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The research described in this computer science PhD thesis is positioned 
somewhere between computer science and psychology. It is about the influence of 
affect on learning. Affect is related to emotion; affect is about the positiveness and 
negativeness of a situation, thought, object, etc. We will define affect more 
precisely in Section 1.4, but for now this definition suffices. Affect can influence 
learning and behavior in many ways. For example, parents use affective 
communication to influence the behavior of their children (praise versus 
disapproval). Affect can also influence how individuals process information (e.g., 
positive affect favors creativity, negative affect favors critical thinking). The 
research described in this thesis uses computational modeling to study affective 
influence on learning. The goal has been twofold: first, understand more about 
potential mechanisms underlying relations between affect and learning as found in 
the psychological literature, and second, study if the concept of affect can be used 
in computer learning, most notably to control the learning process. Both aspects 
are considered of equal importance in this work. The topic is quite 
interdisciplinary and the individual chapters present the results of focused studies. 
However, in an attempt to clarify to a broader public what the research questions 
are and why these are of interest, the introduction is intentionally kept broad and 
is written so that it is understandable to readers with general knowledge of 
computer science and an interest in psychology. Readers that want to skip the 
introduction can read Section 1.5 for an overview of the thesis. 

1.1 Informal Introduction to the Topic 
This thesis is about affect and learning, a topic everyone is intuitively familiar 
with. We all know the effects of anger and sadness (two different negative 
affective states) or happiness and excitement (two different positive affective 
states) on our own functioning and decisions. Sometimes, we regret these 
decisions, while others worked out quite fine—better than expected—afterwards.  
In everyday life, we just accept that we have emotions and that our emotions 
influence our behavior. It is common sense knowledge that it is sometimes the 
head, sometimes the heart that decides our future and we rarely ask ourselves 
when and how affect exactly influences our decisions. Interestingly, it is quite 
difficult to reflect upon a decision, let’s say the last decision you made, and 
discriminate between the “affect” part versus the “rational thought” part that 
influenced that decision. Instead, affect and “rational thought” seem to be 
intertwined in many cases, a notion put forward by Antonio Damasio in his 
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seminal book Descartes’ Error (Damasio, 1994). It is by now generally accepted 
that “rational thought” does not exist, at least not in the sense we thought 
(hoped?) it did. Nothing is decided purely based on a logical evaluation of pros 
and cons of which the pros and cons are again (recursively) a result of a logical 
evaluation of their pros and cons of which the pros and cons … etc. This kind of 
recursive and analytic thought process is very rare, chess-like game play being 
perhaps a partial exception, and it is by no means necessary for normal 
functioning in society; other animals don’t need it either and are quite adaptive to 
their environment. What seems to be more the case is exemplified by the 
following “should I stay or should I go” scenario (also a nice song by The Clash 
showing human indecisiveness): 

I’m at work, writing the introduction of my thesis. Some chapters still have to be 
written, so quite some writing still has to be done. However, today actually is a 
local holiday called “Leids Ontzet” feasting the liberation of the city of Leiden (The 
Netherlands) ending the Spanish occupation of that city in the year 1574. The 
faculty is closed but I went in with my key to do some work. So, the decision is: 
should I stay the whole day and write as much as possible, or should I go home 
and do something else taking advantage of the fact that today is a local holiday. 
Now here’s my “rational choice”: I went to work this morning, because I am not 
originally from Leiden, so I do not really care about Leids Ontzet. My partner also 
went to work, because she works in The Hague (not in Leiden: thus no local 
holiday). I do care about playing video games in my spare time, and therefore I 
like having a day off. However, I do have a lot of work to do on my thesis, and I 
want my thesis to be finished in time. (Why? Because my supervisor wants me to? 
Because it is good for my future? Because it just feels like the right thing to do?). 
So, here am I, having to decide on two things: go home and play games (which I 
like), versus stay and write my thesis (which I like). It is a holiday, but my partner 
has to work. So, taking a day off now enables me to play games, but I won’t be 
able to work on my thesis, and it takes away my option to take another day off 
when my partner does have a day off. What do I do? I work in the morning on my 
thesis, write a fair part of the introduction, and take the afternoon off and play 
games. I get to do two things I like, and keep the option of taking half a day off to 
do nice stuff with my girlfriend later, which I also like. So isn’t this a win-win-win 
situation? It probably is, but the decision itself is not rational, it is emotional and 
social and there is no deep logical evaluation behind the value of the alternatives. 
The only thing that might be called rational is the process by which I generate the 
alternatives. However, the decision is made based on a “what feels best” criterion, 
and I just “weight” the values of the alternatives using social and emotional 
associations. One could even argue that I did not decide anything at all: none of 
the alternatives is excluded; instead I have chosen a mixture of things that feels 
good to me. Many decisions resemble this scenario, and I think we can agree that 
our life’s course is a long sequence of such decisions, none of them being 
exclusively rational, none exclusively affective.  
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The question seems to be how and when affect influences decision making, 
thought, learning, and the many other cognitive phenomena known in cognitive 
psychology. For example, psychologists like Joseph Forgas, Alice Isen and 
Gerald Clore have studied the influence of emotion and affect on human decision 
making for quite some time (for references see Chapter 2). Although much debate 
is going on, as discussed for example in Chapter 3, decades of research indeed 
converged into a general consensus that affect does influence cognition in 
important ways. These ways include affect manipulating how we approach 
problems—e.g., do we look at the details of a problem, or approach it from the 
top—, affect influencing what we think about objects and people, and affect 
influencing creativity and open-mindedness.  

Although much is known on the influence of affect on cognition, the 
mechanisms by which affect influences cognition are largely unknown. This is 
partly because it is very difficult to experimentally manipulate and subsequently 
measure affect, let alone affective influence on, for example, decision making and 
learning. This is exactly where the computer enters (fortunately, as this is a 
Computer Science PhD thesis, and some might at this point be wondering where 
the computer went). Computers enable scientists to develop computational 
models (programs) that can actually produce “new things”, based on the 
assumptions of the theoretical model (e.g., a psychological theory describing the 
influence of affect on learning) underneath the computer model. These “new 
things” are, in a very real sense, predictions of the psychological theory: they 
result from the computational model that is a highly detailed version, an 
implementation, of the psychological theory. As such, computational models help 
psychological theory development. As computer models need to “run”, they need 
to execute a sequence of commands and manipulate the results of these 
commands; computer models are particularly good at investigating mechanism, 
because they exist by the virtue of mechanism. Mechanism happens to be the 
thing that is notoriously difficult to investigate based on observation of behavior 
(whether that is body movement, data from brain scanners, facial expressions, or 
biochemical markers). We can thus conclude that computational modeling is a 
useful method to study potential mechanisms proposed by psychological and 
neurobiological theories, including theories about the influence of affect on 
learning.    

This thesis presents research on the influence of affect on learning by means 
of computational modeling. As such, both affect and learning need to be 
computationally modeled. A successful model for task-learning is reinforcement 
learning (RL). It has been applied to many computer learning problems, such as 
computers that learn to play games, steer cars, and control robots (see Sutton & 
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Barto, 1998). The RL paradigm is quite analogous to instrumental conditioning. 
Instrumental conditioning is a paradigm by which animals (including humans) 
can learn new behaviors, by trying new actions (exploration) and receiving 
rewards and punishments (reinforcement) for these actions. Rewards and 
punishments can transfer to the actions the animal chose to do just before the 
action resulting in the reinforcement, and to actions before that action, and before 
that action, etc. As a result, the animal learns to execute a sequence of actions in 
order to get to a reward or avoid a punishment; the animal is said to exploit its 
knowledge after a period of exploration of its environment. Reinforcement 
Learning is a detailed computational model that describes how reinforcement can 
propagate back to earlier actions (this process of propagation is also known as 
credit assignment), as well as how the values of actions need to be adapted to 
reflect the received reinforcement (Section 1.3). Recently, neuroscientists have 
found evidence that parts of the human brain (and brains of other animals) seem 
to be involved in exactly this process of reward processing. The basal ganglia (an 
important dopamine system in the brain responsible for the initiation of action) 
are involved in the selection of actions, and neurons in the basal ganglia seem to 
encode the reinforcement signal, i.e., the change that needs to be made to the 
value of an action. Neurons in the prefrontal cortex (responsible for planning and 
executive, reflective processing) seem to encode the value (i.e., the effective 
credit a certain action is responsible for) of actions in a certain context. In 
studying learning, Reinforcement Learning seems to be a good candidate model; a 
point of view that is detailed in Section 1.3.  

In Chapter 2 we introduce a measure for artificial affect that relates to a 
simulated animal’s relative performance on a learning task (let’s say, a simulated 
mouse in a maze searching for cheese). As such, artificial affect measures how 
well the simulated animal improves. Our animal learns by reward and 
punishment, thus, in our case, how “well” can be defined as the average 
reinforcement signal. Therefore the animal’s performance can be defined as the 
difference between the long-term average reinforcement signal (“what am I used 
to”) and the short-term average reinforcement signal (“how am I doing now”) (cf. 
Schweighofer & Doya, 2003). Artificial affect is a measure for how good or bad 
the situation of the agent is. 

In this thesis we explore, among other things, how affect can be used to 
influence learning by controlling when to explore versus exploit. As mentioned 
earlier, animals need to sometimes explore their environment, sometimes exploit 
the knowledge they have of that environment. Simulated animals also need to do 
so. To learn where the cheese is, learn different routes to the cheese, learn 
alternative cheese locations, adapt to new cheese locations, etc., a simulated 
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mouse sometimes needs to explore (to find new stuff) and sometimes needs to 
exploit (to eat cheese). Controlling exploration versus exploitation is an important 
problem in the robot learning domain. By using artificial affect to control 
exploration, and by coupling artificial affect to affect in the psychological 
literature, an important step is made towards autonomous control of learning 
behavior in a way compatible with nature. We show that in some cases it is indeed 
beneficial 1  to the learning simulated animal to control exploration and 
exploitation by means of artificial affect. 

A second aspect explored in this thesis is how affect can be used to control 
learning more directly, much like a parent that approves or disapproves of a 
child’s behavior. We study, using a simulated robot, the effect of a human 
observer parenting a robot “child”. The robot has to learn a certain task, and the 
human observer can approve or disapprove the robot’s actions by expressing 
emotional expressions to a camera. The expressions are analyzed in terms of 
positive and negative affect and fed to the learning robot. This reinforcement 
signal is used to train the robot, in addition to the normal reinforcement signals 
given to the robot by the environment it behaves in. We show that learning can 
improve2 if such social-based feedback is added to the learning mechanism. 

1.2 Computational Models, Psychology and Artificial Intelligence. 
Before entering the specifics of the research described in this thesis, a short 
introduction into the relation between computational models, psychology and 
artificial intelligence is useful. Computers can be used to model many different 
phenomena and systems. For example, weather forecasts in fact result from 
computational (mathematical) models that simulate interaction patterns between 
the different elements that constitute “the weather”, such as air pressure, wind 
speeds, land elevation, etc. So in essence, a weather forecast is a prediction of the 
“theory of the weather” by means of a computational model of that theory. In the 
same spirit, computational models exist that are inspired by, based on, or 
explicitly implementing psychological theories. Depending on the level of fidelity 
to the theory, the model can be used to gain insights into, and potentially predict 
consequences of the psychological theory. 

On the other hand, natural theories (such as psychological, economical and 
biological ones), once implemented, can be very useful in the computer science 
domain itself. Consider, for example, the Traveling Salesman Problem (TSP), a 

                                                 
1  Beneficial in terms of (1) effort involved (steps) in finding solutions, and (2) more 
rewarding solutions. 
2 Improvement in terms of quicker learning of the solution to the task at hand. 
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typical computational problem defined by finding the shortest route (or at least a 
route shorter than an arbitrary given length K) that visits all locations from a set of 
locations exactly once (e.g., a traveling salesman that wants to travel from city to 
city in the most efficient way). TSP is an NP-complete problem. In short, this 
means that to check if a given route is a solution to a certain instance of the TSP 
problem (meaning that the route addresses all locations and is shorter than length 
K), a polynomial number of calculations is needed3. Checking a solution is easy in 
terms of time needed for checking. However, finding the shortest route (or 
deciding if a route shorter than K exists) generally takes an exponential amount of 
calculations, so finding the best route is difficult. This is due to the fact that the 
number of possible routes that exist between a set of locations grows 
exponentially with the number of locations. The number of possible routes 
becomes extremely large even for a small number of locations. An exact solution 
(i.e., the best route) to this problem is often unnecessary for a real salesman, and 
for large sets of locations practically impossible. Biologists have studied the 
behavior of ants intensively and found that ants have an interesting way to find 
shortest routes to food by leaving scent trails that grow stronger every time an ant 
uses the same route and finds food at the end. By doing so, ant colonies as a 
whole have evolved a practical, approximate solution (a.k.a. heuristic) to the 
problem of finding shortest paths. Currently, much research is being done on ant-
colony-based heuristics to find practical solutions to, e.g., the Traveling Salesman 
Problem (Dorigo & Stützle, 2004). This example shows that natural theories can 
inspire the search for solutions to problems in computer science. 

Computational models can thus be used to simulate real-world phenomena, 
and theories about the real-world can inspire the search for solutions to computer 
science problems, a notion underlying natural computing in general (Rozenberg & 
Spaink, 2002). Let’s specifically look at the role of computational models in 
psychology, as well as the role of psychology in computer science. 

                                                 
3 Polynomial in this context means that the number of calculations needed is expressible in 
terms of a power over the size of the problem. So, given n locations, checking if a route 
addresses all locations could take, e.g., n2 calculations, denoted as O(n2), the complexity 
order is called quadratic. Note that for TSP, there are representations of the problem for 
which the order for checking a solution is actually O(n): compare if the route contains all n 
locations; sum over all route’s segments to obtain the route’s length L and compare if L < 
K. Note also that the size of a TSP instance is not measured in terms of the number of 
locations, but in terms of the number of possible location transitions (the potential to move 
from one city to another); it is not relevant to the complexity of the problem how many 
locations there are, but in how many ways one can address them all. A polynomial number 
of calculations is assumed to be tractable (“easy” to solve), while an exponential number of 
calculations (expressible as an exponent, not as a power) is intractable (“hard” to solve).  
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Psychological theories often establish relations (correlations, effects, 
causality) between different aspects of the human mind and observable behavior. 
Such relations are often found using sophisticated psychological tests that 
measure the relation between different constructs. A construct is a measurable 
theoretical abstraction for a certain characteristic, e.g., the construct “intelligence” 
measured with an IQ test representing the level of non-specific skills a person has. 
Relations between constructs can be shown in different ways. Most commonly 
used are the experimental approach aimed at: 

 causality; measure construct A, do something to construct B, than measure 
construct A again to find out if B influenced A in some way,  

 correlation; measure both A and B at the same time and try to find a 
correlation between both, and 

 longitudinal effects; measure A at intervals for a period of many years, 
manipulate B, and try to find trends in A over time. 

Of course, these approaches exist with or without control groups, with or without 
blind and double blind setups, and so on. 

Aimed at understanding the human mind, psychologists want to study not 
only relations between constructs but also want to understand the mechanisms 
responsible for these relations; a notoriously difficult goal, as experimenters 
cannot look in detail in a persons head. Clever experiment designs have by now 
been developed that aim at looking into the mind. An impressive example of this 
can be found in the cognitive psychology domain, e.g., in the domain of working 
memory and attention. To investigate a relatively simple question such as “can a 
person attend to, and process two different stimuli at the same time”, extremely 
complex experiment designs have been developed to answer it; not because this is 
fun, but because the answer must be interpretable in terms of an underlying 
mechanism. In concrete terms this means that, if the answer is, for example, “yes, 
persons can do that”, the following questions immediately pop up. How many 
tasks can we simultaneously execute? What task-load is permissible? What if one 
of the tasks is a heavy one and the other is not, and would performance on the 
latter be compromised? What if one of the tasks is personally relevant? What if 
one of the tasks was a task the person is trained on, and to what extent can tasks 
be executed simultaneously under the assumption that they are indeed trained? 
How much training is needed?  These questions are not so much questions about 
relations anymore, but in fact questions about mechanisms such as “how does 
working memory capacity function?”, “how is context switching executed by the 
human brain?”, and “how do we concentrate (what is concentration)?”. The 
experiment designs needed to study such questions are extremely complex, and 
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very hard to grasp in terms of their consequences for the conclusions (e.g., didn’t 
we forget to control for this or that phenomenon). This is what makes 
experimental psychology such a difficult and challenging scientific enterprise, for 
which strong research methods, many different theories and exact reporting of 
results are critical.  

Fortunately (especially for computer science graduates with a strong interest 
in psychology in search for a topic for their PhD thesis), psychology has added a 
new type of experiment to their research weapon arsenal, a weapon specifically 
targeted at understanding mechanism: computer simulation. Computational 
models need to be specified at a detailed level. As such, in order for a model to 
execute, mechanism details have to be filled in. If this filling in is done based on a 
psychological theory, the model becomes a more detailed version of that theory. 
By executing a computational model, it can provide insights into possible 
mechanisms underlying the relations between constructs. More importantly, if a 
psychological theory already proposes potential mechanisms, the computational 
model can predict consequences of these mechanisms, thereby helping to refine 
the theory. 

Interesting examples include neural network models of human working 
memory and attention (Dehaene, Sergent & Changeux, 2003), but also the many 
computational models of emotion based on cognitive appraisal theory that have 
been implemented in computer systems. Cognitive appraisal theory assumes that 
emotions result from an individual’s cognitive evaluation of the current situation 
in terms of his or her goals and knowledge. Evaluation is often assumed to be 
symbol manipulation. As computers are good at such systematic symbol 
manipulation, this type of theory has been immensely popular as basis for 
computational models of emotion in (simulated) robots. The development of 
computational models based on cognitive appraisal theory advances cognitive 
appraisal theory by refining them (Broekens & DeGroot, 2006; Wehrle & 
Scherer, 2001). Assumptions in the theory need to be made explicit when used in 
a computer program. 

On the one hand, computational modeling is useful to psychology, while on 
the other, as we will see now, psychology is useful to computer science, most 
notably to the field of artificial intelligence. 

Broadly speaking, Artificial Intelligence (AI) (Russell & Norvig, 2003) 
studies how computer programs can solve problems, inspired by how nature 
(including animals, cells, molecules, etc.) solves problems. Intelligence in AI is a 
vast concept. It includes reactive behavior of autonomous robots aimed at solving 
concrete problems (e.g., simulated ants in the traveling salesman problem 
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heuristic mentioned above), adaptive stock-price prediction software, and 
symbolic reasoning processes aimed at transport and military operations planning. 
In AI, a computer program (the mechanism used to simulate nature) is also 
defined in a broad way. A program in AI can range from a collection of 
preprogrammed algorithms that execute planning routines to find optimal 
planning solutions in advance (e.g., planning an optimal route for a transport 
company), to reward-based learning mechanisms that continuously adapt their 
input-output behavior such that the robot they are controlling is able to learn new 
tasks. So, AI is not exclusively about robots, nor is every robot intelligent. AI is 
not exclusively about putting loads of knowledge in a database and programming 
an algorithm that reasons over that knowledge, nor is every knowledge base 
intelligent. And, to do away with another common misconception: the grand aim 
of Artificial Intelligence is not about creating intelligence that is artificial as in 
“fake”, “dumber than real”, and “superficial”, it is about studying the processes 
and mechanisms of intelligence using artificial means, such as digital computers. 
If there is a common grand “creational” aim then this would be to develop 
intelligent, autonomous systems that are able to think and act for themselves, in a 
way that reflects the wit and cunning of natural intelligence.  

Many of the techniques used in AI directly come from other disciplines, such 
as neuroscience, psychology and biology. For example, artificial neural networks 
are based on the work by the neuropsychologist Donald Hebb (1904-1985), who 
described the learning process of neurons in terms of the correlation between pre- 
and post-synaptic firing, now called Hebbian learning. If two neurons are 
connected through a synapse, and both the pre-synaptic neuron A (exciting neuron 
B) and the post-synaptic neuron B (excited by A) activate (fire) at about the same 
time, the strength of the connection is increased, thereby increasing the 
probability that neuron A excites B in the future. This model underlies many of 
the learning mechanisms implemented in artificial neural networks, but also 
underlies connectionist learning models in general. 

Another, more specific, example is the application of Soar in the area of 
computer games research as well as medical image analysis. Soar (originally for 
State, Operator And Result) is a cognitive architecture aimed at problem solving 
through rule matching. It is based upon the idea of a unified theory of cognition, 
proposed by Newell (1990), integrating theories of cognition from many different 
disciplines. Key elements of Soar are its ability to plan for, reason about and act 
upon a situation using rule matching in recursive thought cycles. In every cycle, 
all rules that apply to the current situation activate. The activation strength of a 
rule depends on how well the rule matches the current situation. The most 
strongly activated rules are allowed to propose new “facts”, such as actions that 
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can be executed by the robot controlled by the Soar program. If no rules activate 
based on the current situation, a new “problem” is created, and Soar tries to 
recursively solve this problem. Once the problem is solved, Soar creates a new 
rule for future use, solving that problem more efficiently should it pose itself 
again. This architecture, proposed as a symbolic theory of cognition, has been 
used to build intelligent computer game agents that predict what other agents 
(e.g., the user) will do (Laird, 2001). In the medical domain it is currently being 
used in image analysis software agents: specialized programs responsible for 
analyzing a specific type of information in an image to coordinate, e.g., analysis 
of coronary plaque images (Bovenkamp et al., 2003). 

We have seen that computer science—specifically artificial intelligence—and 
psychology—specifically cognitive psychology—are fields that strongly 
influence each other in many ways. This influence dates from the very early 
1950’s. Alan Turing’s (1950) well-known paper on machine intelligence was 
published in Mind, a psychological and philosophical journal, at about the same 
time as the seminal papers that started the cognitive revolution in psychology. 
Donald Hebb (1949) presented such a clear description of how brains learn that 
this opened up an information processing view of the mind. The mechanisms he 
described have by now been applied in robotics and AI many times.  

Most important to this thesis are the concepts affect and instrumental 
conditioning. Instrumental conditioning underlies Reinforcement Learning (RL) 
(Sutton & Barto, 1998), a method that has proven to be critical for artificial task-
learning. As we have used RL as a model for learning in our research, it is one of 
the cornerstones of our approach. We devote the next section to it. We use 
artificial affect to influence learning. Therefore, affect is the second cornerstone. 
We devote Section 1.4 and Chapter 2 to the latter topic. 

1.3 Learning, Instrumental Conditioning, Reinforcement Learning. 
Animals learn behavior in a variety of ways, such as by imitation, by play, and by 
trial and error. Instrumental conditioning is the more formal name for learning 
behavior by trial and error. For example, rats learn to push buttons or pull levers 
in order to receive food. To learn this behavior they have to try actions before 
they know the result of that action. It could be that pushing a button results in the 
rat being punished. As there is no way to know this beforehand, the rat has to try 
to push the button, at least for the first time. After pushing it, the rat either 
receives food, or some kind of punishment (e.g., a loud sound). The animal learns 
to repeat the actions that lead to food, and avoid actions that lead to punishment. 
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This is called instrumental conditioning (see Anderson, 1995): learning to repeat 
or avoid actions in a certain situation, based on reward and punishment.  

Interestingly, many animals learn to execute sequences of actions. To take our 
rat example, the rat not only learns to push the button for food, it also learns to 
walk to the button after having looked around for the button after having entered 
the specific rat-maze room in which the button is located, etc. By reinforcing a 
certain situation-action couple, not only the last action is influenced, but also the 
sequence of environment-rat interactions leading to that reinforcement. Further, 
this sequence is better learned if it is repeated. So, repetition of a sequence of 
interactions ending with reinforcement enables the rat to learn that sequence 
better and better. The same mechanisms can account for many goal-directed 
behaviors of humans. We rarely do something without having received rewards, 
and by training we become better at it. Sometimes the reward is indirect, such as 
in the case of money. It is straightforward to argue that money has become a 
reinforcer by itself because humans have associated it with more natural 
reinforcers (Anderson, 1995), such as food (restaurants, candy), play (vacation, 
toys) and social interaction (having a drink with friends, going to the theatre or a 
rock concert, distributing candy at school). We learn to work (a long sequence of 
actions) for money, because money gives us naturally reinforcing stuff. 

Finally, discounting is a concept of critical importance: rewards and 
punishments in the future are perceived as less important than in the here and 
now. Animals discount the value of reinforcement, dependent upon the time 
passed between administration of the reinforcement and the action to be 
reinforced. As a result, reinforcement most strongly influences the action 
executed just before receiving the reinforcement.  

In this section we will see that the machine learning concept of Reinforcement 
Learning is a very good model for instrumental conditioning. 

1.3.1 Reinforcement Learning  

Strongly related to instrumental conditioning, there is a form of machine learning 
called Reinforcement Learning. Reinforcement Learning (RL) (Sutton & Barto, 
1998) is a computational framework describing how in an environment 
appropriate actions can be learned purely based on exploration and reinforcement. 
Actions are appropriate if they maximize some signal from the environment, say a 
reward. As such, RL, is a particular computational model of instrumental 
conditioning4. A formal description of RL is the problem of learning a function 

                                                 
4 Dayan (2001) and Kaelbling, Littman and Moore (1996) discuss some of its limitations. 
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food choice sound 

start 

that maps a state to an action, such that, given a certain history of state-action 
transitions, for all states this mapping results in an action that yields the highest 
cumulative future reward as predicted by that history of state-action transitions. In 
normal language this means that RL attempts to recognize the best possible action 
in a situation, given a certain amount of experience. 

We have used Reinforcement Learning as a basis for learning in this thesis. 
The main reason for this choice is that RL maps very well to animal task learning 
(instrumental conditioning). The second reason is that RL has proven to be the 
most successful paradigm for the machine learning of tasks composed of multiple 
actions that are not known in advance. Other forms of learning, such as 
supervised learning, need a human observer. RL does not, it learns by trial and 
error, providing a clear benefit: a RL system learns autonomously. This is 
important for, e.g., robot learning. By investigating the relation between RL and 
affect, we hope to advance a well known machine learning paradigm as well as 
shed some light on the potential relation between affect and learning.  

In essence, RL aims at solving the credit assignment problem (Kaelbling, 
Littman & Moore, 1996). That is, how much credit should an action get, based on 
its responsibility for receiving current and future rewards; in other words, how 
should an action in a certain situation be valued given its immediate reward as 
well as all rewards that might follow? Note that from now on we will talk about 
reward when we mean reinforcement. Reward can thus be positive and negative. 
A classical representation of a function that represents a solved credit assignment 
problem is a 2-dimensional table with cells representing the value of all actions in 
all possible states, rows representing states, and columns representing actions 
(Table 1.1). If this table is used for control, i.e., to select actions for execution by 
a simulated animal, the current observed state is used as row entry, and the action 
belonging to the cell with the highest value on that row is selected. For example, 
if the simulated animal would be in state choice (Figure 1.1), the best action to 
perform is left. When the action left is executed a state change occurs, and the 
next state is observed by the simulated animal; food in our case. Now the process 
of action-selection can be repeated. 

 Figure 1.1 The maze solved by the function depicted in 
Table 1.1. The cheese has a reward of +1, while the loud 
sound has a reward of −1. States are called food, choice, 
sound, start for “mouse at cheese”, “mouse at junction”, 
“mouse in sound room”, and “mouse at start”. This is a 
four-state problem. 
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choice food 

start 

sound

 Figure 1.2 A state-transition 
diagram for the maze presented in 
Figure 1.1. Arrows denote move 
actions. Probabilities are assumed 
to be equal to 1 (i.e., choosing, for 
example, up always results in the 
state pointed to by the up-arrow). 
The states, sound and food are 
terminal states. 
 
 

Table 1.1 The classical representation of a 
function that solves a specific credit 
assignment problem, in our case food-finding 
in a simple maze (Figure 1.1). The discount 
factor, γ, equals 0.5. So the importance of 
future rewards drops with a factor of 2 for 
every step in between an action and a reward. 

States are called food, choice, sound, start for “mouse at food”, “mouse at junction”, 
“mouse in sound room”, and “mouse at start” respectively. We assume that when the 
mouse arrives at food or sound, it can not exit that place by itself. We further assume that
moving outside the maze does not result in a state change. This table presents the solution
to our four-state problem. 

 left right up down eat 

start 0.125 0.125 0.25 0.125 0 

choice 0.5 −0.5 0.25 0.125 0 

food 0 0 0 0 1 

sound −1 −1 −1 −1 −1 

 At an architectural level, the RL problem can be formally described as 
follows. It consists of a set of states, S, a set of actions, A and a transition function 

]1,0[: →×× SAST defining how the world changes under the influence of 
actions giving the probability T(s, a, s') that action a in state s results in state s', 
where the sum over all s' of T(s, a, s') equals 1. Further, a reward function 

ℜ→× ASR :  and a value function ℜ→SV : are defined. The states S contain 
representations of the world perceived by the agent, such as a start state, a food 
state etc. Note that from now on we use the term agent to refer to a simulated 
animal or robot. The actions A contain all possible actions the agent can execute, 
such as left, right, up, down and eat. The transition function defines the 
probability of ending up in one state, assuming a current state, s and action, a. So, 
the agent’s world is probabilistic5. The reward function defines the reward for a 
certain action, a, when executed in state, s. The value function maps a state, s, to a 
cumulative future reward. So, if an agent knows T and V the optimal next action 
can be selected using: 

                                                 
5 but stationary, i.e., the probabilities do not change (Kaelbling et al., 1996). 
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The best action a* is the action with the highest sum of immediate reward R(s, a) 
and value predictions V(s’), over all possible next states s’ resulting from action 
a*, weighted according to their probability of occurrence T(s ,a ,s’). Note that the 
summation in formula (1.1) is needed as in a probabilistic world multiple states s' 
might result from action a. In our example, moving up in state start would be the 
best action, because R(start, up) + 0.5T(start, up, choice)V(choice) = 0 + 
0.5*1*0.5 = 0.25, which is the highest value (we assume that the probability of 
ending up in state choice after executing up in state start equals 1, so in our case 
we only have one possible next state s’ after executing action up in state s). 
However, to select this action we have to know both V(choice) and T(start, up, 
choice). 

Solving the credit assignment problem has thus become a question of learning 
the value function V, together with the transition function T. The main question is, 
how? The short answer is: by trial and error; try actions in states, record the 
received reward and the resulting state, and update both V according to the 
reward, as well as T according to the probability of arriving in that new state. The 
longer, formal answer is: by value propagation according to the following 
formula:  

⎟
⎠

⎞
⎜
⎝

⎛
+← ∑

∈Ssa
sVsasTasRsV

'
)'()',,(),(max)( γ   (1.2) 

which is equivalent to ( )*)( avalsV ← , with val(a*) the value of action a* 

The formula updates the value for state s with the immediate reward R(s, a) and 
discounted future values V(s’) for all s’ possibly resulting from action a weighted 
according to the probability T(s, a, s’) that transition s s’ occurs due to action a. 
Again, action a is chosen such that it is the best one possible. This enforces 
conversion of values to the highest possible value attainable by the agent. 

By now, many different version of RL exist that all solve the credit 
assignment problem in a slightly different way (for a dated but excellently written 
overview, see Kaelbling et al., 1996). In general there are two different types of 
RL approaches; model-based and model-free. Model-based approaches have (or 
learn) a model of the world that consists of a (probabilistic) state transition 
structure (Figure 1.2). Model-based approaches thus have a function T. The 
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research in Chapter 3 and 4 is based on model-based RL. Model-free approaches 
do not have such a world model. Model-free approaches thus need to learn V in a 
different way, as they do not possess the function T while this function is needed 
for value propagation as described in formula (1.2). The research in Chapter 6 is 
based on model-free RL. 

In the model-free case, V can be learned in the following way. It can be shown 
(Singh, 1993) that the following formula converges to an optimal value function 
V, if a sufficient and unbiased amount of exploration occurs during learning, and 
the learning rate α is gradually decreased from 1 (in the beginning of learning) to 
0 (at the end of learning):  

( ))()'()()( sVsVrsVsV −++← γα , with r the reward (1.3) 

It is quite well possible to intuitively grasp this without proof. If an agent has an 
infinite amount of time to keep trying things in a world, it eventually bumps 
infinitely many times into all possible situations that exist in that world. This 
means that it will see the transitions s s’,s’’,… for all s many times. Every such 
transition updates V(s) a little bit, so together V(s) accumulates the results of all 
these transitions. It correctly estimates the value of s by sampling a representative 
number of transitions resulting from s. So, an agent (or real animal for that matter) 
has to explore—i.e., sample a representative number from all possible interactions 
with the environment—to be able to learn a useful value function. After 
exploration, the agent can use the learned value function to act, i.e., the agent can 
exploit its knowledge. The exploration – exploitation tradeoff is a very important 
issue in Reinforcement Learning (Sutton & Barto, 1998). Without a good 
mechanism to decide when to explore versus exploit, RL cannot learn an optimal 
value function. 

It is important to note here that there are ways in which an artificial agent can 
learn an optimal interaction model (in terms of maximizing cumulative reward). 
One of these is to let the agent first explore a large amount of time, and then 
switch to an exploitation mode. However, this is not plausible from a natural point 
of view. No animal can afford to purely explore, as this is just too risky. In our 
learning models (Chapter 3 to 6), we take this into account. We have no separate 
exploration – exploitation phases; our agents learn the value and transition 
function while at the same time using these for action selection (called certainty 
equivalence, see Kaebling et al, 1996). Our agents thus assume that their world 
model is a correct estimation of the world they interact with. 
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1.3.2 Reinforcement Learning as a Model for Instrumental Conditioning 

As mentioned before, one of the main reasons for using Reinforcement Learning 
(RL) as learning mechanism in studying the interplay between affect and learning 
is that RL very well models instrumental conditioning. RL models instrumental 
conditioning in at least three important ways. 

 First, it associates rewards with the probability of execution of actions in a 
certain situation, as in instrumental conditioning. The simulated animal learns 
to repeat actions based on an association between reward and action. 

 Second, by repetition the learned association becomes more accurate, and as 
such the probability to execute actions that result in reward becomes larger 
(positive reward) or smaller (no reward, or punishment). 

 Third, the learned value for a situation can influence the execution of actions 
in earlier situations. We thus see that RL provides an answer to how 
sequences of actions can be learned by trial and error: propagate the reward 
through the sequence back to the beginning such that the right amount of 
credit is given to the individual actions in the sequence. 

Recently, the mechanism of Reinforcement Learning has been tied to neural 
substrates involved in instrumental conditioning. For example, there are strong 
links between dopamine brain systems and RL (Dayan & Balleine, 2002; 
Montague, Hyman & Cohen, 2004; Schultz, Dayan & Montague, 1997). It seems 
that neurons in these regions encode for the RL error signal, i.e., the change to 
the expected value of a situation, ΔV(s). More recently Foster and Wilson (2006) 
showed that awake mice replay in reverse order behavioral sequences that led to a 
food location; a crucial finding for the above mentioned link. It suggests that mice 
can replay sequences backward from the goal location to the start location. This is 
a mechanism that would be needed to speed up value propagation back to the 
beginning, and is highly compatible with the RL concept of eligibility traces 
(Foster & Wilson, 2006). An eligibility trace (for details see Sutton & Barto, 
1998) is a state sequence leading to a certain reward or punishment. In RL, 
eligibility traces can be used to speed up learning. The idea is to update the 
complete sequence based on that reward (such a sequence represents a trace of 
situations that is eligible for the resulting reward). In RL, updating the value of 
states in this trace can be done in any order. In nature, backwards is more 
plausible than forwards for the following reason. Assumed that the brain is a 
connectionist architecture primarily learning by means of Hebbian mechanisms, 
in order for two situation representations to transfer a characteristic (e.g., reward) 
between each other, both have to be active at the same time. If a state sequence is 
replayed backwards, pair-wise activation of two consecutive states, for all states 
in the sequence starting at the end, would in principle suffice to (partly) transfer 
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the reward to the start of the sequence. However, for any other order to get the 
same value propagation result, it would need either massive repetition of activated 
pairs of representations or activation of all pairs at the same time. So, activation of 
the state sequence from the end, back to the beginning seems more efficient than 
any other order6. It is therefore interesting to see that mice seem to indeed replay 
in reverse order the “states” they visited while walking towards the food. 

Finally, animal learning by trial and error closely matches RL in how 
experience of the world is built up: by means of a sufficient number of interaction 
samples to build up the value function. Trials are samples from all possible 
interactions with the environment; errors (rewards) change the value and reward 
functions learned by the animal. If an animal is a good explorer, it will be better at 
finding optimal solutions because it samples more possibilities from the 
environment, therefore the animal’s resulting value function has more chance to 
better estimate the real value function. On the other hand, exploration is risky: if 
you don’t know what the result will be, you could die. Animals that do not 
explore will stick to their current interaction pattern. This means that as long as 
the interaction pattern is appropriate for the environment they are in, they will do 
better than explorers: they don’t waste time exploring useless options while they 
have a good option available. However, as soon as the environment changes, they 
will die because of the useless option and the lack of exploration. To learn a good 
value function, a sufficient amount of exploration is needed. So, also in real life, 
the tradeoff between exploration and exploitation is important. Actually it is much 
more important in real life, as one stupid action can result in death or illness, 
while in a simulated world it only results in a negative reward. A second 
difference is that in real life one can not afford to have a pure exploration phase: 
this would most certainly result in at least one very stupid action, hence death. As 
a result, the exploration – exploitation tradeoff is even more important. Both have 
to be in balance for an agent to survive. In Chapter 3 and 4 we explore to what 
extent artificial affect can be used to control the exploration - exploitation 
tradeoff. We have based these studies on how affect influences learning in 
humans, a topic introduced in the next section, and in more detail in Chapter 2. In 
order to stay consistent with nature, we do not separate exploration - exploitation 
phases. 

Although from this description it seems that RL has been used primarily to 
simulate learning animals, this is not the case. RL has been widely used to learn 
computers to play games (e.g., Tesauro, 1994), to control cars to autonomously 
drive based on visual input (e.g., Krödel & Kuhnert, 2002) and to control robots 
(e.g., Theocharous, Rohanimanesh & Mahadevan, 2001). 

                                                 
6 Interestingly, value propagation in RL is in the same direction, that is, backwards. 
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1.4 Emotion, Affect and Learning 
In this thesis we specifically focus on the influence of affect on learning. Affect 
and emotion are concepts that lack a single concise definition, instead there are 
many (Picard et al., 2004). Therefore we first explain the meaning we will use for 
these terms. In general, the term emotion refers to a set of in animals naturally 
occurring phenomena including motivation, emotional actions such as fight or 
flight behavior and a tendency to act. In most social animals facial expressions are 
also included in the set of phenomena, and—at least in humans—feelings and 
cognitive appraisal are too (see, e.g., Scherer, 2001).  A particular emotional state 
is the activation of a set of instances of these phenomena, e.g., angry involves a 
tendency to fight, a typical facial expression, a typical negative feeling, etc. Time 
is another important aspect in this context. A short term (intense, object directed) 
emotional state is often called an emotion; while a longer term (less intense, non-
object directed) emotional state is referred to as mood. The direction of the 
emotional state, either positive or negative, is referred to as affect (e.g., Russell, 
2003). Affect is often differentiated into two orthogonal (independent) variables: 
valence, a.k.a. pleasure, and arousal (Dreisback & Goschke, 2004; Russell, 
2003). Valence refers to the positive versus negative aspect of an emotional state. 
Arousal refers to an organism’s level of activation during that state, i.e., physical 
readiness. For example, a car that passes you in a dangerous manner on the 
freeway, immediately (time) elicits a strongly negative and highly arousing 
(affect) emotional state that includes the expression of anger and fear, feelings of 
anger and fear, and intense cognitive appraisal about what could have gone 
wrong. On the contrary, learning that one has missed the opportunity to meet an 
old friend involves cognitive appraisal that can negatively influence (affect) a 
person’s mood for a whole day (time), even though the associated emotion is not 
necessarily arousing (affect). Eating a piece of pie is a more positive and 
biochemical example. This is a bodily, emotion-eliciting event resulting in mid-
term moderately-positive affect. Eating pie can make a person happy by, e.g., 
triggering fatty-substance and sugar-receptor cells in the mouth. The resulting 
positive feeling is not of particularly strong intensity and certainly does not 
involve particularly high or low arousal, but might last for several hours. 

We use affect to denote the positiveness versus negativeness of a situation. In 
the studies reported upon in this thesis we ignore the arousal a certain situation 
might bring. As such, positive affect characterizes a situation as good, while 
negative affect characterizes that situation as bad (e.g., Russell, 2003).  

Emotion plays an important role in thinking, and evidence is abundantly 
available. Evidence ranging from philosophy (Griffith, 1999) through cognitive 
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psychology (Frijda, Manstead & Bem, 2000) to cognitive neuroscience (Damasio, 
1994; Davidson, 2000) and behavioral neuroscience (Berridge, 2003; Rolls, 2000) 
shows that emotion is both constructive and destructive for a wide variety of 
behaviors. Normal emotional functioning appears to be necessary for normal 
behavior. 

Emotion7 influences thought and behavior in many ways. Emotion can be a 
motivation for behavior. Emotion is related to the urge to act (e.g., Frijda & 
Mesquita, 2000): run away when in danger, fight when trapped, laugh and play 
when happy. Specific emotions trigger specific behaviors (e.g., fight or flight). 
So, emotion is not only related to the urge to act, some emotions—when strong 
enough—make us really act. 

Emotion and feelings influence how we interpret stimuli, how we evaluate 
thoughts while solving a problem (Damasio, 1996) and how we remember things. 
A person's belief about something is updated according to emotions: the current 
emotion is used as information about the perceived object (Clore & Gasper, 2000; 
Forgas, 2000), and emotion is used to make the belief resistant to change (Frijda 
& Mesquita, 2000). Ergo, emotions are “at the heart of what beliefs are about” 
(Frijda et al., 2000). As shown by the “should I stay or should I go” scenario 
presented earlier in this introduction, we often decide to do something based on 
how that option feels to us. 

Finally, emotion influences information processing in humans; positive affect 
facilitates top-down, “big-picture” heuristic processing while negative affect 
facilitates bottom-up, “stimulus analysis” oriented processing (Ashby, Isen & 
Turken, 1999; Gasper & Clore, 2002; Forgas, 2000; Phaf & Rotteveel, 2005). As 
a result, positive affect relates to a “forest” or goal-oriented look (we interpret 
what we see in the context of our existing knowledge), while negative affect 
relates to a “trees” or exploratory look (we critically examine incoming stimuli as 
they are).  

Several psychological studies support that enhanced learning is related to 
positive affect (Dreisbach & Goschke, 2004). Others show that enhanced learning 
is related to neutral affect (Rose, Futterweit & Jankowski, 1999), or to both 
(Craig, Graesser, Sullins & Gholson, 2004). Although much research is currently 
being carried out, it is not yet clear how affect is related to learning in detail. 

In this thesis we computationally address this issue: in what ways can affect 
influence learning. We do not model categories of emotions nor use emotions as 

                                                 
7 An emotion is different from a feeling. A feeling is in essence your mental representation 
of yourself having the emotion. 
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information in symbolic-like reasoning. So the research goal has not been to 
investigate how agents can reason “emotionally”, such as in the work by Marsella 
and Gratch (2001), or interact emotionally with humans (Heylen et al, 2003). 

1.5 Questions Addressed and Thesis Outline. 
To study the influence of affect on learning, in a Reinforcement Learning setting, 
we first have to evaluate whether affect can be used in this context: we have to 
define affect in a Reinforcement Learning context. In Chapter 2 we define 
artificial affect in detail. In Chapter 3 to 6 we study three different ways in which 
affect can influence learning, where learning in each chapter is modeled using a 
different variation of RL. 

In Chapter 3 we investigate how artificial affect can control exploration 
versus exploitation. As the amount of exploration strongly influences learning 
behavior, and as it has been found (e.g., in the studies mentioned earlier) that 
affect relates to broad (explore) versus narrow information (exploit, goal directed) 
processing, we have investigated how artificial affect can control exploration 
versus exploitation in agents. A simulated “mouse” in a grid-world maze can 
either search for “cheese” (eating cheese is its goal) by trying actions it does not 
know the consequences for (explore), or use its model of the environment it has 
built up so far in an attempt to walk to the cheese by trying actions it thinks it 
knows the consequences for (exploit). We couple artificial affect to exploration 
and exploitation in different ways, according to studies reported by Dreisbach & 
Goschke (2004) and Rose et al. (1999): positive affect increases exploration (and 
negative affect increases exploitation) and vice versa. In RL terms, we use 
artificial affect as meta-learning parameter (see also Doya, 2002) to control 
exploration versus exploitation by dynamically coupling it to the greediness of the 
action-selection function responsible for making this choice (the β parameter of 
the Boltzmann distribution, in our case). A meta-learning parameter is a 
parameter that influences learning, but does not contain information about the task 
to be learned per se, e.g., the choice to explore versus exploit, or the speed with 
which to forget knowledge you had acquired. We use a version of RL that is 
similar to Sarsa (Rummery & Niranjan, 1994; Sutton, 1996). The main findings 
are that (1) both negative affect and positive affect can be beneficial to learning, 
and (2) negative affect seems to be related to less selective decisions while 
positive affect is related to more selective decisions.  

In Chapter 4, we investigate the influence of affect on thought. Instead of 
studying the influence of artificial affect on action-selection in a purely reactive 
agent, we now study the influence of artificial affect on “thought selection” in a 
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more cognitive agent. In our study, we have defined thought as internal 
simulation of potential behavior, according to the Simulation Hypothesis, 
proposed by Hesslow (2002) and Cotterill (2001). This process of simulation uses 
the same brain mechanisms as those used for actual behavior. For example, if I 
consciously think of going home and play games, I, in a sense, go home and do so 
without moving my body. Simulating going home thus enables me to evaluate 
how I feel about going home by triggering the same brain areas and processes that 
would have been triggered if I went home and started playing. This again enables 
me to decide whether I should do it or not, showing that simulation could be 
useful for decision making and action selection. We have developed a variation to 
the model-based RL paradigm, called Hierarchical State Reinforcement Learning, 
which enables us to study this question. We computationally investigate, again 
using a grid-world setup, the influence on learning efficiency when artificial 
affect controls the amount of internal simulation. Artificial affect is dynamically 
coupled to the greediness of the simulation-selection mechanism responsible for 
selecting potential actions for internal simulation. As such we model affective 
modulation of the amount of thought during a learning process. The main findings 
are that (1) internal simulation has an adaptive benefit and (2) affective control 
reduces the amount of simulation needed for this benefit. This is specifically the 
case if positive affect decreases the amount of simulation towards simulating the 
best potential next action, while negative affect increases the amount of 
simulation towards simulating all potential next actions. Thus, agents “feeling 
positive” can think ahead in a narrow sense and free-up working memory 
resources, while agents “feeling negative” are better off thinking ahead in a broad 
sense and maximize usage of working memory.  

In Chapter 5 we discuss related and future work in the context of the studies 
presented in Chapter 3 and 4. 

In Chapter 6, we investigate how affect can be used to influence behavior of 
others. Emotion and affect are important social phenomena. One way in which 
affect is important socially is that it enables effective parenting. Affect 
communicated by a parent can be seen as a reinforcement signal to a child. In this 
chapter we investigate the influence of affect communicated through facial 
expressions by a human observer on learning behavior of a simulated “child”. We 
thus investigate the effect of parenting a simulated robot using affective 
communication. Two important differences exist between the study in this chapter 
and those in Chapters 3 and 4. First, we use a continuous (non-discrete) grid-
world setup, use real-time interaction between the robot and the human “parent”, 
and use a specifically developed neural-network approach to Reinforcement 
Learning applicable to this context. This has been done to match real-world 
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learning problems more closely. Second, we use affect in a different way. In 
Chapter 3 and 4, we use artificial affect as defined in Chapter 2; i.e., a long-term 
signal originating from the simulated agent, used by the simulated agent to control 
its own learning-parameters. In contrast, in the experiments reported in Chapter 6, 
we use affect as a short-term signal related to emotion, originating from an 
observing “parent” agent, used to influence the reinforcement signal received by 
the simulated robot. The main finding is that the simulated robot indeed learns to 
solve its task significantly faster (measured quantitatively) when it is allowed to 
use the social reinforcement signal from the human observer. As such, this 
chapter presents objective support for the viability and potential of human-
mediated robot-learning.  

In Chapter 7, we take a theoretical approach towards computational modeling 
of emotion. We present a formal way in which emotion theories can be described 
and compared with the computational models based upon them. We apply this 
formal notation to cognitive appraisal theory, a family of cognitive theories of 
emotion, and show how the formal notation can help to advance appraisal theory 
and help to evaluate computational models based on cognitive appraisal theory: 
the main contributions of this chapter. Although this chapter is quite different 
from the others, it fits within the general approach: that is, the use of 
computational models to evaluate emotion theories.  

1.6 Publications 
A revised version of Chapter 3 has been published in (Broekens, Kosters & 
Verbeek, 2007). Parts of Chapter 4 have already been published earlier (Broekens, 
2005; Broekens & Verbeek, 2005), while Chapter 4 is a slightly revised version of 
the article by Broekens, Kosters & Verbeek (in press). Chapter 6 has been 
published in (Broekens & Haazebroek, 2007), while an extended and revised 
version has been published as a book chapter in (Broekens, 2007). Earlier 
versions of the work in Chapter 7 have been published (Broekens & DeGroot, 
2004c; Broekens & DeGroot, 2006), while a revised version of Chapter 7 is 
published in (Broekens, Kosters & DeGroot, in press). 
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