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ABSTRACT

Psychosis susceptibility is mediated in part by the dopaminergic neurotransmitter system. In humans
there are individual differences in vulnerability for psychosis which are reflected in differential
sensitivity for psychostimulants such as amphetamine. We hypothesize that the same genes and
pathways underlying behavioral sensitization in mice are also involved in the vulnerability to
psychosis. The aim of the current study was to investigate which genes and pathways may contribute
to behavioral sensitization in different dopaminergic output areas in the mouse brain. We took
advantage of the naturally occurring difference in psychostimulant sensitivity in DBA/2 mice and
selected animals displaying extremes in behavioral sensitization to amphetamine. Subsequently, the
dopamine output areas prefrontal cortex (PFC), nucleus accumbens (NAc) and the cornu ammonis 1
(CA1) area of the hippocampus were isolated by laser microdissection and subjected to DNA
microarray analysis 1 hour after a challenge dose of amphetamine. A large number of genes with
differential expression between high and low responders were identified, with no overlap between
brain regions. Validation of these gene expression changes with quantitative RT-PCR demonstrated
that the most robust and reproducible effects on gene expression were in the CA1 region of the
hippocampus. Interestingly, many of the validated genes in CA1 are members of the CRE-family and
appeared to be targets of the glucocorticoid receptor (GR) and myocyte enhancer 2 (Mef2)
transcription factors. We hypothesize that CRE, Mef2 and GR signaling form a transcription regulating
network, which underlies differential amphetamine sensitivity and therefore may play an important

role in susceptibility to psychosis.
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INTRODUCTION

Psychosis is characterized by a gradual loss of contact with reality, progressing from emotional
instability, acoustic and visual disturbances, decreased discriminative ability for real and surreal ideas
and memories to more pronounced symptoms like hallucinations, delusions and thought disorders.
Psychotic-like symptoms can be induced by psychostimulant drugs like amphetamine (Janowsky and
Risch, 1979). Patients with a high susceptibility for psychosis, such as schizophrenia patients, display
an increased sensitivity to amphetamine (Strakowski et al, 1997), that resembles the behavioral
sensitization found in rodents after repeated exposure to amphetamine (Alessi et al, 2003; Peleg-
Raibstein et al, 2008; Peleg-Raibstein et al, 2006; Tenn et al, 2003). This behavioral sensitization is
characterized by a progressive and persisting increase in the behavioral activity and neurochemical
responses to psychostimulants, such as stimulation of locomotor activity, stereotypy and dopamine
release in the striatum (Featherstone et al, 2007; Laruelle and Abi-Dargham, 1999; Morrens et al,
2006). Moreover, the number of dopamine (DA) D2 receptors in the high-affinity conformational
state is altered in the striatum whereas the total expression of DA D2 receptors is not changed in
both sensitized animals and schizophrenia patients (Seeman et al, 2007; Seeman et al, 2005).
Substantial interindividual differences exist in susceptibility to develop psychosis as well as in
sensitivity to amphetamine (Alessi et al, 2003). It has been hypothesized that individuals that are
more sensitive to amphetamine are also more susceptible to become psychotic (Post, 1992; Segal et
al, 1981). Based on these similarities, the amphetamine-sensitization model can be considered a

promising animal model to study several aspects of schizophrenia (Featherstone et al, 2007).

Persistent neuroplastic alterations in the reward circuitry, in particular in the mesolimbic dopamine
pathway, are associated with the expression of behavioral sensitization (Nestler, 2005a). The
mesolimbic dopaminergic pathway originates in the ventral tegmental area (VTA) and projects to the
nucleus accumbens (NAc), amygdala, prefrontal cortex (PFC) and other forebrain regions including
the cornu ammonis 1 (CA1) subregion of the hippocampus (Floresco et al, 2001; Gasbarri et al, 1994,
Thierry et al, 2000). Induction and expression of behavioral sensitization to psychostimulants is a
complex process in which various neurotransmitters, in particular dopamine and glutamate, result in
downstream molecular adaptations in the VTA-NAc circuitry and other limbic brain regions. In the
VTA enhanced glutamatergic neurotransmission results in a sensitized state resembling long-term
potentiation (LTP). In the NAc, induction of the transcription factors AFosb and CREB appear to be
common adaptations in response to chronic exposure to drugs of abuse, contributing to the
sensitized state (McClung and Nestler, 2003; McClung et al, 2004; Nestler, 2005b; Shaw-Lutchman et
al, 2003). In addition, the ERK pathway and cAMP-independent activation of Akt-GSK3 may also play

a role in long-lasting behavioral sensitization (Beaulieu et al, 2007; Emamian et al, 2004; Valjent et al,
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2006). However, still a lot remains unresolved regarding the molecular events that contribute to

behavioral sensitization in different brain regions of the mesolimbic dopamine circuitry.

The aim of the current study was to investigate which genes and pathways may contribute to
behavioral sensitization in different parts of the mesolimbic circuitry in the mouse brain. We
hypothesize that the same genes and pathways underlying behavioral sensitization are also involved
in the vulnerability to psychosis. To investigate these molecular pathways we took advantage of the
naturally occurring variability in behavioral sensitization to amphetamine in DBA/2 mice, an inbred
mouse line (de Jong et al, 2007), thus ruling out the influence of genetic differences. We developed a
sensitization regimen that allowed us to separate mice in two distinct groups showing very high
sensitization and no sensitization to amphetamine, respectively, despite the exact same
amphetamine treatment. Large scale gene expression profiles were generated of several
dopaminergic output brain regions, including the CA1 region of the hippocampus, the NAc and PFC,
in mice selected for extremes in behavioral sensitization to amphetamine, in search of susceptibility

genes and pathways underlying the differential behavioral sensitization.
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MATERIALS & METHODS

Drugs D-amphetamine ((+)-a-methylphenethylamine sulfate; Unikem A/S, Copenhagen, Denmark)

was dissolved in 0.9% sodium chloride. Doses are listed as salt equivalents (mg/kg).

Animals Animal experiments were in accordance with the guidelines issued by the Danish Animal
Experimentation Inspectorate. DBA/2 mice (Charles River Laboratories, Salzfeld, Germany) were
housed 4 mice per cage in a temperature and humidity controlled environment at a 12 hour light-
dark cycle. During the experiment animals had ad libitum access to water and food. Mice were left

undisturbed for 14 days prior to initiation of the experiments.

Amphetamine sensitization In experiment 1 mice were divided in four groups based on the
treatment received during days 1-5 and on day 20 respectively: group 1 (amph/amph, n=100), group
2 (sal/sal, n=10), group 3 (sal/amph, n=10) and group 4 (amph/sal, n=10). Animals received either d-
amphetamine (2.5 mg/kg) or saline for 5 consecutive days (days 1-5). After a 14 day withdrawal
period, animals were given a low dose amphetamine challenge (1.25 mg/kg) or saline (day 20) (For a
detailed scheme see Figure 1). At the drug challenge (day 20), locomotor behaviour was assessed as
described below. Based on the locomotor response to the amphetamine challenge on day 20, the
10% amph/amph animals with the highest locomotor response were designated high responders
(HR) (n=10), while the 10% animals with the lowest response were designated low responders (LR)

(n=10). The high and low responders were used for subsequent gene expression analysis.

A) GENE-EXPRESSION STUDY B) PHENOTYPIC
STABILITY
Selection Population extremes
population extremes (selected on day 20)
| | | | | [ 1 >
Time (days) ! ! ! ! ! IT |-|-
1 2 3 4 5 20 27
2.5 mg/kg amph or saline Challenge Challenge (2)
1.25 mg/kg amph or saline 1.25 mg/kg amph
Locomotor Locomotor
Test Test
Sacrifice 1 hr post challenge Sacrifice 1 hr post challenge

Figure 1A | Animals received either d-amphetamine (2.5 mg/kg) or saline for 5 consecutive days (days 1-5). After a 14-
day withdrawal period (day 20) animals were given a low dose amphetamine challenge (1.25 mg/kg) or saline and the
10% population extremes in the AMPH/AMPH group (low and high responders) were selected. In the expression profiling
study, mice were sacrificed 1 hour after the challenge on day 20 (experiment 1).B | In the follow-up study (experiment
2), the low and high responders received an additional amphetamine (1.25 mg/kg) challenge on day 27 and were
sacrificed 1 hour later. Locomotor tests were performed on the indicated days.

In a follow-up experiment (experiment 2) it was investigated whether the HR and LR phenotype is

stable. A new batch of animals was subjected to the same treatment and dosing regimen as in the
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first study. The selected 10% HR and LR responders of the amph/amph group (n=10 each) on day 20
were subsequently left undisturbed for an additional 7 days and re-challenged with 1.25 mg/kg on
day 27 and locomotor behavior was measured again (Figure 1). The HR and LR responders were used

for revalidation of gene expression changes measured in experiment 1.

Locomotor behaviour Animals were placed individually in makrolon locomotor activity cages (20 cm
x 35 cm x 18 cm) (Lundbeck). Following a 60 minute habituation period, amphetamine or vehicle was
administered and locomotor activity was recorded for an additional 60 min. The locomotor activity
cages were equipped with 5 x 8 infrared light sources plus photocells. The light beams crossed the
cage 1.8 cm above the bottom of the cage. During the test session, locomotor activity was recorded
as crossings of infrared light beams, and total locomotor count represents the accumulated number
of crossings over the 60 minute period. The recording of a motility count required interruption of two
adjacent light beams, thus avoiding counts induced by stationary movements of the mice. All

experiments were conducted during the light phase of the cycle and initiated using a clean cage.

Tissue dissection Selected mice were sacrificed directly after the locomotor activity measurement on
day 20 (experiment 1) and on day 27 (follow-up experiment 2). Brains were rapidly dissected and
snap-frozen in isopentane (cooled in ethanol placed on pulverised dry ice) and stored at -80C for

later use.

Brain amphetamine levels Amphetamine in total brain homogenates was measured in two groups
(n=10 each) of mice with locomotor activity counts just below the highest and just above the lowest
responders. Amphetamine levels were measured by liquid chromatography/tandem mass
spectrometry (LC-MS/MS) to test whether differences in responsiveness could be accounted for by
differences in brain drug exposure. Brain tissue was homogenated with four times its weight of
Acetonitrile:water (70:30) using a TomtecAutogizer. The supernatant was analyzed like plasma. On
line sample preparation and liquid chromatography were performed with turbulent flow
chromatography (Cohesive Technologies, UK), using a dual column configuration. MS/MS detection
was done with an Applied BiosystemsSciex API 3000 instrument in positive-ion electrospray

ionization mode.

Laser microdissection Laser microdissection (LMD) was performed as previously described (Datson et
al, 2004) on brain tissue from experiment 1. Briefly, coronal brain sections (8 um) were cut using a
cryostat (PALM, Bernried, Germany) at -182C. According to the Mouse Brain Atlas (Franklin,
1997)cryosections from CA1 area were collected starting at Bregma -1.58, NAc cryosections between
Bregma +1.70 and +1.18 and PFC cryosections (Prelimbic and Infralimbic cortex) between Bregma

+2.80 and +2.10. Both hemispheres were used for sectioning. Cryosections were thaw-mounted on
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PEN-membrane slides (1440-1000, PALM, Bernried, Germany) which had been pretreated by heating
for 4 hours at 180°C and subsequent UV irradiation for 30 min at 254 nm. After sectioning the slices
were kept at -802C until further use. On the day of LMD, the slides were briefly stained with
haematoxylin (10 %) and dehydrated in 70, 95 and 100% ethanol, briefly dipped in xylene and dried
at 402C. Immediately afterwards, the slides were used for LMD and the laser microdissected tissue
fragments were collected in adhesive caps (1440-0250 PALM, Bernried, Germany). A conservative
estimate of CA1 was taken to avoid contamination with CA2/CA3. For NAc, an area containing both
the core and shell was dissected. For PFC both prelimbic and medial orbital cortical regions were

combined (Figure 2). Per mouse a total of 4 sections were dissected and pooled to constitute a

sample for subsequent linear amplification and microarray hybridization.

Glu
PFC (PL/IL) ¢ CA1
1 Glu Glu 1
NAc
DA DA
[
DA GABA
2

VTA

Figure 2 | Scheme showing connection between the selected brain areas including examples of laser microdissection.
PFC: prefrontal cortex; IL: infralimbic; PL: prelimbic; (NAc) nucleus accumbens; CA1: cornu ammonis 1 region of the
hippocampus; VTA: ventral tegmental area. Red arrows indicate glutamatergic neurons, black arrows dopaminergic
neurons and blue arrows GABAergic neurons. Glu: glutamate; DA: dopamine; GABA: gamma-amino-butyric-acid.
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RNA isolation, linear amplification and microarray hybridization Immediately after laser
microdissection, RNA was isolated using Trizol (15596-026, Invitrogen Life Technologies, Carlsbad)
using the manufacturer’s protocol. Linear acrylamide was added as a carrier. RNA quality and
quantity was checked by analyzing 1 pl of RNA on the Agilent 2100 Bioanalyzer using the RNA 6000
Pico LabChip Kit (5065-4473, Agilent Technologies, Palo Alto, USA). Ten ng of total RNA was used for
the first round of linear amplification using the GeneChip One-Cycle Target Labeling and Control
reagents (P/N 900493, Affymetrix, Santa Clara, USA). For the second round of amplification 100 ng of
input RNA was used, during which the RNA was biotin-labeled using the GeneChip Two-Cycle target
Labeling and Control Reagents (P/N 900494, Affymetrix, USA).

GeneChip hybridization Twenty micrograms of biotinylated RNA was subsequently fragmented using
DNA Fragmentation Reagents (No. AM8740, Ambion). Thebiotinylated and fragmented RNA was
hybridized to GeneChip Mouse Genome 430 2.0 arrays (Affymetrix), containing approximately 45,000
probe sets representing 39,000 transcripts and 35,000 different genes. Hybridizations were
conducted at the Leiden Genome Technology Center (LGTC, Leiden University, The Netherlands)
according to the manufacturer’s recommendations (Affymetrix, Santa Clara, USA). A total of 60

microarrays were hybridized, per brain region 10 HR and 10 LR.

Data Analysis Raw images were analyzed and features extracted using Affymetrix Gene Chip
Operating Software (GCOS) (Affymetrix, Foster City, CA). For each brain region, the resulting CEL files
containing probe level information were then normalized and converted to gene intensity values by
the GC-RMA algorithm within BRB Arraytools version 3.7.3 developed by Dr. Richard Simon and the
BRB Array development team (Simon et al, 2007). To identify differentially expressed genes we
applied a two-sample t-test (fold-change>1.2 and p-value cutoff of p<0.01) comparison between high
to low responders. Ingenuity Pathway Analysis (IPA; Ingenuity® Systems, www.ingenuity.com)
version 7.5 was used to identify pathways, networks and gene-list matching to published datasets of
genes involved in specific transcription regulation systems (MEF, CRE, GR). The gene lists for the
specific transcription regulation systems were retrieved from the supplementary material in the
relevant publications (Pfenning et al, 2007; Wu and Xie, 2006; Zhang et al, 2005) and loaded into

Ingenuity as comparison datasets.

Real time quantitative PCR (RT-qPCR) Primers for RT-qPCR validation were designed within the
target sequence used by Affymetrix for probe design using Primer3 freeware. Primers were checked
for specificity using BLAST (NCBI, Bethesda, USA) and for hairpins and self-complementarity using

oligo 4.0 (MBI, Cascade, USA). The primer sequences of the validated genes that were measured can
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be found in Supplementary Table SI. RT-gPCR measurements were performed on amplified RNA from
experiment 1 to replicate the results from the GeneChip analysis. cDNA synthesis was performed
using the iScript™ cDNA Synthesis Kit (170-8897, Bio-Rad, Hercules, USA) following the
manufacturer’s protocol. RT-qPCRwas performed on a Lightcycler 2.0 Real-Time PCR System (Roche
Applied Science, Basel, Switzerland) using the Lightcycler FastStart DNA Master’™™® SYBR Green | Kit
(Roche). The standard curve method was used to quantify the expression differences (Livak and
Schmittgen, 2001). The non-parametric Mann-Whitney Test was used to assess significant differential

gene expression between low and high responders.

Brain tissue from follow-up experiment 2 was used to replicate the changes in gene expression
between low and high responders found in the CAl area in an independent experiment. For this
purpose, the dorsal hippocampus was dissected from frozen brain and 8 punches containing CA1
tissue were obtained from two 1mm tissue sections. RNA was synthesized to cDNA without further
amplification and RT-qPCR and data analysis was performed as previously reported (Christensen et

al) on a selection of genes that were successfully validated in experiment 1.
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RESULTS

DBA/2 mice display large and stable individual differences in sensitization to amphetamine The
locomotor responses to the challenge dose of amphetamine (1.25 mg/kg) or saline on day 20 are
depicted in Figure 3a. On average, animals that received amphetamine pretreatment on days 1-5
(amph/amph) were more responsive to the acute amphetamine challenge than saline pre-treated
mice (sal/amph), signifying the occurrence of sensitization. However, a large inter-individual
variability was observed in the amph/amph group. The 10% amph/amph animals with highest
locomotor response to amphetamine on day 20 were designated high responders (HR) (n=10), while
the 10% animals with the lowest response were designated low responders (LR) (n=10). In an
independent follow-up study it was demonstrated that the high and low responder phenotype is
stable until at least one week after the first drug challenge (Figure 3b). The slight increase in both
groups might signify further incubation of sensitization which is known to occur with prolonged

withdrawal periods.

A Locomotion during 1 hour after a B Stability of low and high responder phenotype
1.25 mg/kg amphetamine challenge during challenges at day 20 and 27
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Figure 3A| Locomotor responses to the amphetamine (1.25 mg/kg) or saline challenge on day 20. Data are represented
as total activity count over the 60 minute treatment period. SAL/SAL n=10, SAL/AMPH n=10, AMPH/SAL n=10,
AMPH/AMPH n=100. Ovals indicated the 10% population extremes (low responders n=10, high responders n=10) in the
AMPH/AMPH group selected for gene-expression profiling.B: Locomotor responses of the 10% population extremes in
the AMPH/AMPH group (selected on day 20) to the amphetamine (1.25 mg/kg) challenges on days 20 and 27. Data are
represented as total activity count over the 60 minute treatment period. Low responders n=10, high responders n=10.
*** p<0.001 vs low responders (Mann-Whitney Rank Sum Test).
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Amphetamine exposure is not different in high and low responders Amphetamine in total brain
homogenates was measured in two groups (n=10 each) of mice with locomotor activity counts just
below the highest (212891377 counts) and just above the lowest responders (43871406 counts).
There was no correlation between exposure and locomotor activity (Supplementary data, Figure Sl),
indicating that the phenotypic difference in locomotor sensitization could not be attributed to
differences in CNS amphetamine exposure.

Identification of differentially expressed genes reveals region-specific molecular signatures To
identify potential molecular changes induced by the behavioural sensitization microarray analysis
was performed on PFC, NAc and hippocampal CA1 regions collected from 10 HR and 10 LR animals 1
h after a challenge dose of amphetamine on day 20 (Figure 1). This time point was selected in order
to examine the early factors behind the long-term changes induced by the challenge stimulus and
more importantly, to look under challenged conditions in which the differences between HR and LR
are most evident. Differentially regulated genes were identified by statistically comparing GC-RMA
mean normalized values of HR to LR. Of the 45,000 probes on the Affymetrix gene chip mouse
genome 430 2.0 arrays, we identified 63 (39 up, 24 down), 29 (20 up, 9 down) and 105 (76 up, 29
down) genes that significantly differed in expression between HR and LR in CA1, NAc and PFC
respectively by two sample t-test (p<0.01, fold-change>1.2) (Figure 4a). These gene lists are
referredto as the primary lists (Supplementary material, Table Sll). Comparison of the three primary
lists revealed no overlapping genes (Figure 4b). Moreover, pairwise correlation analysis of all
expression values in the 60 samples showed a clear distinction in region specific expression
signatures (Figure 4c). These specific molecular signatures of the analysed brain regions most likely
reflect both their specific connectivity and function in a complex circuit as well as their distinct

molecular response to amphetamine challenge.

Differential expression between HR and LR was most robust in the hippocampal CA1 region A total
of 83 genes were selected for reconfirmation by RT-qPCR from all three brain regions based on
overall lowest p-value and highest fold change. In both NAc and PFC the reconfirmation rates were
rather low, with a reconfirmation rate of 3 out of 24 genes (12.5%) in the NAc and 5 out of 30 genes
(16.7%) in the PFC. In the CA1 the reconfirmation rate was considerably higher, with a success rate of

14 out of 28 genes (50.0%).
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Figure 4A |Volcano plots of -logl0 (p-value) vs. log2(Fold change). Labeled are largest fold change and lowest p-value
genes. The blue points in each graph indicate the Affymetrix probesets that passed the t-test p<0.01 and FC>1.2
statistical requirements. B: Venn diagram of genes differentially expressed between HR and LR. Genes meeting the F>1.2
fold, p<0.01 criteria have been included. No common genes are identified when comparing CA1, PFC and NAc. C:

Correlation matrix of expression levels between all 60 samples in the experiment. Differential expression between

tissues is clearly identified. Correlation analysis is not able to differentiate between high and low responder groups.
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Gene expression changes in CA1 could be replicated in a novel independent study The expression of
several genes that were confirmed to show differential expression in the CA1 area with RT-qPCR in
the first experiment were validated in an independent sensitization experiment. Gene expression of
six selected genes (Arc, Nrd4al, Duspl, Fos, Egr2 and Tiparp) was quantified in the CA1l of the
phenotypically stable animals that received a second amphetamine challenge (Figure 1). In contrast
to the validation described above, the six genes were measured in non-amplified mRNA derived from
manually dissected CA1 rather than laser microdissection. Despite these technical differences the
results replicated the differential expression between LR and HR that was shown in the first study,

although NR4al did not reach statistical significance (Figure 5).
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Figure 5 |RT-qPCR validation results of gene expression differences between low and high responders in the CA1 region
of the hippocampus in the second animal experiment. ** p<0.01 vs low responders; *** p<0.001 vs low responders
(Mann-Whitney Rank Sum Test)
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Validated genes overlap with several gene classes, including GR, MEF2, and CRE regulated genes
The genes differentially expressed in CA1 were subjected to Ingenuity Pathway Analysis (IPA). Genes
regulated by specific transcription factors or promoter systems as identified by ChIP/ChIP technology
were identified from the literature and used to compose gene lists for target genes of transcription
factors MEF2, CREB, GR and REST (Supplementary material, Table Slll for details). Each of the gene
lists were compared to the 63 genes identified in CA1 and to a list of 2000 randomly selected genes
from the entire list of probe sets (~45.000 probes). This comparison indicated a clear
overrepresentation of GR, CRE and MEF2 promoter regulated genes among the differentially
regulated gene set in CA1 (Figure 6). The comparison was repeated with a large number of

randomizations of the R2K set and the differences shown in Figure 6 were found to be stable.
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Figure 6 | Comparison of genes regulated in CA1, Nucleus Accumbens (Acc) and Prefrontal Cortex (PFC) to genes involved
in specific transcriptional regulation as identified by ChIP/ChIP experiments. For each of the brain areas the comparison
is made for the genes identified in expression array and for those confirmed by qPCR. The R2K dataset represents 10 x
2000 random probe sets, indicating background signal and size difference of ChIP/ChIP data sets used. Genes compared
are those listed in supplementary Table I, and shown in figure 4. qPCR confirmed genes are those genes from gene
expression data set that were confirmed by qPCR with a p-value better than 0.05 in any of the validation experiments
(Sup Table Ii1).
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DISCUSSION

The aim of this study was to elucidate which genes and pathways underlie the differences in
behavioral response to amphetamine in genetically identical mice selected for responsiveness to
amphetamine sensitization. The amphetamine sensitization model is suggested to reflect the
heightened sensitivity of schizophrenia patients to psychostimulants and is accepted as a model for
the positive symptoms observed in schizophrenia (Featherstone et al, 2007; Hermens et al, 2009;
Peleg-Raibstein et al, 2008; Peleg-Raibstein et al, 2009; Tenn et al, 2003). Additionally, there is
increasing evidence for long-lasting cognitive deficits in sensitized animals (Featherstone et al, 2007).
In this study we used a unique setup based on genetically identical inbred mice, all receiving the
same treatment yet still displaying differences in amphetamine-sensitization. This is an important
divergence to most studies reporting on gene expression focusing on differences in outbred strains
and/or differences in treatment (e.g. control vs. amphetamine or acute vs. chronic amphetamine)
(Funada et al, 2004; Palmer et al, 2005; Shilling et al, 2006; Sokolov et al, 2003). By taking this
approach we are ruling out changes in gene regulation due to variation in genetic makeup and
different treatment paradigms. Thus, the differential gene regulation found in the present study is
most like reflecting the underlying mechanism for sensitization and may point to why some

individuals get schizophrenia whereas others do not.

Largest effect of sensitization on gene expression was found in the CA1l area of the hippocampus
We observed a considerable variation in sensitization to amphetamine in DBA/2 mice measured by
locomotor output. Gene expression in CA1, NAc and PFC, all dopaminergic output brain areas, of the
10 lowest and 10 highest responders (LR and HR) was assessed 1 hour after amphetamine challenge.
Gene expression signatures were highly brain region-specific, with the strongest differential
expression between low and high responders in the CAl subregion of the hippocampus. These
findings are of interest since most research on amphetamine-induced gene expression so far has
focused on PFC, Striatum, NAc and VTA (Mirnics et al, 2000; Palmer et al, 2005; Yuferov et al, 2005).
However, our data are consistent with recent literature pointing to a prominent role of the
hippocampus and dopamine in schizophrenia (Grace, 2010; Lisman and Grace, 2005; Lodge and
Grace, 2007, 2008; Rossato et al, 2009), for review see (Shohamy and Adcock, 2010). In schizophrenic
patients and high-risk individuals there is elevated regional cerebral blood volume (rCVB) in the CAl
sub-region of hippocampus, which correlates with positive symptoms and predicts clinical
progression (Gaisler-Salomon et al, 2009b; Schobel et al, 2009). The increased hippocampal activity
linked to psychotic symptoms is in line with data by Grace et al. showing how the hippocampus
controls dopamine (DA) neuron activity, possibly by increasing the number of DA neurons that can be

activated by salient signals (Grace et al, 2007). In contrast, antipsychotic phenotype measured as
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reduced amphetamine-induced locomotion and release of dopamine in NAc is seen in an animal
model with reduced glutaminase activity leading to a CA1/subiculum-specific decrease in

rCVB(Gaisler-Salomon et al, 2009a).

Furthermore, preventing synaptic transmission in the dorsal region of the hippocampus by local
infusion of the anaesthetic lidocaine is able to block the expression of behavioral sensitization to
amphetamine (Beck et al, 2009). Finally, Crombag et al. showed that amphetamine self-
administration leads to increased spine-density in the CA1 region of the hippocampus (Goeman et al,
2004). Although, not investigated in the current study changes in spine morphology may likely be
present in our sensitized mice. The differences in expression of Mef2 target genes we identified fit
well with a potential difference in spine-density, given that Mef2 is a key regulator of neuronal
plasticity and that manipulating Mef2 expression and activity directly influences psychostimulant

sensitization (Pulipparacharuvil et al, 2008).

We cannot draw any conclusions on the role of other dopaminergic brain regions that are of
relevance to the development of behavioral sensitization, e.g. the VTA or the amygdala (Yuferov et
al, 2005). It is possible that they may harbor bigger differences in gene expression than currently

observed in CAl. However, that would need to be addressed in a follow-up study.

Immediate early genes Many of the validated genes are immediate early genes (IEGs), which are
among the first genes to be expressed (hence the name) in a changing environment. Examples of
IEGs identified in this study are c-fos, Duspl, Nrdal, Egr2, Arc and Tiparp. Other studies have also
found IEGs to be responsive to amphetamine in the brain. For example, Shilling et al showed down-
regulation of several IEGs in the PFC of HR 24 hours after a single injection of methamphetamine
(Shilling et al, 2006). Down-regulation of IEGs at such a late time point may represent an adaptive
response to counterbalance the earlier increase in IEG expression as observed in the present study.
One of the IEGs we found to be up-regulated in the HR is c-fos. Interestingly, Zhang et al found that c-
fos down-regulation in DA D1 receptor containing neurons attenuates cocaine-induced behavioral
sensitization (Zhang et al, 2006). This might indicate that higher c-fos expression in the HR is a cause
rather than a consequence of the observed increased locomotor response to amphetamine. In line
with our findings for c-fos, two independent studies show that methamphetamine increases
expression of IEG Arc from 1 hour onwards in multiple brain regions, which can be blocked by giving
a D1 receptor antagonist (Kodama et al, 1998; Yamagata et al, 2000). Since many |IEGs are regulated
by multiple transcription factors, the question rises what the link is to the underlying mechanisms of

amphetamine sensitivity.
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GR, Mef2 and Creb are important regulators of sensitization We found a clear overrepresentation of
GR, Mef2 and CRE promoter regulated genes among the differentially regulated gene set in CAl
(Figure 6). These transcription factors are interesting candidates linking the regulation of IEGs to

mechanisms of behavioral sensitization and psychosis susceptibility.

Glucocorticoids GR, an important receptor for glucocorticoid stress hormones in the brain, is a
transcription factor that is able to regulate many of the IEGs as well as some of the other validated
genes that were differentially expressed between high- and low-responders in CA1l. Stress and more
particular glucocorticoids are factors influencing sensitization to psychostimulants (Antelman et al,
1980). We have previously shown that cocaine sensitization in DBA/2 mice relies in part on
corticosterone (de Jong et al, 2007). Moreover it was shown that antagonizing GR attenuates the
expression of amphetamine-induced sensitization (De Vries et al, 1996). Also in humans, many
studies have shown that psycho-stimulant abuse and stressful life events are associated with later-
life psychotic episodes, with odds ratios even increasing with cumulative traumas (Johns et al, 2004;

Shevlin et al, 2008; Wiles et al, 2006).

In rodents a similar link between stress, glucocorticoids and behavioral sensitization was found.
Chronic social stress increased amphetamine-induced locomotion (Mathews et al, 2008) and vice
versa (Antelman et al, 1980; Myin-Germeys and van Os, 2007; Vanderschuren et al, 1999).
Withdrawal from amphetamine leads to increased corticosterone levels in rats that show
sensitization but not in non-sensitized animals (Scholl et al, 2009). DBA/2 mice are known for their
vulnerability to stressful events (Weaver et al, 2004). Our findings indicate that several of the genes
that are differentially expressed between LR and HR are involved in glucocorticoid signaling. For
example, Nr4al was one of the IEGs we identified to have a higher expression in the CA1 of HR. Nr4al
belongs to the family of orphan nuclear receptors and is also increased by amphetamine in the
striatum (Levesque and Rouillard, 2007). Nr4al is known to bind to NGFI-B sites in addition to
glucocorticoid response elements (GREs). It has been shown that Nr4al can compete with the GR for
binding to a negative GRE (nGRE) sequence on the POMC promoter in the hypothalamus, preventing
the GR-induced inhibition of ACTH (Okabe et al, 1998; Philips et al, 1997), which is part of the
negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis and vital for proper functioning
of the stress system. Several other of the differentially expressed genes we identified are
glucocorticoid-responsive, such as for example Duspl (King et al, 2009). Hippocampal Duspl
expression is known to be induced by glucocorticoids (Morsink et al, 2006), suggesting that high
responders have an increased corticosterone response to the amphetamine challenge,

corresponding to a sensitized HPA-axis.
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MEF2 The transcription factor Mef2 plays a role in regulation of IEGs and behavioral sensitization.
MEF2 is a key regulator of structural synapse plasticity and has recently been implicated in behavioral
sensitization to cocaine (Flavell et al, 2008; Livak et al, 2001). Chronic cocaine treatment was shown
to affect Mef2 phosphorylation in the NAc, thus altering its activity (Pulipparacharuvil et al/, 2008).
Mef2 is phosphorylated and consequently inhibited by Cdk5 in combination with its activators p35
and p25 (Gong et al, 2003). P25 protein level, responsible for a prolonged activation of Cdk5, was
shown to be increased 4 hours after acute or chronic amphetamine treatment (Mlewski et al, 2008)
and might explain the altered activity of Mef2 during psychostimulant sensitization. Expression of
Cdk5 itself can be directly regulated by AFosB (Kumar et al, 2005), that in turn is increased after
psychostimulant treatment and can remain elevated for weeks (Nestler, 2005b). Cdk5 not only
phosphorylates Mef2 but was also found to phosphorylate GR in a dexamethasone-dependent
manner (Kino et al, 2007). Consequently, amphetamine-induced changes in Cdk5 may affect both GR
and Mef2 transcriptional activity. This suggests that the glucocorticoid stress system and Mef2-driven
pathways converge, and would provide an explanation for how individual differences in stress can
affect the sensitization process. Interestingly, Mef2 expression itself was not found to be different

between low- and high-responders.

CREB (cAMP response element-binding). We found that cAMP response element (CRE)-family
transcription factors overall can affect at least 15% of gPCR confirmed AMPH-regulated genes in CA1
(Figure 6). In a random set of genes picked from the gene expression chip this number is low (3.4%,
see Figure 6). This CRE-family transcription factor overrepresentation is in line with the literature.
The CREB protein is a transcription factor that binds to CRE DNA signature sequences and, thereby,
increases or decreases the transcription of downstream genes (Purves D, 2008). Genes relevant for
amphetamine sensitization and dopamine function whose transcription is regulated by CREB include:
c-fos, BDNF, tyrosine hydroxylase (TH), and many neuropeptides (such as somatostatin, enkephalin,
VGF, and corticotropin-releasing hormone) (Purves D, 2008) . CREB has a well-documented role in

neuronal plasticity and long-term memory formation in the brain (Silva et al, 1998).

Environmental factors Since all mice from this inbred strain received an identical treatment, a
plausible underlying cause for difference in sensitization may be that differences in handling, social
hierarchy or maternal care underlie the differential expression of amphetamine sensitivity via effects
on the glucocorticoid stress system (Badiani et al, 1992; Holmes et al, 2005; Lockwood and Turney,
1981). This fits well with the numerous studies pointing to an association between early childhood
trauma, parental care and social adversity and the later development of psychotic illness (Janssen et

al, 2004; Morgan and Fisher, 2007; Morris et al, 2006; Wicks et al, 2005). The stress-system may be
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an important biological mechanism linking sensitization processes initiated by developmental stress
exposures to an increased risk for psychosis. Recent studies have shown changes in cortisol secretion
associated with smaller left hippocampal volume in first-episode psychosis patients (Mondelli et al,
2010b) and a blunted cortisol awakening response compared with controls (Mondelli et al, 2010a)

and increased emotional reactivity to stress in daily life (Lataster et al, 2009).

Technical considerations In the current study we demonstrated that there are individual differences
in gene expression in key dopaminergic output areas in the brain that reflect a differential sensitivity
to amphetamine. Differences in gene expression in all 3 brain regions were subtle, with the majority
of gene expression changes being below 1.5-fold. These modest changes in gene expression are not
surprising, given that low and high responders have the same genetic background and received an
identical sensitization protocol using exactly the same amphetamine dosing regimen. Nonetheless,
our setup using laser microdissection in combination with DNA microarrays is evidently sensitive
enough to detect these changes. Validation of the identified gene expression changes proved to be
difficult, in particular in the NAc and PFC. Validation of subtle differences in gene expression by other
methods such as RT-qPCR is notoriously difficult, due to limitations in sensitivity. Most commonly, a
2-fold change is reported as the cutoff below which microarray and qPCR data begin to lose
correlation. Dallas et al. reported decreased correlations for genes expressing less than 1.5-fold
change using gPCR and oligonucleotide microarrays (Dallas et al, 2005). Nonetheless, we were able
to validate 22 out of 87 genes with RT-gPCR, with the highest success rate (50%) in the CA1 region of

the hippocampus.

Sources of experimental uncertainty We have a high level of confidence in our CA1 array data for
the following reasons. First, the genes identified here are based on strong statistical comparisons
with ten biological replicates in each group, decreasing the probability of false negatives. This is in
contrast to a majority of published reports where either small numbers of animals are used in each
comparison group or technical replicates of pooled animals are applied to identify target genes
(Pawitan et al, 2005). Second, rather than using a whole hippocampus homogenate we specifically
isolated the CA1 pyramidal cell layer, resulting in a more homogeneous population of neurons highly
enriched for CA1 pyramidal neurons and therefore more likely to yield a transcriptional response that
is undiluted by effects in other parts of the hippocampus, non-neuronal cells such as glia and
isolation artefacts. We have previously demonstrated that the different subregions of the
hippocampus differ profoundly in basal transcriptome, demonstrating that in the brain specific
isolation and analysis of homogeneous neuronal subpopulations is of utmost importance (Datson et
al, 2004; Datson et al, 2009). Third, the validation rate was high considering the small differences in

expression. Finally, RT-qPCR re-measurement of representative genes in an independently performed
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follow-up experiment demonstrated that the changes in gene expression in CAl were reliably

reproduced and correlated with the high or low responder phenotype.

Timing The time at which the gene expression changes were measured in the current study, i.e. 1
hour after an amphetamine challenge, is a point of consideration. Our rationale for choosing this
time point was that we wanted to investigate gene expression between low and high responders
under challenged rather than baseline conditions, which we hypothesize is a prerequisite to identify
pathways relevant for behavioral sensitization and thus susceptibility for psychosis. Under challenged
conditions the phenotypic extremes between low and high responders become evident while under
basal conditions there are no apparent differences. Further the current design is appropriate for
detecting primary gene responses rather than secondary or even more downstream waves of gene
expression. It could be argued that looking at a later time point would give more insight in the long-
lasting changes in gene expression rather than in acute changes associated with the amphetamine
challenge. Indeed, Cadet et al found differential gene expression in the frontal cortex up to 16 hours
after a 40 mg/kg dose of methamphetamine, although this dose is much higher (32-fold higher)
compared to the rather low doses given in our study (Cadet et al, 2001). Nonetheless, the success of
our approach is evident since the changes in gene expression we identified in CA1 reproducibly
discriminate high from low responders, as demonstrated in the independent follow up experiment

we performed.
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CONCLUSION

In conclusion, we show that inbred DBA/2 mice exhibit large differences in sensitization to
amphetamine that is reflected at the transcriptional level in several dopaminergic output brain areas,
but in particular in the CA1 area of the hippocampus. We have identified CRE, Mef2 and GR
transcription factors as possible mediators of these differences. CRE, Mef2 and GR signaling appears
to form a transcription regulation network involved in the amphetamine susceptibility response and
thus may play an important role in psychosis susceptibility. To which extent these systems act as

independent, linked or sequential programs is the target of future studies.
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Figure SI | No correlation is observed in total brain exposure to amphetamine and locomotor activity of high and low

responders to amphetamine
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Table Slll | Gene list sources for IPA Publist analyses

Study Type/ Database Factor Total IPA-mapped Genes Reference ‘
In silico CRE 3445 (Zhang et al. 2005)

CHIP CRE (Tanis et al. 2008)

CHIP MEF2 107 (Flavell et al. 2008, Pulipparacharuvil et al. 2008)
CHIP NR-GR 445 (So et al. 2007, So et al. 2008)

(Wang et al. 2004, Phuc Le et al. 2005)
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