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Until now, we have used affect as an abstraction for how well the agent is 
doing. This abstraction is a long-term signal, based on the reinforcement the agent 
receives during the process of learning. We have experimented with controlling 
meta-parameters by means of artificial affect (exploration versus exploitation, 
Chapter 3; broad versus narrow thoughts implemented via internal simulation of 
potential interaction with the grid world, Chapter 4). Artificial affect was thus 
related to mood (long timescale, not directed at a specific situation). Furthermore, 
artificial affect was a signal originating from the agent itself.  

Affect can also be an abstraction for the positiveness versus negativeness of a 
current situation or object, as well as being elicited more directly by an external 
source (e.g., when used in affective communication). In this chapter we take such 
an approach. We thus part from the definition of affect introduced in Chapter 2. In 
this chapter, affect is a short-term signal communicated by a human observer to a 
learning simulated robot. The common part in this definition of affect and the one 
introduced in Chapter 2 is that affect still is an abstraction for positive versus 
negative.  

In this chapter we briefly present EARL, our framework for the systematic 
study of the relation between emotion, adaptation and reinforcement learning. 
EARL is a framework, currently a prototype, that embodies many of the ways in 
which affect can influence learning, when learning is conceptualized as 
Reinforcement Learning (RL). EARL enables the study of, among other things, (a) 
affect as reinforcement to the robot (both internally generated as well as socially 
communicated; this chapter), (b) affect as perceptual feature to the robot (again 
internally generated and social), (c) affect resulting from reinforced robot 
behavior (see also Chapter 2), and (d) affect as meta-parameters for the robot’s 
learning mechanism (Chapter 3 and 4). EARL can be seen as the concretization of 
the insights developed while researching the topics described in Chapters 2 to 5 of 
this thesis. 

In this chapter, we focus on one aspect of EARL: the ability to model 
communicated affect by a human observer used as reinforcement by the robot. In 
humans, emotions are crucial to learning. For example, a parent—observing a 
child—uses emotional expression to encourage or discourage specific behaviors. 
Emotional expression can therefore be a reinforcement signal to a child. We 
hypothesize that affective facial expressions facilitate robot learning, and compare 
a social setting with a non-social one to test this. The non-social setting consists 
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of a simulated robot that learns to solve a typical RL task in a continuous grid-
world environment. The social setting additionally consists of a human (parent) 
observing the simulated robot (child). The human’s emotional expressions are 
analyzed in real time and converted to an additional reinforcement signal used by 
the robot; positive expressions result in reward, negative expressions in 
punishment. We quantitatively show that the “social robot” indeed learns to solve 
its task significantly faster than its “non-social sibling”. We conclude that this 
presents strong evidence for the potential benefit of affective communication with 
humans in the Reinforcement Learning loop. 

6.1 Introduction 
In humans, emotion influences thought and behavior in many ways (Custers & 
Aarts, 2005; Damasio, 1994; Dreisbach & Goschke, 2004; Rolls, 1999). For 
example, emotion influences how humans process information by controlling the 
broadness versus the narrowness of attention (see also Chapter 3 and 4). Also, 
emotion functions as a social signal that communicates reinforcement of behavior 
in, e.g., parent-child relations. Computational modeling (including robot 
modeling) has proven to be a viable method of investigating the relation between 
emotion and learning (Broekens, Kosters & Verbeek, 2007; Gadanho, 2003), 
emotion and problem solving (Belavkin, 2004; Bothello & Coehlo, 1998), 
emotion and social robots (Breazeal, 2001; for review see Fong, Nourbakhsh & 
Dautenhahn, 2003), and emotion, motivation and behavior selection (Avila-
Garcia & Cañamero, 2004; Blanchard and Cañamero, 2006; Cos-Aguilera et al., 
2005; Velasquez, 1998). Although many approaches exist and much work has 
been done on computational modeling of emotional influences on thought and 
behavior, none explicitly targets the study of the relation between emotion and 
learning using a complete end-to-end framework in a Reinforcement Learning 
context1. By this we mean a framework that enables systematic quantitative study 
of the relation between affect and RL in a large variety of ways, including (a) 
affect as reinforcement to the robot (both internally generated as well as socially 
communicated), (b) affect as perceptual feature to the robot (again internally 
generated and social), (c) affect resulting from reinforced robot behavior, and (d) 
affect as meta-parameters for the robot’s learning mechanism. In this chapter we 
present such a framework. We call our framework EARL, short for the systematic 
study of the relation between emotion, adaptation and reinforcement learning. 

                                                 
1 Although the work by Gadanho (2003) is a partial exception as it explicitly addresses 
emotion in the context of RL. However, this work does not address social human input and 
social robot output.  
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Here we specifically focus on the influence of socially communicated emotion 
on learning in a Reinforcement Learning context. We show, using our framework 
EARL, that human emotional expressions can be used as an additional 
reinforcement signal used by a simulated robot. 

The robot’s task is to optimize food-finding behavior while navigating 
through a continuous grid-world environment. The grid world is not discrete, nor 
is an attempt made to define discrete states based on the continuous input. The 
grid world contains walls, path and food patches. The robot perceives its direct 
surroundings as they are. We have developed an action-based learning mechanism 
that learns to predict values of actions based on the current perception of the agent 
(note that in this chapter we use the terms agent and robot interchangeably). Every 
action has its own Multi-Layer Percepton network (see also Lin, 1993) that learns 
to predict a modified version of the Q-value (Sutton & Barto, 1998). We have 
used this setup so that observed robot behavior can be extrapolated to the real 
world; building the actual robot with appropriate sensors and actuators would, in 
theory, suffice to replicate the results. We explain our modeling method in more 
detail in Section 6.5. 

As mentioned above, we study the effect of a human’s emotional expression 
on the learning behavior of the robot. In humans, emotions are crucial to learning. 
For example, a parent—observing a child—uses emotional expression to 
encourage or discourage specific behaviors. In this case, the emotional expression 
is used to setup an affective communication channel (Picard, 1997) and is used to 
communicate a reinforcement signal to a child. In this chapter we take affect to 
mean the positiveness versus the negativeness of a situation, object, etc. (see 
Rolls, 1999; Russell, 2003; and Broekens, Kosters & Verbeek, 2007, or Chapter 2 
for a more detailed argumentation of this point of view). The human observes the 
simulated robot while it learns to find food, and affect in the human’s facial 
expression is recognized by the robot in real time2. A smile is interpreted as 
communicating positive affect and therefore converted to a small additional 
reward (additional to the reinforcement the robot receives from its simulated 
environment). The expression of fear is interpreted as communicating negative 
affect and therefore converted to a small additional punishment. We call this the 
social setting. The non-social setting is a standard experimental Reinforcement 
Learning setup without human input.  

                                                 
2  In this chapter, affect is thus a short-term signal elicited by an external source, as 
opposed to affect defined in Chapter 2 where it is a long-term signal elicited by 
mechanisms in the agent itself based on its learning performance. 
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We hypothesized that robot learning (in a RL context as described above) is 
facilitated by additional social reinforcement. Our experimental results support 
this hypothesis. We compared the learning performance of our simulated robot in 
the social and non-social settings, by analyzing averages of learning curves. The 
main contribution of this research is that it presents quantitative evidence of the 
fact that a human-in-the-loop can boost learning performance in real-time, in a 
plausible learning environment. We belief this is an important result. It provides a 
solid base for further study of human mediated robot learning in the context of 
real-world applicable Reinforcement Learning, using the communication protocol 
nature has provide for that purpose, i.e., emotional expression and recognition. 
Therefore, our results suggest that robots can be trained and their behaviors 
optimized using natural social cues. This facilitates human-robot interaction. 

The rest of this chapter is structured as follows. In Section 6.2 we explain in 
some more detail our view of affect, emotion and how affect influences learning 
in humans. In Section 6.3 we briefly introduce EARL, our complete framework. In 
Section 6.4 we describe how communicated affect is linked to a social 
reinforcement signal. In Section 6.5, we explain our method of study (e.g., the 
grid world, the learning mechanism). Section 6.6 discusses the results and Section 
6.7 discusses these in a broader context and presents concluding remarks and 
future work. 

6.2 Affect as Reinforcement 
As we have seen in the previous chapters, affect influences thought and behavior 
in a variety of ways. For example, a person’s mood influences processing style 
and attention, emotions influence how one thinks about objects, situations and 
persons, and emotion is related to learning behaviors as well as can be used to 
modify learning parameters in artificial learning agents. So, affect regulates 
behavior. 

Affect also regulates behavior of others. Obvious in human development, 
expression (and subsequent recognition) of emotion is important to communicate 
(dis)approval of the actions of others. This is typically important in parent-child 
relations. Parents use emotional expression to guide behavior of infants. 
Emotional interaction is essential for learning. Striking examples are children 
with an autistic spectrum disorder, typically characterized by a restricted 
repertoire of behaviors and interests, as well as social and communicative 
impairments such as difficulty in joint attention, difficulty recognizing and 
expressing emotion, and lacking of a social smile (for review see Charman & 
Baird, 2002). Apparently, children suffering from this disorder have both a 
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difficulty in building up a large set of complex behaviors and a difficulty 
understanding emotional expressions and giving the correct social responses to 
these. This disorder provides a clear example of the interplay between learning 
behaviors and being able to process emotional cues. 

In this chapter we specifically focus on the influence of socially 
communicated affect on learning: we focus on the role of affect in guiding 
learning in a social human-robot setting.  We use affect to denote the positiveness 
versus negativeness of a situation. We ignore the arousal a certain situation might 
bring. Positive affect characterizes a situation as good, while negative affect 
characterizes that situation as bad (e.g., Russell, 2003). Further, we use affect to 
refer to the short term timescale: i.e., to emotion. We hypothesize that affect 
communicated by a human observer can enhance robot learning. In our study we 
assume that the recognition of affect translates into a reinforcement signal. Thus, 
the robot uses a social reinforcement in addition to the reinforcement it receives 
from its environment while it is building a model of the environment using 
Reinforcement Learning mechanisms. In the following sections we first explain 
our framework after which we detail our method and discuss results and further 
work. 

6.3 EARL: A Computational Framework to Study the Relation 
between Emotion, Adaptation and Reinforcement Learning. 
To study the relation between emotion, adaptation and Reinforcement Learning, 
we have developed an end-to-end framework. The framework consists of four 
parts: 

 An emotion recognition module, recognizing emotional facial expression in 
real time. 

 A Reinforcement Learning agent to which the recognized emotion can be fed 
as input. 

 An artificial emotion module slot, this slot can be used to plug in different 
models of emotion into the learning agent that produce the artificial emotion 
of the agent as output. The modules can use all of the information that is 
available to the agent (such as action repertoire, reward history, etc.). This 
emotion can be used by the agent as intrinsic reward, as metalearning 
parameter, or as input for the expression module. 

 An expression module, consisting of a robot head with the following degrees 
of freedom: eyes moving up and down, ears moving up and down on the 
outside, lips moving up and down, eyelids moving up and down on the 
outside, and RGB eye colors. 
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Emotion recognition is based on quite a crude mechanism using the face 
tracking abilities of OpenCV3. It uses 9 points on the face each defined by a blue 
sticker: 1 on the tip of the nose, 2 above each eyebrow, 1 at each mouth corner 
and 1 on the upper and lower lip. The recognition module is configured to store 
multiple prototype point constellations. The user is prompted to express a certain 
emotion and press space while doing so. For every emotional expression (in the 
case of our experiment neutral, happy and afraid), the module records the 
positions of the 9 points relative to the nose. This is a prototype point vector. 
After configuration, to determine the current emotional expression in real time, 
the module calculates a weighted distance from the current point vector (read in 
real-time from a web-cam mounted on the computer screen) to the prototype 
vectors. Different points get different weights. This results in an error measure for 
every prototype expression. This error measure is the basis for a normalized 
vector of recognized emotion intensities. The recognition module sends this 
vector to the agent (e.g., neutral 0.3, happy 0.6, fear 0.1). Our choice of weights 
and features has been inspired by work of others (for review see Pantic & 
Rothkrantz, 2000). Of course the state of the art in emotion recognition is more 
advanced than our current approach. However, as our focus is affective learning 
and not the recognition process per se, we contented ourselves with a low fidelity 
solution (working almost perfectly for neutral, happy and afraid, when the user 
keeps the head in about the same position). 

Note that we do not aim at generically recognizing emotional expressions. 
Instead, we tune the recognition module to the individual observer to 
accommodate his/her personal and natural facial expressions. 

The Reinforcement Learning agent receives this recognized emotion and can 
use this in multiple ways: as reward, as information (additional state input), as 
metaparameter (e.g., to control learning rate), and as social input directly into its 
emotion model. In this chapter we focus on social reinforcement, in particular on 
the recognized emotion being used as additional reward or punishment. The 
agent, its learning mechanism and how it uses the recognized emotion as 
reinforcement are detailed in Sections 6.4 and 6.5. 

The artificial emotion model slot enables us to plug in different emotion 
models based on different theories to study their behavior in the context of 
Reinforcement Learning. For example, we have developed a model based on the 
theory by Rolls (1999), who argues that many emotions can be related to reward 
and punishment and the lack thereof. This model enables us to see if the agent’s 
situation results in a plausible (e.g., scored by a set of human observers) emotion 
                                                 
3 http://www.intel.com/technology/computing/opencv/index.htm 
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emerging from the model. By scoring the plausibility of the resulting emotion, we 
can learn about the compatibility of, e.g., Rolls’ emotion theory with 
Reinforcement Learning. However, in the current study we have not used this 
module, as we focus on affective input as social reward. 

The emotion expression part is a physical robot head. The head can express an 
arbitrary emotion by mapping it to its facial features, again according to a certain 
theory. Currently our head expresses emotions according to the Pleasure Arousal 
Dominance (PAD) model by Mehrabian (1980). We have a continuous mapping 
from the 3-dimensional PAD space to the features of the robot face. As such we 
do not need to explicitly work with emotional categories or intensities of the 
categories. The mapping appears to work quite well, but is in need of validation 
study (again using human observers). We have not used the robot head for the 
studies reported upon in this chapter. 

We now describe in detail how we coupled the recognized human emotion to 
the social reinforcement signal for the robot. Then we explain in detail our 
adapted Reinforcement Learning mechanism (such that it enabled learning in 
continuous environments), and our method of study as well as our results.  

6.4 Emotional Expressions as Reinforcement Signal. 
As mentioned earlier, emotional expressions and facial expressions in particular 
can be used as social cues for the desirability of a certain action. In other words, 
an emotional expression can express reward and punishment if directed at an 
individual. We focus on communicated affect, i.e., the positiveness versus 
negativeness of the expression. If the human expresses a smile (happy face) this is 
interpreted as positive affect. If the human expresses fear, this is interpreted as 
negative affect. We interpret a neutral face as affectless. 

We have studied the mechanism of communicated affective feedback in a 
human-robot interaction setup. The human’s face is analyzed (as explained above) 
and a vector of emotional expression intensities is fed to the learning agent. The 
agent takes the expression with the highest intensity as dominant, and equates this 
with a social reward of, e.g., 2 (happy), −2 (fear) and 0 (neutral). This is 
obviously a simplified setup, as the human face communicates much more subtle 
affective messages and at the very least is able to communicate the degree of 
reward and punishment. However, to investigate our hypothesis (affective human 
feedback increases robot learning performance), the just described mechanism is 
sufficient. 
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The social reward is simply added to the “normal” reward the agent receives 
from the environment. So, if the agent walks on a path somewhere in the grid 
world, it receives a reward (say 0), but when the user smiles, the resulting actual 
reward becomes 2, while if the user looks afraid, the resulting reward becomes 
−2.  

6.5 Method 
To study the impact of social reinforcement on robot learning, we have used our 
framework in the following experimental setup. 

A simulated robot (agent) “lives” in a continuous grid-world environment 
consisting of wall, food and path patches (Figure 6.1). These are the features of 
the world observable by the agent. The agent cannot walk on walls, but can walk 
on path and food. Walls and path are neutral (have a reinforcement of 0.0), while 
food has a reinforcement of 10. One cell in the grid is assumed to be a 20 by 20 
spatial unit object (let’s say 20 x 20 centimeters). Even though wall, path and 
food are placed on a grid, the world is continuous in the following sense: the 
agent moves by turning or walking in a certain direction using an arbitrary speed 
(in our experiments set at 3 spatial units per time unit), and perceives its direct 
surroundings (within a radius of 20 spatial units) according to its looking 
direction (one out of 16 possible directions). 

The agent uses a “relative eight-neighbor metric” meaning that it perceives 
features of the world at 8 points around it, with each point at a distance of 20 from 
the center point of the agent and each point at an interval of 1/4 PI radians, with 
the first point always being exactly in front of it (Figure 6.1). 

The state perceived by the agent (its percept) is a real-valued vector of inputs 
between 0 and 1; each input is defined by the relative contribution of a certain 
feature in the agent-relative direction corresponding to the input. For example, if 
the agent sees a wall just in front of it (i.e., the center point of a wall object is 
exactly at a distance of 20 units as measured from the current agent location in its 
looking direction) the first value in its perceived state would be equal to 1. This 
value can be anywhere between 0 and 1 depending on the distance of that point to 
the feature. For the three types of features, the agent thus has 3x8=24 real-valued 
inputs between 0 and 1 as its perceived world state s (Figure 6.1). Therefore the 
agent can approach objects (e.g., a wall) from a large number of possible angles 
and positions, with every intermediate position being possible. 

For all practical purposes, the learning environment can be considered 
continuous. States are not discretized to facilitate learning. Instead we chose to 
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use the perceived state as is, to maximize compatibility of our experimental 
results with real-world robots. However, Reinforcement Learning in continuous 
environments introduces several important problems for standard RL techniques, 
such as Q-learning, mainly because a large number of potentially similar states 
exist as well as a very long path length between start and goal states can occur 
making value propagation difficult. 

We now briefly explain our adapted RL mechanism. As RL in continuous 
environments is not specifically the topic of the chapter we have left out some of 
the rational for our choices. 

Figure 6.1. The experimental grid
world. The agent is the “circle with 
nose” in the top right of the maze, In 
this figure the agent is looking to the 
right. The 8 white dots denote the 
points perceived by the agent. These 
points are connected to the elements 
of state s (neural input to the MLPs 
used by the agent) as depicted. This is 
repeated for all possible features, in 
our case: path (gray), wall (black), and 

food (light gray), in that order (as depicted in the smaller representation of the neural 
network). The “e” denotes the cell in which social reward can be administered through 
smiling or expression of fear, the “1” and “2” denote key locations at which the agent has to
learn to differentiate its behavior, i.e., either turn left (“1”) or right (“2”). The agent starts at
“s”. The task enforces a non-reactive best solution (by which we mean that there is no 
direct mapping from reward to action that enables the agent to find the shortest path to the 
food). If the agent would learn that turning right is good, it would keep walking in circles. If
the agent learns that turning left is good, it would not get to the food 

 
The agent learns to find the path to the food, and optimizes this path. At every 

step the agent takes, the agent updates its model of the expected benefit of a 
certain action as follows. It learns to predict the value of actions in a certain 
perceived state s, using an adapted form of Q-learning. The value function, Qa(s), 
is approximated using a multilayer perceptron (MLP), with 3x8=24 input, 24 
hidden, and one output neuron(s), with s being the real-valued input to the MLP, a 
the action to which the network belongs, and the output neuron converging to 
Qa(s). As a result, every action of the agent (5 in total: forward, left, right, left and 
forward, right and forward) has its own network (see also Gadanho, 1999). The 
output of the action networks are used as action values in a standard Boltzmann 
action-selection function (Sutton & Barto, 1998). An action network is trained on 
the Q-value—i.e., Qa(s)← Qa(s)+α(r+γQ(s’)−Qa(s))—where r is the reward 
resulting from action a in state s, s’ is the resulting next state, Q(s’) the value of 
state s’, α is the learning rate and γ the discount factor (Sutton & Barto, 1998). 
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The learning rate equals 1 in our experiments (because the learning rate of the 
MLP is used to control speed of learning, not α), and the discount factor equals 
0.99. To cope with a continuous grid world, we adapted standard Q-learning in 
the following way: 

First, the value Qa(s) used to train the MLP network for action a is topped 
such that min(r, Qa(s’))<=Qa(s)<=max(r, Q(s’)). As a result, individual Qa(s) 
values can never be larger or smaller than any of the rewards encountered in the 
world. This enables a discount factor close to or equal to 1, needed to efficiently 
propagate back the food’s reward through a long sequence of steps. In continuous, 
cyclic, worlds, training the MLP on normal Q-values using a discount factor close 
to 1 can result in several problems not further discussed here. 

Second, per step of the agent, we train the action-state networks not only on 
Qa(s)← Qa(s) +α(r+γQ(s’) −Qa(s)) but also on Qa(s’) ← Qa(s’). The latter seems 
unnecessary but is quite important. RL assumes that values are propagated back, 
but MLPs generalize while trained. As a result, training an MLP on Qa(s) also 
influences its value prediction for s’ in the same direction, just because the inputs 
are very close. In effect, part of the value is actually propagated forward; credit is 
partly assigned to what comes next. This violates the RL assumption just 
mentioned. Note that the value Q(s’) is predicted using another MLP, called the 
value network, that is trained in the same way as the action networks using the 
topped-off value and forward propagation compensation. 

Third, for the agent to better discriminate between situations that are 
perceptually similar, such as position “1” and “2” in Figure 1, for each action-
network the agent also uses a second network trained on the value of not taking 
the action. This network is trained when other actions are taken but not when the 
action to which the “negation” network belongs is taken. In effect, the agent has 
two MLPs per action. This enables the agent to better learn that, e.g., “right” is 
good in situation “2” but not in situation “1”. Without this “negation” network, 
the agent learns much less efficient (results not shown). To summarize, our agent 
has 5 actions, it has 11 MLPs in total: one to train Q(s), 5 to train Qa(s) and 5 to 
train Q-a(s). All networks use forward propagation compensation and a topped-off 
value to train upon. The MLP predictions for Qa(s) and Q-a(s) are simply added, 
and the result is used for action selection. 

To study the effect of communicated affect as social reward, we created the 
following setup. First an agent is trained without social reward. The agent 
repeatedly tries to find the food for 200 trials, i.e., one run. The agent 
continuously learns and acts during these trials. To facilitate learning, we use a 
common method to vary the MLP learning rate and the Boltzmann action 



Affect and Learning: Affect as Reinforcement 

 109 

selection β derived from simulated annealing. The Boltzmann β equals to 
3+(trial/200)*(6−3), effectively varying from 3 (exploration) in the first trial to 6 
(exploitation) in the last. The MLP learning rate equals 
0.1−(trial/200)*(0.1−0.001) effectively varying from 0.1 in the first trial to 0.001 
in the last. We repeated the experiment 200 times, resulting in 200 runs. Average 
learning curves are plotted for these 200 runs using a linear smoothing factor 
equal to 6 (Figure 6.2). 

Second, a new agent is trained with social reinforcement, i.e., a human 
observer looking at the agent with his/her face analyzed by the agent, translating a 
smile to a social reward and a fearful expression to a social punishment. Again, 
average learning curves are plotted using a linear smoothing factor equal to 6, but 
now based on the average per trial over 15 runs (Figure 6.2). We experimented 
with three different social settings: (a) a moderate social reinforcement, rhuman, 
from trial 20 to 30, where the social reinforcement is either −0.5 or 0.5 (happy vs. 
fearful, respectively); (b) a strong social reinforcement, rhuman, from trial 20 to 25 
where social reinforcement is either −2 or 2, i.e., more extreme social 
reinforcement but for a shorter period; (c) a social reinforcement, rhuman, from trial 
29 to 45 where social reinforcement is either −2 or 2 while (in addition to settings 
a and b) the agent trains an additional MLP to predict the direct social 
reinforcement, rhuman, based on the current state s. The MLP is trained to learn 
Rsocial(s) as given by the human reinforcement rhuman. After trial 45, the direct 
social reinforcement from the observer, rhuman, is replaced by the learned social 
reinforcement Rsocial(s). So, during the critical period (the trial intervals 
mentioned) of social setting a, b and c, the total reinforcement is a composite 
reward equal to R(s)+rhuman. Only in setting c, and only after the critical period 
until the end of the run, the composite reward equals R(s)+Rsocial(s). In all other 
periods, the reinforcement is as usual, i.e., R(s). As a result, in setting c the agent 
can continue using an additional social reinforcement signal that has been learned 
based on what its human tutor thinks about certain situations. 

The process of giving affective feedback to a Reinforcement Learning agent 
appeared to be quite a long, intensive and attention absorbing experience. As a 
result, it was physically impossible to observe the agent during all runs and all 
trials in the entire grid world (after 2 hours of smiling to a computer screen one is 
exhausted and has burning eyes and painful facial muscles). To be able to test our 
hypothesis, we restricted social input to the cell indicated by ‘e’ (Figure 6.1). 
Only when the agent moves around in this cell (and is in a social input trial as 
defined by the social settings described above), the simulation speed of the 
experiment is set to one action per second enabling human affective feedback.  
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6.6 Results 
The results clearly show that learning is facilitated by social reward. In all three 
social settings (Figure 6.2a, b and c) the agent needs fewer steps to find the food 
during the trials in which the observer provides assistance to the agent by 
expressing positive or negative affect. Interestingly, at the moment the observer 
stops giving social rewards, the agent gradually looses the learning benefit it had 
accumulated. This is independent of the size of the social reward (both social 
learning curves in Figure 6.2a and b show dips that eventually return to the non-
social learning curve). This can be easily explained. The social reward was not 
given long enough for the agent to internalize the path to the food (i.e., propagate 
back the food’s reward to the beginning of the path). As soon as the observer 
stops giving social rewards, the agent starts to forget these rewards, i.e., the MLPs 
are again trained to predict values as they are without social input. So, either the 
observer should continue to give social rewards until the agent has internalized 
the solution, or the agent needs to be able to build a representation of the social 
reward function and use it when actual social reward is not available. We have 
experimented with the second (social setting c): we enabled the agent to learn the 
social reward function. Now the agent uses actual social reward at the emotional 
input spot (‘e’, Figure 6.1) during the critical period, and uses its social reward 
prediction when social input stops. This is the third social setup. Results clearly 
show that the agent is now able to keep the benefit it had accumulated from using 
social rewards (Figure 6.2c). These results show that a combination of using 
social reward and learning a social reward function facilitates robot learning, by 
enabling the robot to quicker learn the optimal solution to the food due to the 
direct social reward as well as keep that solution by using its learned social 
reward function when social reward stops. 
   

 Figure 6.2a. Results of the learning experiment 
where the social setting a is compared with the 
non-social setting. In social setting a, social input 
is given between trial 20 and 30, where the social 
reward is either −0.5 or 0.5 (happy vs. fearful, 
respectively). On the x-axis the number of times 
the food is found is shown (trials); on the y-axis
the average number of steps needed to find the 
food is shown. 
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 Figure 6.2b. Results of the learning experiment 
where the social setting b is compared with the 
non-social setting. In setting b, the social input is 
given between trial 20 and 25 where social reward 
is either −2 or 2, i.e., more extreme social rewards 
but for a shorter period. Axes are as in the 
previous figure. 

 Figure 6.2c. Results of the learning experiment 
where the social setting c is compared with the 
non-social setting. In setting c, social input is 
given between trial 29 to 45, where social reward 
is either −2 or 2. The agent trains an additional 
MLP to predict the social reward. Axes are as in 
the previous figure. 

6.7 Conclusion, Discussion and Further Work 
Our results show that affective interaction in human-in-the-loop learning can 
provide significant benefit to the efficiency of a Reinforcement Learning robot in 
a continuous grid world. We believe our results are particularly important to 
human-robot interaction for the following reasons. First, advanced robots such as 
robot companions, robot workers, etc., will need to be able to adapt their behavior 
according to human feedback. For humans it is important to be able to give such 
feedback in a natural way, e.g., using emotional expression. Second, humans will 
not want to give feedback all the time, it is therefore important to be able to define 
critical learning periods as well as have an efficient social reward system. We 
have shown the feasibility of both. Social input during the critical learning periods 
was enough to show a learning benefit, and the relatively easy step of adding an 
MLP to learn the social reward function enabled the robot to use the social reward 
when the observer is away.  

We have specifically used an experimental setup that is compatible with a 
real-world robot: we have used continuous inputs and MLP-based training of 
which it is known that it can cope with noise and generalize over training 
examples. We believe our results can be generalized to real-world robotics. 
However, this most certainly needs to be experimented with. 
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Many interesting computational approaches exist that study emotion in the 
context of robots and agents, of which we mention one explicitly here as it is 
particularly related to our work: the adaptive, social chatter bot Cobot (Isbell et 
al., 2001). Cobot learns the information preferences of its chat partners, by 
analyzing the chat messages for explicit and implicit reward signals. These signals 
are then used to adapt its model of providing information to that chat partner. So, 
Cobot effectively uses social feedback as reward, as does our simulated robot. 
However, there are several important differences. Cobot does not address the 
issue of a human observer parenting the robot using affective communication. 
Instead, it learns based on reinforcement extracted from words used by the user 
during the chat sessions in which Cobot is participating. Also, Cobot is not a real-
time behaving robot, but a chat robot. As a consequence, time constraints related 
to the exact moment of administering reward or punishment are less important. 
Finally Cobot is restricted regarding its action-taking initiative, while our robot is 
continuously acting, with the observer reacting in real-time. 

Future work includes a broader evaluation of the EARL framework including 
its ability to express emotions generated by an emotional model plugged into the 
RL agent. Further, it is interesting to experiment with controlling meta parameters 
(such as exploration/exploitation and learning rate) based on the agent’s internal 
emotional state or social rewards, as has been done in the discrete grid-world case 
in Chapter 3 and 4. Currently we use simulated annealing-like mechanisms to 
control these parameters. 

Further, the agent could try to learn what an emotional expression predicts. In 
this case, the agent would use the emotional expression of the human in a more 
pure form (e.g., as a real-valued vector of facial feature intensities as part of its 
perceived state s). This might enable the agent to learn what the emotional 
expression means for itself instead of simply using it as reward. 

Finally, a somewhat futuristic possibility is actually quite close: affective 
Robot-Robot interaction. Using our setting, it is quite easy to train one robot in a 
certain environment (parent), make it observe an untrained robot in that same 
environment (child), and enable it to express its emotion as generated by its 
emotion model using its robot head, an expression recognized and translated into 
social rewards by the child robot. Apart from the fact that it is somewhat dubious 
if such a setup is actually useful (why not send the social reward as a value 
through a wireless connection to the child), it would enable robots to use the same 
communication protocol as humans. 

Regarding the “usefulness” argument just put forward, it seems to apply to 
our experiment as well. Why didn’t we just simulate affective feedback by 
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pushing a button for positive reward and pushing another for negative reward (or 
even worse, by simulating a button press)? From the point of view of the robot 
this is entirely true, however, from the point of view of the human—and therefore 
the point of view of the human-robot interaction—not at all. Humans naturally 
communicate social signals using their face, not by pushing buttons. The process 
of expressing an emotion is quite different from the process of pushing a button, 
even if it was only for the fact that it takes more time and effort to initiate the 
expression and that the perception of an expression is the perception of a process 
and not of a discrete event (like a button press). In a real-world scenario with a 
mobile robot in front of you it would be quite awkward to have to push buttons 
instead of just smile when you are happy about its behavior. Further it would be 
quite useful if the robot could recognize you being happy or sad, and gradually 
learn to adapt its behavior even when you did not intentionally give it a reward or 
punishment. Abstracting away from the actual affective interaction patterns 
between the human and the robot in our experiment would have rendered the 
experiment almost completely trivial. Nobody would be surprised to see that the 
robot learns better if an intermediate reward is given halfway its route towards 
food. Our aim was to investigate if affective communication can enhance learning 
in a Reinforcement Learning setting. Taking out the affective part would have 
been quite strange indeed. 
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