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In this chapter we study affective control of the amount of simulated anticipatory 
behavior in artificial adaptive agents. Artificial affect is positive when an agent is 
doing better than expected and negative when doing worse than expected, as 
defined in Chapter 2 and used in the study in Chapter 3. Our approach is based on 
model-based Reinforcement Learning (although we use a different model than the 
one used in Chapter 3) and inspired by the Simulation Hypothesis (Cotterill, 2001; 
Hesslow, 2002). In contrast to the research described in Chapter 3, where we used 
affect to control the exploration – exploitation rate directly, in an adaptive agent 
that has a purely reactive architecture (no internal simulation of interaction), here 
we study the adaptiveness of an artificial agent, when action-selection bias is 
induced by an affect-controlled amount of simulated anticipatory behavior. To 
this end, we introduce an affect-controlled simulation-selection mechanism that 
selects anticipatory behaviors for simulation from the agent’s Reinforcement 
Learning model. 

Based on experiments with adaptive agents in two nondeterministic partially 
observable grid worlds we conclude that (1) internal simulation has an adaptive 
benefit and (2) affective control reduces the amount of simulation needed for this 
benefit. This is specifically the case if the following relation holds: positive affect 
decreases the amount of simulation towards simulating the best potential next 
action, while negative affect increases the amount of simulation towards 
simulating all potential next actions. Thus, agents “feeling positive” can think 
ahead in a narrow sense and free-up working memory resources, while agents 
“feeling negative” must think ahead in a broad sense and maximize usage of 
working memory. Our results are consistent with several psychological findings 
on the relation between affect and learning, and contribute to answering the 
question of when positive versus negative affect is useful during adaptation. 

4.1 Introduction 
In this Chapter we study affective control of the amount of information 
processing in artificial adaptive agents. In order to model affective control of 
information processing, we use the measure for artificial affect, as defined in 
Chapter 2, which relates to an adaptive agent's relative performance on a learning 
task. Artificial affect measures how well the agent improves. Our adaptive agent 
learns by reward and punishment. Thus we define “wellness” based on averages 
over reinforcement signals. As such, the agent’s performance is defined by the 
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difference between the long-term average reinforcement signal (“what am I used 
to”) and the short-term average reinforcement signal (“how am I doing now”) (cf. 
Schweighofer & Doya, 2003). Our measure of artificial affect thus relates to 
natural affect in the sense that it characterizes the situation of the agent on a scale 
from good to bad. Further, as our measure is based on average reinforcement 
signals, it relates more to mood than emotion. 

We have developed a variation to the model-based Reinforcement Learning 
(RL) paradigm (Sutton & Barto, 1998). This variation enables us to view 
information processing in light of the Simulation Hypothesis (Cotterill, 2001; 
Hesslow, 2002). The Simulation Hypothesis states that thinking is internal 
simulation of behavior using the same sensory-motor systems as those used for 
overt behavior (Hesslow, 2002). The main reason for adopting the Simulation 
Hypothesis is that it argues for evolutionary continuity between agents that 
consciously think and agents that do not. We believe that evolutionary continuity 
is a critical aspect in studying behavior, emotions, consciousness and cognition. 
In this chapter, we refer to simulation as described by the Simulation Hypothesis. 

An important current issue is how simulation of interaction is integrated with 
real interaction while using the same mechanisms (see models by, e.g., Shanahan, 
2006; van Dartel & Postma, 2005; Ziemke, Jirenhed & Hesslow, 2005). Our 
agents are able to internally simulate anticipatory behavior using their RL model. 
The agent thinks ahead by selecting one or more potential next action-state pairs 
for internal simulation. This action-state and its associated value are fed into the 
RL model as if these were actually observed. This introduces a bias to predicted 
values. Our action-selection mechanism uses these biased values to select the 
agent’s next action. Subsequently, the values are reset to the original values 
before simulation. Thus, internal simulation temporarily biases the predicted 
values in the RL model, thereby biasing action selection. 

In this chapter we report on a study on the adaptiveness of an artificial agent, 
when action-selection bias is induced by an affect-controlled amount of simulated 
anticipatory behavior. Thus, the main contributions of this chapter to the affect-
learning and Simulation Hypothesis literature are: 

 The introduction of an affect-controlled mechanism for the selection of 
internally simulated behavior instead of actual behavior; we define this 
mechanism as simulation selection. 

 A study into the influence of affect on learning, when used to control the 
amount of internally simulated interactions, where simulated interactions bias 
actual action selection. As we use internal simulation as a model for 
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information processing, we investigate affect as a modulator for the trade-off 
between internal versus external information processing effort (Aylett, 2006). 

In Section 4.2 we review the relation between internal simulation and our 
approach in more detail. In Section 4.3 we present our computational model and 
how it implements artificial affect, internal simulation of behavior and learning. 
In Section 4.4 we describe our experimental setup. In Section 4.5 we present 
experimental results. In Section 4.6 we discuss our approach in a broader context. 

4.2 Internal Simulation of Behavior as a Model for Thought 
Our approach towards anticipatory simulation is inspired by the Simulation 
Hypothesis stating that conscious thought consists of “simulated interaction with 
the environment” (Hesslow, 2002). Thoughts consist of internally simulated 
chains of interaction with the environment and evaluation of those simulated 
interactions. As such, thoughts are virtual versions of real interactions. For this to 
be possible, a brain must be able to internally simulate actions, perceptions and 
evaluations of action-perceptions in an off-line manner. That is, the brain has to 
simulate potential interaction with the environment while simultaneously 
controlling the body such that it is able to successfully interact with the 
environment. Hesslow (2002) and Cotterill (2001) provide extensive evidence for 
the biological and psychological plausibility of such a simulation process. 

4.2.1 Thought and Internal Simulation of Interaction 

In addition to being plausible, internal simulation of behavior is also a convenient 
model for thought, especially in the context of adaptive behavior and evolutionary 
continuity. First, if an agent is able to internally simulate a certain interaction, this 
simulation can reactivate the value of that interaction and thereby (1) influence 
decision making with predictions based on previous experiences and (2) enhance 
learning by propagating the value of that interaction to other related interactions. 
Second, the Simulation Hypothesis is said to provide a bridge between species 
that consciously think and those that do not (Hesslow, 2002): no additional 
mechanisms are needed for thought, apart from those that enable off-line 
simulation of interaction. 

Recently, strong evidence for a link between internal simulation, adaptive 
behavior and evolutionary continuity has been presented. Foster and Wilson 
(2006) showed that awake mice replay in reverse order behavioral sequences that 
led to a food location; a crucial finding for the above mentioned link. First, it 
suggests that mice are able to internally simulate interaction with the 
environment, showing that simulation mechanisms need not be restricted to 
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humans. This supports the possibility of evolutionary continuity of the human 
thought process. Second, internally replaying a sequence of interactions can 
potentially increase learning in mice in the same way as eligibility traces can 
enhance learning in Reinforcement Learning (Foster & Wilson, 2006). An 
eligibility trace (see Sutton & Barto, 1996) can be seen as a sequence of recent 
interactions with the environment. Delayed reinforcement is distributed over all 
the interactions stored in the trace. This mechanism can dramatically increase 
learning performance of simulated adaptive agents, and therefore provides a 
plausible argument for an immediate benefit of internal simulation (different from 
benefits related to complex cognitive abilities such as planning). 

4.2.2 Working Memory, Simulation Selection and Internal Simulation of 
Behavior 

If a thought is an internally simulated interaction, and working memory (WM) 
contains the thoughts of which we are consciously aware, then WM contains a set 
of currently maintained internally simulated interactions—specifically the 
episodic buffer that is a multi-modal limited-capacity storage buffer (Baddeley, 
2000). Further, for a specific thought to enter WM, it is often assumed that the 
thought has to be active above a certain threshold (exemplified by a 
computational neuronal model by Dehaene, Sergent and Changeux (2003)).  

The “internal simulation thought process” would go like this. An agent in a 
specific situation starts to pay attention to several situational aspects. These 
aspects start entering the central executive of working memory (Baddeley, 2000) 
and are thereby above threshold. Now, the central executive pushes a multi-modal 
simulation of future (or related) interactions from long term memory to the 
episodic buffer, where it is maintained. As the episodic buffer has limited 
capacity, the interaction can reside in the buffer until being replaced (pushed 
away) by new simulated interactions. Thus, filling the buffer depends (among 
other things) on how critical the filter (central executive) is in passing information 
to the buffer. The episodic buffer is filled with those internally simulated 
interactions that are attended to with sufficient intensity. Therefore, the higher the 
simulation-selection threshold, the smaller the amount of internally simulated 
behaviors maintained in the episodic buffer.  

Interestingly, if thought is internal simulation of behavior using the same 
sensory-motor mechanisms as real behavior, then the selection of those thoughts 
should resemble the selection of behaviors. Action-selection has been defined as 
the problem of continuously deciding what action to select next in order to 
optimize survival (Tyrell, 1993). “Thought selection”, to which we refer as 
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simulation selection, can therefore be defined in a similar way. Simulation 
selection is the problem of continuously selecting behaviors for internal 
simulation such that action selection is assisted, not hindered. The latter is critical 
as, according to the Simulation Hypothesis, action selection and simulation 
selection should be tightly coupled: both use the same mechanisms. Errors in 
simulation selection can directly influence action-selection and thereby be 
responsible for actions that are erroneous too. In our computational model we 
introduce a simulation-selection component based on precisely these principles. 
Moreover, the simulation-selection threshold in our model is dynamically 
controlled by artificial affect (Section 4.3.2, 4.3.3). 

4.3 Model 
In this section we explain the computational model used to study the main 
question. We use adaptive agent based modeling. Our agents “live” in grid 
worlds. Figure 4.1 shows the overall architecture of our computational approach.  

The affect mechanism calculates artificial affect based on how well the agent 
is doing compared to what it is used to. The simulation-selection mechanism 
selects next interactions for simulation, using a threshold controlled by artificial 
affect. The threshold filters which potential next interactions are simulated and 
which not. Selected interactions are fed into the RL model (as if they were real). 
This biases predicted values of states in the RL model. The action-selection 
mechanism selects an action based on these biased values using a greedy 
algorithm. The action is executed, and the agent perceives the next state. Our 
approach is related to Dyna (Sutton, 1990). In the general discussion we explore 
some of the similarities and differences. 

We first discuss the components of the model and the way it learns using RL 
principles. Then we explain how we have implemented the Simulation Hypothesis 
on top of our model. Subsequently we explain how artificial affect is used to 
control the amount of internal simulation the agent uses to bias the predicted 
values employed by its action-selection mechanism. Finally, we explain how the 
action-selection mechanism integrates everything. 
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Figure 4.1. Overview of the different components in our model. Components are detailed 
below. 

4.3.1 Hierarchical State Reinforcement Learning (HS-RL): A Variation of 
Model-Based RL 

Our model is a combined forward (predictor) and inverse (controller) model for 
learning agent behavior (Demiris & Johnson, 2003). The model learns to predict 
the next state given the current state and an action, enabling forward simulation of 
interaction. At the same time it learns to predict the values for potential next 
actions, enabling agent control. Basically, the agent's memory structure is a 
directed graph that is learned by interaction with the environment. Two types of 
nodes exist: (1) nodes that encode <a, s> tuples, where s is an observed state and 
a the action leading to that state, and (2) nodes that encode (hl, <a’, s’>) tuples. 
Here, hl is a history of observed action-state pair transitions <at-l, st-l><at-l+1, s t-

l+1>…<at-1, st-1> with l the history length not greater than a maximum length k, 
and <a’, s’> = <at, st> the action-state pair predicted by history hl at time t. The 
existence of type 1 nodes depends on the states experienced by the agent. The 
existence of type 2 nodes, and the connectivity between type 1 and type 2 nodes 
depend on observed transitions from <a, s> to <a’, s’>. Thus, the memory is 
initially empty and is constructed while the agent interacts with its environment; 
our agent learns online. We thus assume certainty equivalence. This is closer to 
real life than a forced separation between exploration and exploitation phases, 
even though the model might be highly suboptimal at the start (Kaelbling, 
Littman & Moore, 1996).  
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The model is constructed as follows. The agent selects an action, a∈ A, from 
its set of potential actions, A, using the action-selection mechanism (Section 4.4). 
It executes the action and perceives the result, s. A type 1 node <a, s> is created if 
and only if there does not exist such a node <a, s>. Consider, for example, an 
agent that has chosen some action ã and experiences some state σ . Because its 
model does not yet contain a node that represents <ã, σ> it is created (e.g., s1 in 
Figure 4.2a). Note that we use si (indexed) to refer to <a, s> tuples (type 1 nodes) 
instead of s to refer to observed states. Now the agent selects and executes a new 
action, resulting in a new situation s2=<ã’, σ’>, giving a new node that represents 
s2 (Figure 4.2b). To model that s2 follows s1 (s1 predicts s2), the previous situation, 
s1, is now connected to the current situation, s2, by creating a new type 2 node, 
defined as an interactron (sic!), connected to s1 and s2 with edges as shown in 
Figure 4.2c. This node I1 thus encodes (h1, s2) with h1 being the history of length 1 
before the transition to action-state pair s2,, in our example h1=s1. This process 
continues while exploring and the process is applied hierarchically to all active 
nodes. A type 1 node is active if the current situation <at, st> equals the <a, s> 
tuple encoded by that node. A type 2 node (hl, <a’, s’>) is active if and only if hl 
equals the most recent observed history <at-l, st-l><at-l+1, s t-l+1>…<at-1, st-1> and 
the prediction <a’, s’> equals <at, st>. For example, node I1 and s2 in Figure 4.2c 
are active. An additional example is presented in Figure 4.2d and 4.2e. If situation 
s2 is followed by a new situation s3, the resulting memory structure is shown in 
Figure 4.2d, with active nodes s3, I2 and I3. If, on the other hand s2 is followed by 
s1, the resulting structure is shown in Figure 4.2e, with active nodes s1, I2 and I3. 
Note that the maximum length of a history encoded by a node is bounded by k, 
therefore the maximum number of active type 2 nodes is k (for computational 
reasons k = 10 in this study; for more on k see below and Broekens & DeGroot, 
2004b). 

 

Figure 4.2a-e. Examples of the agent’s memory structure 

Every node (hl, <a’, s’>) has three properties r, v, and υ, with r the reward and 
v the value (a.k.a. Q-value) of the tuple (hl, <a’, s’>), and finally υ is a statistic for 
the transition probability between hl and <a’, s’>. If at a later time the sequence of 
situations hlsi is again observed by the agent, then the statistic υ of the type 2 node 
encoding the tuple (hl, si ) is incremented⎯ υ is a counter that is initially zero and 
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represents the usage of an interactron. Thus, υ can be used to calculate the 
transition probability p(si | hl) using the following more generic formula: 

∑
=

=
y

i

X

i
xxyxp

1
)|( υυ ,  (4.1) 

where y is a node encoding (hl-1, <a, s>) with hl=hl-1sy and sy=<a, s>, and x∈ Xy. 
Here Xy ={x1,…,xn} is the set of interactron nodes that encode (h, <a’, s’>) tuples 
and are predicted by y, x is the node (hl, si) of which we want to know the 
transition probability p(si | hl), and υx and 

ixυ  are the counters belonging to x and 
xi respectively. This function calculates the conditional probability of observing 
an action-state pair <a, s> after a history of action-state pairs hl using the most 
recent model of the world. 

Furthermore, we define a global threshold called the forgetting rate, θ, 
representing the minimal “survival probability” for an interactron. If p(x | y)<θ, 
the corresponding interactron x is forgotten and removed from the memory, 
including all of its predictions. In this manner the stability of an agent’s long-term 
memory is modeled, and it corresponds to Bickhard’s (2000) notion of interaction 
(de)stability based on consistent confirmation of predicted interactions. The 
relation between interaction (de)stability and our learning model is explained in 
more detail in (Broekens & DeGroot, 2004b). In our experiments we use θ  to 
vary the speed with which the agent forgets knowledge. 

To learn based on reinforcement, every interactron has a value v, with: 

nextvrv γ+= , with v maxed-out such that ),max(),min( nextnext vrvvr ≤≤    (4.2) 

where r is the learned reward for a certain interactron, γ the discount factor (equal 
to 1.0 in all our experiments, see below for why this does not pose a problem in 
our approach) and vnext is a back-propagated value from next predicted future 
states. As multiple nodes can be active at the same time, these nodes learn 
simultaneously. Several steps are involved. First, all k active interactrons are 
reinforced by a signal from the environment, rt, at time t. For every such 
interactron y, its learned reward r(y) is adapted according to the formula: 

))(()()( 1 t
t

tt yrryryr −+=+ α ,  (4.3a) 

where α is the agent’s learning rate. Second, for every interactron y, vnext(y) is 
calculated as follows: 
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where v(xi | y)t is defined as the value of interactron xi, with xi predicted by y. This 
indirect part of an interactron’s value is thus the weighted average of the values 
belonging to the interactrons Xy that represent the situations that y predicts, where 
the weighting is according to the probabilities p(xi | y)t  at time t over all i. Note 
that only active nodes y are updated, i.e., we use lazy propagation. 

In an agent control setting, the model can be summarized as follows. At every 
step, all active interactrons predict potential next situations, at most k of these 
interactrons can be active, and the 1st to kth interactron predicts potential next 
action-state pairs <a’, s’> using a history of length 1 until k respectively (e.g., I3 is 
a k=2 interactron with history s1s2). As such, this memory learns 1st…kth order 
Markov Decision Processes (MDPs) in parallel. This property enables it to cope 
with partially observable worlds in which the partial observability can be resolved 
using at most a history of length k. At most k MDPs are active at the same time, 
with some of them predicting the future based on little history and some 
predicting the future based on a history of length at most k. The predictions 
consist of estimated future values for next action-state pairs, as usual. However, k 
of these MDPs are active at the same time, so action selection integrates not over 
the predictions of 1 such MDP but over the predictions of k such MDPs. How 
action selection integrates over these parallel predictions is explained in the 
section on action selection below. Note that our model underuses the Markov 
property, as it keeps track of, and constructs nodes for, all history up to k steps 
back all the time, not only when a certain history is actually needed to solve the 
partial observability of the world. For an interesting approach that relates to ours 
and that proposes some solutions for better using the Markov property see 
McCallum’s (1995) utile suffix memory. 

An important difference between our approach and many other model-based 
RL approaches is that our MDPs have a maximal length of k steps and nodes only 
propagate values to their own history. On the one hand this is a benefit in that 
reward/value propagation is never cyclic. Values are propagated back through 
multiple, partially overlapping k-finite MDPs. This makes our model particularly 
robust in cyclic learning tasks (even for cycles smaller than k steps): our world 
model forces values to propagate from a well-defined end with a long history to a 
well-defined beginning with no history, the values are not recursive. As a result, 
in our model the discount factor can be equal to 1.0. On the other hand this 
characteristic also poses a problem, as values further than k steps away cannot be 
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propagated back, resulting in the need for regular reward intervals. This could be 
resolved (at the expense of cyclic-task robustness) by allowing values to 
propagate not only to nodes encoding for a shorter history at the previous timestep 
but also to nodes encoding for a history of equal length at the previous timestep, 
effectively making values recursively defined. That is, a node s1hl-1st encoding for 
a situation st with a history s1hl-1 of length l not only propagates its value to a node 
s1hl-2st-1 with hl-1=hl-2st-1, but also to a node s0s1hl-2st-1. Other limitations, 
experimental convergence results as well as several choices for the world model 
itself are discussed in more detail in Broekens & DeGroot (2004b). 

To summarize; with every step of the agent, our model updates (1) the world 
model, (2) its statistics and rewards, and (3) the values. A maximum of k nodes is 
updated at every step. Every node encodes the current action state, an action-state 
history equal to the most recent action-state history, a reward, a value and a usage 
statistic. In the ideal (policy unbiased) case, the value of every such node 
converges as is usual for Q-values in RL. 

4.3.2 Internal Simulation of Behavior: a Temporary Bias to Predicted 
Action-State Values 

We now explain how internal simulation of action-state pairs (a.k.a. 
interactions/situations) temporarily biases the predicted value of next actions, and 
thereby influences action selection. Instead of action selection, the following steps 
are involved: 

1. Simulation selection: at time t select a subset of to-be-simulated interactions 
(action-state pairs) from the set of interactions predicted by all k active 
interactrons.  

2. Simulate: use a selected interaction from that subset as if it was a real 
interaction. The agent’s memory advances to time t+1. As this is a simulation 
step, we lack the reinforcement signal rt that accompanies real interactions. 
Instead, rt is simulated using the value, v, of the simulated interaction. We 
simulate a predicted interaction and its associated value as if they were both 
real. 

3. Reset state: to be able to select an appropriate action in Step 4, reset the 
memory's state (the active nodes) to the previous timestep, i.e., time t. The net 
effect of Step 2 and 3 is that, due to the value propagation mechanism, a 
temporary bias—based on future predictions at t+1—is introduced to the 
value of predicted next interactions. Step 2 and 3 are repeated for every to-be-
simulated interaction. These biased values are reset in Step 5 (after action-
selection in Step 4). If we would keep this bias after action selection, it would 
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break our model (in RL the reward r must be used to make the value v 
converge; using vt+1 to converge v introduces a problem of cumulative 
prediction errors). 

4. Action selection: select the next action using the mechanism explained in 
Section 4.3.4. Thus, the propagated values of the simulated predicted 
interactions directly bias action selection. Our anticipation mechanism is best 
understood as state anticipation (Butz, Sigaud & Gerard, 2003). 

5. Reset values: reset the reinforcement related variables v, r and vnext of the 
interactions that were changed at Step 2 (simulation) to the values of v, r and 
vnext of these interactions before Step 2. 

In the studies reported in this chapter, simulation is bounded to a depth of 1, 
i.e., anticipation is just one step ahead. However, our simulation mechanism can 
easily support the simulation of multiple time steps ahead by processing Step 1 to 
3 backwards from t+d to t+1 in all possible branches of potential next 
interactions, with d the simulation depth. Now, action selection at time t is biased 
by accumulated simulated values of interactions up to d steps ahead. A potential 
problem is the build-up of small prediction errors. This invalidates the values of 
next actions, and action selection could be severely compromised. To enable 
multi-step simulation, accumulation of prediction errors during multi-step 
simulation should be investigated (e.g., Hoffmann & Möller, 2004). 

Step 1 is the simulation-selection mechanism and selects predicted 
interactions to be simulated. This is a critical component in our simulation 
mechanisms as it defines the amount of internally simulated information per time 
step. In our experiments we use four static simulation-selection mechanisms and 
several dynamic ones (also referred to as simulation strategies): 

 Static simulation selection: sort anticipated interactions according to their 
predicted value. Select a number of the best anticipated states for simulation. 
The selected interactions are sent to the model for simulation (Step 2). 

 Dynamic simulation selection: again, anticipated interactions are sorted 
according to their predicted value. In contrast to static selection, here affect is 
used to control the amount of predicted interactions that are selected from the 
sorted list. We explain this in Section 4.3.3.  

In essence, simulation selection is controlled by a simulation-selection 
threshold, ts, of a ts-Winner-Take-All (WTA) simulation selection ranging from 
infinite (no simulation) to zero (select and simulate all predicted action-state 
pairs).  This threshold is used by the simulation-selection mechanism to filter the 
set of predicted interactions that are simulated, i.e., to select potential next 
behaviors for processing in working memory. Our simulation-selection 
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mechanism uses ts in the following way: ts defines the percentage of predicted 
best next interactions that should be internally simulated (so in a sense it is an 
inverse threshold). If ts < 0 (overly selective threshold), no simulation is done. If  
ts ≥ 0 (selective threshold) only the interaction with the highest predicted value is 
simulated, if ts ≈1.0 (non-selective threshold) all interactions are simulated. The 
final result of simulation can be summarized as follows: anticipatory simulation 
introduces a bias to the values of the set of predicted next possible action-state 
pairs, thereby influencing the result of action selection. In the next section we 
explain how artificial affect is used to dynamically set the threshold ts, instead of 
statically (Broekens, 2005). 

4.3.3 Affective Modulation of WM Content: Affect Controls the Amount of 
Internal Simulation 

Using the measure for artificial affect, ep, introduced in Chapter 2, it has now 
become straightforward to model affective control of the amount of internal 
simulation (i.e., affective control of working memory content), the basis of our 
study. Control can be modeled in several, equally plausible, ways. By equating 
the simulation-selection threshold, ts, to 1− ep, it varies between 0 and 1 
depending on affect being positive or negative respectively. This reflects the 
hypothesis that positive affect decreases the amount of internal simulation 
favoring narrow, exploitative thoughts (i.e., only action-state pairs with a high 
value are internally simulated), while negative affect increases the amount of 
simulation favoring broad thoughts, including explorative ones (i.e., action-state 
pairs with low values are also simulated). This relates to results found by Rose et 
al. (1999). In our model this means that happy agents (i.e., performing better than 
expected) simulate positive thoughts, while a discontent agent simulates many 
thoughts including negative ones. So: 

ps et −=1    (4.5) 

Second, we hypothesize the inverse relation, that is, negative affect decreases 
the amount of simulation while positive affect increases the amount of action-
state pairs that can enter working memory for simulation: 

ps et =     (4.6) 

Now, positive affect increases the thought-action repertoire (Ashby et al., 1999). 
This relates to results found by Goschke and Dreisbach (2004). 
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A third hypothesis is that the intensity of affect controls the amount of 
simulation, instead of the positiveness and negativeness of affect. Here, intense is 
either negative affect (ep≈0) or positive affect (ep≈1) while not intense is neutral 
(ep≈0.5). If affect is intense, simulate a lot (reflecting the fact that significant 
changes occurred that might need extra processing (Scherer, 2001)). If affect is 
not intense, do not simulate a lot. Note that intensely positive or negative does not 
necessarily mean arousing, arousal is considered out of scope for this thesis. The 
simulation-selection threshold is: 

)5.0(2 ps eabst −×=    (4.7) 

And, as a control condition, the inverse relation is: 

)5.0(21 ps eabst −×−=   (4.8) 

In Section 4.5 we report on the results of a systematic study that investigated 
the influence of internal simulation on the adaptiveness of artifical agents, when 
the amount of simulation is modulated by affect. Modulation is according to the 
hypotheses mentioned above.  

4.3.4 Integrating Everything:  Greedy Action Selection over Biased Value 
Predictions 

In our approach, action selection must integrate over the predictions of at most k 
MDPs in parallel: action selection integrates over the action-state values as 
predicted by all k active nodes, each node representing a possible “current state”. 
This is an important difference with standard model-based RL as such models 
typically use the values for next actions as predicted by one “current state” (see, 
e.g., Kaelbling, Littman & Moore, 1996). As a result, our action-selection 
mechanism is slightly different. It is inspired by parallel inhibition and excitation 
of actions in the agent’s set of actions, A. The inhibition/excitation originates 
from the k active interactrons and is calculated as follows: 
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where l(a)t is defined as the level of activation of an action a∈A at time t, and yi 
an active interactron at time t. Further, xi
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clause enforces that any of the action-state pairs that are predicted by any of the k 
active interactrons should inhibit (negative value) or excite (positive value) the 
corresponding action, but not other actions. 

Finally the action a to be executed is such that: 

( )t
A

tt alalal )(,...,)(max)( ||1=   (10) 

If there are only bad actions (i.e., l(a)t<0 ) a weighted stochastic selection based 
on l(a1)t,…,l(a|A|)t is made instead; the action with the highest activation has 
proportionally the highest chance of being chosen resulting in a probabilistic 
Winner-Take-All action-selection. As such, action selection uses a super-
threshold greedy selection with sub-threshold linear weighted stochastic selection.  

Further, depending on when the action-selection mechanism is invoked it 
either uses unbiased (before simulation) values to select the next action, or biased 
(after simulation) values to select actions. This allows us to address the main 
question of our study: what happens if action-selection bias is induced by an 
amount of simulated anticipatory behavior, and if this amount is dynamically 
controlled by artificial affect? 

To wrap up this section on the computational model consider the following. 
The number of thoughts that occupy working memory is often interpreted as an 
indicator of the intensity of information processing. As a thought equals an 
internally simulated behavior in our model, and the number of thoughts that 
occupy working memory equals the amount of internally simulated behavior, it is 
now clear that we indeed study affective-control of information processing. 

4.4 Method 
To investigate the influence of affect-controlled anticipatory simulation of future 
action-state pairs, we have set up a grid-world environment consisting of walls, 
roadblocks, cues, food and empty spaces. We use two non-deterministic (i.e., 
changing), partially-observable grid worlds. Common to our two grid worlds is 
that the agent can walk on walls, but is discouraged to do so, which is why we 
call our “wall” “lava” (reinforcement r=−1.0). The agent moves around by 
selecting an action a from the set of possible actions A={up, down, left, right}, 
and observing its immediate surroundings (not its position) using a four-neighbor-
plus-center metric just after executing the action. This is an <a, s> tuple as 
defined in the model (Section 4.3). 
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The first grid world is taken from (Broekens & Verbeek, 2005), and aims to 
test how well agents using different simulation strategies can cope with a sudden 
change in both reward and world structure (Figure 4.3). In this world, the agent 
(black square) learns to cope with two alternating goal and start locations 
(‘f’=food, reinforcement r=1.0). Alternation is random and after every trial. A 
trial ends when the agent has found the goal: the agent is put back at a randomly 
chosen start location after having reached the randomly chosen goal location. The 
total number of trials to learn a task is 500. We define such sequence of 500 trials 
as a run. Additionally, at trial 250, the world is changed in the following way. 
Two negatively reinforced roadblocks (‘b’=block, r=−0.5) are placed in front of 
the goal locations, and the food reward is increased to 1.75 to compensate for the 
roadblocks. As a result, both the world and the reward structure of that world 
change. The agent is, of course, unaware of this change, and, as our model learns 
lazily, no value updates or world-model changes are made. The agent has to learn 
these new characteristics of the world. We call this grid world the switch-to-invest 
grid world, as it is constructed to measure how an agent copes with a change in 
the environment that introduces an investment to be made before an otherwise 
easily obtainable goal. 

 
 
                          before trial 250  
                                                            after trial 250  

Figure 4.3. Switch-to-invest 
task. Potential start locations 
are alternated between the 
top-left and bottom-left arms, 
goal locations are alternated 
between the top-right and 
bottom-right arms.  

 
 
 
 
 
                                 before trial 250  
                                                   after trial 250  
 
 
 
 
 
 

Figure 4.4. Cue-inversion 
world. The left and right 
pictures show the possible 
worlds before and after the 
cue inversion at trial 250 
respectively; ’f’ is food, ‘c’ is 
cue, black square is the 
agent. 

 The second world is based on a typical psychological method in which 
subjects have to learn to cope with a cue-meaning inversion (see, e.g., Goschke & 
Dreisbach, 2004). This type of method is used to investigate the effect of an 
experimental variable, e.g., affect (Goschke & Dreisbach, 2004) on working 
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memory flexibility by measuring reaction time just after the cue-meaning 
inversion. It is also used to measure adaptation speed to the new cue-meaning 
relation after having learned the old relation. In the case of our simulated grid 
world, a cue is coupled to a specific food location, while the absence of that cue is 
coupled to a different food location. At trial 250, the locations are inversed. This 
means that whereas before trial 250 the cue indicated to the agent that food is at 
location 1, after trial 250 the cue (‘c’ in Figure 4.4) indicates that food is at 
location 2. We call this world the cue-inversion world. In contrast to the switch-
invest task, the agent is also reset to its (fixed) starting position when it arrives at 
the non-goal location (e.g., when the agent has misinterpreted the cue). The non-
goal location (empty arm) has a negative reinforcement of r=−0.5. 

To test our three hypotheses, we vary the simulation-selection mechanism and 
analyze how an artificial agent copes with these two worlds. Our agent employs 
the learning and simulation mechanisms as described in Section 4.3. In total, we 
define four static simulation-selection mechanisms: 

1. No simulation; simulation is off (called nosim in the experiments). 
2. Simulation of the best predicted action-state pair; ts=0 (simbest). 
3. Simulation of the best half of predicted action-state pairs, i.e., ts=0.5 

(simbest50). 
4. Simulation of all predicted action-state pairs, i.e., ts=1 (simall). 

 We also define four dynamic simulation mechanisms, introduced in 
Section 4.3.3. These are: 

1. Positive affect = little simulation (select best predicted action-state pairs), and 
vice versa (dyn). 

2. Negative affect = little simulation, and vice versa (dyn inv). 
3. High intensity of affect = little simulation, and vice versa (dyn intensity). 
4. Low intensity of affect = little simulation, and vice versa (dyn intensity inv). 

In the switch-to-invest experiments we have used all four static simulation 
strategies and only the first two dynamic ones. In the cue-inversion experiments 
we have used all eight simulation strategies. As mentioned earlier, our measure of 
affect has three parameters that define its behavior. We varied these three 
parameters, i.e., we varied f (sensitivity of affect), ltar (the window size of the 
long term averaged reward that defines “how well is usual”), and star (the 
window size of the short term average reward that defines “how am I doing”). 

In our switch-to-invest grid-world experiments we varied these according to 
Table 1, resulting in 30 different affect-parameter settings. In our cue-inversion 
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grid-world experiments we varied these only according to the f=1 column in 
Table 1, resulting in 10 different affect-parameter settings.  

Further, in our switch-to-invest experiments we varied the learning rate, α = 
[0.8, 0.9, 1.0], and the rate at which the model forgets information about the 
world as defined by the forgetting rate of nodes, θ = [0, 0.01, 0.02, 0.03]. In the 
cue-inversion experiments α and θ  are not varied but fixed at 1 and 0 
respectively. 

Table 4.1.  Possible ltar, star, 
and f combinations as they are 
used in the first set of 
experiments with the agent in the 
switch-to-invest  task. 

 

f: 1  1.5  2  

star: 50  100 50  100 50  100 

ltar: 200 400 200 400 200 400 

 250 500 250 500 250 500 

 375 750 375 750 375 750 

 500 1000 500 1000 500 1000 

 750 1500 750 1500 750 1500 

4.5 Experimental Results 
We first describe the results obtained with the switch-to-invest grid world, after 
which we describe the results obtained with the cue-inversion grid world. Data 
was analyzed as follows. To investigate the effect of learning rate, α, forgetting 
rate, θ, and simulation strategy we compare between results of different <α ,θ, 
simulation strategy> configurations. Static simulation strategies have been 
executed 200 times per <α ,θ, simulation strategy > configuration, e.g., the 
simulate-best strategy has been executed 200 times for every <α ,θ> combination. 
These 200 runs are the basis for further analysis. Dynamic simulation strategies 
have been executed 15 times per <α ,θ, f, ltar, star, simulation strategy> 
configuration. For every <α ,θ, simulation strategy> configuration, the resulting 
runs for all of its <f, ltar, star> settings is aggregated. For example in the switch-
to-invest experiments, for α = 1, θ = 0, and strategy=dyn we aggregated all 15 x 
30 (nr of runs times nr of affect-parameter settings, respectively) runs into 450 
runs. These runs are the basis for further analysis. 

In the cue-inversion experiments the same aggregation protocol was used, but, 
as mentioned above, here we use only one <α ,θ> configuration and we vary only 
star and ltar (not f). Further, we used 50 runs per <α ,θ> configuration resulting 
in 50 x 10 runs = 500 runs being aggregated for only one setting (α = 1 and θ = 0).  

We aggregated the data as our goal is to investigate the effect of affective 
control of simulation selection in general, not to find specific values that “work” 
for the agent. We did not seek to optimize any parameter but to investigate 
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different relations between affect and simulation selection. Between simulation 
strategies we compare: 

 A measure for the behavioral effort involved in completing a run (i.e., 
learning the complete task) for each specific simulation strategy. Effort is 
calculated by first averaging trial-length in steps over all trials for each run, 
resulting in an effort for that run. This is our unit of measurement for 
statistical analysis (e.g., if there are 450 runs for one strategy, we have 450 
measures of effort to use in our statistical analysis for that strategy). To 
display the average effort for a certain simulation strategy, we average over 
the measure of effort for all runs for that strategy. For example in a static 
selection mechanism (α = 1 and θ = 0), the displayed effort equals the mean 
number of steps needed for one trial over all 500 trials in all 200 runs 
resulting in, e.g., 20 steps. For a dynamic simulation mechanism the average 
is constructed in the same way using aggregated runs for every <α ,θ> 
configuration instead. The Wilcoxon ranked-sum test (non-parametric, we 
cannot assume normality) is used to compare effort between simulation 
strategies. Comparison is based on sets of effort measures (Switch-to-invest: 
n=450; Cue-inversion: n=500). For static strategies 450 samples (Switch-to-
invest) or 500 samples (Cue-inversion) are pooled from the 200 runs that are 
available. 

 A measure for the total simulation effort involved in completing a run, i.e., the 
same as above but using a trial-length counted in terms of internally simulated 
action-state pairs. This represents “mental effort” during a task, and as such is 
linked to energy consumption used to maintain and focus on information in 
working memory. Again, the Wilcoxon test is used to compare simulation 
strategies. 

To give an informal idea of the learning behavior of the agent, several 
learning curves of agents are plotted. Learning curves are plots of the average 
number of steps taken per trial and smoothed using a sliding mean (window size 
= 10) to improve readability. 

4.5.1 Results of Experiment 1: Switch-to-invest Task 

Results in this specific grid world show that simulation in general has a stable 
positive effect on learning. This trend is shown by the learning curves1 in Figure 

                                                 
1 Note that we do not use error bars in Figure 5. To validate our claims, we statistically 
compare between simulation strategies the effort involved in completing a run. This is 
appropriate; a small overall benefit can be considered important, regardless of the 
standard deviation over trails. 
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4.5, and more formally in Figure 4.6 showing that nosim uses more effort to 
complete a run than any other simulation strategy (p<0.001). The larger the 
amount of internally simulated interactions, the better the learning result (simall 
costs less effort than simbest, p<0.05 for all settings except α=1 & θ∈{0, 0.01}, 
Figure 4.6). When affect is used to control this amount, performance is better than 
the static simulation mechanism that simulates the best strategy (a significant 
difference between dynsim and simbest, p<0.05 for all settings except α=1 & 
θ∈{0, 0.01}, Figure 4.6). Interestingly, the size of the effect interacts with the 
learning rate and forgetting rate. As θ increases, the benefit of simulation also 
increases, and as α decreases the benefit of simulation increases (Figure 4.6). In 
terms of size, we did not find important differences between (1) the dynamic 
strategy that relates negative affect to more simulation and (2) the dynamic 
strategy that relates positive affect to more simulation. Even though the strategies 
are each other’s inverse, the difference in effort was at most about 5% (Figure 
4.7a, shown only for α=0.8 & θ=0.03). However, for all <α ,θ> settings, the 
average amount of simulation effort was considerably less for dyn than for dyn inv 
(p<0.001). Further, both strategies simulated considerably less than simall 
(p<0.001), while dyn used less simulation effort than simbest50 (p<0.001) (Figure 
4.7b, shown only for α=0.8). Finally, results for α=0.9 are not shown, as these 
appeared to be an interpolation between the results for α=0.8 and α=1.0. 

 

 



Affect and Learning: Affect and Thought 

 76 

Effort switch-to-invest, α=1.0 

Rate of forgetting, θx10-2 

M
ean effort

Effort switch-to-invest, α=0.8 

M
ean effort

Rate of forgetting, θx10-2

 

Figure 4.5. Learning curves (smoothed) of non-, best, and all-simulating agents in the 
switch-to-invest world for α=0.8, θ=0.03. Curves of other strategies are approximately in-
between best and all. 

 
 
 

Figure 4.6a. Effort for 
different simulation strategies 
in the switch-to-invest task
with a learning rate, α, equal 
to 1.0 

 Figure 4.6b. Effort for 
different simulation strategies 
in the switch-to-invest task
with a learning rate, α, equal 
to 0.8 

Learning curves switch-to-invest, α=0.8, θ=0.03 

M
ean #steps to find food in trial  

Trial number
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M
ean effort

Rate of forgetting, θx10-2 

Effort switch-to-invest, α=0.8, dyn vs dyninv 

M
ean sim

ulation effort

Rate of forgetting, θx10-2 

Simulation effort switch-to-invest, α=0.8 

 Figure 4.7a. Small difference 
in effort between dynamic 
and inverse-dyn simulation 
strategies.  

 

 Figure 4.7b. Difference in 
simulation effort between 
simulation strategies. 

4.5.2 Discussion of the Switch-to-invest Task Results 

The fact that more simulation results in better performance is not surprising. 
Internal simulation as an anticipatory heuristic can use more knowledge if it 
selects more potential next interactions. Thereby, it influences final action 
selection in a more balanced way. Interestingly, there is an interaction effect 
produced by learning rate, forgetting rate and simulation. Regarding the learning 
rate this effect is easily explained. As internal simulation enables the agent to 
“look ahead” one step, predicted values can be temporarily propagated back. Even 
though the model does not learn based on simulation (i.e., nodes, their value, 
reward and statistic are not permanently updated due to simulation), simulation 
has an immediate benefit for action selection, as more information is temporarily 
available. If the learning rate is high (α≈1.0), this effect is minimized: at every 
step the agent takes, the lazy update rule propagates future values back in full, so 
simulation cannot add a lot of future value information. However, if the learning 
rate is small(er) (e.g., α=0.8), the future value is not propagated in full. Now, 
internal simulation can temporarily propagate values that were not yet propagated 
in full, and the action-selection mechanism can benefit from the extra information 
provided by simulation. This phenomenon causes a performance increase due to 
simulation in lower learning rate settings. 
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It is not yet clear from our experiments what causes the interaction between 
forgetting rate and simulation, although it is clear that it can not be simulation per 
se, as simulation does not change the model’s statistics. A possible explanation is 
that simulation in general forces the agent to use known interaction patterns more 
often than new or less-tried patterns. As such, simulation actually reduces the 
probability of forgetting useful interactions. This could help solving the maze 
with a forgetful long-term memory. This requires further investigation in future 
research. 

The fact that the two dynamic simulation strategies tested (a) do not differ in 
terms of learning performance, (b) perform at about the same level as the static 
simulation strategy that simulates all potential next interactions, and (c) use a 
considerably reduced amount of simulation compared to this static simall strategy, 
indicates two things: (1) dynamic adaptation is beneficial as it reduces simulation 
needs (an interesting result), and (2) it does not matter if positive affect implies 
more simulation or less, as the two dynamic simulation strategies result in less 
simulation and better learning performance. If the latter is indeed the case, this 
implies one of the two following possibilities: (I) affect has nothing to with the 
result. Instead, the average amount of simulation is responsible for the increase in 
learning performance. This possibility is supported by our results, as the dyn 
inverse strategy uses more simulation than dyn (Figure 4.7b) and seems to 
perform slightly better than the latter (Figure 4.7a). On the other hand, it could 
also imply that (II) affect does have to do with the result, but both relations—i.e., 
positive-affect = more-simulation and positive-affect = less-simulation—are 
wrong. This is possible if the relation instead is: higher-intensity-affect=more-
simulation. We study this in the second experiment, and use the intensity-of-affect 
based simulation strategies. In this experiment we use the second grid world, i.e., 
the cue-inversion world. 

4.5.3 Results of Experiment 2: Cue-inversion Task 

Results in this grid world show the following. The simbest static simulation 
strategy does not have a large positive effect (even though the effect is significant 
p<0.01), contrary to the results in the first experiment where the effect was more 
pronounced. However, simall, simbest50 as well as all dynamic simulation 
strategies do have an important positive effect (p<0.001); effort is reduced with 
0.6 to 1 step per trial. Thus, a moderate positive influence of simulation on 
learning performance exists. Note that the smaller effects of simulation in general, 
as compared to the previous experiment, are due to the fact that in this experiment 
α=1 and θ=0. This confirms our explanation of interaction effects between 
simulation, α and forgetting rate in the discussion of the previous experiment. 
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Effort cue-inversion task, α=1.0, θ=0.0
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Simulation effort cue-inversion task, α=1.0, θ=0.0
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Again, dynamic strategies are quite close to the simall strategy in terms of 
learning performance (Figure 4.8a): the only significant difference in effort is 
between simall and dyn intensity (p<0.01). However, dynamic strategies use 
considerably less simulation effort to get to this increased level of performance 
(Figure 4.8b, all strategies use less simulation than dynall, p<0.001). An 
important difference in effort exists between the two intensity-based dynamic 
simulation strategies. The dyn intensity inverse strategy (i.e., if affect is neutral, 
0.5, simulate a lot, while if affect is extreme, 0 or 1, simulate little) has a better 
performance than dyn intensity (p<0.001, Figure 4.8a), but also uses a lot more 
simulation (p<0.001). 

Last, we plot the average behavior (over 50 runs) of our measure for artificial 
affect as it is influenced by ltar and star. A large long term window to calculate 
the agent’s measure of comparison based on reward (i.e., “what I am used to”) 
results in less noisy affect (Figure 4.10). A small short term average (i.e., “how 
am I doing”) results in a faster affective reaction to the cue-inversion (inset). 

 

Figure 4.8a. Difference in effort 
between dynamic and static 
simulation strategies. Error bars 
show 95% confidence interval. 
 

 Figure 4.8b. Difference in 
simulation effort between static 
and dynamic strategies. Error 
bars show 95% confidence 
interval. 
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Relative gain of simulation, α=1.0, θ=0.0
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 Figure 4.9. Gain of simulation 
strategies (details in text). Error 
bars show 95% confidence 
interval. 

 

 

 

Figure 4.10. Depicted are affect curves for different settings (not smoothed). Inset is a 
detail of artificial affect at the cue inversion. Note that star=50 has the “dip” earlier than 
star=100. 

4.5.4 Discussion of the Cue-inversion Task Results 

The fourth dynamic control strategy based on the inverse intensity of affect (dyn 
intensity inv) results in a better performance than the third, intensity based, control 
strategy. Again, this inversed version (i.e., neutral affect results in a lot of 
simulation and extreme affect in a little) uses more simulation on average. Thus, 
this result does not rule out the possibility that the average amount of simulation 
is responsible for the learning performance increase as opposed to affective 

Prototypical curves of artificial affect influenced by its parameters ltar and star 

Trial number

A
rtificial affect, high is positive, low

 is negative 
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control. We need to control for the average amount of simulation. To do so, we 
defined the gain ratio, a measure that calculates how much effort reduction a 
strategy gives relative to no simulation, weighted by the amount of simulation 
effort:  

( ) ( )iiinoni efforteffortsimefforteffortgain /_/−=   (4.11) 

where efforti equals the effort for a certain simulation strategy i, effortnon equals 
the effort of the nosim strategy and sim_efforti equals the simulation effort for a 
certain strategy i.  Such a gain factor is a plausible measure to evaluate and 
compare simulation strategies: one is interested in the efficiency of simulation, 
not just the absolute result. As simulation—i.e., information maintenance in 
working memory—costs resources, the question is which strategy uses these 
resources best. When we compared the gains for the different simulation 
strategies, a different picture emerged (Figure 4.9). Simulating all is not very 
efficient compared to dynamic strategies. Interestingly, our original coupling of 
affect and amount of simulation seems most promising (as proposed, but not yet 
confirmed in Broekens and Verbeek, 2005). This is the only strategy of which the 
gain confidence interval does not overlap with either simall or simbest50. This 
means that, although the relation “positive affect equals less simulation and 
negative affect equals more simulation” is not the best one in terms of effort 
reduction, it is the optimal one in terms of relative gain when considering the 
amount of simulation needed for that effect. 

4.6 General Discussion 
We now discuss our approach in a broader context. We first ground our approach 
more firmly, and relate our work to the work of others. Finally we present some 
directions for future research. 

4.6.1 Model Grounding 

Our findings are compatible with psychological findings that show that both 
positive and negative affect influence learning in a beneficial way (Craig et al., 
2004; Dreisbach & Goschke, 2004; Rose et al., 1999). We found that learning 
benefits the most when positive affect relates to less simulation and negative to 
more simulation. As such, our findings indicate that positive affect is associated 
with less diverse thoughts when a task has successfully been learned, while 
negative affect is associated with diverse thoughts when a task is confusing or 
changing. Our findings support the studies by Rose et al. (1999) who find that 
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broad attention is associated with faster learning and neutral but not positive 
affect, when a new task has to be learned. Our findings are also consistent with 
the relation that has been found between subclinical depression and defocused 
attention (von Hecker & Meiser, 2005). In agreement with these authors, we 
would like to stress that our results do not necessarily argue for a “positive affect 
equals reduction of capacity” view. More selective maintenance of information is 
not the same as a reduction of capacity. Selectivity of maintenance in Working 
Memory (WM) that depends on affect can be an adaptive strategy to cope with the 
changing world around us, without enforcing any capacity constraints. 

In our approach, internal simulation influences action-selection in a way that 
is compatible with the Somatic Marker Hypothesis (SMH) (Damasio, 1994). In 
short, the SMH states that somatic (i.e., of the body) signals are coupled with 
representations of situations and thereby function as a value signal that enables 
the organism to filter potential behaviors. As a result, some of these potential 
behaviors are selected for conscious contemplation in working memory while 
others are not. Our threshold determines how discriminating our simulation-
selection mechanism is, thereby selectively allowing some anticipated behaviors 
to enter working memory and influence future behavior. Of course we do not 
argue that we have an embodied approach; our agent is quite disembodied. 
However, our action-state value v can be interpreted as a simulated marker, as it 
accumulates future values of potential situations. As such, it is an abstraction of 
the somatic signal that, in an embodied modeling approach and in nature, is 
grounded in the body. We argue that our mechanism of simulated interaction 
selection, and thus selection of WM content, is compatible with the mechanism 
by which somatic markers are used to prune large amounts of thoughts. Both 
mechanisms prioritize different anticipated behaviors based on a comparison of 
their markers. Only potential behaviors (thoughts) that have highly positive 
markers—or strong markers, if the intensity of artificial affect is used as 
simulation-selection threshold (cf. Section 4.3.3)—are able to influence future 
behavior by temporarily transferring a portion of their own marker value to the 
marker value of considered actions (see also Damasio, 1994). In our model, 
transfer of marker values is a natural consequence of simulating a particular future 
interaction (see Step 1 – 5, Section 4.3.2). 

Concerning the relation between our model and the Simulation Hypothesis, 
several similarities are particularly important. Hesslow (2002) states that 
fundamentally new mechanisms should not be needed for internal simulation of 
behavior. The only mechanism we introduce is an interaction feedback loop to the 
RL model. We do not introduce a conscious reasoning process or a central 
intelligence that enables planning. Compared to such measures, our addition is 
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just a minor change to the overall agent architecture, and comparable with the 
addition of a feedback connection in neural network models that investigate 
internal simulation (van Dartel & Postma, 2004; van Dartel, Postma & van den 
Herik, 2005). Further, our mechanism for simulation selection is very similar to 
that of action selection: the RL model is used in the same way in both the 
simulation (cognitive) and non-simulating (reactive) setting; simulation selection 
uses the action-selection component; and the representations used for simulation 
are the same as those used for action. 

Hesslow (2002) also states that internal simulation of behavior uses the same 
sensory-motor mechanisms as actual behavior, and therefore uses similar sensory-
motor encoding. Our interactions encode features of the world coupled with 
actions, and our model uses these same interactions for simulation. More 
importantly, in our model, simulation influences action indirectly: an influence 
that results only from making use of the same mechanisms needed for action. This 
is very compatible with the Simulation Hypothesis stating that simulation and 
action are tightly coupled. Our mechanism for influencing action selection is 
therefore a useful addition to the Simulation Hypothesis by postulating a potential 
mechanism by which internal simulation could influence action: i.e., simulation 
temporarily biases next actions because the simulation mechanism and action 
mechanism overlap and therefore simulation activates potential next actions to 
some extent, resulting in the “markers” of the simulated consequences to be 
temporarily attached to these next actions. 

4.6.2 Related Work 

To show that simulation in our model can indeed be seen as an instantiation of 
simulation as meant by the Simulation Hypothesis we compare it with the models 
by van Dartel and Postma (2005), van Dartel et al. (2005) and Ziemke, Jirenhed 
and Hesslow (2005). These models use a genetic algorithm to train a neural 
network to produce predictions of future states one time step ahead. These 
predictions are used to bias perception of the current state (van Dartel), or 
explicitly used as input to the neural network controller to enable “’blindfolded’ 
corridor following behavior” based on these simulated next states (Ziemke). 
Although our action-state encoding and learning mechanism are different, our 
overall architectural approach is similar, especially to the work of van Dartel and 
colleagues. Simulation in the latter work is modeled as follows. A copy of the 
output layer (encoding actions) of the neural network is projected to the input 
layer. This output copy consequently influences perception, and influences action 
selection. The feedback from this copy to the input represents a simulated next 
state as predicted by the model (van Dartel & Postma, 2005). These authors 
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explicitly suggest that in their model internal simulation “serves the function of 
building up sufficient activation in the neurocontroller to produce a certain 
move”. This is equivalent to what happens when in our model future interactions 
are simulated, as these simulated interactions bias the “markers” of current 
potential actions and as such can help certain actions to be executed. The work of 
Ziemke et al (2005) is a bit different. They train an “input prediction layer” to 
predict the next observed state based on the current one. This prediction is used as 
input to an already trained sensory-motor network responsible for collision-free 
corridor following behavior. The predicted state is used as real input to the 
sensory-motor network such that the agent as a whole walks through the corridor 
based on mental simulations of interaction with the corridor, i.e., it is walking 
“blind-folded”. The characteristic difference between this model and our model is 
that Ziemke et al. use the predicted next state as input for action-selection, while 
in our model the simulated input is used as a bias, as in the model by van Dartel. 
However, from an architectural point of view, the three models are all 
instantiations of the Simulation Hypothesis: the models internally simulate 
predicted interaction with the environment in order to influence actual interaction, 
while using the same encoding and the same mechanisms for both real and 
simulated interaction. 

Simulation in our approach is to some extent similar to planning in Dyna 
(Sutton, 1990). However, several important differences exist. First, our model 
learns multiple MDPs in parallel and uses all of these MDPs in action selection. 
Second, anticipatory simulation in our model (cf. planning in Dyna) is always a 
one-step forward simulation from the current state, not a simulation of a random 
state. This reflects our choice of basing the model on anticipatory simulation of 
behavior, and not on planning or dynamic programming in general. As a result, 
the potential of simulation in our model is more limited. Third, our model can 
only simulate actions it has tried already, effectively restricting the exploration 
potential of broad simulation. This is the most important reason why simulating 
all potential next action-states is not really equivalent to exploration. Our agent 
cannot really explore mentally, it can only consider the many known future 
options, in contrast to Dyna in which untried actions can be simulated. However, 
in order to do so, Dyna requires a non-empty world model to start learning 
(Sutton, 1990). We have chosen to start learning with a completely empty model. 
Therefore we could not simulate untried actions, at least not without making 
major changes to the representations of action-state pairs and transitions between 
them. Finally, simulation in our model has a temporary effect by biasing the 
predicted values of next states and thereby influencing action selection. In Dyna, 
planning can actually change the evaluation and policy functions. 
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Notwithstanding these differences, our method of internal anticipatory simulation 
of states replicates some of the results obtained with Dyna (Sutton, 1990), of 
which the most relevant in the context of the presented results is that simulation 
(and more simulation rather than less) has a positive effect on learning speed. 

Our results show that internal anticipatory simulation of just one step ahead is 
beneficial to artificial adaptive agents, even if simulation does not alter the long-
term knowledge of the agent. The influence of simulation is mediated by the 
action selection mechanism of the agent. Simulation introduces a temporary bias 
to the values predicted by the model. This approach is similar to the one proposed 
by Gadanho (2003). In her RL based adaptive system, however, stochastic action-
selection is biased by a fixed value produced by a rule-based cognitive system. In 
contrast, in our system this value is dependent on the predicted states and the 
cognitive process is not separated from the adaptive system. We did not separate 
these systems as the Simulation Hypothesis is underlying our approach. As 
internal simulation of behavior is based on existing sensory-motor mechanisms, it 
made sense to investigate the benefit of anticipatory simulation using as many 
functions as possible already provided by our RL model.  

4.7 Conclusion  
Using a computational model based on Reinforcement Learning, we have 
investigated affective control of anticipatory thoughts, where thoughts are defined 
as internal simulation of potential next behavior (Cotterill, 2001; Hesslow, 2002). 
We have introduced a simulation-selection mechanism that is controlled by affect 
and selects anticipatory behaviors for simulation from the predictions of the RL 
model used by the agent. The selected anticipatory behaviors are used to bias the 
predicted values of next action-state pairs. Action selection is over these biased 
pairs, thereby influenced by the simulated anticipations. Based on experiments 
with adaptive agents that learn two nondeterministic partially observable grid 
worlds we conclude that (1) anticipation has an adaptive benefit and (2) affect can 
be used to control the amount of simulation. The results show that affective 
control reduces the amount of simulation needed to get a performance increase 
due to simulation. 

The positive effect of internal simulation has been shown to exist for two non-
deterministic partially observable worlds, and already has been shown to exist in 
other worlds (Broekens, 2005). However, selecting all possible next action-state 
pairs for simulation provides quite some computational overhead, or, in more 
biological terms, consumes a considerable amount of energy to maintain stable 
representations in working memory (WM) that can be used to construct 
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anticipatory associations. In this study we have shown that affect can regulate the 
amount of anticipatory simulation in such a way that learning is still improved 
considerably. Although it is difficult to generalize from computational 
experiments that contain many variables, in terms of WM-affect relation our 
results indicate that affective control of the amount of anticipatory thoughts in 
WM enables an adaptive agent to make more efficient use of WM. 

The most beneficial relation between affect and internal simulation is 
observed when positive affect decreases the amount of simulation towards 
simulating the best potential next action, while negative affect increases the 
amount of simulation towards simulating all potential next actions. Ergo, agents 
“feeling positive” can think ahead in a narrow sense and free-up working memory 
resources, while agents “feeling negative” must think ahead in a broad sense and 
maximize usage of working memory. Our results are consistent with several 
psychological findings on the relation between affect and learning, and contribute 
to answering the question of when positive versus negative affect is useful during 
adaptation. Furthermore, our results show that simulation selection is a useful 
extension to action selection, specifically in the context of the Simulation 
Hypothesis (Hesslow, 2002). 
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