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Chapter 4

Captured at Millimeter Wavelengths: a Flare
from the Classical T Tauri Star DQ Tau

For several hours on 2008 April 19, the T Tauri spectroscopicbinary DQ Tau was observed to brighten,
reaching a maximum detected flux of 468 mJy and likely making it (briefly) the brightest object at
3 mm in the Taurus star-forming region. We present the light curve of a rarely before observed mil-
limeter flare originating in the region around a pre-main-sequence star, and the first from a classical
T Tauri star. We discuss the properties and nature of the flaring behavior in the context of pulsed
accretion flows (the current picture based largely on studies of this object’s optically variable spec-
trum), as well as magnetospheric reconnection models (a separate theory that predicts millimeter
flares for close binaries of high orbital eccentricity). We believe that the flare mechanism is linked
to the binary orbit, and therefore periodic. DQ Tau makes a strong case for multi-wavelength follow-
up studies, performed in parallel, of future flares to help determine whether magnetospheric and
dynamical interactions in a proto-binary system are independent.

D. M. Salter, M. R. Hogerheijde, and G. A. Blake
Astronomy & Astrophysics Letters, 492, L21–L24 (2008)
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4.1 Introduction

Observations of pre-main-sequence (PMS) stars at millimeter wavelengths are used to study thermal
emission from gas and dust in their circumstellar disks where planets may be forming. At these wave-
lengths, the disks are optically thin and the integrated fluxis related directly to the total amount of cold,
circumstellar material. But on short timescales, we show how the dominating mechanism for millimeter
emission can shift to high-energy, short-period processes. We present 3 mm continuum observations of
the low-mass, classical T Tauri star (CTTS) DQ Tau, which wasobserved to brighten for many hours
on 2008 April 19, reaching a maximum detected flux of 468 mJy (compared to 17 mJy in the days both
before and after the event).

A stellar flare at these typically quiescent wavelengths, like a solar flare in the millimeter, is believed
to be the superposition of a gyro-synchrotron spectrum withthat from synchrotron emission, the latter
peaking in the sub-millimeter to far-infrared (Kaufmann et al. 1986). The first light curve for a strong
millimeter flare observed toward a young stellar object (YSO), GMR-A in Orion, was reported byBower
et al.(2003) and attributed to magnetic activity. In protostellar environments, scenarios where magnetic
fields can interact, re-connect, and accelerate electrons to high energies are thought to include single-
star stellar flares as we see in the Sun, interactions due to changes in the magnetic field lines between
a star and its accretion disk, and colliding magnetospheresand coronal flares between components of a
multiple-star system.

While longer-term radio variability is well documented in YSOs, and can also be the result of mag-
netic activity like starspots, few outbursts have been observed (Feigelson & Montmerle 1999). DQ Tau is
only the fourth flare detected toward a PMS object, and the first from a CTTS. In addition to GMR-A, our
observation follows the re-occurring flares from the weak-line T Tauri star (WTTS) V773 Tau A, studied
in depth byMassi et al.(2002, 2006, 2008), and a single 1.3 cm flare from a second YSO in Orion named
ORBS byForbrich et al.(2008).

In Orion, follow-up study of GMR-A confirmed a photospheric origin of gyro-synchrotron emission
around a single magnetically-active WTTS (Furuya et al. 2003), whereas observations of the deeply
embedded ORBS could only limit the emitting region to a radius ≤ 2 AU (Forbrich et al. 2008). In
contrast, the periodic flaring from V773 Tau A is the first extra-solar evidence of interacting coronal
flares, attributed in this case to collisions near periastron between extended helmet streamers from the
binary components (Massi et al. 2008), a phenomenon closely analogous to the situation for DQ Tau.
With a higher orbital eccentricity (e= 0.556, versus 0.3 for V773 Tau A), the DQ Tau system geometry
predicts an overlap of its two protostellar magnetospheresat each periastron passage without the need
for extended structure (Mathieu et al. 1997).

4.2 The DQ Tau System

Mathieu et al.(1997) found DQ Tau (α2000= 04:46:53.06,δ2000= +17:00:00.1) to be a non-eclipsing,
double-lined spectroscopic binary, comprised of two relatively equal-mass stars (∼0.65M⊙) with spec-
tral types in the range of K7 to M1 and a robust orbital period of 15.8043 days. At closest approach,
the binary separation is 8R⋆ (= 13R⊙), roughly four times smaller than the 30R⋆ (= 60R⊙) separation
for V773 Tau A, and less than twice the expected T Tauri stellar magnetosphere size of∼5R⋆ (Shu et al.
1994; Hartmann et al. 1994). As a result of the binary geometry and magnetospheric models, reconnec-
tion events have been predicted for this source (Mathieu et al. 1997), but never tested observationally. We
provide evidence that this effect is occurring and that it may be repeatable and relevant to many similar
T Tauri systems.

The spectral energy distribution (SED) of DQ Tau is fairly typical of a CTTS. It is best fit byMath-
ieu et al.(1997) using a large circumbinary disk of about 0.002−0.02M⊙. They find that an additional
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5× 10−10 M⊙ of warm (∼1000 K) circumstellar material close to the stars is necessary to explain the
near-infrared excess, but not enough to maintain the observed accretion rate of 5× 10−8 M⊙ yr−1 (see
Hartigan et al. 1995). DQ Tau must be transporting material into its inner regions. Both a broad bright
10µm silicate feature (seeFurlan et al. 2006), and the absence of strongly blocked forbidden-line tran-
sitions in the receding stellar flow, support optically thinmaterial in a region up to 0.4 AU around the
binary (Basri et al. 1997; Najita et al. 2003).

At optical wavelengths, the system is known to brighten by 0.5 mag, coinciding with periastron,
either shortly before or at closest approach. The mechanismregulating the optical activity is variable, as
brightenings have been observed for only 65% of periastron encounters, and in isolated events, multiple
brightenings were seen in a single orbit (Mathieu et al. 1997). All brightenings were recorded within
an orbital phase window of 0.30 (or 5 days) centered on a phase(Φ) of 0.9, where periastron defines
Φ = 0.0, 1.0 (Mathieu et al. 1997). This evidence for accretion presents an additional puzzle, indeed for
most binaries, since a large inner gap is expected to be cleared by the resonant and tidal forces generated
by stellar movements, thereby quickly isolating a circumbinary disk from one or two circumstellar disks.
The small binary separation of DQ Tau, however, reduces the likelihood of stable circumstellar disks.
These effects combined should speed up disk dissipation andhalt accretion processes. Instead, it is
unclear how easily material can cross the predicted gap and why some binaries show inner cleared regions
and others, like DQ Tau, do not (Jensen et al. 2007).

In this context, DQ Tau was the first system to be studied in terms of pulsed accretion flows (Mathieu
et al. 1997). Extensive observations of the system’s optical variability and photospheric line properties
show increased veiling effects, spectral bluenings, emergence of outflow signatures in spectral lines, and
the double-line structure in Ca II suggesting that bright blue-shifted material is being emitted near the
surface of the star during an event (Basri et al. 1997). All these effects at periastron are consistent with
pulsed accretion flows based on the theoretical models ofArtymowicz & Lubow (1996) that describe
how the eccentric binary orbit periodically perturbs the outer disk, causing material to collect at stable
points near the inner rim and then to stream across the gap. However, the theory does not require the
peak accretion rate to occur near periastron. Instead it hasbeen postulated that the accretion mechanism
is further regulated by strongly variable magnetic fields (Mathieu et al. 1997).

4.3 CARMA Observations

We observed DQ Tau at 115 GHz (≈ 2.7 mm) with the Combined Array for Research in Millimeter-wave
Astronomy (CARMA) during 5 tracks in April 2008, totaling 4 hours on-source. The millimeter array,
located in eastern California (USA), provides 150 baselines of 30–350 meters in its C configuration
and records one linear polarization. Our program cycled through 5 Taurus sources during each track,
scanning each object for 12 minutes and obtaining 1–6 scans per source, depending on the track length.
A 5-minute scan of the gain calibrator 3C 111 was included every 12–24 minutes. Multiple observing
scripts allowed rotation of the source order in each track sothat we could achieve more efficientu,v-
coverage per source. In addition to the phase calibration using 3C 111, we observed the planet Uranus
for flux calibration at the start of each track, as well as the radio source 3C 84 for passband calibration.

All data were processed using the MIRIAD data reduction software program, optimized for CARMA.
We calibrated each track separately before combining the data into a finalu,v-averaged continuum image.
In the inversion step, a natural weighting for theu,v-coverage was applied and cleaning was performed
down to a cutoff of 2σ . The continuum maps are a composite of two 500 MHz bands covering the
frequency ranges 110.94–111.41 GHz and 114.80–115.27 GHz,corresponding to the lower and upper
sidebands, respectively.
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4.4 Results and Analysis

In the combined and calibrated DQ Tau image (∼3 hours on-source) we achieved a sky rms noise level of
1.45 mJy bm−1 and a beam size of 1.92′′ × 0.99′′ toward the Taurus star-forming region, corresponding
to a spatial resolution of∼140–270 AU at a distance of 140 pc. Since we found that the source was
considerably brighter on 19 April than during any other observation date (see Figure4.1), data for that
track were not included in this final continuum image. And thus the quiescent values for the other nights
combined then give a peak intensity of 13.3 mJy bm−1 and a flux, determined by a Gaussian fit, of 17 mJy.

Review of the unexpected result from 19 April revealed that the brightening was a real effect. Many
instrumental and data processing errors could be ruled out because none of the 4 other sources exhibited
a similar effect, the brightening persisted throughout 5 source cycles in an 8-hour period, and, the same
observing script was used for 3 of the 5 tracks. The location of the peak emission at the time of the
flare is consistent with the coordinates of the binary on all nights and therefore no background source is
suspected. Finally, while the linear feeds do rotate while tracking the source, we expect a flare mimicked
by the presence of strong polarization would not only be present in the nearly identical tracks of the
adjacent days, but that the emission profile would be more symmetric about its peak.

To understand the nature of the DQ Tau brightening, we reduced each of the track’s five 12-minute
source scans separately to produce individual continuum maps. We then plotted the maximum source
intensity (Jy bm−1 of the peak pixel) as a function of time (Figure4.1). DQ Tau clearly exhibited a
flaring behavior, rising to a maximum brightness in∼1–2 hours, coinciding with the start of our track,
and shortly thereafter, decaying (roughly exponentially)throughout the remainder of the observation,
returning to half the observed peak intensity within a 2-hour period.

In Figure4.1we show the results of performing the same intensity analysis on the individual scans for
three additional sources (our two brightest Taurus sourcesplus the gain calibrator). These sources appear
constant in flux for all observations (distributed over 13 days). The same is not true for DQ Tau, which
remains unresolved throughout its brightening event. At peak brightness, its flux during our third scan
on 19 April (JD = 2 454 576.4534) was 468 mJy, roughly 27 times the quiescent value (Table4.1), likely
making DQ Tau the brightest object at 3 mm in Taurus at the timeof our observation if we consider that
the class-defining source T Tau is just 56± 10 mJy at 3 mm (Ohashi et al. 1996) and the bright, extended
source HL Tau is 100 mJy (Beckwith et al. 1986). Finally, the flare is in stark contrast to (single-dish)
measurements of DQ Tau that find 125 mJy at 1 mm and 91 mJy at 1.3 mm (Beckwith & Sargent 1991;
Beckwith et al. 1990). Our quiescent value of 17 mJy, on the other hand, is a betterfit to the expected
millimeter spectral slope.

The true shape of the flare onset and its exact peak are less precise. Larger error bars for this date
are a result of significant flagging due to strong de-correlation on longer baselines, particularly during

Table 4.1 — DQ Tau flux and intensity data at 2.7 mm (115 GHz)

JD (2 454 500+)a Intensity (mJy bm−1) Flux (mJy)b

76.3330 37.4± 15.0c −
76.3923 345.0± 19.8 419
76.4534 355.1± 11.4 468
76.5132 216.8± 9.2 284
76.5789 150.3± 6.1 194

Quiescent 13.3± 1.5 17
a Indicates the start of the 12-minute scan.b Flux determined by a Gaussian fit to the
continuum image.c Data point suffers from severe de-correlation on longer baselines.
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the first half of the track. The gain calibrator, which has an average flux of 3.7 Jy for each track, has
a larger standard deviation (σ ) for the maximum intensity of each 5-minute calibrator scanon the flare
date (0.257 Jy bm−1) than, for example, the longest tracks on 13 April (0.095 Jy bm−1) and 21 April
(0.103 Jy bm−1). These effects do not compromise the validity of the flare detection. For comparison,
the two brightest Taurus sources observed have aσ of 0.013 Jy bm−1 and 0.006 Jy bm−1 for their five
12-minute scans during the flare period.

Our flare occurs within the orbital phase window of the known optical brightenings, although it is
unknown whether DQ Tau flared simultaneously in the optical.Using a JD0 value of 2 449 582.54± 0.05
and a period of 15.8043± 0.0024 days, as published in Table 2 ofMathieu et al.(1997), we calculate
the phase of the flare peak to be 0.98, or∼7.6 hours before closest approach. If we consider the error
in the orbital period, propagated over 11 years, the flare in fact could have peaked anywhere between
25.4 hours before periastron (Φ = 0.93) to 11.0 hours after (Φ = 0.03), still well within the window of
optical variability. Our other observations began at orbital phases of−0.40,−0.09, 0.11, and 0.42 with
respect to the same periastron encounter (corresponding to−6.32,−1.42, 1.74, and 6.64 days to closest
approach), but only the track nearest periastron (Φ =−0.02 on 19 April) exhibits a brightening event.
Therefore, we strongly suspect that the millimeter flare is connected to the binary motions, as well as to
the optical variability, suggesting that this event is likely to be repeatable and even periodic.

4.5 Discussion

Of the three previous examples of flaring activity, DQ Tau draws the strongest parallel to V773 Tau A
both in system geometry and flare properties. The similarities include binarity with a fairly equal mass
distribution, high orbital eccentricity, and now an observed 3 mm flare that is nearly identical in rise time
(∼2 hours), decay time (∼5 hours, if we extrapolate in the case of DQ Tau), peak intensity (∼400 mJy),
incidence at periastron, and ratio (∼25) of maximum intensity reached with respect to quiescent levels
(seeMassi et al. 2006, Figure 2). The most significant difference is the lack of ongoing accretion around
V773 Tau A as determined by its Hα equivalent width.

In the other examples, the coronal flare observed toward GMR-A produced millimeter activity for
13 days following its intial outburst. And while it achieveda similar peak flux after distance correction
(seeFuruya et al. 2003, Figure 2), the outburst activity does not appear to be periodic (like in the case of
V773 Tau A) since only a single radio flare was detected in the course of a 7-month monitoring campaign
(Felli et al. 1993). As for ORBS, the radio flare shares a similar rise time and remains active several hours
later when the track ended (seeForbrich et al. 2008, Figure 1). Unfortunately, little more is known about
the deeply embedded YSO or its flare activity. Further comparison between these scenarios and DQ Tau
is difficult, given that we are unable to constrain the emission polarization or its extent.

Instead, from the millimeter perspective, the activity occurs within the window when overlapping
magnetospheres from the binary components are expected to interact and produce flares like that ob-
served on 19 April. And, in the case of V773 Tau A, similar star-star magnetospheric interactions were
responsible for a nearly identical 3 mm flare profile. However, pulsed accretion flows in the DQ Tau sys-
tem also show a periodicity coinciding with periastron. Andwhile magnetospheric interaction is likely to
explain the millimeter flare, the magnetospheres do not possess the energy required to power the optical
brightenings with the frequency and duration observed at optical wavelengths (Mathieu et al. 1997).

DQ Tau also possesses an additional component, absent in theV773 Tau A system, which must be
considered: a circumbinary disk. Increased accretion at periastron inherently requires inclusion of a
star-disk interaction. When stars accrete, material is thought to be swept from the (circumbinary) disk,
along the magnetic field lines, and onto the protostars (Shu et al. 1994). These field lines can be stretched
or compressed during accretion events, changes that can also produce flares. Furthermore, in accretion
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Figure 4.1 — A plot of the maximum intensity of each scan as a function of Julian Day. Filled squares represent DQ Tau, circles the 2 brightest Taurus sources
in our tracks, and crosses are the calibrator (divided by a factor 50). Error bars for DQ Tau are the sky rms for each scan.Upper Left Inset: Continuum images of
DQ Tau at 2.7 mm (115 GHz). White crosses indicate the 2MASS infrared position. Pixels are 0.2′′×0.2′′ and the same grayscale is used for both images (ranging
−3.14×10−2 to 3.55×10−1 Jy bm−1). On the left, the combined image from the 4 quiescent tracks. Contours are drawn at 3σ levels whereσ = 1.45×10−3. At
right, DQ Tau brightens by a factor of 27 on 2008 April 19 (JD = 2454576.4534), peaking at 355 mJy bm−1. We determine a flux of 468 mJy for this scan.Upper
Right Inset: The intensity (Jy bm−1) of the peak pixel at the location of DQ Tau throughout the track on 19 April, now sub-divided into 2-minute intervals. The
horizontal dashed line indicates the maximum intensity found for the quiescent image. The second and third scans show sharply increasing and decreasing intensity,
respectively.
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theory, the balance between gas pressure and magnetic pressure often delineates the inner disk boundary.
But when a stable accretion disk is disrupted (due to the dynamical motions of a binary) and not available
to compress the star-disk field lines, radio flaring may occurmore easily, and over larger distances, as the
field lines roam more freely (Basri et al. 1997). Increased outflow signatures during optical brightenings
are consistent with increased field alignment if magnetic fields drive the outflows, and if pulsed accretion
can organize the lines temporarily to power those outflows (Basri et al. 1997).

Because of this, the success with each orbit of a dynamically-driven pulsed accretion mechanism
could inhibit the incidence of millimeter activity (through compression of the field lines), resulting in an
anti-correlation between optical and millimeter flaring. Alternatively, if the reconnection events provide
a necessary pathway for accretion processes, then the haphazard nature of magnetic fields easily could
explain the variability in the optical flaring (Mathieu et al. 1997) and the occurrence of millimeter flares
and optical brightenings is correlated. Finally, the optical brightenings and the millimeter flares may be
independent, only sharing the common periodicity of the binary orbit.

Simultaneous monitoring of this system at both optical and millimeter wavelengths is important for
investigating whether magnetospheric and dynamical interactions between the stars around periastron are
strongly related. Ultimately, core fragmentation during star formation may favor multiple-star systems
like DQ Tau. Binaries comprise 65% or more of the stellar population in the middle of the main-sequence
(Duquennoy & Mayor 1991). And because planets have been detected around binaries (Eggenberger
et al. 2004), there is an established need to study these systems and theimpact of magnetospheric inter-
actions and variable accretion processes on disk evolution.

4.6 Conclusions

The PMS spectroscopic binary, DQ Tau, has a highly eccentricorbit that should allow the stellar mag-
netospheres of the two components to interact at each periastron passage. We serendipitously observed
evidence of this activity in a flare at 3 mm, the first detected around a CTTS. The maximum inten-
sity recorded (355 mJy bm−1) was 27 times the quiescent value (13.3 mJy bm−1). The observed peak
occurred roughly 7.6 (± 18.2) hours before periastron atΦ = 0.98± 0.05, lasted several hours, and co-
incided with the average orbital phase (Φ = 0.9) of the well-documented, periodic optical brightenings.
Whether a simultaneous optical flare occurred is unknown.

The system’s optical brightenings are consistent with the theory for pulsed accretion from the cir-
cumbinary disk onto the protostellar surfaces, regulated by the binary orbit, and perhaps assisted by
magnetospheric interactions. The role of the magnetospheres during accretion events can now be studied
observationally using methods established byMassi et al.(2006, 2008) in the analysis of V773 Tau A,
the first example of coronae interactions between protostars where the authors were able to resolve the
extent of the emitting region and the emission mechanism using very long baseline interferometry and
polarization measurements. A similar observing program aimed at DQ Tau offers a unique opportunity
to study star-disk interactions and reconnection events directly, and to test if magnetospheric interactions
are necessary to facilitate periodic accretion.

Our findings also offer a small caution for millimeter flux points in SEDs that could contain unrecog-
nized flare contributions if measured only once, with the time-consuming nature of observations at these
wavelengths leading to a paucity of follow-up measurements.
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