genes and describes how the expression 
level, or activity, of genes can affect the expression of other genes. The network includes causal 
relationships where the protein product of a gene (e.g. transcription factor) directly regulates the 
expression of a gene but also more indirect relationships. Modeling has been less successful for 
more complex biological systems such as mammalian tissues, where models of regulatory net-
works usually contain many spurious correlations. This is partly attributable to the increasingly 
multi-layered nature of transcriptional control in higher eukaryotes, e.g. involving epigenetic 
mechanisms and non-coding RNAs. However, a potential major reason for the decreased perfor-
mance is due to biological complexity of datasets which can be defined as the increase of biologi-
cal variation and the presence of different cell types, which is not compensated by an increase in 
the number of replicate data points available for modeling. There is an urgent need to identify 
regulatory mechanisms with more confidence to avoid wasting laborious and expensive wet-lab 
follow-up experiments on false positive predictions. 

The main paradigms of this paper are that regulatory interactions that are consistently found 
across multiple datasets are more likely to be fundamentally involved and that these regulatory 
interactions are easier to find in datasets with less biological variation. In the end, regulatory 
networks trained on less complex biological systems could thus be used for the modeling of the 
more complex biological systems. We do this using a novel computational technique that com-
bines Bayesian network learning with independent test set validation (using error and variance 
measures) and a ranking statistic. Whilst Bayesian networks and Bayesian classifiers have been 
used with great success in bioinformatics (Friedman et al., 2000; Xu et al., 2004), an important 
weakness has been that, when trying to build models that reveal genuine underlying biologi-
cal processes, a highly accurate predictive model is not always enough (Grossman and Domin-
gos, 2004). The ability to generalize to other datasets is of greater importance (Peña et al., 2005). 
Simple cross-validation approaches on a single dataset will not necessarily result in a model that 
reflects the underlying biology and therefore will not generalize well. Our approach is to exploit 
multiple datasets of increasingly complex systems in order to identify more informative genes 
reflecting the underlying biology.

Bayesian networks have been an important concept for modeling uncertain systems (Pearl, 1986; 
Buntine, 1996; Heckerman, 1998; Friedman and Koller, 2003). In the last decade several research-
ers have examined methods for modeling gene expression datasets based on Bayesian network 
methodology (Segal et al., 2003; Friedman et al., 2000; Xu et al., 2004). These networks are di-
rected acyclic graphs (DAG) that represent the joint probability distribution of variables effi-
ciently and effectively (Friedman et al., 1997). Each node in the graph represents a gene, and the 
edges represent conditional independencies between genes. Bayesian networks are popular tools 
for modeling gene expression data as their structure and parameters can easily be interpreted by 
biologists.

Bayesian classifiers are a family of Bayesian networks that are specifically aimed to classify cases 
within a data set through the use of a class node. The simplest is known as the naïve Bayes clas-
sifier (NBC) where the distribution for every variable is conditioned upon the class and assumes 
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independence between the variables. Despite this oversimplification, NBCs have been shown 
to perform very competitively on gene expression data in classification and feature selection 
problems (Grossman and Domingos, 2004; Fielding, 2007; Tobler et al., 2002). Other Bayesian 
classifiers, which often have higher model complexity as they contain more parameters, involve 
learning different networks such as trees between the variables and therefore relax the indepen-
dence assumption (Friedman et al., 1997). The logical conclusion is the general Bayesian Network 
Classifier (BNC) which simply learns a structure over the variables including the class node. In 
this paper, we explore the use of the NBC, and the BNC for predicting expression on independent 
datasets in order to identify informative genes using classifiers of differing complexity.

Accordingly, in order to optimize the classifier and choose the best method, we need to consider 
the classifiers’ bias and variance. Since bias and variance have an inverse relationship (Field-(Field-
ing, 2007), which means decreasing in one increases the other, cross-validation methods can be 
adopted in order to minimize such an effect. The k-fold cross-validation (Fielding, 2007; Stone, 
1974) randomly splits data into k folds of the same size. A process is repeated k times where k-1 
folds are used for training and the remaining fold is used for testing the classifier. This process 
leads to a better classification with lower bias and variance (Kohavi, 1995) than other training 
and testing methods when using a single dataset. In this paper, we exploit bias and variance using 
both cross-validation on a single dataset and also independent test data in order to learn models 
that better represent the true underlying biology. In the next section we provide a description of 
the gene identification algorithm for identifying gene subsets that are specific to a single simple 
dataset as well as subsets that exist across datasets of all biological complexity. We used van den 
Bulcke et al. (2006) proposed model for generating synthetic datasets to validate our findings 
on real microarray data. Moreover, we evaluate the performance of our algorithm by comparing 
the ability of this model in identifying the informative genes and underlying interactions among 
genes with the concordance model. Finally, we present the conclusion and summary of our find-
ings in the last section.

METHODS
Multi-Data Gene Identification Algorithm
The algorithm involves taking multiple datasets of increasing biological complexity as input and 
a repeated training and testing regime. Firstly, this involves a k-fold cross-validation approach on 
the single simple dataset (from now on we refer to this as the cross-validation data) where Bayes-
ian networks are learnt from the training set and tested on the test set for all k folds. These folding 
arrangements have been used again for assessing a final model. The Bayesian Network learning 
algorithm is outlined in the next section. 

The Sum Squared Error (SSE) and variance is calculated for all genes over these folds by predict-
ing the measured expression levels of a gene given the measurements taken from others. Next, the 
same models from each k fold are tested on the other (more complex) datasets (the independent 
test data) and SSE and variance are again calculated. These SSE and variances are used to rank the 
genes according to their informativeness (which represents the most predictive and influential 
genes). Those that are ranked highly in the single-dataset cross-validation experiments will be 
informative, specific to the single datasets experiment, whereas those that are ranked highly on 
the independent datasets should be informative in a more general sense in that they are predic-
tive (low SSE) and consistent (low variance) across datasets of all complexity. We evaluate the 
statistical significance of these rankings using a method proposed by Zhang et al. (2006). The full 
details are outlined in Algorithm 1 where TrainD represents the training data (cross-validation 
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data, here the relatively simple datasets), and TestD1 … TestDM represent the more complex test 
datasets, independent test data.

Bayesian Network Structure Learning
The goal of learning gene regulatory networks using Bayesian network approaches is to establish 
the structure of the network and then to parameterize the conditional probability tables (Su and 
Zhang, 2006). As the number of possible network structures is huge, learning the structure of a 
network has a high computational cost. Since the effective learning of network structure engages 
a trade-off of bias vs. variance, the necessity of designing an algorithm in which it can generate an 
ideal structure for a given dataset, with a degree of biological complexity, is crucial (Chickering et 
al., 2004). In this study, instead of using well studied but unrealistic and sometimes not effective 
classifiers such as NBC and Tree Augmented Networks (TAN), we use an optimization approach 
that uses a simulated annealing search and the Bayes Information Criterion (BIC) as a scoring 
metric (Schwarz, 1978). The advantage of simulated annealing over other methods (like greedy 
searches or hill climbing) is that it aims to avoid local maxima (Friedman et al., 1997). We have 
chosen the BIC as a fitness function as it is less prone to overfitting through the use of a penalizing 
term for overly complex models. 

Bayesian networks with more connections between their nodes require a higher number of pa-
rameters and as a result increase the complexity of the models exponentially (Lam and Bacchus, 
1994). Therefore, we explore three different classes of model learning: the Selective Naïve Bayes 
(SNB) where only links between a class node representing differentiation status and a gene are 
explored, a search that explores structures with links between genes but limiting each gene to 
having only one parent (1PB). Limiting the number of parents in a Bayesian network is common 
practise but can be considered a crude approach to reducing parameters. As a result we also ex-
plore a full unlimited structure learning (NPB) and learn these structures using the simulated an-
nealing with the BIC scoring metric (which naturally penalises overly complex networks). In this 
study, the initial state of the structure is an empty DAG with no link. In order to alter the network 
structures, three operators have been used within the simulated annealing. These operators are 
adding, removing, or swapping links to generate a new network for validation. These alterations 

Algorithm 1  - Multi Data Gene Identification Algorithm.

Input: {TrainD, TestD1, …TestDM, folds}
 for k = 1:folds
  Learn BN using Algorithm 2 on training folds of TrainD
  Score SSE on test fold k of TrainD
  Score SSE on all independent test datasets {TestD1…TestDM}
 end for

 Calculate variance of SSE over all k folds on TrainD and {TestD1…TestDM}
 Create gene rankings: trainR_SSE, train_var, 
 {testR_SSE1…testR_SSEM} and

 {testR_var1…testR_varM} by ordering the genes

 on the respective SSE and variance scores

Output: trainR_SSE, train_var, 
 {testR_SSE1…testR_SSEM}
 {testR_var1…testR_varM}
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can be either accepted or rejected. The 
outline of this procedure can be found in 
Algorithm 2.

Prediction and Ranking
Zhang et al. (2006) proposed a method 
to convert a set of gene rankings into 
position p-values to evaluate the sig-
nificance of a given gene. However, this 
involved working with resampling tech-
niques upon a single dataset. Here, we 
use the ranking lists according to the 
model’s average SSE and variance for 
both the original simple dataset and the 
independent test sets in order to gener-
ate position p-values. This requires us 
to include, a number of random genes 
which can be counted as uninformative 
genes. By comparing the actual ranking 
of the gene with the null distribution we 
can calculate the position p-values. In 
this paper we are using three independ-
ent datasets so we do not need to use resampling in order to generate more gene rankings as 
Zhang et al. (2006) did in their experiments. In addition, the different rankings will have different 
interpretations as some are based purely on the simple dataset whilst others are influenced by er-
ror and variance on the more biologically complex independent data.

Datasets
With the aim of investigating the influence of the complexity of a gene expression dataset on 
the performance of classifiers in identifying the gene regulatory network, three gene expression 
datasets (with increasing biological variation) have been chosen for this study [GSE3858 (Cao et 
al., 2006), GSE1984 (Iezzi et al., 2004), and GSE989 (Tomczak et al., 2004)]. These three datasets 
are all concerned with the differentiation of cells into the muscle (Myogenic) lineage. During 
this process, mononucleated precursor cells stop to proliferate, differentiate and fuse with each 
other to become elongated multinucleated myotubes or myofibres. This in-vitro system mimics 
the formation of new muscle fibres in-vivo. The cell types differ between the different datasets:

•	 GSE3858: Embryonic fibroblasts (EF)

•	 GSE989 and GSE1984: C2C12 tumor cell line that has the potential for differentiation into 
different mesodermic lineages (mainly muscle and bone)

Also methods to drive cells into myogenic differentiation differ:

•	 GSE3858: Exogenous expression of the myogenic transcription factors are Myod and Myog.

•	 GSE989 and GSE1984: Serum Starvation

Input: t0, maxfc, D

 fc=0, t=t0, tn=0.001

 c=(tn/t0)
1/maxfc

 Initial bn to a Bayesian classifier with no inter-gene links

 results = bn

 oldscore=score(bn)

 while fc<maxfc do

  for each operator do

   apply operator to bn

   newscore=score(bn)

   fc=fc+1

   dscore=newscore-oldscore

   if newscore>oldscore then

    result=nbc

   else if r(0,1)<edscore/t then

    Undo the operator

   end if

  end for

  t=t x c

 end while

Output: result

Algorithm 2  - Simulated Annealing Structure Learning.
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In addition, the study by Sartorelli in-
cluded different treatments that affect the 
timing and efficiency of the myogenic 
differentiation process. The time points 
for sampling differ between the stud-
ies (Table 1). The class node reflecting 
the differentiation status had two pos-
sible states: undifferentiated (for all time 
points until myogenic differentiation was 
induced) and differentiated (for time points where myogenic differentiation had been induced). 
In the rest of this paper we call these datasets by the name of the first author (e.g. Cao instead of 
GSE3858).

Data Processing and Analysis
The raw microarray data were normalized and summarized with the RMA method (Irizarry et 
al., 2003), using the affy package in R. Only the 8904 probesets common to the Affymetrix U74A 
and 430.2 used in mentioned studies were considered in the analysis. All datasets were standard-
ized to mean 0 and the standard deviation 1 across the genes. For the scope of this paper, first, we 
selected for each dataset a subset of 100 genes most affected by the induction of differentiation. 
These genes were identified with Student’s t-test which compared samples from undifferentiated 
and differentiated cell cultures, disregarding the time of differentiation. An additional 50 genes 
were randomly selected to be able to calculate ranking p-scores described above and using the 
Kolmogorov-Smirnov test. For cross-validation we divided Cao dataset into 9 folds, Sartorelli 
into 8 folds, and Tomczak into 6 folds based upon the number of samples in each dataset. Simu-
lated annealing has three attributes which should be set before starting the learning phase. It is 
crucial to set an appropriate initial temperature, sufficient number of iterations, and a convenient 
fitness function. In this study, the initial temperature has been set to 10 and it terminates at 0.001. 
The number of iterations has been set to 1000 for the first set of experiments only using most 
informative genes (top 100) and then we set the number of iterations to 1500 since we added 50 
uninformative genes to the network. The code is implemented in Matlab 2007a using the Bayes 
Net toolbox (Murphy, 2001) to generate gene regulatory networks.

Analysis of myogenesis-Related genes
Myogenesis-related genes are defined as genes associated with the Gene Ontology term “Muscle 
Development” supplemented with all genes strongly associated with Myogenesis in the biomedi-
cal literature, as determined with the literature analysis tool Anni v2.0 (Jelier et al., 2008) with the 
association score greater than 0.02.

Analysis of Synthetic datasets
The use of datasets in which the underlying network is known enables us to validate the new 
algorithms that have been developed to identify gene regulatory networks and capture the most 
informative genes. van den Bulcke et al. (2006) proposed a new methodology to generate syn-(2006) proposed a new methodology to generate syn- proposed a new methodology to generate syn-
thetic datasets where the network structure is known and biological, experimental, and model 
complexity can be manipulated. However, a disadvantage of this approach is that the generated 
networks can contain some overlapping pieces of the known network which may weaken the 
models being probabilistically independent (Haynes and Brent, 2009). Whilst SynTReN uses res-(Haynes and Brent, 2009). Whilst SynTReN uses res-. Whilst SynTReN uses res-
ampling from potentially overlapping networks, the generated data undergoes a robust statistical 
cross-validation regime ensuring that any prediction is applied to unseen data. The focus of this 
paper is upon the prediction of increasingly complex datasets, sampled from some underlying 

Dataset Cell Type Platform Samples Time Points

Tomczak C2C12 Affy U74A 24 8

Cao EF Affy 430.2 36 4

Sartorelli C2C12 Affy U74A 32 6

`

Table 1  - Specification of three muscle differentiation 
datasets.
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biological process. Consequently, these synthetic datasets can be used for validating the perfor-
mance of our methodology in identifying the informative genes and the interactions among them 
in real microarray data. SynTReN (Van den Bulcke et al., 2006) generates networks with more 
realistic topological characteristics and since we use this application to investigate the impacts of 
biological, experimental, and model complexity on identifying informative genes using the same 
sub-network is an advantage. Three datasets have been generated on the well-described network 
structure of E. coli (Ma et al., 2004) which contains 1330 number of nodes and 2724 interactions. 
These datasets have been generated in a manner that they can match the key characteristics of 
real microarray datasets we used in this study (for instance, limiting the number of genes that 
were selected for modelling to 150). This enables us to investigate the possibility of reproducing 
similar results on synthetic data which can be easily corrected for differences such as number of 
samples and time points per dataset (see Additional file 1) and avoid weakening the probabilisti-
cally independent assumption of the generated datasets.

Analysis of Concordance between datasets
The study of the concordance between microarray datasets has increased considerably in the past 
few years (Miron et al., 2006). However, a robust statistical method for examining the concord-(Miron et al., 2006). However, a robust statistical method for examining the concord-. However, a robust statistical method for examining the concord-
ance or discordance among microarray experiments carried out in different laboratories is yet to 
develop. Methods such as multiplication of gene p-values in order to generate a list of rankings 
for concordance genes showed bias towards datasets with higher significance level (Rhodes et al., 
2002). Lai et al. (2009) proposed a promising methodology (which we call concordance model) to 
investigate the concordance or discordance between two large-scale datasets with two responses. 
This method uses a list of z-scores, generated using a statistical test of differential expression, as 
an input to evaluate the concordance or discordance of two datasets by calculating the mixture 
model based likelihoods and testing the partial discordance against concordance or discordance. 
Additionally, the statistical significance of a test is being evaluated by the parametric bootstrap 
procedure and a list of gene rankings is being generated which can be used for integrating two 
datasets efficiently. In this paper we are using a set of gene rankings generated by this method to 
evaluate the performance of our model in identifying informative genes from multiple datasets 
with increasing complexity.

RESULTS
The aim of this study is to demonstrate firstly, the influence of model complexity in discovering 
accurate gene regulatory networks on multiple datasets with increasing biological complexity. 
Secondly, to investigate if cleaner and more informative datasets can be used for modelling more 
complex ones. Therefore, three public datasets that are concerned with the differentiation of cells 
into muscle lineage were chosen for this study. From a biological point of view, Sartorelli is the 
most complex dataset since it involves different treatments influencing myogenesis. Tomczak and 
Cao are less complex datasets. It is difficult to say how their complexity relates since Tomczak 
uses more heterogeneous stimuli to induce differentiation but has more time points, while Cao 
uses more defined stimuli (Myod or Myog transduction) and less time points. In order to meet 
the scope of this study, we evaluated the quality and informativeness of these datasets based on 
two criteria. Firstly, we calculated the average correlations between replicates as a measurement 
of noisiness of each dataset. Secondly, using Student’s t-test method, we counted the number 
of differentially expressed genes with the significance levels of 0.05 and 0.01 as a measurement 
of informativeness (Table 2). Although the average correlations between replicates in all three 
datasets are very close, datasets differ in number of significant genes they hold. Tomczak is the 
most informative dataset as it includes the most number of significant genes and has a higher 
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average correlation value for the repli-
cate samples in the dataset which repre-
sent the lowest level of noise. In contrast, 
Sartorelli contains the least differentially 
expressed genes with almost 12% of what 
Tomczak contains. Moreover, it has the 
lowest average correlation value and can 
be marked as the most complex dataset 
to model in this study as it has the high-
est noise level and the least number of 
informative genes. Therefore, we ordered 
these datasets by increasing biological complexity in the following way: Tomczak, Cao, and Sar-
torelli.

Comparison of classifiers and network analysis
We now explore how the different classifiers performed on these three datasets. Figure 1 shows 
the average error rate of the different classifiers trained on each given dataset. It can be seen that 
of the three classifiers, 1PB and NPB generated the same pattern and have very close error rates 
on cross-validation (training) sets. However, it is evident that NPB (particularly on Tomczak) 
performs poorer than 1PB on the independent test set, possibly due to overfitting as these models 
contain more parameters. Even though SNB performed poorly on both the cross-validation test 
and the independent data test, in some cases it could compete with NPB which appears to be 
too complex to predict some of the independent datasets accurately. Hence, 1PB has performed 
favorably, both in terms of average error rate and the difference between the cross-validation test 
and the independent data test (see Additional file 1 for complete set of results).

According to Mac Nally (2000) simple models should be sought for various reasons. Firstly, sim-
ple models are more stable and capable of not overfitting to noise in the data which will influence 
the performance of classifier with future data. Secondly, they tend to provide a better insight into 
causality and interactions among genes. Finally, reducing the number of parameters will decrease 
the cost of validating a model for current and future data. However, we need a model that matches 
the complexity of data sets. Considering this argument along with our first set of results, we chose 
1PB as a model that can capture the interactions among genes and does not overfit to noise. In 
order to understand the impacts of using different datasets for gene selection and training 1PB 
classifier (which will be discussed in the next section), we need to analyse the performance of the 
1PB classifier on the top 100 (most informative) genes in more detail.

Additional file 1, Figure S7 represents the comparison of the error rate of the 1PB classifier on 
cross-validation versus the independent test. It is shown that the 1PB classifier trained on Tomc-

Figure 1  - The comparison of classifiers 
with increasing model complexity. Three 
Bayesian network models (SNB, 1PB, and 
NPB) have been trained using cross-valida-
tion set and validated on independent data-
sets. An average error rate of the classifiers’ 
prediction has been calculated for each 
gene and an overall SSE on cross-validation 
set and independent test set are illustrated 
in this figure.

Genes with a P-value (BH) less 
than

Dataset Correlation 0.05 0.01

Tomczak 0.975 4602 3604

Cao 0.971 3668 2623

Sartorelli 0.964 1199 458

Table 2  - The average correlations between replicates 
and number of differentially expressed genes (based on 
BH corrected p-values) in each dataset.
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zak performed significantly better on cross-validation and Sartorelli shows the lowest differentia-
tion between cross-validation and the independent test with almost the same average error rate 
on the cross-validation set compared to Cao. Although the differentiation of average error rate 
on the cross-validation set and independent test set is high in Tomczak, this model produced the 
best models in terms of the lowest overall error rate. This figure raises the idea that Tomczak is the 
most informative dataset since it can model any dataset, regardless of the gene selection method, 
significantly better than the other alternatives. This will be discussed in more detail in the Extrac-
tion of infotmative genes section.

Comparison of gene selections with differing informativeness
We now look into how the different gene selections impact on the average error rate of the 1PB 
classifier for both cross-validation and the independent test. Figure 2 demonstrates the per-
formance of the 1PB classifier in modeling datasets generated using different gene selections. 
Clearly, unlike Sartorelli, genes selected from Tomczak and Cao show very good performances 
on cross-validation. However, by looking at the average error rate of 1PB on independent test 
sets, we can see that the models learnt on Cao over-fitted the data and performed poorly on the 
independent test set (with the SSE of 0.32) whereas Sartorelli shows the lowest differentiation 
between the two sets. Overall the Tomczak selection performed the best both on cross-validation 
and the independent test.

It is important to adopt a methodology that can generate an accurate gene regulatory network, 
moreover, it is crucial to generate a model that can capture the significant genes and distinguish 
informative genes from uninformative ones. For this purpose, we added 50 randomly selected 
genes with high p-values (which imply less relatedness to Myogenesis) from the distribution. This 
also has the effect that it will increase the complexity of the datasets. 

Figure 3 shows that there is a similar pattern on the average error rate of cross-validation. The 
additional random genes do not seem to affect Cao. It does, however, have an interesting im-
pact on Sartorelli. The models learnt on Sartorelli (see Additional file 1) performed even poorer 
than SNB on the independent data sets and showed no significant changes when using different 
datasets for training. It is interesting because we know that the Sartorelli dataset is noisy and 
biologically complex and adding the random genes, which increases the complexity of the mod-
els in terms of more nodes and increases the risk of spurious links, produces a classifier which 
appears to be unable to capture the real gene interactions. The error rate and variance of models 
learnt on the Sartorelli selection is significantly high in comparison with Tomczak. By comparing 
figures 2 and 3, we can conclude that simpler and cleaner datasets tend to perform more reliably 
and have more stability while increasing the complexity. Since it is important to validate these 
models according to their variances, we demonstrated the average variance of each model on 
cross-validation and the independent test set in Additional file 1, Figure S8. Interestingly, we can 
see a similar pattern in the classifiers’ variance in comparison with the average error rate (Figure 

Figure 2  - Evaluating the accuracy of 1PB 
using different datasets for gene selec-
tion. We selected genes using only one da-
taset (black) at a time and compared the av-
erage error rate of 1PB classifier learnt and 
trained on a same dataset and validated on 
the other two datasets independently (grey).
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3). It is clear that we can raise the same conclusion as the simpler and cleaner datasets perform 
better than more noisy and complex ones. In this study, Tomczak performed favorably both in 
terms of bias and variance.

It is crucial to investigate if these findings are reproducible and are not prone to the number of 
samples and time points per dataset. Therefore, we applied our model on three synthetic datasets 
that have been generated by manipulating the biological, experimental, and model complexity 
of their known network structure using SynTReN application (Van den Bulcke et al., 2006). Ad-(Van den Bulcke et al., 2006). Ad-. Ad-
ditional file 1, Figure S9 illustrates that we can see a very similar pattern as we have seen on a real 
data where there is an increase on the average error rate of models learnt on multiple synthetic 
datasets with increasing biological variability. In the next section, before examining if these mod-
els can help us to capture the interactions in more complex datasets, we will investigate how well 
these models separate the informative genes from uninformative ones.

Extraction of informative genes
In order to test the ability of classifiers to separate informative genes from uninformative ones, 
we have looked at the result of the Kolmogorov-Smirnov test (KS test) on the ranking of genes 
according to their average error rate using a given model. Using this algorithm, we calculated 
the p-value, KS test, and the result of investigating the differentiation hypothesis along with the 
models’ bias or variance. The results of this investigation are displayed in Additional file 1, Table 
S1 where Cao and Tomczak performed very well on cross-validation both in terms of bias and 
variance. However, models learnt on Sartorelli fail to separate between informative genes and 
uninformative genes as the scores are generally very low.

Generally, Tomczak outperformed Sartorelli and Cao and can be chosen as the most informative 
dataset in this study. Models learnt on Tomczak generated the lowest bias and variance and pro-
duced the best separation. In contrast, Sartorelli is the noisiest and less informative dataset while 
it failed to handle any increases in complexity (both biological and model wise) and generates 
models with highest bias and variance which also cause disability to separate informative genes 
from the others. Now the question is whether we can use a simpler and cleaner dataset to model 
more complex ones. In the next section we show how we tackled this question.

Analysis of the use of simpler dataset to model more complex one
In this section, we investigate the improvement or deterioration of genes selected by Tomczak on 
the Sartorelli dataset. Figure 4 shows the average improvement or deterioration of ranks of myo-
genesis-related genes, top 100 genes (most informative), and 50 randomly selected genes (unin-
formative) in Sartorelli. We compared the original rank of each gene (which can be any number 
between 1 and 150 derived from its p-value comparing to others) with its rank based upon the 
ability of a model trained on Tomczak to predict gene’s value in Sartorelli. Moreover, we evaluate 
the improvement or deterioration of genes rankings in our model with the ones generated using 

Figure 3  - The investigation of inference 
of adding more complexity to the model. 
We investigated the inference of adding 
more complexity to the model by adding 
50 randomly selected genes as uninforma-
tive on 1PB classifier performance. In this 
figure we compare the average error rate of 
1PB classifier after adding 50 uninformative 
genes to the model. 0.15
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the concordance model described by Lai et al. (2009). We can clearly see that the model learnt 
on Tomczak can capture the informative genes in Sartorelli and improve their rank whereas un-
informative genes have been pushed down (almost 17 places in average) in the ranking by the 
classifier. Additionally, the improvement is even more pronounced for myogenesis-related genes 
with 12.33 places in average, which is significantly better than others with P < 0.004 generated 
using KS test, and as expected top 100 genes has been improved by 8.44 places. Even though both 
methods perform similarly on improving the ranks of top 100 and deteriorating the ranks of 50 
randomly selected genes, the improvement of ranks for myogenesis-related genes are much more 
pronounced in our model than in the concordance model (improvement of 5.38 places). 

Myh7 and Tor3a are two examples of significant improvements in Sartorelli dataset. Myh7, which 
originally ranked 101, improved 96 places to rank 5 (rank 55 in concordance model). During the 
learning phase it has been linked to four other genes of which three of them are myogenesis-relat-
ed. These genes, in both datasets, have direct correlations and can represent each other in terms of 
prediction and validation. However, Tor3a has a very low rank in both dataset and yet improved 
107 places from 128 to 21 (rank 31 in concordance model). It has been linked to Prune which 
also improved 106 places (from 131 to 25, 100 in concordance model). All three genes mentioned 
above have been selected as informative genes from Tomczak and yet placed into the bottom 50 
due to the quality of Sartorelli dataset. These were some examples of the ability of model to pull 
out informative genes from a distribution (Figures S10A and S10B).

Although the overall improvement on myogenesis-related genes is significantly high, we were 
concerned why this model failed to improve the rank of some genes like Id3 which dropped from 
rank 1 in Sartorelli to 133 (rank 51 in concordance model). In the learning process, Id3 has been 
linked to 4 genes which are: Fabp3, Rbm38, X99384, and Slco3a1. Now in order to answer the 
question, firstly, we validate the relatedness of these genes to Id3 in Tomczak dataset to investigate 
if they are significant and can represent Id3. Secondly, we study the expression level of these genes 
in Sartorelli to identify the reason why this model failed dramatically in predicting the Id3 value.

Additional file 1, Figure S11 demonstrates the expression level of Id3 along with its parent/chil-
dren in both Tomczak and Sartorelli datasets. In Tomczak we can clearly see that there is an 
inverse relationship between Id3 and the other 4 genes which is very significant. While the differ-
entiation state changes, Id3 drops from the expression level of approximately 11 to 8.5 and simi-
larly its relatives show an increase of about 2 points in their expression values. This supports the 
assumption of the relatedness of these genes to Id3 in the learning process on Tomczak dataset. 
However, considering that Id3 is still very significant in Sartorelli, Id3 parent/children show no 

Figure 4  - The improvement or deteriora-
tion of genes ranking in Sartorelli. Firstly, 
we selected 100 informative and 50 uninfor-
mative genes using Tomczak dataset and ex-
tracted their ranks in Sartorelli. Secondly, we 
trained 1PB classifier on Tomczak and tested 
on Sartorelli. Finally, we ranked genes accord-
ing to the average error rate of 1PB classifier 
in predicting their values in Sartorelli. This 
figure illustrates the average improvement or 
deterioration of Myogenesis-Related, Top 100, 
and 50 randomly selected genes in Sartorelli 
generated with our method and the gene 
rankings generated by concordance model.
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variation and simply are not significant. As a conclusion, this model failed to predict Id3 expres-
sion value and as a result the rank of Id3 dropped 132 places most probably due to the quality 
and biological variation of Sartorelli dataset. Since we aim to overcome the lack of overlap on the 
gene regulatory network studies across species and platforms, the natural extension of the work 
in this paper would be to explore how this model can be used on datasets from multiple biological 
systems with increasing complexity. Moreover, it would be valuable to consider methods such as 
model averaging (Madigan and Raft ery, 1994) that has been shown better generalization in clas-(Madigan and Raftery, 1994) that has been shown better generalization in clas- that has been shown better generalization in clas-
sifier’s accuracy. Consequently, it improves the performance of classifiers in identifying the most 
informative genes and avoids deterioration of cases like Id3. Furthermore, dynamic Bayesian 
networks can be adopted when learning from time-series data in order to handle auto-regulation 
and feedback loops, two key components of regulatory networks in biological data (Shen-Orr et 
al., 2002; Lee et al., 2002).

CONCLUSIONS
In this study, we have investigated a number of different Bayesian classifiers and datasets for 
identifying firstly, subsets of genes that are related to myogenesis and muscle differentiation, and 
secondly the use of cleaner and more informative datasets in modelling more biologically com-
plex datasets. We have shown that an appropriate combination of simpler and more informative 
datasets produce very good results, whereas models learnt on genes selected from more complex 
datasets performed poorly. We concluded that simpler datasets can be used to model more com-
plex ones and capture the interactions among genes. Moreover, we have described that highly 
predictive and consistent genes, from a pool of differentially expressed genes, across independent 
datasets are more likely to be fundamentally involved in the biological process under study. In 
three published datasets, we have demonstrated that these models can explain the myogenesis-re-
lated genes (genes of interest) significantly better than others (P < 0.004) since the improvement 
in their rankings is much more pronounced. These results imply that gene regulatory networks 
identified in simpler systems can be used to model more complex biological systems. In the ex-
ample of muscle differentiation, a myogenesis-related gene network may be difficult to derive 
from in vivo experiments directly due to the presence of multiple cell types and inherently higher 
biological variation, but may become evident after initial training of the network on the cleaner in 
vitro experiments. In order to validate our approach, firstly, we evaluated our model on synthetic 
datasets and secondly we performed comparisons between our approach and the method of Lai 
et al. (2009) which we call concordance model. It is shown that our model performs compara-(2009) which we call concordance model. It is shown that our model performs compara- which we call concordance model. It is shown that our model performs compara-
bly in improving the ranks of informative genes and deteriorating the ranks of uninformative 
ones, but that the improvement of ranks for myogenesis-related genes is much more pronounced 
whilst additionally modelling the interactions among genes. However, it is necessary to develop 
other statistical measures so that the model can be quantified to distinguish different degrees of 
complexities and platforms whilst handling the auto-regulation and feedback loops within the 
network.
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APPENDIX

Figure S1 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ 
prediction has been calculated for each gene (se-
lected from Tomczak dataset) and an overall SSE 
on cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.

Figure S2 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ 
prediction has been calculated for each gene (se-
lected from Tomczak dataset) and an overall SSE 
on cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.

Figure S3 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ pre-
diction has been calculated for each gene (selected 
from Cao dataset) and an overall SSE on cross-vali-
dation set and independent test set are illustrated in 
this figure. These models have been trained on each 
dataset and validated on the other two datasets.

Figure S4 - The comparison of classifiers with 
increasing complexity. Three Bayesian network 
models (SNB, 1PB, and NPB) have been trained us-
ing cross-validation set and validated on indepen-
dent datasets. An average error rate of the classi-
fiers’ prediction has been calculated for each gene 
(selected from Cao dataset) and an overall SSE on 
cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.
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Figure S5 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ 
prediction has been calculated for each gene (se-
lected from Sartorelli dataset) and an overall SSE 
on cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.

Figure S6 - The comparison of classifiers with in-
creasing complexity. Three Bayesian network mod-
els (SNB, 1PB, and NPB) have been trained using 
cross-validation set and validated on independent 
datasets. An average error rate of the classifiers’ 
prediction has been calculated for each gene (se-
lected from Sartorelli dataset) and an overall SSE 
on cross-validation set and independent test set are 
illustrated in this figure. These models have been 
trained on each dataset and validated on the other 
two datasets.

Figure S7 - The comparison of the differences be-
tween cross-validation set and independent test 
set on average error rates of 1PB classifier (ex-
tracted from figure 1).

Figure S8 - The investigation of inference of add-
ing more complexity to the model by adding 50 
randomly selected genes as uninformative on 
1PB classifier performance. In this figure we com-
pare the average variance of 1PB classifier after 
adding 50 uninformative genes to the model.

Figure S9 - This figure illustrates the performance 
of 1PB classifier on modeling three synthetic da-
tasets generated using SynTReN application by 
manipulating the biological and experimental 
complexity. There is an increase of the biological 
variability on three datasets which matches an in-
crease on the average error rate of models learnt.
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Figure S10 - A).The expression level of Myh7 along with its parent/children in both Tomczak and Sartorelli 
datasets. In Tomczak we can clearly see that there is a strong relationship between Myh7 and the other 4 
genes. Moreover, in Sartorelli dataset the correlation still exists between Myh7 and Csrp3, Mylpf, Myom1, 
and Ryr1 even though it is not as strong as Tomczak. B) The expression level of Tor3a along with its parent 
in both Tomczak and Sartorelli datasets. In Tomczak we can clearly see that there is a good relationship 
between Tor3a and Prune. Moreover, in Sartorelli dataset the correlation still exists between Tor3a and Prune. 
This figure is an example of a large improvement of rank of a given gene after training on Tomczak. The x-axis 
represents both the time points and the differentiation status.
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Figure S11 - The expression level of Id3 along with its parent/children in both Tomczak and Sartorelli 
datasets. In Tomczak we can clearly see that there is an inverse relationship between Id3 and the other 4 
genes while Sartorelli dataset shows no significant correlations between Id3 and Fabp3, Rbm38, X99384, 
and Slco3a1. This figure is an example of a large deterioration of rank of a given gene after training on Tom-
czak. The x-axis represents both the time points and the differentiation status.

4

6

8

10

12

Tomczak

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

No No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Sartorelli

N
or

m
al

iz
ed

 E
xp

re
ss

io
n

4

6

8

10

12

-2 d -2 d -2 d -1 d -1 d -1 d 0 d 0 d 0 d 2 d 2 d 2 d 4 d 4 d 4 d 6 d 6 d 6 d 8 d 8 d 8 d 10 d 10 d 10 d
No No No No No No No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Id3 Fabp3 Rbm38 X99384 Slco3a1



THE IDENTIFICATION OF INFORMATIVE GENES FROM MULTIPLE DATASETS

131

Table S2 - The specification of three synthetic datasets generated for the purpose of the validation 
and reproduction of the result of applying our model on real microarray datasets used for this study. 
Three datasets have been generated on the well-described network structure of E. coli (Ma et al., 2004) 
which contains 1330 number of nodes and 2724 interactions. Average performance is measured based on 
SSE/Variance.

SYN D 1 SYN D 2 SYN D 3

Burnin point 2000 2000 2000

Number of Experiments 15 15 15

Number of Samples per experiment 2 2 2

Number of Nodes 1000 1000 1000

Number of Background nodes 0 0 0

Probability for complex 2-regulator interactions 0.3 0.5 0.7

Biological noise 0.1 0.3 0.5

Experimental noise 0.1 0.3 0.5

Noise on correlated inputs 0.1 0.3 0.5

Number of External nodes 0 0 0

Number of Correlated external nodes 0 0 0

Sub network selection method Cluster Addition

Random seed 13 13 13

Table S1 - Differentiation Hypothesis. Investigating how well the models can separate the informative and 
uninformative genes from each other. Firstly, we ranked genes according to their average error rate and 
variance. Secondly, using Kolmogorov-Smirnov test and original ranking list, we explored which model can 
separate the informative genes from uninformative genes the best.

   
Error Rate (SSE) Variance

 

Gene 
Selection

Cross-
Validation Set

Independent 
Test Set

Cross-
Validation Set

Independent 
Test Set

» Tomczak

Differentiation Hypothesis TRUE TRUE TRUE TRUE

P-value 5.02E-24 9.77E-10 5.02E-24 3.68E-05

Kolmogorov-Smirnov Test 0.880198 0.552871 0.880198 0.394257

Average Performance 0.165259 0.298921 0.00537 0.018667

Cao

Differentiation Hypothesis TRUE TRUE TRUE TRUE

P-value 1.89E-22 6.16E-06 1.91E-20 0.004314

Kolmogorov-Smirnov Test 0.850297 0.425347 0.810693 0.295842

Average Performance 0.202472 0.320211 0.007819 0.019219

Sartorelli

Differentiation Hypothesis FALSE TRUE FALSE FALSE

P-value 0.443901 0.007507 0.527435 0.104457

Kolmogorov-Smirnov Test 0.145941 0.282178 0.136832 0.205149

Average Performance 0.275287 0.336551 0.014939 0.023772




