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Now this is not the end. It is not even the 
beginning of the end. But it is, perhaps, 
the end of the beginning.

Winston Churchill
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Systems biology is the study of complex interactions between different elements of cells, tis-
sues, and organisms. The last decade has marked the rise of systems biology owing to ad-
vancements in high-throughput techniques for genetic manipulation and measurement of 

cellular activities, such as genome-wide microarrays and next-generation sequencing. The advent 
of these technologies enabled scientists to progress beyond studying individual genes and come 
to a global understanding of the interplay between different elements of the cell. Despite the 
encouraging progress in systems biology, the high-dimensional and heterogeneous nature of bio-
logical data poses significant challenges for rigorous analysis and meaningful interpretation. For 
instance, differences in experimental design (such as phenotype, response, treatment, and timed 
events) or technical artefacts (introduced during sample preparation or data processing) compli-
cate data integration and modelling. Notably, stochastic gene expression, even among isogenic 
cells, creates a source of variability at single-cell level that underlies diversified protein synthesis 
(Kaern et al., 2005; Kaufmann and van Oudenaarden, 2007; Ozbudak et al., 2002; Blake et al., 
2003; Paulsson, 2004; Sigal et al., 2006). For instance, To and Maheshri (To and Maheshri, 2010) 
have shown that high or low gene expression can spontaneously be controlled by the systematic 
noise. This phenomenon can result from intercellular variations at the level of pathways that 
regulate gene expression (extrinsic noise) or arise from the random production of mRNA and 
bursts of protein synthesis (intrinsic noise) due to chance in interaction between cellular com-
ponents. For example, genes responding to environmental stress exhibit higher level of extrinsic 
noise while the most robust genes regulate translation and protein degradation (Bar-Even et al., 
2006; Newman et al., 2006). Thus, a full accounting of effect sizes provides crucial information on 
pathways and mechanisms that regulate transcriptional changes.

To tackle technical bottlenecks and arrive at biologically interpretable results, several classes of 
methodology have been developed, ranging from correlative approaches to those aimed to infer 
causal relationships. Correlation-based statistical analyses seek to identify the most prominent 
candidates (genes, proteins, transcription factors, or metabolites) for follow-up studies. How-
ever, the use of statistical tests that classify data points into ‘changed’ or ‘unchanged’ dismiss 
potentially important information on a wide range of effect sizes. Other strategies focus on the 
inference of modules of functionally related entities and their joint association with a biological 
response. Owing to the coupling and coordination of transcriptional regulation (Maniatis and 
Reed, 2002; Soller, 2006), rather than being independent, these modules can link the overall be-
haviour of a system to the interactions between its components. Thus, the use of such mathemati-
cal models can lead to the identification of prominent molecular pathways and multi-gene panels 
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of interconnected regulatory networks. 
Nevertheless, these approaches may 
fail to provide mechanistic insight and 
discriminate between cause and con-
sequence, which are among the main 
goals of systems biology. Allegorically, 
systems biology at its current state of 
development is like a group of blind 
wanderers studying the complex inner workings of the universe. For a panel of researchers tack-
ling a biological question having all the tools and techniques in hand, unknown degrees of com-
plexity make the identification of what is before them far from trivial.

To improve our methods for eliciting causal mechanisms, the use of systems with similar proper-
ties can serve as prior knowledge for benchmarking. This prior knowledge could compensate for 
the inherent sparseness and noisiness of high-dimensional biological data and improve precision 
and accuracy of their interpretation. In addition, the use of data from organisms with identical 
genetic background, living under controlled experimental and environmental conditions, is pre-
ferred as it results in inherently lower levels of noise and stochasticity. Integration of data from a 
number of model organisms may, therefore, advance the understanding of more complex biologi-
cal systems. The development of strategies for robust translation of findings from one organism 
to another constitutes the core of this thesis. In this introduction, I outline alternative methods 
for inference of biologically relevant relationships, ranging from simple searches in biological 
modules to data-mining, machine learning, and modelling of Bayesian networks.

Data integration
Data integration consists of efforts in combining multiple datasets to provide a unified view of 
biological information. There is a necessity for data-mining that goes beyond the analysis of in-
dividual datasets. Hence, consensus and precision in biological interpretation can be reached 
only through another source of information (Tenenbaum et al., 2011). Integration of data and 
genomic information from multiple experiments can ultimately provide significant mechanistic 
insights on genomic, transcriptomic, proteomics, metabolomics, and epigenomic changes that 
give rise to specific phenotypes at the molecular, cellular, or organismal level (Figure 1). None-
theless, the process of data integration requires a fine tuning and vigorous setting for optimal 
precision of findings. Various data integration strategies, at different levels, can potentially offer 
different views on the same biological information. High-level integration methodologies, such 
as meta-analyses, are dependent on filtering protocols (i.e. selection of differentially expressed 
genes as input) with basic assumptions which can lead to loss of biological information. Never-

Figure 1 – Schematic illustration of data 
integration. The recurrent integration of 
biological data (genome, transcriptome, 
phenome, and environment) requires spe-
cial efforts in utilising data sources, protein-
protein interaction (PPI) networks and pro-
tein complexes, biomedical literature, etc. 
The proper tuning and enhanced strategies 
for integrative studies leads to knowledge 
discovery by providing information on dif-
ferential expression, the most prominent 
molecular pathways, common patterns, and 
regulatory dynamics and networks.
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theless, these approaches are useful for obtain-
ing a gross overview over the data (Ficenec et 
al., 2003). In contrast, low-level approaches, 
such as data-mining, can facilitate the use of 
mutual information to gain better power in 
retrieving valuable information (Choi et al., 
2004). Multi-layer integration of biological 
data may offer the best of both strategies. This 
approach provides a framework in which the 
influence of platform- or experiment-specific 
noise (Aitchison and Galitski, 2003) can be 
reduced since it reinforces the mutual infor-
mation standing out above uncorrelated noise 
(Choi et al., 2004; Jiang et al., 2004).

Ups and downs at the transcriptome
The work presented in this thesis is largely 
confined to transcriptome data analyses. The 
amount of mRNA in the cell is finely regu-
lated in a spatial-temporal manner to ensure 
cellular homeostasis. The centrality of RNA 
processing (Sharp, 2009), together with the 
comprehensive nature of current RNA expres-
sion profiling approaches, makes transcrip-
tome data ideal for modelling of biological re-
sponses. Nevertheless, transcriptome analyses 
disregard important levels of regulation at the 
translational and post-translational level. Re-
cent studies have demonstrated rather poor 
correlations between mRNA and protein levels 
(Guo et al., 2010; Selbach et al., 2008).

The study of the transcriptome, in particular 
that of higher eukaryotes, is complicated by 
extensive RNA processing steps which give 
rise to different transcript variants. RNA pro-
cessing events, such as splicing (Cooper et al., 
2009; Wahl et al., 2009), polyadenylation (Lutz, 2008), RNA editing (Bass, 2002; Wulff et al., 
2011) and other post-transcriptional modifications, widely expand the mRNA pool and, there-
fore, coding of an even more diverse set of functional proteins and RNA species (Figure 2). These 
events are vital for many physiological and pathophysiological processes. This may explain some 
of the relatively diverse phenotypic characteristics of human and chimpanzee that share 99.7% 
identical sequence in genome-coding regions (Calarco et al., 2007). In humans, more than 90% of 
genes are alternatively spliced in a tissue and cell-specific manner (Wang et al., 2008a). Like regu-
lation of transcription, post-transcriptional processes are tightly controlled. For instance, there 
is an important regulatory role for microRNAs on mRNA stability and translational efficacy (Fil-
ipowicz et al., 2008) and epigenetic changes mediated by non-coding RNAs (Wang et al., 2008b; 
Cam et al., 2009). The integrity of these processes are controlled by mRNA stability and turnover 

Figure 2 – Schematic overview of RNA processing 
and its regulation. A single gene can generate pre-
mRNAs that are alternatively processed to generate a 
diverse set of mature mRNAs. These isoforms can dif-
fer in inclusion of exons (alternative splicing) and the 
polyadenylation sites in the 3’ UTR (alternative polyad-
enylation). Alternative protein-coding regions are de-
picted as mutually exclusive splicing of the third exon 
and selection of one of the two possible poly(A) sites 
(pA1 and pA2). Alternative splicing, for instance, can 
lead to coding frame-shifts which results in degrada-
tion of mRNA by nonsense-mediated decay pathway. 
On the other hand, elongation of the 3’ UTR can alter 
the range of regulatory elements such as microRNAs 
(miRNA) targeting the transcript to be subjected to dif-
ferent forms of post-transcriptional regulation, in this 
case inhibition. Additional events, such as selection 
of alternative first exons, can further diversify the pool 
of mRNAs.

introns

un-translated regions (UTRs)

protein coding

5’ 3’

pA1Start pA2

1 2 3 4

miRNA

translation

inhibition

stop codon

translation

degradation

stop codon

Alternative splicing and polyadenylation

1 2 3 4

1 2 3 4

1 2 3 4

1 2 4

Polyadenylayion

Splicing



PREFACE

14

machineries (Houseley and Tollervey, 
2009) as abnormal RNA processing can 
lead to futile or ultimately lethal function 
of encoded protein. Hence, the study of 
transcriptional and post-transcriptional 
control of mRNA expression is essential 
for a better understanding of physiology 
and pathophysiology. Furthermore, the 
comparison of transcriptome profiles 
from different cell types and organisms 
can help determining the frequency of 
alternative processes and the extent to 
which it is subjected to species- or tissue-
specific regulation (Licatalosi and Dar-
nell, 2010).

Genome-wide expression microarrays 
and RNA-Seq (next-generation RNA 
sequencing) are currently the most im-
portant technologies for transcriptome 
profiling (Figure 3). Microarrays have 
become one of the most commonly used 
tools in transcriptomics studies owing to 
their cost-efficiency and speed in simul-
taneously measuring thousands of gene 
transcripts. In addition, microarrays 
have been designed with distinct features 
to address the RNA complexity such as 
exon-junction arrays for capturing dif-
ferential splicing events (Johnson et al., 
2003). Despite their obvious potency, microarrays are limited by gene annotations and can only 
detect known transcripts for which microarray probes have been designed, whilst novel tran-
scripts and transcript variants will be missed. Moreover, the technical noise in microarray signals, 
being dependent on probe hybridization and annealing properties, is relatively high. This nega-
tively affects data reproducibility and cross-platform and sample comparisons (Ioannidis et al., 
2009). RNA-Seq, on the other hand, generates millions of reads and has the potential to measure 
the complete transcriptome including alternative splicing and polyadenylation, and RNA editing 
events (Pan et al., 2008; Wang et al., 2008a). Nevertheless, RNA-Seq analysis strategies are cur-
rently under development as exact quantification of the relative abundance of different transcript 
variants remains challenging.

Rewiring regulatory networks in biology
Biological processes do not occur by isolated genes or proteins but act through functional regula-
tory networks. The degree to which gene products appear in the cell and exert their function is 
regulated by such biological networks. Therefore, the implications of gene defects would not be 
restricted to the activity of specific gene products but can have many severe effects by spread-
ing along sub-network structures (Barabasi et al., 2011). This interconnectivity implies that the 
identification of regulatory networks and understanding the evolution and structural features 

 
Figure 3 – Workflows for transcriptome analysis. Micro-
array and RNA-Seq are the most common high-throughput 
techniques for transcriptome profiling. The main character-
istics of microarrays and RNA-Seq for transcriptome studies 
are listed. The general pipeline for conducting a transcrip-
tome study involves recurring steps of experimental design, 
data processing, statistical analysis and network inference, 
and the validation of findings.
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of specific networks are vital for better under-
standing the phenotypic impacts of genetic de-
fects and the associated complications (Schadt, 
2009; Goldstein, 2009; Karlebach and Shamir, 
2008). Thus, as genetics is aimed to answer the 
question of ‘what’, network-based models are 
designed to go one step beyond by tackling the 
question of ‘how’.

Network-based approaches have transformed 
the field of systems biology. These approaches 
are mainly expression-centric and can be clas-
sified into two types of module inference and 
transcription regulatory network. The first 
type of analysis involves the study of co-ex-
pression networks (Figure 4A). This compris-
es the identification of functional relationships 
between genes under the assumption that 
genes with similar function exhibit interrelat-
ed expression patterns and can be described as 
a functional module (Stuart et al., 2003). These 
methods require careful interpretation as they 
are highly sensitive to noise. Such models are 
biased towards identification of relationships 
between genes that are tightly co-expressed 
and disregard those that do not exhibit suffi-
cient co-expression profiles with other genes 
(Michoel et al., 2009). It is important to bear 
in mind that correlation does not imply causa-
tion. This issue can be partially addressed by 
the use of time-series data. In the second type 
of approach, methods go one step further by 
taking into account the sense of similarity, rep-
resentativeness, and randomness of biological 
data. These models can accommodate hidden 
variables, assess the causality of relationships 
and, most importantly, provide reasoning 
and predictions for unseen data (Figure 4B). 
Nonetheless, these models are prone to overfit-
ting and generation of multiple probable solu-
tions that can be circumvented by the use of 
multiple independent datasets.

The use of prior knowledge about functional 
interactions has been shown to successfully 

reduce the search space and to make networks more robust (Segal et al., 2003; Pe’er et al., 2002; 
Steele et al., 2009). This method works for well-studied diseases or biological systems, but is 
less likely to identify novel regulatory interactions that are involved in the underlying molecu-

Figure 4 – Schematic illustration of biological net-
works. A) Co-expression networks can be construct-
ed under various constraints and settings. A cluster 
of ten nodes can be interconnected on the basis of 
their nearest neighbours, depicted as a ring. Fully 
connected networks of ten nodes represent a cluster 
of fully interconnected nodes where all nodes are co-
expressed. Co-expression networks can also be rep-
resented as connected modules. Here, a cluster of ten 
partially connected nodes (black) are linked to a clus-
ter of six partially connected nodes (white) through two 
independent nodes (gray). B) A Bayesian network that 
encodes a joint distribution is very flexible and can be 
constructed in different architectures based upon the 
data analysis task: Bayesian networks, Bayesian clas-
sifiers (these networks include a class node, depicted 
by C, for prediction), dynamic Bayesian networks 
(these networks support time-series where nodes rep-
resent variables at a point in time), and hidden Markov 
model (these networks can handle unmeasured infor-
mation by incorporating a hidden or latent variable, 
depicted by H).
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lar mechanisms of rare or complex dis-
orders. In addition, this bias can falsely 
expose the network to sample differences 
in the absence of a biological cause. In 
this thesis, the unbiased use of indepen-
dent datasets from different organisms 
as prior knowledge is further explored 
(Figure 5A). Modular structure of regu-
latory networks (Ma et al., 2004) and 
largely conserved functional properties 
of genes across species provide a detailed 
framework for identification of relation-
ships that are conserved across species. 
It was hypothesized that relationships 
that are identified in an interspecies gene 
network are also biologically more mean-
ingful. Furthermore, they result in more 
reliable identification of key players in 
biological processes under study. How-
ever, translation of regulatory networks 
across different platforms or organisms is 
far from trivial. This is evident from our 
limited knowledge of true protein ortho-
logues and transcript variants coding for 
proteins with similar functions in differ-
ent species. For this, new algorithms and 
optimization techniques needed to be 
developed (Chapter four and five).

Among the possible approaches for modelling of biological networks, Bayesian networks have 
certain advantages as they are able to deal with uncertainties and stochastic effects (Pearl, 1988; 
Friedman, 2004; Friedman et al., 2000; Segal et al., 2003). A Bayesian network can encode gene 
interaction by modelling the joint probability distribution that represents possible transcriptional 
behaviour for a set of genes. It consists of a directed acyclic graph (DAG) that denotes condi-
tional independencies and a conditional probability distribution for each gene (represented by a 
node in the graph). These networks can represent complex relationships between genes and are 
capable of integrating different types of data (from phenotypic and genotypic categorical data to 
continuous gene expression profiles). In addition, the probabilistic nature of such networks can 
easily accommodate noise or missing data by weighting each information source according to its 
reliability. In contrast to many statistical models, the transparent nature of Bayesian networks (in 
terms of the graphical structure and local probability distributions) leads to better interpretation 
and understanding of the underlying biological processes. The combination of a rigorous training 
and testing regime (including cross-validation which is a statistical method for assessing the per-
formance of a fitted model in predicting the observation made on unseen data) and optimization 
procedures (such as simulated annealing) can lead to the inference of reliable network structure 
(Figure 5B).

Figure 5 – Bayesian regulatory networks in computation-
al biology. A) Interspecies (or inter-platform) integration can 
be achieved by taking into account the many-to-many rela-
tionships of orthologue genes/transcripts (depicted by cir-
cles). Depending on the technology used for generating bio-
logical data, the information and coverage on the possible 
orthologues and their transcripts varies (depicted in gray). 
B) The process of building a prediction model involves parti-
tioning data into training and test folds at random. Next, after 
constructing and tuning the parameters, models are tested 
on the test data. This process is repeated by resampling 
from the full data until all partitions are used for building and 
testing the models. The consensus network can be reached 
by averaging and assessing all the constructed models. A 
number of different computational techniques can be used 
to optimise the partitioning, building, and averaging these 
networks. The consensus model, the key nodes, and the 
predictions can reveal new biological insights.
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Model systems and the study of human diseases
Biomedical research has evolved around model organisms which have played a central role in the 
studies of human disorders. In spite of growing achievements in genome-wide association studies 
and whole-genome profiling, genetic studies of human diseases are significantly limited owing to 
factors such as environmental influences and genetic heterogeneity. The challenges posed by hu-
man genetic research can potentially be circumvented in model organisms. This is due to much 
simplified and experimentally traceable system that provides unbiased environment for char-
acterization of genetic data (Aitman et al., 2011). Nevertheless, model systems have their own 
limitations and cannot fully replace the human data as genetic architecture and complex traits, 
such as epigenetic and environmental effects, are hard to replicate in model organisms. Moreover, 
genetic engineering may introduce significant artefacts. Thus, data from model organisms should 
be interpreted with care. In addition, the use of multiple model organisms may be necessary to 
identify the most prominent and disease-related molecular mechanisms that can be projected on 
human data with high precision. The design of such integrative strategies would bridge the gap 
between less noisy data from model systems to more stochastic human biology.

As model systems, along with high-throughput transcriptional profiling, continue to transform 
the study of human disorders, novel algorithms are needed to capture, characterize, and model 
the hierarchy and dynamics of biological data (Figure 6). It is clear that attentive modelling and 
optimization of integration strategy would ultimately serve as a powerful system for knowledge 
discovery in the study of human genetic disorders.

Oculopharyngeal muscular dystrophy
In this study, I have focused my efforts on the improved understanding of disease mechanisms in 
oculopharyngeal muscular dystrophy (OPMD). OPMD is an autosomal dominant and late-onset 
disorder, usually manifest in midlife (after the age of 40). OPMD symptoms are progressive and 
characterised by ptosis, dysphagia, and weakness of proximal limb (Figure 7). As the disease pro-
gresses, muscle weakness can spread to additional skeletal muscles such as facial muscle weak-
ness, tongue atrophy, and dysphonia (Brais and Rouleau, 1993). In some OPMD patients, reports 
have indicated mental retardation, cognitive impairment, spinal cord involvement, and dementia 
as additional symptoms (Millefiorini and Filippini, 1967; Sarkar et al., 1995; Blumen et al., 2009; 
Linoli et al., 1991; Mizoi et al., 2011; Dubbioso et al., 2011). In spite of these observations, the 
main OPMD symptoms are restricted to voluntary muscles. However, the degree to which these 
muscles are affected and the associated age of onset is variable. Nevertheless, by the time the dis-

Figure 6 – Complexity pyramid, from individual 
to mutual. The bottom of the pyramid represents 
the functional components of the cell for which 
high-throughput biological data are produced 
(level 1). The next layer brings complex regulatory 
motifs (level 2) function in a highly spatial-temporal 
manner to provide diverse sets of functional mod-
ules. These sub-networks are the building blocks 
of molecular pathways (level 3). Modules of func-
tionally related entities work as components of a 
nested structure that represents context-oriented 
global organisation of living organisms. Although 
the individual elements of these networks can be 
unique to a given organism, the topologic prop-
erties of module networks share a high degree of 
similarities.
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ease is progressed, the quality of life is greatly affected as ptosis can cause visual limitations, dys-
phagia may lead to aspiration pneumonia and weight loss, and patients with proximal limb weak-
ness can eventually be wheelchair bound. OPMD is a rare disorder with estimated prevalence of 
1 in 100,000 in western countries (Fan and Rouleau, 2003). However, there is a vast diversity of 
prevalence between dif﻿ferent populations (Pulkes et al., 2011; Brais and Rouleau, 1993; Semmler 
et al., 2007; Uyama et al., 1997; Maksimova et al., 2007; Puzyrev and Maximova, 2008; Agarwal et 
al., 2012). In some isolated populations the incidence is much higher, among which the Bukhara 
originated Jewish community (1 in 600) and French-Canadian populations (1 in 1000) have the 
highest prevalence (Brais et al., 1995; Blumen et al., 1997).

OPMD is caused by expansion of a homopolymeric alanine (Ala) stretch at the N-terminus of 
the Poly(A) Binding Protein Nuclear 1 (PABPN1) (Brais et al., 1998). While wild-type PABPN1 
contains a (GCN)10 repeat within the first exon, in the mutated form it holds an expanded repeat 
of (CGN)12-17 that leads to 2-7 additional Ala residues. The most frequently occurring mutation 
is estimated to be the expansion of the GCG from 6 to 9 repeats whilst other mutations (such as 
the combination of GCA and GCG expansions) have also been reported (Nakamoto et al., 2002; 
Scacheri et al., 1999; Robinson et al., 2006). The PABPN1 gene is located on chromosome 14q11.2 
and has 8 splice variants, 5 of which encode functional proteins (Figure 7). The encoded pro-
tein localizes mostly in the nucleus and to a lower extent in the cytoplasm. Within the nucleus, 

Figure 7 – Schematic characterisation of oculopharyngeal muscular dystrophy. A) OPMD symptoms 
are mainly restricted to skeletal muscles. B) Divers prevalence rates of OPMD estimated in different popula-
tions. Worldwide prevalence is estimated to be 1:100,000. C) Penetrance (%) and progression rate of OPMD 
is depicted. D) Overview of genetic information for the PABPN1 and pathogenic mutations.
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PABPN1 is enriched in nuclear speckles (subnuclear structures that are enriched in pre-mRNA 
and are located in interchromatic regions). Wide-type PABPN1 has multiple roles in mRNA pro-
cessing, stability and translation, among which the role of PABPN1 in mRNA polyadenylation 
has been extensively studied (Kuhn et al., 2009; Wahle, 1991; Wahle, 1995; Apponi et al., 2010). 
PABPN1 protein is also involved in the export of mRNAs from the nucleus to the cytoplasm (Ap-
poni et al., 2010; Calado et al., 2000a; Brune et al., 2005).

The underlying molecular mechanisms by which the mutated PABPN1 causes progressive muscle 
weakness are not fully understood. In spite of the ubiquitous expression of PABPN1, the clinical 
and pathological features of OPMD are initially restricted to a subset of skeletal muscles. The 
wild-type and expanded PABPN1 (expPABPN1) are prone to aggregation (David et al., 2010; 
Klein et al., 2008). PABPN1 accumulates in intranuclear inclusions (INI) in 1-3% of myonuclei 
(Tome and Fardeau, 1980; Calado et al., 2000b). To better understand the molecular mechanisms 
leading to OPMD, animal models for OPMD were generated in Drosophila, mouse and C. el-
egans with high overexpression of expPABPN1 under a muscle-specific promoter (Chartier et al., 
2006; Davies et al., 2005; Catoire et al., 2008). These model systems recapitulate INI formation 
and progressive muscle weakness observed in OPMD. A correlation between INI formation and 
muscle weakness has been reported in these models (Chartier et al., 2006; Davies et al., 2005; 
Catoire et al., 2008). In addition, it has been shown that protein disaggregation approaches can 
attenuate muscle symptoms in OPMD model systems (Davies et al., 2006; Catoire et al., 2008; 
Chartier et al., 2009). Nevertheless, in a mouse model with low overexpression of expPABPN1, 
muscle symptoms were not observed (Hino et al., 2004). Naturally occurring wild-type PABPN1 
inclusions with fibril structures have also been reported in oxytocin-producing neurons (Ber-
ciano et al., 2004; Villagra et al., 2008).  In contrast to INI formation in OPMD, the inclusions of 
wild-type PABPN1 do not cause a disease. Differing transitional pre-inclusion foci and structural 
characteristics have been shown between the wild-type and expanded PABPN1 (Raz et al., 2011). 
Therefore, differences in processes that precede the formation of INIs suggest the cytotoxic struc-
ture of the pre-aggregated proteins. 

The complexity of the underlying mechanisms and the low prevalence of OPMD call for multi-
disciplinary and combined efforts to decipher disease mechanisms. As the focus of the current 
thesis, exhaustive use of the state-of-the-art data-mining strategies and cross-species data in-
tegration can provide a comprehensive, less technically biased, and more accurate mechanistic 
insights on the disease pathogenesis. Understanding the underlying causes of OPMD is a key 
step toward enabling earlier and more precise diagnosis, prognosis, therapeutic interventions, 
and drug discovery.

Thesis overview
In this thesis, I have mainly focused on interdisciplinary approaches for biomedical knowledge 
discovery. This required special efforts in developing systematic strategies to integrate various 
data sources and techniques, leading to improved discovery of mechanistic insights of human 
diseases. Chapter one looks at the possibility in which combining various bioinformatics-based 
strategies can significantly improve the characterization of the OPMD mouse model. We discuss 
that this approach in knowledge discovery, on the basis of our extensive analysis, helped us to 
shed some light on how this model system relates to OPMD pathophysiology in human. In Chap-
ter two, we expand on this combinatory approach by conducting a cross-species data analysis. 
In this study, we have looked for common patterns that emerge by assessing the transcriptome 
data from three OPMD model systems and patients. This strategy led to unravelling the most 
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prominent molecular pathway involved in OPMD pathology. The third Chapter achieves a simi-
lar goal to identify similar molecular and pathophysiological features between OPMD and the 
common process of skeletal muscle ageing. Engaging in a study in which the focus was made on 
the universality of biological processes, in the light of evolutionary mechanisms and common 
functional features, led to novel discoveries. This work helped us to uncover remarkable insights 
on molecular mechanisms of ageing muscles and protein aggregation. Chapters four and five 
take a different route by tackling the field of computational biology. These chapters aim to extend 
network inference by providing novel strategies for the exploitation and integration of multiple 
data sources. We show that these developments allow us to infer more robust regulatory mecha-
nisms to be identified while translations and predictions are made across very different datasets, 
platforms, and organisms. Finally, I close this thesis by providing an outlook on ways the field 
of systems biology can evolve in order to offer enhanced, diversified and robust strategies for 
knowledge discovery.
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