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Chapter 7 | Copy number variants in patients with short stature

Abstract

Height is a highly heritable and classic polygenic trait. Recent Genome-Wide Association
studies (GWAS) have revealed that at least 180 genetic variants influence adult height.
However, these variants explain only about 10% of the phenotypic variation in height.
Genetic analysis of short individuals can lead to the discovery of novel rare gene defects
with a large effect on growth.

In an effort to identify novel genes associated with short stature, genome-wide
analysis for copy number variants (CNVs), using Single Nucleotide Polymorphism arrays,
in 162 patients (149 families) with short stature was performed. Segregation analysis was
performed if possible, and genes in CNVs were compared with information from GWAS,
gene expression in rodents’ growth plates, and published information.

CNVs were detected in 40 families. In six families a known cause of short stature was
found (SHOX deletion or duplication, /IGFiR deletion), in two combined with a de novo
potentially pathogenic CNV. Thirty-three families had one or more potentially pathogenic
CNVs (n = 40). In 24 of these families segregation analysis could be performed, identifying
3 de novo CNVs and 9 CNVs segregating with short stature. Four were located near loci
associated with height in GWAS (ADAMTS17, TULP4, PRKG2/BMP3 and PAPPA).

Besides six CNVs known to be causative for short stature, 40 CNVs with possible
pathogenicity were identified. Segregation studies and bioinformatics analysis suggested
various potential candidate genes.
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Introduction

Height is a highly heritable and classic polygenic trait. In order to discover genes involved
in growth regulation, there are basically two approaches. The first approach is to carry
out genome-wide association studies (GWAS) for common variants in large populations of
individuals. This has led to the discovery of at least 180 loci associated with adult height.
However, the contribution of each locus is small, each locus contains various genes,
and cumulative loci only explain about 10% of the phenotypic variation '. Alternatively,
when using all Single Nucleotide Polymorphisms (SNPs) identified in a GWAS approach
as predictors simultaneously, up to 40% of the variance in height can be explained 2 The
second approach is to perform genetic studies in patients with extremely short or tall
height, and search for causative variants 3. With this approach one can either test for gene
defects that were previously described or that appear plausible based on observations in
knockout mice (candidate gene approach), or perform a genome-wide analysis for copy
number variants (CNVs) or whole exome sequencing (WES) for mutations. The candidate
gene approach has led to the detection of a substantial number of genes that are involved
in monogenic defects associated with short or tall stature, such as IGF1, STAT5B, IGFALS, and
IGF1R+°, but obviously does not result in finding novel genes involved in growth regulation.

In two previous papers from our group ™ we have described the results of a candidate
gene approach in children with short stature, either associated with a low birth size (small
for gestational age, SGA) 3 or with a normal birth size (idiopathic short stature, ISS) . In the
present paper we describe the results of a genome-wide analysis for CNVs using SNP arrays
in short children, in an effort to identify novel gene variants associated with short stature.

Subjects and Methods

Patients

We studied 191 patients from 173 unrelated families with short stature of unknown
origin, either born with a normal birth size or born small for gestational age (SGA). DNA
was sent to our laboratory for analysis because of short stature between 2008 and 2011.
Twenty-nine were excluded from the present analysis: eight because of a height standard
deviation score (SDS) > —2.0, fifteen because of insufficient or low quality DNA or no
parental consent, and six cases belonging to one family were separately described with
a heterozygous IGF1 mutation and an additional 435.7 Kb deletion (arr 326.1(162,681,814
—163,117,547)x1) ©. This resulted in an analyzable group of 162 patients from 149 families.
Height standard deviation score (SDS) was calculated for Dutch population references ,
except for one patient (1.6/11.2) for whom the reference for children of Turkish ethnicity was
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used . With consent of the Medical Ethical Committee of the Leiden University Medical
Center, clinical data were collected and anonymized for all patients.

SNP arrays

In 103 cases the Affymetrix GeneChip Human Mapping 262K Nspl or 238K Styl arrays
(Affymetrix, Santa Clara, CA, USA) was used, containing 262,262 and 238,304 25-mer
oligonucleotides, respectively, with an average spacing of approximately 12 kb per array. An
amount of 250 ng DNA was processed according to the manufacturer’s protocol. Detection
of SNP copy number was performed using copy number analyzer for GeneChip (CNAG)
version 2.0 .

In 54 cases the lllumina HumanHap3o00 BeadChip (lllumina Inc., San Diego, CA, USA) was
used, containing 317,000 TagSNPs, with an average spacing of approximately g kb, and in
5 cases the lllumina HumanCNV370 BeadChip (lllumina Inc., Eindhoven, The Netherlands),
containing 317,000 TagSNPs and 52,000 non-polymorphic markers for specifically targeting
nearly 14,000 known CNVs. This array has an average spacing of approximately 7.7 kb. A
total of 750 ng DNA was processed according to the manufacturer’s protocol. SNP copy
number (log R ratio) and B-allele frequency were assessed using Beadstudio Data Analysis
Software Version 3.2 (Illumina Inc., Eindhoven, The Netherlands).

Evaluation of CNVs
Deletions of at least five adjacent SNPs and a minimum region of 150 kb and duplications of
at least seven adjacent SNPs and a minimum region of 200 kb were evaluated ', except for
3 families in which a prominent, but smaller duplication than 200 kb (although consisting of
>10 adjacent SNP probes) was observed. The CNVs were classified into four groups: I, known
pathogenic CNVs (known microdeletion or microduplication syndromes); I, potentially
pathogenic CNVs, not described in the Database of Genomic Variants (DGV; The Centre for
Applied Genomics, The Hospital for Sick Children, Toronto, Canada, http://projects.tcag.
ca/variation/); Ill, CNVs not described in the DGV, but not containing any protein-coding
genes; and IV, known polymorphic CNVs described in the DGV or observed in our in-house
reference set, whereby at least three individuals must have been reported with the same
rearrangement. Type IV CNVs were not further evaluated. All type Il CNVs were assessed
with Ensembl (Wellcome Trust Genome Campus, Hinxton, Cambridge, UK, http://www.
ensembl.org: Ensembl release 63 —June 2011) and the DECIPHER database (Wellcome Trust
Genome Campus, Hinxton, Cambridge, UK) for gene and microRNA (miRNA) content and
similar cases, respectively. If DNA from the parents was available, segregation analysis was
performed by SNP array.

The type | CNVs were confirmed with multiplex ligation-dependent probe amplification
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24 families (27 patients) 9 families (9 patients) (115 patients) with a type II CNV

. 1 family (1 patient) with 9 CNVs segregating 18 CNVs not segregating
2 CNVs de novo in 1 de novo CNV and 1 CNV with short stature in with short stature in
n

2 families (2 patients) ot segregating with short stature 6 families (8 patients) 15 families (16 patients)

Figure 1 Organization Chart Organization chartiillustrating the identified CNVs. The 149 unrelated families
(162 patients) divided in the different subcategories are depicted in bold. A total of 49 CNVs were found
in 40 families (43 patients).

(MLPA), using Salsa MLPA Po18 probemix for SHOX and P217 for IGF1R analysis (MRC Holland,
Amsterdam, The Netherlands). Amplification products were identified and quantified by chapter
capillary electrophoresis on an ABI 3130 genetic analyzer (Applied Biosystems, Nieuwerkerk
aan de lssel, The Netherlands). Fragment analysis was performed using GeneMarker

(SoftGenetics, State College, USA). Thresholds for deletions and duplications were set at
0.75 and 1.25 respectively .

Bioinformatics approach

We checked for all CNVs whether they were located in one of the chromosomal regions
associated with height in GWAS . For genes in deleted or duplicated regions in cases with
de novo CNVs, we used three additional approaches. First, the rodent homologues were
checked for three criteria: 1) higher expression in 1 week old mouse growth plate than in 1
week old mouse lung, kidney, and heart; 2) spatial regulation: significant difference between
zones in the 1 week old rat growth plate; and 3) temporal regulation: significant difference
between 3 and 12 weeks of age in the rat growth plate using previously established mRNA
expression profiles 2. Second, associations were investigated for mouse growth plate-
related phenotypes. Third, associations with human growth plate-related phenotypes
were investigated. For details, see Lui et al. .
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Results

CNVs

An organization chart illustrating the identified CNVs is shown in figure 1. In the 162
patients belonging to 149 unrelated families, a total of 49 CNVs were found in 40 families
(43 patients).

In six families (4.0%, 6 patients) a type | CNV was observed and in two of them an
additional de novo type Il CNV. Table 1 shows the clinical and genetic findings of these
6 patients, including 2 microdeletions (1.1 and 1.2) and 2 microduplications (.3 and I.4)
containing SHOX, and two terminal 15q deletions containing IGF1R (1.5/11.1/mi.3 and 1.6/11.2).
All these CNVs were confirmed with MLPA.

One or more type Il CNVs (n = 40) were found in 33 unrelated families (22.1%, 36 patients).
Five of these potentially pathogenic CNVs contained besides protein-coding genes also
miRNAs (Table 2). In 24 families (27 patients) segregation analysis could be performed,
which led to a total of 5 de novo CNVs (Table 3) and 9 CNVs segregating with a height
below —1.5 SDS of a carrier family member (Table 4). For 19 CNVs the lack of segregation
with short stature makes a causative role of the CNV unlikely (Supplementary Table 1). In 9
patients (9 CNVs) no information on segregation could be obtained (Supplementary Table
2). In two non-related patients (cases Il.24 and I1.25) a similar CNV (a deletion containing
DCAFi2L2, alias WDR40C) in the X-chromosome was identified, but both children inherited
the deletion from a normal parent.

In one family (0.7%, 1 patient) a type Ill CNV was found encompassing a 192.3 Kb deletion
of chromosome 13 (arr 13931.1(86,733,645-86,925,974)x1). The girl (case I1l.1) was born SGA,
had poor food intake and severe postnatal growth failure (length —8.2 SDS at 2.5 years).
Screening for IGF1 and the IGF1R for mutations or deletions was negative. The function of
this region is unknown.

No potential pathogenic CNVs (only type IV or no CNVs) were found in 109 families (73.2
%, 119 patients).

Bioinformatics approach

Five CNVs encountered in our study are close to the loci associated with height in GWAS .
Four of these CNVs were de novo or segregating with short stature, including loci close to
ADAMTS17 (case I1.5), PRKG2/BMP3 (cases I1.11 and 11.13), PAPPA (cases Il.11 and 11.13) and TULP4
(case I1.7). However, none of the deletions included genes tightly linked (r> < 0.5) to a GWAS
SNP implicated in human height variations. The fifth CNV is close to the MKL2 locus (case
11.37/mi.4) but did not segregate with short stature (Supplementary Table 1).
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We reasoned that some of the identified CNVs might cause short stature because
they contain genes that are expressed and function in the growth plate. We therefore
used existing expression microarray data to identify genes that show greater expression
in mouse growth plate than in soft tissues, temporal regulation in rat growth plate, or
spatial regulation in rat growth plate. Within de novo CNVs, this approach implicated 5
genes (Aldhia3, Famsc, Furin, Lrrk1, and Chsy1), and within segregating CNVs, this implicated
7 genes (Coli4A1, Dscct, Enppz, Ezr, Prelid2, Taf2, and Trim32) (Table 5). This information, in
combination with other bioinformatic data, was used to formulate the arguments pro and
contra an association of these genes with short stature (summarized in Tables 3 and 4).
Potential candidate genes in de novo CNVs associated with short stature (Table 3) include
FURIN, DOCK8 and/or KANK1, NLRP3, FAM3C, SLC13A1, ADAMTS17, ALDH1A3, LRRK1 and CHSY1.
Potential candidate genes in CNVs segregating with short stature (Table 4) include FHIT,
PTPRG, TULP4, EZR, ENPP2, TAF2, COL14A1, DSCCi, LPPR1, ZNF675, C4orf22 (or PRKG2/BMP3),
PRELID2, and ASTN2 and TRIM32 (or PAPPA).

For the CNVs for which insufficient information was available about segregation with
short stature, the in silico analysis provided support for four potential candidate genes
(TBL1X, ROBO2, CHD8 and TOXy), as well as a candidate region (distal part of common 22gmn
deletion syndrome) (Supplementary Table 2).
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Table 3 De novo type Il CNVs
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Table 4 Type Il CNVs segregating with short stature

164



'SUOS T pue Jayjow ‘Ajiwe o

‘uanI8 ase AND ay3 ut aua8 8uipod-uisjoid yse|

pue 3s1i4 9y} pue 4aquinu ay} ‘sauad uipod-uizyold 9 = Bulurejuod sAND 104 "padidap ale sauad Suipod-uiajoid ||e ‘sauad Suipod-ulaold § S Sululejuod SAND 104
"au0z d1ydosadAH = ZH ‘auoz aAI3eIa}1|01d = 7d ‘2u0z Builsay = 7y ‘@3e|d Ymoin = 4o

‘papdayul Ajjeusaled = 1ed ‘payiayul Ajjeusalew = Jew ‘orou ap = up

165



Chapter 7 | Copy number variants in patients with short stature

'plog Ul pa3d1dap ae aA0qe pauoIjUIW LR} Y3 Sulj|i4n} sauan
'50°054Q4 ‘PIOJ—S'LF Z ZH SA Zd 40/pue {S0°0>¥Q4 ‘PI0J-S'LF Z Zd SA 7y Se paulyap ‘ouald pajen3al A|jeneds
*50°0>4Q4 ‘PIOJ—SLF Z QM TL SA € Se paulsap ‘9uald pare|n3ai Ajjesodwal ()
'SaNSSI} 1405 331y} [|E 404 LO'O>Y4 PUB P|OJ—5'L Z aNSSI| 1JOS SA 4D Ul UoIssaidxa se paulyap ‘auad diyads aejd yimoan ()
*(S0°0>3@4) 2uediyudis A||ed13siiels paiapisuod 9goo 0>d
"(So'0>¥@4) yuediyiudis Ajjediysiyels paiapisuod LLoo'0>d 5
(G0 0>y¥@4) Juediyiudis Ajjedijsije}s paiapisuod zvo0'0>d ,
“(Lo'0>y@d) yuediudis Ajedi3siyels paiapisuod Lroooxd ,
‘(Lo'0>y@4) 3uedipudis A|[ed13siyels paapisuod g700°0>d 4
‘(100> (¥a4) 1ey K1an0DsIq as|ed) Juediyiudis Ajjediisiiels paiapisuod g7000>d .
‘auoz d1ydoipiadAH = ZH ‘2u0z aAI3eIRHI|0Id = Zd ‘2uoz Bu1}say = 7y ‘98ueyd pjo4 = D4 31e|d YImoiD = 40

(dD 384 3y3 Ul voissaidxa auas jo uonenSal jejodway pue |erjeds pue ‘UoIssaIdxa saNssI} 3405 SA ¢ asnow) yseoidde dizewoyuiolg S ajqel

166



Discussion

Whole genome SNP array analysis in 162 patients with short stature from 149 unrelated
families (Fig. 1) led to the detection of type | CNVs known to cause short stature (involving
SHOX or IGFiR) in six families (in two of them combined with type Il CNVs), and 40
potentially pathogenic CNVs (type II) in 33 families. Out of the total of 42 type Il CNVs, five
were de novo and nine others were associated with short stature in their families. In one
severely short child a deletion without protein-coding genes was found, and in 5 CNVs 6
microRNAs were encountered.

A recent study on a genome-wide association analysis of copy-number variation and
stature showed that children with short stature had a greater global burden of lower-
frequency and rare deletions and a greater average CNV length than controls 2. There
were no significant associations with tall stature. These observations suggest that CNVs
might contribute to genetic variation in stature in the general population. These authors
also identified three preliminary candidate regions as having significant associations
with stature; a duplication at 1q11 and deletions at 14q11.2 and 17921.31. In our analysis
these regions all display common CNVs, which have been often observed in our in-house
database and in the DGV (type IV CNVs).

The two patients carrying a heterozygous deletion containing the SHOX gene had
disproportionate short stature, but no Madelung deformity. Case 1.1 (sitting height/height
(SH/H) ratio +3.7SDS) inherited the deletion from her mother, who also had disproportionate
short stature (height —1.8 SDS, SH/H ratio +4.2 SDS). Case |.2 (SH/H ratio +3.8 SDS) carries
besides a de novo SHOX haploinsufficiency also a heterozygous unclassified variant (UV) in
the IGFALS gene (ca555C>T, p.Arg519Trp) inherited from her father (height —1.1 SDS). IGFALS
sequencing was performed because of a low circulating IGF-1 and IGFBP-3 despite elevated
GH secretion. While the referring physician had not suspected Leri-Weill syndrome, in
retrospect the increased sitting height/height ratio would have been sufficient reason to
directly test for SHOX defects. The two patients in whom a duplication of the SHOX gene
including surrounding genes was observed (de novo and inherited via a normal statured
parent, respectively), had a sitting height/height ratio of approximately +1.9 SDS. We and
others have recently reported that a phenotype similar to Leri-Weill syndrome (including
short stature) can be associated with SHOX duplication ™24,

In two patients a heterozygous deletion on chromosome 15 containing the IGFiR gene
was identified, a well-established cause of short stature 26, In both patients an additional
de novo CNV was present (Table 3). In case I.5/11.1/mi.3 this was a duplication in 15926.126.2
(located upstream of the deleted area). Although this patient’s growth failure is similar to
that of other patients with IGFIR defects ¢, duplication of FURIN may play an additional
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role. In case 1.6/11.2, considerably shorter than usual for IGF1R deletions 2, the terminal 15q
deletion was combined with a terminal 9p24.3p24.2 duplication, suggesting the presence
of an unbalanced reciprocal translocation. We suspect that one of the parents is a carrier
of a balanced 9;15 translocation, but unfortunately parental chromosomes were not
available for testing. The presence of two patients in the DECIPHER database with a similar
9q duplication and short stature suggests that there may be an association between the
genes DOCKS8 and KANK1, and stature.

Bioinformatics analysis of the three other cases with de novo type Il CNVs led to several
candidate genes (Table 3). In case I1.3 a duplication of NLRP3 may be associated with short
stature. The CNV in case Il.4 (who has besides short stature also mental retardation,
behavioral problems, strabismus, and various dysmorphic features) suggests that FAM3C
and SLC13A1 deletions may be associated with short stature, particularly because of the
expression data of Fam3c in the murine growth plate and the dwarfism and skeletal
deformities in Texel sheep and mice with loss of function of Slc13a1 272,

Case Il.5, with a terminal de novo 15q deletion located 1.5 Mb downstream of IGFiR and
244 Kb downstream of the ADAMTS17 locus on the reverse strand, had a normal birth size,
but showed proportionate progressive growth failure (SH/H ratio +1.58 SDS) with a normal
head circumference. Clinical characteristics included slight frontal bossing of the skull, a
high pitched voice and slight abdominal adiposity and delayed bone age. GH secretion
and circulating IGF-I were normal, but IGFBP-3 was low (-2 SDS). Several arguments are
in favor of a role of ADAMTS17 in growth regulation (for summary, see Table 3), including:
1) significant association with height in population GWAS 1; 2) a short child with a similar
terminal deletion in the DECIPHER database; 3) significant association with size in a
GWAS in the domestic dog ; 4) human mutations in ADAMTS17 causing the acromelic
chondrodysplasia Weill-Marchesani-like syndrome (OMIM #277600 and #608328) 3°33;
and 5) association of members of the ADAMTSL/ADAMTS family with the modulation of
fibrillin-1 function 3. Unfortunately, expression of the rodent homologue of ADAMTS17
could not be investigated, because the gene was not represented on the microarrays used.
Besides ADAMTS17, this deletion contains three other genes, ALDH1A3, LRRK1 and CHSY1, that
might be implicated in short stature.

Nine CNVs in 6 families (5 families with one index patient each, and one family consisting
of a mother and her 2 sons) segregated with a height of less than —.5 SDS of a carrier
family member (Table 4). The 3p duplication that case I1.6 (height —2.0 SDS) inherited from
his father (—1.8 SDS) contains FHIT and the first part of PTPRG. Both genes are considered
tumor suppressors 3+35. The 6q duplication that case Il.7 inherited from his mother is located
nearby (97 Kb downstream) a locus (TULP4) associated with height . One of the duplicated
genes (ENPP2) in case 11.8 encodes for a lysophospholipase D, producing lysophosphatidic
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acid (LPA) inducing cell proliferation 3. The mouse homologs of TAF2, COL14A1 and DSCC1
are differentially expressed in the growth plate. In case Il.9, the 9q deletion containing part
of LPPR1 (also known as PRG3) did not fully segregate with short stature in the family, but
the observation that Prg7 knockout mice are smaller compared to wild type littermates 37
suggests a role for this gene in height regulation. The 19p deletion that case Il.10 inherited
from his father includes ZNF675, associated with osteoclast differentiation 3. Out of the
four CNVs in cases 1111, 12 and 13 (the short members of one family), C4orf22, ASTN2 and
TRIM32 are located close to loci (374 KB upstream PRKG2/BMP3 and 289 Kb downstream
PAPPA, respectively) associated with height *, suggesting that the 4q and/or 9q deletion
are associated with stature.

Four out of nine patients in whom no segregation analysis could be performed
(Supplementary Table 2) carry a CNV suggestive for an association with short stature. One
of the genes in the duplication of case Il.14 is TBLiX (alias TBL1), encoding for transducin
beta-like protein 1 (TBL1). TBL1 and its highly related family member TBLR1 are required
for Wnt-beta-catenin-mediated transcription 3. Case 117, described previously *, carries
a duplication of 3p12.3 containing part of ROBO2, as well as his younger brother (height
—4.3), but his mother (height —3.6 SDS) does not carry the variant, while no DNA is available
from the father. The encoded protein is a receptor for SLIT2 and probably SLIT1, which
are thought to function in axon guidance and cell migration 4°. Case I1.21 was born SGA,
and at 1.2 years her length was —3.7 SDS and head circumference —3.1 SDS. Further clinical
characteristics include clinodactily, a protruded tongue and delayed bone age. The mother
does not carry this duplication, and DNA from her father is not available. A search in the
DECIPHER database revealed 2 patients with (partially) overlapping duplications, one of
whom was short (patient #258583) and one was not (#258497). Out of the 6 genes outside
the overlapping region with patient #258497 CHD8 and TOX4 appear potential candidate
genes 442, Case I.22/mi.5 has a 22q deletion containing only the distal part of the common
22qmn deletion syndrome (Velocardiofacial/DiGeorge syndrome). His mother does not carry
the duplication, and DNA from the father is not available. In 8 patients in the DECIPHER
database with overlapping deletions short stature was observed. The common deleted
region contains PIg4KA, SERPIND1, SNAP29, CRKL, AIFM3, LZTR1, THAP7, and P2RX6.

Although non-coding DNA can play an important regulatory role 444, no supportive
evidence could be obtained on a possible role of novel type Ill CNVs. Similarly, none of the
6 MiRNAs (Table 2) identified in the type Il CNVs could be directly linked to short stature,
due to lack of segregation with short stature (data not shown), although miRNA 484, 649,
and 1972 have been predicted to bind to various isoforms of SHOX, and contribute to the
regulation of SHOX expression 4.

In conclusion, whole genome SNP array analysis in this exploratory study on 162 patients
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with short stature belonging to 149 unrelated families identified 6 CNVs in 6 families
(4%) for which the association with short stature is virtually certain, and 40 CNVs in 33
families (221%) with possible pathogenicity. Several of the deleted or duplicated genes
may be considered as potential candidate genes for growth disorders, including four genes
associated with height in the genome-wide association studies (ADAMTS17, PRKG2/BMP3,
PAPPA, TULPy4). Future studies are needed to support the role of these and other genes in
longitudinal growth regulation.
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Chapter 7 | Copy number variants in patients with short stature
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