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Affect-Controlled Exploration is Beneficial to Learning 
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Recent studies show that affect influences and regulates learning. We report on 
a computational study investigating this. We simulate affect in a probabilistic 
learning agent and dynamically couple affect to its action-selection mechanism, 
effectively controlling exploration versus exploitation behavior. The agent’s 
performance on two types of learning problems is measured. The first consists of 
learning to cope with two alternating goals. The second consists of learning to 
prefer a later larger reward (global optimum) to an earlier smaller one (local 
optimum). Results show that, compared to the non-affective control condition, 
coupling positive affect to exploitation and negative affect to exploration has 
several important benefits. In the Alternating-Goal task, it significantly reduces 
the agent’s “goal-switch search peak”. The agent finds its new goal faster. In the 
second task, artificial affect facilitates convergence to a global instead of a local 
optimum, while permitting to exploit that local optimum. Our results illuminate 
the process of affective influence on learning, and furthermore show that both 
negative affect and positive affect can be beneficial to learning. Further, our 
results provide evidence for the idea that negative affect is related to less selective 
decisions while positive affect is related to more selective decisions. 

3.1 Introduction 
As we have seen in Chapter 1 and 2, emotions influence thought and behavior in 
many ways. In this chapter we focus on the influence of affect on learning and 
adaptation. The main question we address here is: how is an agent’s learning 
performance influenced if artificial affect is used to control exploration versus 
exploitation. Based on findings from the affect-cognition literature (Craig, 
Graesser, Sullins & Gholson, 2004; Dreisbach & Goschke, 2004; Rose, Futterweit 
& Jankowski, 1999) as discussed in Chapter 2, we hypothesize two types of 
relations between affect and exploration. The first type relates positive affect to 
exploitation, and negative affect to exploration. The second type uses the inverse 
relation of the first type, i.e., positive affect relates to exploration while negative 
affect relates to exploitation. We contrast these two dynamic settings to a non-
affective control group of agents that use a static amount of exploration. 

We investigate the relation between affect and learning with a self-adaptive 
agent in a simulated grid world. The agent acts in the grid world—in our case a 
simulated maze that represents a psychological task—and builds a model of that 
world based on perception of its surroundings and received rewards. Our agent 
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autonomously influences its action-selection mechanism—the agent’s mechanism 
that proposes next actions based on the learned model. The agent uses artificial 
affect, as defined in Chapter 2, to control the randomness of action selection. This 
enables the agent to autonomously vary between exploration and exploitation. 

Our agent learns (adapts) using a simple form of Reinforcement Learning. 
The agent learns by constructing a Markov Decision Process (MDP), of which the 
state-value pairs are learned using a mechanism based on model-based 
Reinforcement Learning (Kaelbling, Littman & Moore, 1996). We investigate the 
hypothesized relations between affect and exploration using two different learning 
tasks (modeled as discrete grid worlds). In the first task the agent has to cope with 
a sudden switch from an old goal in one arm of a two-armed maze to a new goal 
in the other arm. We call this task the Alternating-Goal task. The second task 
consists of learning to prefer a later larger reward (global optimum) to an earlier 
smaller one (local optimum). We call the second task the “Candy task”; candy 
represents the local optimum being closest to the agent’s starting position, while 
food represents the global optimum being farther away from its starting position. 

From a learning and adaptation point of view, these tasks represent two 
significant problems for an agent. The Alternating-Goal task exposes an agent to a 
changing set of goals. The agent has to modify its behavior in order to reflect a 
change in this set of goals. It has to be flexible enough to give up on an old goal 
and learn a new one, while at the same time it has to be persistent enough to 
continue trying an active goal in order to actually learn the path to the goal 
(Dreisbach & Goschke, 2004). In other words, to cope with alternating goals, the 
agent has to decide when to explore its environment and when to exploit its 
knowledge; a.k.a. the exploration-exploitation problem or tradeoff (Kaelbling, 
Littman, & Moore, 1996). In our task, failure to solve this problem results in huge 
goal-switch cost (if the agent does not explore the environment after the goal-
switch has taken place) and/or slow/unstable convergence (if, after exploration, 
the agent does not exploit its learned new model of the environment).  

The Candy task represents searching for a global optimum, while exploiting a 
newly found local optimum. This ability is important for adaptive agents as it 
enables them to survive with the knowledge they have, while trying to find better 
alternatives. Failure to do so results in getting stuck in local optima or slow 
convergence. This again represents a tradeoff between persistence and flexibility, 
but different from the tradeoff in the first task. Now, the agent has to 
autonomously decide that the current goal might not be good enough and search 
for a better goal. In contrast, in the previous task the old goal attractor (high 
reward) is removed and the agent should react to this by searching for a new goal. 
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In this study we use artificial affect as defined in Chapter 2, that is, artificial 
affect is a measure for how well the agent is doing compared to what it is used to, 
based on an analysis of the difference between a long-term and a short-term 
reinforcement signal average. In the next section we explain our experimental 
method, i.e., how we implemented the two different relations between affect and 
action selection mentioned earlier, the grid-world setup, the tasks, the agent’s 
learning mechanism and our experimental setup. In Section 3.3 we present 
experimental results. Section 3.4 discusses these results in a broader context. 

3.2 Method  
To investigate the influence of affect-controlled exploration, we did experiments 
in two different simulated mazes. Each maze represents a task, and we compared 
affect-controlled dynamic exploration to several control conditions with static 
amounts of exploration. 

3.2.1 Learning Environment. 

The first task is a two-armed maze with a potential goal at the end of each arm 
(Figure 3.1a). This maze is used for the Alternating-Goal task, i.e., coping with 
two alternating goals: find food or find water (only one goal is active during an 
individual trial, goal reward r = +2.0). The second maze has two active goal 
locations (Figure 3.1b). The nearest goal location is the location of the candy (i.e., 
a location with a reward r = +0.25), while the farthest goal location is the food 
location (r = +1.0). This maze is used for the Candy task. The walls in the mazes 
are “lava” patches, on which the agent can walk, but is discouraged to do so by a 
negative reinforcement (r = −1.0). 

 Figure 3.1. Mazes used in the experiments; (a) 
the Alternating-Goal task, (b) the Candy task; the 
‘s’ denotes the agent’s starting position, ‘f’ is food,
‘c’ is candy and ‘w’ is water. 
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 Figure 3.2. Example of a Markov Decision 
Process. Nodes are agent-environment states. 
Edges are actions with the probability p that 
executing the action results in the state to which 
the edge points. Nodes contain rewards (r; local 
reinforcement) and values (v; future 
reinforcement). In this example γ=1 (see text). 

The agent learns by acting in the maze and by perceiving its direct 
environment using an 8-neighbor and center metric (i.e., it senses its eight 
neighboring locations and the location it is at). An agent that arrives at a goal 
location is again placed at its starting location. Agents learn a probabilistic model 
of the actions and their values possible in the world. Mathematical details of this 
process follow; however, the most important part of our method is explained in 
Section 3.2.2. Agents start with an empty model of the world and construct a 
Markov Decision Process (MDP) as usual (i.e., a perceived stimulus is a state s in 
the MDP, and an action a leading from state s1 to s2 is an edge in the MDP; see 
Figure 3.2; for details see Sutton & Barto, 1998). The agent counts how often it 
has seen a certain state s, N(s). It uses this statistic to learn the value function, V(s) 
(comparable to model-based Reinforcement Learning, see, e.g., Kaelbling et al., 
1996). This function learns to predict a cumulative future reward for every 
observed state. This V(s) is learned in the following way. A reward function, R(s), 
learns to predict the local reward of a state: 
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This learned reward is used in the value function V(s): 
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So, a state s has two reinforcement-related properties: a learned reward value R(s) 
and a value V(s) that incorporates predicted future reward. The R(s) value 
converges to the local reward for state s with a speed proportional to the learning 
rate α. The final value of s, V(s), is updated based on R(s) and the weighted 
predicted rewards of the next states reachable by actions ai. In Reinforcement 
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Learning, the discount factor γ defines how important future versus current 
reward is in the construction of the value function, V(s). If the discount factor, γ, 
is equal to 1, future reward is important (no discount), while γ = 0 means that only 
local reward is important for the construction of the value of a state as expressed 
by V(s). In the Alternating-Goal task the learning rate α and discount factor γ are 
respectively 1.0 and 0.7, and in the Candy task respectively 1.0 and 0.8. 

3.2.2 Modeling Action Selection. 

Most relevant to the current study is that our agent uses the Boltzmann 
distribution to select actions based on learned values of predicted next states. This 
function is often used in Reinforcement Learning and is particularly useful as it 
enables both exploration and exploitation: 

∑
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Here, p(a) is the probability that the agent chooses action a, and V(sa) is the value 
of a next state predicted by action a. |A| is the size of the set A containing the 
agent’s potential actions 1 . Importantly, the inverse temperature parameter β 
determines the randomness of the distribution. The larger the β  the more this 
distribution adopts a greedy selection strategy (thus little variation in deciding 
what action to perform in a certain state). If β is zero the distribution function 
adopts a uniform random selection strategy, regardless of the predicted reward 
values (thus high variation in deciding what next action to perform in a certain 
state). 

De facto, the β parameter can be used to vary the adaptive agent’s processing 
strategy between exploration and exploitation. Note that we define exploration as 
generating new learning experiences by selecting actions that are non-optimal 
according to the current model the agent has learned, while exploitation is defined 
as selecting optimal actions according to the currently learned model. Therefore, 
if we assume, for simplicity, that the model is a tree with the agent’s starting state 
as root and edges as different actions to different next states, exploration 
generates different paths through the tree at different runs, while exploitation 

                                                 
1 Note that for notational simplicity we assume that an action in one state leads to a 
determined next state, i.e., the world is deterministic and completely observable. However, 
our first world is not deterministic as we introduce a for the agent non-predictable goal-
switch.   
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retries the same paths at different runs. In a lazy value propagation mechanism as 
ours, exploration is needed to find solutions, while exploitation is needed to 
internalize solutions. Exploitation thus models animal learning by repetition, 
while exploration models animal search. 

Key in our study is that our agent uses its artificial affect ep to control its β 
parameter. Affect directly and dynamically controls exploration versus 
exploitation. This approach is compatible with viewing emotion as a mechanism 
for meta-learning (Doya, 2000; Doya, 2002; Schweighofer & Doya, 2003). 

3.2.3 Type-A: Positive Affect Relates to Exploitation 

To investigate how affect can influence exploration versus exploitation, we 
hypothesize the following two relations. First, type-A agents model positive affect 
related to increased exploitation: 

minminmax )( ββββ +−×= pe   (3.4) 

If affect ep increases to 1, β increases towards βmax and as ep decreases to 0, β 
consequently decreases towards βmin. So positive affect results in more 
exploitation, while neutral and negative affect results in more exploration, as 
suggested by the study by Rose et al. (1999), detailed in Chapter 2. This is also 
compatible with the idea that positive mood relates to top-down processing 
(Gasper & Clore, 2002), i.e., in our case to the agent using its learned model to 
control its behavior. A selective mode of action selection uses this model to drive 
behavior, while a less selective mode could be said to use more diverse behaviors 
(whether or not this also models bottom-up processing is unclear). 

3.2.4 Type-B: Negative Affect Relates to Exploitation 

The second relation is the inverse of the first one. Type-B agents thus model 
positive affect related to increased exploration. Positive affect favors detaching 
actual behavior from existing goals (as suggested by the results of the study by 
Dreisbach and Goschke (2004): 

minminmax )()1( ββββ +−×−= pe   (3.5) 

As affect ep increases to 1, β decreases towards βmin and as ep decreases to 0, β 
consequently increases towards βmax. So, positive affect results in more 
exploration, while negative affect results in more exploitation. 
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Of course, cognitive set-switching and attention are not equivalent to learning. 
Both are a precursor to learning, specifically explorative learning. Divided 
attention and flexible set-switching enable an individual to faster react to novel 
situations by favoring processing of many external stimuli. So, in the study by 
Dreisbach and Goschke (2004) positive affect facilitated exploration, as it helped 
to remove bias towards solving the old task thereby enabling the subject to faster 
adapt to the new task. However, in the study by Rose, Futterweit and Jankowski 
(1999) neutral affect facilitated exploration as it related to defocused attention. 

3.2.5 Experimental Procedure 

To investigate the influence of affect-controlled exploration, our experiments are 
repeated with agents of type-A and type-B as well as a control condition of agents 
that use static levels of exploration versus exploitation (fixed β). In the 
Alternating-Goal task agents first have to learn goal one (food). After 200 trials 
the reinforcement for food is set at r = 0.0, while the reinforcement for water is 
set at r = +2.0. The water is now the active goal location (so an agent is only reset 
at its starting location if it reaches the water). This reflects a task-switch, of which 
the agent is unaware. It has to search for the new goal location. After 200 trials, 
the situation is set back; i.e., food becomes the active goal. This is repeated 2 
times resulting in 5 phases, i.e., initial learning of food goal (phase 0), then water 
(phase 1), food (2), water (3), and finally food (4). This (5 phases, a total of 1000 
trials) represents 1 run. We repeated runs to reach sufficient statistical power. All 
Alternating-Goal task results are based on 800 runs, while Candy task results are 
based on 400 runs. During a run, we measured the number of steps needed to get 
to the goal (steps needed to end one trial), resulting in a learning curve when 
averaged over the number of runs. We also measured the average β (resulting in 
an “exploration-exploitation” curve), and we measured the quality of life (QOL) 
of the agent (measured as the sum of the rewards received during one trial). The 
problem for the agent is to exploit the goal but at the same time “survive” a goal 
switch, i.e., keep the switch-cost as low as possible. So, the learning curve of the 
trials just after the task-switch indicate how flexible the agent is.  

The setup of the Candy task experiment is simpler, and we measured the same 
(steps, β and QOL). The agent has to learn to optimize reward in the Candy maze. 
The problem for the agent is to (1) exploit the local reward (candy), but at the 
same time (2) explore and then exploit the global reward (food). This relates to 
opportunism, an important ability that should be provided by an action-selection 
mechanism (Tyrell, 1993). Average QOL curves will thus show to what extent an 
agent has learned to exploit the global reward. 
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Our independent variable is the type of exploration-exploitation control. We 
have several different settings of type-A (“dyn” in Figure 3.3-3.11) and type-B 
(“dyn inv” in Figure 3.3-3.11) affect-controlled exploration. For example, “AG 
dyn 3-6” means that the agent was tested in the Alternating-Goal task using affect 
controlled exploration of type-A (positive affect relates to exploitation) with 
exploration-exploitation varying respectively between βmin=3 and βmax=6 (see also 
Figure 3.3). The artificial affect parameters star and ltar defining the short-term 
period and the long-term period over which artificial affect is measured were set 
at 50 and 375 steps respectively. As a control condition we used agents with 
different static amounts of exploration (“static” in Figure 3.3-3.11). High static β 
values model low exploration and high exploitation while low values denote high 
exploration and low exploitation. The legend of Figure 3.7 shows all different 
agents used in the Alternating-Goal task. Figures 3.3-3.6 show relevant subsets of 
these agents. The legends of Figures 3.8-3.11 show all agents used in the Candy 
task, excluding static agents with β=5 and β=7. The results from these two agents 
did not add anything to the analysis and are therefore omitted. 

3.3 Results 

We now discuss the results of the experiments. A discussion in a broader context 
is presented in Section 3.4. 

3.3.1 Experiment 1: Alternating-Goal Task 

Our main finding is that type-A (positive affect relates to exploitation, negative to 
exploration) results in the lowest switch cost between different goals, as measured 
by the number of steps taken at the trial in which the goal switch is made (Figure 
3.7). This is an important adaptation benefit. As shown, all goal-switch peaks 
(phases 1-4) of the 4 variations of type-A (i.e., dotted lines labeled AG dyn 3-6, 3-
7, 3-9 and 2-8) are smaller than the peaks of the control (straight lines labeled AG 
static 3, 4, 5, 6 and 7) and type-B (i.e., striped lines labeled AG dyn inv 3-6, 3-7, 
3-9 and 4-9). Initial learning (phase 0) is marginally influenced by affective 
feedback and by static β settings (Figure not shown). Closer investigation of the 
first goal switch (trial 200; phase 1; Figure 3.4) shows that the trials just after the 
goal-switch also benefit considerably from type-A. When we computed for all 
settings an average peak for trail 200, 201 and 202 together, and compared these 
averages statistically, we found that type-A performs significantly better (p<0.001 
for all comparisons, Mann-Whitney, n=800). Closer investigation of the fourth 
goal-switch (trial 800, phase 4; Figure 3.5), reveals a different picture. Only the 
trial in which the goal is switched benefits significantly from type-A (p<0.001 for 
all comparisons except those mentioned shortly, Mann-Whitney, n=800). 
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Comparison between type-A (AG dyn 3-6, 3-7 and 3-9) and AG static β=6 
showed significant smaller peaks for type-A with p<0.01, p<0.05, and p<0.01 
respectively. So it seems that a high static amount of exploration performs slightly 
better at later goal switches but worse at earlier goal-switches as compared to 
affective control over exploration. One reason for this is that the agent has built 
up a very good model of both arms of the maze in these later phases. This means 
that in later phases, less exploration is needed anyway, because the agent only 
needs to relearn to take the right choice at the T-junction, but not learn the new 
arm in the maze. This limits the potential gain of affective control. This 
explanation is supported by the peak curves in Figure 3.7. Here, higher β values 
perform worse than lower at the peaks of earlier phases but better at the peaks of 
later phases. Note that for the first phase, this is also true, but as we plot only the 
first trial after the goals-switch in Figure 3.7 this is not shown (it is shown in 
Figure 3.4, where we detail the peak of the first phase, high β values show higher 
peaks than do low β values). 

All other comparisons between peaks revealed significantly (p<0.001) smaller 
peaks for type-A. This effect is most clearly shown for the peaks of phase 3 and 4, 
where the peak-height difference between type-A peaks and static peaks is a 
factor 1.25 to 2. This means that the type-A model of affective control of action 
selection can result in up to a 2-fold decrease of search investment needed to find 
a new goal. As expected, the smallest difference between control and type-A is 
when β is small (3 or 4) in the control condition (small β = much exploration = 
less tied to old goal). However, small β’s have a classical downside: less 
convergence (Figure 3.6). The agent is less able to exploit its model of the world 
and thus does not learn the solution well, while type-A curves in Figure 3.6 show 
that the agent does converge to the minimum number of steps needed to get to the 
goal (i.e., 4 steps). 

For completeness we show the β curves for the complete phase 1 of the 
control group agents, one type-A agent and one type-B agent (Figure 3.3). These 
curves confirm the expected β dynamics. For type-A, the goal switch induces high 
exploration (β  near βmin) due to the lack of reinforcement (“it is going worse than 
expected”), after which β quickly moves up to βmax, and then decays to average. 
For type-B this behavior is exactly the opposite. 
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 Figure 3.3. Alternating-
Goal task; plot of the mean 
Boltzmann β for phase 1 
(n=800). High β represents 
exploitation, low β
represents exploration. The 
values of β for three static 
and two dynamic agents 
are shown. In all graphs, 
the trials are on x-axis, and 
means are based on the 5-
95% percentile. Here, 
mean β is on the y-axis. 
 

 Figure 3.4. Alternating-
Goal task; mean learning 
curves for phase 1 peak 
(n=800). The mean number 
of steps (y-axis) needed to 
find the goal is plotted per 
trial for two static, two 
dynamic and two inverse-
dynamic agents (see text 
for explanation). 

 Figure 3.5. Alternating-
Goal task; mean learning 
curves for phase 4 peak 
(n=800). The mean number 
of steps (y-axis) needed to 
find the goal is plotted per 
trial for two static, two 
dynamic and two inverse-
dynamic agents (see text 
for explanation). 
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 Figure 3.6. Alternating-
Goal task; convergence 
plots of all learning phases 
(n=800), phases start at 0, 
200, etc. 800. The mean 
number of steps (y-axis) 
needed to find the goal is 
plotted per trial for two 
static, two dynamic and two 
inverse-dynamic agents 
(see text for explanation). 
 

 Figure 3.7. Alternating-
Goal task; mean peaks of 
phases 0 to 4 (steps 
needed at respectively trail 
0, 200, 400, 600 end 800) 
(n=800). Phase is on x-axis
(only the integers); mean 
number of steps is on y-
axis. The graph shows an 
overview for all agents of 
the mean number of steps 
needed to find the goal at 
the goal switch. 

3.3.2 Experiment 2: Candy Task 

Type-A agents have a considerable adaptation benefit compared to both control 
and type-B agents as shown by the following. In general, type-A agents have the 
same speed of finding the candy as exploiting agents (agents with a high static β), 
as shown by the learning curves of the complete task (Figure 3.8) and by the 
detailed learning curves of the start of the Candy task (Figure 3.10). In both 
figures the learning curves of β=6, and β=10 and dyn 2-8 overlap considerably. 
Interestingly, the quality of life curves show that in the beginning the QOL of the 
type-A agent quickly converges to the local optimum (candy, 0.25) comparable to 
that of the high β control agent (Figure 3.11, left “knee”). At the end of the task 
(later trials) the QOL of the type-A agent steadily increases towards the global 
optimum (food, +1.0; Figure 3.9). This shows that type-A affective feedback 
helps to first exploit a local optimum, while at a later stage explore for and exploit 
a global optimum. This is a major adaptation benefit resulting from type-A 
affective control of exploration. A playful way to think about this, is that the 
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agent “gets bored” with the local optimum and as a result starts to search for other 
things, thereby increasing the chance of finding the global optimum.  

The control agent with β = 4 does converge to the global optimum just like the 
type-A agent (Figure 3.9). However, due to continuous high randomness in this 
agents action-selection mechanism this agent consistently needs more steps to get 
to that global optimum as compared to the type-A agent (Figure 3.8). Also due to 
this high randomness this agent does not learn the local optimum consistently 
enough to quickly exploit it (Figure 3.11). High static exploration (smaller βs) 
results in a major delay in arriving at the same level of QOL as compared to the 
larger βs and the type-A agent (compare “candy static 4” curve with “candy dyn 
2-8” curve in Figure 3.11). The type-B agent does not perform well at converging 
or at quickly exploiting the local optimum (Figure 3.8, 3.9, 3.10, 3.11). 

 Figure 3.8. Candy task 
complete, mean learning 
curves (n=400). The mean 
number of steps (y-axis) 
needed to find the goal is 
plotted per trial for three 
static agents, one dynamic 
and one inverse-dynamic 
agent (see text for 
explanation). 
 

 Figure 3.9. Candy task 
complete, mean Quality of 
Life curves (n=400). The 
mean QOL (y-axis) as it 
varies per trial is plotted for 
three static agents, one 
dynamic and one inverse-
dynamic agent (see text for 
explanation). 
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 Figure 3.10. Candy task 
starts learning, mean 
learning curves (n=400).
The mean number of steps 
(y-axis) needed to find the 
goal is plotted per trial for 
three static agents, one 
dynamic and one inverse-
dynamic agent (see text for 
explanation). 
 

 Figure 3.11. Candy task 
starts learning, mean 
Quality of Life curves 
(n=400). The mean QOL 
(y-axis) as it varies per trial 
is plotted for three static 
agents, one dynamic and 
one inverse-dynamic agent 
(see text for explanation). 
 

3.4 General Discussion 
Our results show that coupling positive affect to exploitation and negative affect 
to exploration provides two important benefits to learning and adaptation in the 
particular case of the grid worlds we have tested. Agents that use affect to control 
exploration in this way show significantly reduced task-switch cost and exploit a 
local optimum while being able to search for a global one. 

3.4.1 Results Related to Other Learning Parameters 

First, we briefly discuss the relation between learning and the proportion of local 
versus global optimum in the Candy task. If local and global optima are very 
similar, even a type-A agent cannot learn to prefer a global optimum, as the 
difference becomes very small. So, the candy and food reward have to be 
significantly different, such that the average β can exploit this difference once 
both options have been found. This has been confirmed in preliminary 
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experiments we conducted, and is quite plausible: “you don’t walk a long way for 
a little gain.” 

Second, we discuss the relation between discount factor and learning. This 
relates to the previous; a small γ results in discarding rewards in the future and 
therefore the agent is more prone to fall for the nearer local optimum. So, γ should 
be set such that the agent is at least theoretically able to prefer a larger later 
reward for a smaller earlier one, which is also the reason why we incremented γ to 
0.8 in the Candy task, as compared to 0.7 in the Alternating-Goal task. 

3.4.2 Results Related to Psychological Findings 

Our results illuminate several psychological findings. First and foremost, they 
show that to understand the relation between affect and learning, the process of 
affective influence on learning is important. Only by coupling affect to 
exploration versus exploitation were we able to show that both positive and 
negative affect are useful for learning, but at different phases in the learning 
process. Negative affect induces exploration in those phases that need it, while 
positive affect induces exploitation of the learned model when needed. This is an 
important result providing empirical evidence (albeit simulated) for the idea that 
both negative and positive affect can relate to faster learning (Craig et al., 2004). 
It also provides evidence for the claim that some aspects of negative emotions are 
useful mechanisms for adaptation (Hecker & Meiser, 2005). More specifically, 
negative affect can defocus attention and thereby favor less selective decision 
making (Hecker & Meiser, 2005) (in our study modeled as a more random choice 
of action). Our results show that the dynamic coupling of affect and decision-
making can increase adaptive potential of an agent if (1) negative affect relates to 
less selective decision making and (2) positive affect relates to more selective 
decision making. 

Our results seem incompatible with the results by Dreisbach and Goschke 
(2004). They (and others) find that positive affect is related to more flexible, more 
distractible behaviors. In short, they argue that positive affect decreases selectivity 
(by increasing flexibility and distractibility) while negative affect increases 
selectivity (by decreasing flexibility and decreasing distractibility). However, 
closer investigation of their empirical results allows for a plausible alternative 
interpretation that relates to normal conditioning (Reinforcement Learning) 
effects. We discuss this is in detail, as our alternative explanation potentially is 
relevant to many affect induction tasks that measure reaction time and that allow 
for subjects to get accustomed to the task while it is being performed. 
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Dreisbach and Goschke (2004) measure the difference between reaction time 
(RT) before a task switch and after a task switch. This difference is interpreted as 
switch cost. So, if a task takes 600 ms at trials before a change in the 
characteristics of a task and 700 ms after that change, than this difference (100 
ms) is the switch cost. The experimental setup is as follows. During a set of trials, 
subjects have to perform a simple cognitive task proposed in the target color (e.g., 
red). At the same time they see a different instance of the same cognitive task in 
the distracter color (e.g., blue). The subject’s task is to react only to the task in the 
target color. Half way, there is a task switch. Now, two situations are possible, 
perseverance and learned irrelevance. In the perseverance condition, the target 
task is presented in a new color (e.g., yellow) and the distracter task is presented 
in the old target color. The subject’s challenge is to not continue solving the task 
in the old target color. In the learned irrelevance condition the target is presented 
in the old distracter color (blue), while the distracter task is presented in a new 
color (yellow). The challenge here is not to be hindered by the novel color yellow 
or be inhibited by the old distracter color blue that has become the target color. 

The main thrust for Dreisbach and Goschke’s conclusion that positive affect 
reduces perseveration (= continuation on an old goal) but increases flexibility (= 
potential to switch to a new cognitive set) is (1) the relative lack of switch cost in 
the perseveration condition and (2) the increase of switch cost in the learned 
irrelevance condition.  They argue that this is a specific effect of affect on 
perseveration versus flexibility. We will now present an alternative explanation 
based on standard learning and conditioning effects. 

Affect can be interpreted as an unattributed reinforcement signal. First, it is 
generally accepted that floating (objectless) positive and negative affect is a signal 
to the organism defining the general goodness versus badness of the situation 
(e.g., Gasper & Clore, 2002). Second, we have argued and shown experimentally 
that reinforcement and affect are strongly related. Third, affect is coupled to the 
dopamine system (Ashby et al., 1999)—a system that is also highly related to 
Reinforcement Learning, a point explicitly made by, and one that underlies 
Dreisbach and Goschke’s (2004) approach. 

Therefore affect induction can alternatively be understood as unconscious 
reinforcement of trials. So in, e.g., the study by Dreisbach & Goschke (2004) 
positive affect induction can be seen as conditioning upon a certain task, 
specifically as the trials are repeated many times before the task switch is 
introduced. This means that subjects actually learn differently when affectively 
induced as compared to control or non-affective situations. This is an important 
point underlying our alterative interpretation. 
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Consider the following. When positive affect is induced, the subject is 
actually reinforced to respond to the task presented in the target color red and not 
to respond to the task presented in the distracter color blue. After the switch to the 
perseveration condition, the new color yellow is introduced (and the subject is 
explicitly made aware of this change). Now, there are two tasks. A new, neutral—
non-reinforced—colored task and an old positively-reinforced colored task. 

Consider the switch to the learned irrelevance condition. Again the subject is 
first reinforced on the target color red, and the task switch introduces the new 
color yellow. However, the distracter is presented in yellow, while the new target 
is presented in the old distracter color blue. This means that in the first condition 
the subject learns to react to a new stimulus (yellow), while in the second it has to 
perform reversal learning (blue meant no action, but now it means action). 
Reversal learning is generally considered more difficult than learning new 
behavior. According to this explanation, in the perseveration condition one would 
expect slightly better learning of the post-switch condition due to the generic 
effect of positive reinforcement during learning. In the learned irrelevance 
condition one would expect a much worse learning of the post-switch condition 
due to unlearning (reversal learning). This is almost exactly what has been found, 
if the results are combined with a generic negative influence of positive affect on 
RT. First, all positive affect situations have slightly higher RTs than the control 
(and pre-) tests, reflecting a negative influence of positive affect on performance 
on this specific task. Second, the perseveration condition has lower post-switch 
cost in the positive affect situation compared to the control (and pre-) test, 
reflecting enhanced learning due to positive affect. Third, the learned irrelevance 
condition has a major increase in switch cost as compared to the control (and pre-) 
tests, reflecting difficulty unlearning the previous association between distracter 
color and irrelevance.  

This alternative explanation is plausible, albeit speculative. The main message 
of this elaborate discussion is that many affect induction studies could be 
measuring confounded dependent variables. The measured total effect can be a 
combination of both a learning-related effect (conditioning) and a top-down 
executive control effect that is not specifically related to learning (working 
memory, etc.). This is particularly important as these studies are done to measure 
the second effect. If part of the total effect attributed to top-down influences is in 
fact due to bottom-up influences, it is highly important to control for the bottom-
up effect. The results of our—quite unusual—bottom-up approach to model a 
phenomenon that is typically considered top-down, shows that reasonably simple, 
and arguably low-level effects can be responsible for part of the flexibility effect. 
An additional experimental problem arises when attempting to separate these two 
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effects, as both affect and reward seem to be mediated by the same dopamine 
system (Ashby et al., 1999). To summarize, our results cannot, at least not 
without further study, be considered as contrasting to results such as the ones 
discussed. 

Current discussion on the Iowa Gambling Task (IGT) highly relates to our 
alternative explanation for the Dreisbach and Goschke study given here. The IGT 
(Bechara et al., 1997) measures the extent to which subjects learn to prefer to 
select cards from good decks versus bad decks. Good decks have many cards with 
low immediate monetary gain and some cards with low monetary loss. Bad decks 
have many cards with high immediate monetary gain but some cards with even 
higher loss. Overall, selecting cards from bad decks results in an average loss, 
while selecting cards from good decks results in an average gain. Subjects are 
unaware of the difference between decks and are asked to maximize gain by 
selecting cards from 4 decks (2 good, 2 bad). 

In a sense, the IGT measures task-switching behavior. Up until the first bad 
card is selected from a bad card deck, these decks appear good, as they propose 
higher immediate monetary rewards than the good decks. After having selected 
the first bad card, subjects should re-evaluate (either consciously or 
unconsciously) their selection bias, ideally resulting in card-selection behavior 
directed at good decks. As subjects do not have any knowledge of the decks, we 
can easily interpret selecting the first bad card as a rule change that changes the 
current task. Prefrontal patients have difficulty learning to select cards from good 
decks instead of bad decks (Bechara et al., 1997). Alternatively, one could say 
that these patients are unable to switch to the new task of selecting from a good 
deck after having been reinforced to select from a bad deck. This interpretation 
suggests that prefrontal patients have difficulty switching to a new task in a 
Reinforcement Learning setting, which is quite plausible as the prefrontal cortex 
is often associated with executive control. Such control is needed for exactly this 
kind of task switches. This task-switch deficit might result from a lacking somatic 
marker signal (Damasio, 1994). However, in a recent review (Dunn, Dalgleish & 
Lawrence, 2006) it is argued that a reversal learning deficit can provide an 
alternative explanation. In a broad sense, this indicates that reversal learning is an 
important phenomenon to consider in all experiments that use (1) a learning task 
with potential involvement of reinforcement or affect, and (2) a, to the subject 
unknown, task switch due to a rule change. In a narrow sense, reversal learning is 
important in affect-induction cognitive-set switching experiments. 

A comparison between the IGT and the Candy task is in place. The IGT has 4 
decks of which 2 are good and 2 are bad. Every deck has a distribution of gain 
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and loss cards. In terms of Reinforcement Learning one could say that a subject 
needs exploration to build a model of the average gain of the decks and 
subsequently needs exploitation to continue selecting cards from the good decks. 
Three main issues are thus involved in learning the IGT: (1) build a model of the 
goodness of a deck, (2) vary between decks such that all decks are covered, and 
(3) exploit the knowledge gained. 

The Candy task is different (and simpler). There are no changing rewards. 
There is a local and a global maximum. The agent has to learn, through 
exploration, that a global maximum exists, and then exploit this maximum. 
Exploration-exploitation is controlled by affect in our studies. Key difference 
between the Candy task and the IGT thus is that the rewards in the Candy task are 
deterministic, i.e., once the agent has found the reward, it knows that this is the 
correct reward for that location in the maze. In the Candy task only the second 
and third issues are important (exploration-exploitation). Since the varying 
rewards in the IGT are a key characteristic of that task, our Candy task cannot be 
considered analogous to the IGT. Future work includes measuring the behavior of 
agents that use affect to control exploration-exploitation in a simulated IGT.  

Of course alternative explanations for our experimental results are possible. 
Our model for affect could, for example, be interpreted as a model for flow 
(Csikszentmihalyi, 1990). If reward is consistently better than expected, we are in 
a state of flow and therefore continue to do what we do (model-based decisions). 
If reward is consistently worse than expected, we are out of flow, and engage in 
more random, search-like behavior. 

However, our model of affect does seem to have face-validity, specifically in 
the context of adaptation. If things go well, don’t change. If things go bad, 
explore alternatives. This kind of underlying principle is quite plausible, but in 
stark contrast to the following: if positive affect indicates goodness, we can afford 
to explore, and if negative affect indicates badness, we should be very selective 
regarding our behavior (Dreisbach & Goschke, 2004). Which relation between 
affect and adaptation is right? Probably both, and the question is when and in 
what tasks? Only more elaborate process-oriented experimental and simulation 
studies will be able to show. 

3.4.3 Results Related to Exploration and Exploitation in Machine Learning 

The merit of using artificial affect as controller for exploration versus exploitation 
behavior has to be seen in light of adaptive agents in potentially changing 
environments. Such agents ideally decide autonomously when to explore versus 
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exploit. It is in this context that we propose affect as signal to guide the learning 
process. 

In contrast, standard methods exist that are far better at optimizing a solution 
to an arbitrary and static credit assignment problem. These methods stem from, 
e.g., operations research. Consider, for example, learning the optimal solution to 
the Candy task. This is merely a question of exploring enough in the beginning, 
and then gradually decreasing the amount of exploration; a process called 
simulated annealing. Given enough exploration and a smooth transition from 
exploration to exploitation, any RL mechanism is able to learn the optimal 
solution. 

For an adaptive agent in a changing world, a gradual decrease in exploration 
is not what is needed mainly for two reasons. First, consider an autonomous robot 
that has to decide where to go. If that robot is purely exploring, it might choose 
actions that are lethal to it. In a simulated environment this is no problem, 
however, in a real environment this is. Second, consider a changing environment. 
In this case the problem is not static, and credit assignment can thus never reflect 
the optimal solution; it always reflects the current optimal solution. If a change 
occurs, the agent has to solve two problems that do not need to be solved for static 
problems. These are (a) how to detect the change, and (b) how to move back to 
exploration (in contrast to gradually moving from exploration to exploitation). 

The problem we address with affect as meta-learning signal is not that of 
finding an optimal solution given an arbitrary problem. It is the problem of 
guiding the learning process such that the agent can autonomously decide when 
and how to explore versus exploit. 

3.5 Conclusion 
We have introduced a computational method of studying the relation between 
affect and probabilistic learning. Based on experimental results with learning 
agents in simulated grid worlds, we conclude that, at least in the task we have 
experimented with, coupling positive affect to exploitation and negative affect to 
exploration has two important adaptation-related benefits: 1) It significantly 
reduces the agent’s “goal-switch search peak” when the agent learns to adapt to a 
new goal. The agent finds this new goal faster. 2) Artificial affect facilitates 
convergence to a global instead of a local optimum, while permitting to exploit 
that local optimum. Our results illuminate the process underlying the relation 
between affect and learning, and, we argue, is thereby a valuable addition to the 
existing affect-cognition literature. The results provide evidence for the idea that 
negative affect is related to less selective decisions while positive affect is related 
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to more selective decisions. Further, our reinforcement-learning based analysis 
showed a potential problem with affect-induction techniques: the measured total 
effect of positive affect can be a combination of both a learning-related effect 
(conditioning) and a top-down executive control effect that is not specifically 
related to learning (working memory, etc.). However, as we have experimented 
with (only) two different types of worlds, our conclusions can not be generalized. 
More research is needed. 

From a machine learning perspective, we have shown that in some cases 
artificial affect can be useful to guide exploration versus exploitation. However, 
more experiments should be done, specifically in different, and larger, worlds, 
using other RL models (for example, models that are able to cope with continuous 
environments). 
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