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General introduction 

 

It is estimated that the world’s population will increase by 2.3 billion (or 34%) by 2050. 

Moreover, the average food consumption is also expected to rise from 2000 to 3070 

kcal per person per day. To meet these demands, agricultural production has to be 

increased by 60% over the next 40 years (FAO, 2012). This can be achieved by the 

expansion of the amount of farmland and/or by increasing agricultural productivity. 

Expanding agricultural land is difficult because this possibility is limited by a number of 

important constraints such as competing with urban growth and scarcity of fresh 

water. Therefore, improvement of agricultural productivity will be the key approach 

for reducing the global food insecurity over the coming decades.  

It is possible to increase agricultural productivity by stimulating plant yield and by 

protecting crops from phytopathogens. Commercial fertilizers and pesticides, which 

are commonly used for these practices, are dominated by synthetic products. 

However, because of growing concern about the negative impact of chemical fertilizers 

and pesticides on human and environmental health, farmers are encouraged to use 

more environmentally friendly alternatives [Directive 2009/128/EC, Regulation (EC) 

1107/2009]. Biofertilizers and biopesticides may become the preferred substitutions 

for some conventional synthetic products. Since such biopreparations are based on 

non-pathogenic life microorganisms, they can substantially contribute to the 

sustainable production of environmentally friendly and low chemical residue products.  

At present, the majority of the registered bacterial products in Europe is based on 

species of Bacillus and Pseudomonas (EU Pesticides Database, 2012). Members of both 

genera are predominant in soil and plant microenvironments, presumably due to their 

high growth rate and simple nutritional requirements. These species are widely known 

for their versatile metabolic activity and diverse beneficial effects on plant vigor and 

health. Moreover, their beneficial action can be expressed on a large range of plants 

which places these bacteria among the best candidates for the development of 

biopreparations. However, despite these positive characteristics, bacterial products 

can show some inconsistency between trials (Montesinos, 2003). This is assumed to be 

due to the short persistence of bacterial cells in the rhizosphere/soil environment and 

their susceptibility to unfavorable environmental conditions.  

One possible way to overcome these drawbacks is to develop biopreparations 

based on beneficial endophytic bacteria. Since bacterial endophytes colonize the plant 
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interior, which is a stable and protected environment, their interaction with a plant 

can grow into a longer relationship. In addition to housing endophytic bacteria, plants 

provide them with nutrients and, in turn, some endophytes recompense their hosts by 

stimulating plant growth and suppressing phytopathogens. If, after production, such 

beneficial strains can be re-introduced into an endophytic stage, a sustainable and 

effective crop production system can be achieved.  

 

Aims of the thesis 

This Ph.D. thesis focuses on the isolation and characterization of novel beneficial 

endophytic bacteria with plant growth promotion and biocontrol abilities. Aims were 

as follows: 

1. To isolate endophytic bacteria from different plants of agricultural and 

horticultural importance 

2. To characterize potential plant-beneficial traits of the isolated endophytes 

3. To test the most promising isolates for their ability to promote plant growth 

and to control plant disease, and  

4. To characterize the endophytic lifestyle of selected strains. 

 

Outline of the thesis 

Chapter 1 contains a brief introduction to the main aims of the thesis. Chapters 2, 3 

and 4 give a detailed overview of the three most relevant topics treated in this thesis. 

Chapter 2 provides an introduction to endophytic bacteria with specific emphasis on 

how they enter a plant, live inside and contribute to plant health. Mechanisms of plant 

growth promotion and biocontrol which were found for endophytes in in planta 

studies are discussed in detail. This chapter ends with the evaluation of available 

genomic, metagenomic and postgenomic tools to get a deeper insight into plant-

endophyte beneficial interactions. Chapters 3 and 4 describe our knowledge of known 

mechanisms of plant growth promotion and biocontrol, respectively. In Chapter 3, 

examples are given of microbes which provide a plant with essential nutrients, secrete 

phytohormones and other plant growth promoting substances and increase plant 

resistance to abiotic stresses. Chapter 4 describes biocontrol bacteria and their 

secondary metabolites involved in various biocontrol mechanisms.   

In Chapter 5, the isolation of endophytic bacteria from different plants of 

agricultural and horticultural importance is described. The isolated endophytes were 

subsequently characterized with regard to their plant-beneficial traits and ability to 
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promote plant growth and control plant diseases. This resulted in the selection of a 

novel beneficial strain, namely Bacillus subtilis HC8 from giant hogweed. This strain is 

able to produce a wide range of bioactive compounds, a trait which probably 

contributes to the beneficial effect mediated by HC8. The secondary metabolites 

produced by B. subtilis HC8 include cyclic lipopeptides (c-LPs) which were further 

characterized in Chapter 6 using liquid chromatography mass spectrometry (LC-MS) 

followed by in vitro bioactivity tests. Endophytic bacteria with biocontrol properties 

were also isolated and characterized as described in Chapter 7. Those isolated strains, 

which were identified as members of the Pseudomonas genus, were compared with 

rhizospheric pseudomonads with respect to their abilities to utilize various carbon 

sources. This resulted in identifying the carbon source L-arabinose as a nutrient which 

might be important for the endophytic lifestyle of Pseudomonas species.  

Chapter 8 is a general discussion on the results obtained in this thesis in 

comparison with the literature. Moreover, additional information is provided on plant 

growth promotion, biocontrol and the endophytic lifestyle of some strains. Concluding 

remarks and future prospects complete this chapter. In Chapter 9, a summary is given 

of the major findings of the thesis, in both English and Dutch. 
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Bacterial endophytes: who and where, and what are they 

doing there?1 

 

Natalia Malfanova, Ben Lugtenberg, and Gabriele Berg 

 

Abstract 

Bacterial endophytes are ubiquitous colonizers of the inner plant tissues where they 

do not normally cause any substantial morphological changes and disease symptoms. 

In this chapter we will give an overview of which bacterial species can live as 

endophytes, and how they enter a plant and live inside. We will also describe various 

bacterial traits which are required for a successful colonization of the plant’s interior 

by endophytes. Some endophytes can promote plant growth and/or protect their host 

against phytopathogens. Many mechanisms of their beneficial action are predicted, 

but we will focus on those for which experimental support in planta was reported. 

Genomic analysis can give a deeper insight into the capabilities of endophytes and 

their possible role in plant growth and health. We will end our chapter with a brief 

discussion of available postgenomic tools and their utility in understanding the 

functionality of endophytic bacteria in plants.    
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Introduction 

Virtually all plants are inhabited by diverse bacteria known as endophytes. Endophytic 

bacteria are referred to as those which can be detected at a particular moment within 

the tissues of apparently healthy plant hosts (Hallmann et al. 1997; Schulz and Boyle, 

2006). Most of the endophytes colonize different compartments of the plant apoplast, 

including the intercellular spaces of the cell walls and xylem vessels. Some of them are 

able to colonize reproductive organs of plants, e.g. flowers, fruits and seeds. Inside a 

plant these bacteria do not normally cause any substantial morphological changes like 

root-nodule symbionts do. They also do not cause any disease symptoms, in contrast 

to phytopathogens. Many endophytic bacteria possess a number of plant-beneficial 

traits in vitro; few of those exhibit them in planta and only a small number of 

endophytes proved to be very effective plant-growth promoting and/or biocontrol 

agents under agricultural conditions (Scherwinski et al., 2008; Berg, 2009).  

In the following paragraphs we will discuss a number of important issues about 

endophytes. We will begin with a description of which bacteria were found as 

endophytes. Subsequently, colonization strategies used by endophytes will be 

described. How do they get inside plants? Which molecular traits are important for 

endophytic colonization? How do they escape the plant’s immune response? Once 

they have established themselves in a plant, some endophytes can have a number of 

beneficial effects on their hosts. What are the mechanisms of their beneficial influence 

on plants? Here we will focus on those mechanisms which have been verified in planta, 

e.g. by a mutational study. Finally, we will try to get a deeper insight into the 

capabilities of endophytic bacteria and their possible role in plant health and 

development by evaluating a genomic approach. The utility of metagenomic and 

postgenomic approaches to study the structure and function of the endophytic 

community will complete the discussion of this chapter 

 

Which bacteria can be found as endophytes?  

Since the first reliable reports about the isolation of endophytic bacteria from surface-

sterilized plants (Samish et al., 1960; Mundt and Hinkle, 1976) more than 200 bacterial 

genera from 16 phyla have been reported as endophytes. These include both 

culturable and unculturable bacteria belonging to Acidobacteria, Actinobacteria, 

Aquificae, Bacteroidetes, Cholorobi, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, 

Firmicutes, Fusobacteria, Gemmatimonadetes, Nitrospira, Planctomycetes, 

Proteobacteria, Spirochaetes and Verrucomicrobiae (Sun et al., 2006; Berg and 
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Hallmann, 2006; Mengoni et al., 2009; Manter et al., 2010; Sessitsch et al., 2012). 

However, the most predominant and studied endophytes belong to three major phyla 

(Actinobacteria, Proteobacteria and Firmicutes) and include members of Azoarcus 

(Krause et al., 2006), Acetobacter (renamed as Gluconobacter) (Bertalan et al., 2009), 

Bacillus (Deng et al., 2011), Enterobacter (Taghavi et al., 2010), Burkholderia 

(Weilharter et al., 2011), Herbaspirillum (Pedrosa et al. 2011), Pseudomonas (Taghavi 

et al., 2009), Serratia (Taghavi et al., 2009), Stenotrophomonas (Ryan et al., 2009) and 

Streptomyces (Suzuki et al., 2005). Species of these genera are ubiquitous in the 

soil/rhizosphere which represents the main source of endophytic colonizers (Hallmann 

and Berg, 2006). Other possible sources of endophytes include the phyllosphere, the 

anthosphere and seeds (Compant et al., 2010).  Naturally occurring endophytes can be 

visualized by FISH (fluorescence in situ hybridization) combined with confocal laser 

scanning microscopy using specific probes (Amann et al. 1990; Loy et al. 2007). In Fig. 1 

examples are shown for the phyllosphere and rhizosphere of plants (Bragina et al., 

2011 a, b). 

 

 

 
Fig. 1. Localization of endophytic bacteria by fluorescence in situ hybridization combined with confocal 

laser scanning microscopy in the phyllosphere of a moss gametophytes of Sphagnum fallax (A) and in the 

rhizosphere of Lolium perenne (B). Images show colonization of hyaline leave cells of S. fallax by Bacteria 

(red) and Alphaproteobacteria (yellow) (A) and of root cells of L. perenne by Bacteria (red), 

Alphaproteobacteria (pinkish), and Gammaproteobacteria (yellow) (B). 
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1. Colonization of plants by endophytic bacteria 

There is a number of ways by which endophytic bacteria can get access to a plant’s 

interior. In this section we will follow their main colonization route from the 

rhizosphere and give a brief description of alternative ways of plant colonization by 

endophytes.  

 

1.1. Rhizoplane colonization 

Colonization of the plant’s interior by bacteria generally starts with their establishment 

in the rhizosphere. The early events of this process such as recognition and chemotaxis 

have been extensively reviewed by Lugtenberg et al. (2001) and Lugtenberg and 

Kamilova (2009). They will not be covered here. Following rhizosphere colonization, 

bacteria attach to the rhizoplane, i. e. the root surface. A number of mutational studies 

showed that attachment of bacterial cells to the root is a crucial step for subsequent 

endophytic establishment. Several bacterial surface components can be involved in 

this process. For Azoarcus sp. BH72, an endophytic diazotroph of rice, type IV pili 

encoded by pilAB are required for attachment to the root surfaces (Dörr et al., 1998). A 

mutant impaired in the expression of pilAB fails to successfully colonize roots and 

shoots of rice plants (Reinhold-Hurek et al., 2006). The attachment of another 

diazotrophic endophyte, Herbaspirillum seropedicae, to root surfaces of maize 

depends on LPS (liposaccharide) (Balsanelli et al., 2010). A mutant strain with changed 

monosaccharide composition in the core domain of LPS showed a hundred-fold lower 

root adhesion and endophytic spreading compared to the wild type. A similar study 

showed that EPS (exopolysaccharide) is necessary for rhizoplane and endosphere 

colonization of rice plants by Gluconacetobacter diazotrophicus (Meneses et al., 2011). 

Since none of these mutant strains completely lost their ability for adhesion, it can be 

expected that other bacterial surface components are also involved in this process.  

 

1.2. Bacterial entry 

The preferable sites of bacterial attachment and subsequent entry are the apical root 

zone with the thin-walled surface root layer such as the cell elongation and the root 

hair zone (zone of active penetration), and the basal root zone with small cracks 

caused by the emergence of lateral roots (zone of passive penetration) (Fig. 2). At 

these sites bacteria are often arranged in microcolonies comprising several hundreds 

of cells (Zachow et al., 2010). For active penetration, endophytic bacteria have to be 

well-equipped with cellulolytic enzymes which hydrolyze the plant’s exodermal cell 
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Fig. 2. The main plant colonization routes by endophytic bacteria. Bacteria can enter a plant at several root 

zones as indicated above. Endophytes can either remain at the site of entry (indicated in blue) or move 

deeper inside and occupy the intercellular space of the cortex and xylem vessels (indicated in green). Red 

and yellow represent rhizospheric bacteria which are unable to colonize inner plant tissues. 

 

walls. In vitro production of these enzymes has been reported for many endophytes 

(Compant et al., 2005; Reinhold-Hurek et al., 2006). The expression of endoglucanase, 

the main cellulase responsible for hydrolysis of β(1→4) linkage in cellulose, was 

detected ad planta at the primary sites of entry of Azoarcus sp. BH72 (Reinhold-Hurek 

et al., 2006). Moreover, the role of endoglucanase in its endophytic colonization has 

been confirmed by mutational analysis. An eglA mutant failed to efficiently invade 

plant cells and to systemically colonize the plant, in contrast to the wild type strain and 

the mutant complemented with eglA.  

Bacterial cell-wall degrading enzymes are also known to be involved in the 

elicitation of defense pathways in plants as many proteins which are involved in 

defense and repair are associated with plant cell walls (Norman-Setterblad et al., 

2000). Induction of such a response usually results in decreasing the spread of 

pathogens inside a plant (Iniguez et al., 2005). Since this is not the case for 

endophytes, endophytic bacteria must be able to escape the plant immune response 

or even reduce it to some extent. Genomic analysis of sequenced endophytes 
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confirmed this notion (see section Genomic and postgenomic view of plant-endophyte 

interactions). The exact mechanism of this process remains to be elucidated.  

By entering a plant through natural cracks at the region where the lateral roots 

appear, bacteria remain “invisible” for the plant’s immune system. This mode of entry 

(often combined with active penetration) has been suggested for Azoarcus sp. BH72 

(Reinhold-Hurek and Hurek, 1998) and Burkholderia vietnamiensis (Govindarajan et al., 

2007) in rice, B. phytofirmans PsJN in grape (Compant et al., 2005), B. subtilis Lu144 (Ji 

et al., 2008) and B. cepacia Lu10-1 (Ji et al., 2010) in mulberry, Gluconacetobacter 

diazotrophicus Pal5 in sugar cane (James et al., 1994) and Herbaspirillum seropedicae 

Z67 in rice (James et al., 2002). 

 

1.3. Colonization of the plant cortex 

Once bacterial cells have crossed the exodermal barrier, they can remain at the site of 

entry as it has been shown for Paenibacillus polymyxa in Arabidopsis (Timmusk et al., 

2005) or move deeper inside and occupy the intercellular space of the cortex (James et 

al., 1994; Roncato-Maccari et al., 2003; Compant et al., 2005; Gasser et al., 2011) (Fig. 

2). It is uncommon for endophytic bacteria to penetrate plant cells and cause 

formation of specific morphological structures like root-nodule bacteria do. However, 

recently Huang et al. (2011) showed that Bacillus subtilis GXJM08 colonizes the root of 

the leguminous plant Robinia pseudoacacia L. in a mode similar to that used by 

rhizobia. The most dramatic changes include (i) deformation of the root hair (swelling, 

dichotomous branching), (ii) development of infection threads with bacteria between 

the cell walls of root cortical cells, and (iii) formation of bacteroids inside plant cortical 

cells. It is unknown whether this strain could fix N like the root-nodule bacteria do. It 

would also be of interest to determine whether other non-symbiotic bacteria can 

induce similar morphological changes in this plant.  

 

1.4. Colonization of the xylem 

Only a few bacteria can penetrate the endodermal barrier and invade the xylem 

vessels (James et al., 2002; Roncato-Maccari et al., 2003; Compant et al., 2005; Gasser 

et al., 2011) (Fig. 2). This usually happens through unsuberized endodermal cells in the 

apical root zone and/or in the basal root zone, where the emerging lateral roots 

interrupt the continuity of the Casparian band in the wall of endodermal cells. The 

long-distance transport of water, ions and low-molecular weight organic compounds, 

such as sugars, organic and amino acids, takes place in the xylem (Sattelmacher, 2001). 
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Though the concentration of available nutrients is relatively low and represents 0.006 - 

0.034 µmol/g of fresh weight for some sugars (Madore and Webb, 1981), it has been 

calculated that they are sufficient to support the growth of endophytic bacteria 

(Sattelmacher, 2001; Bacon and Hinton, 2006). Direct evidence that bacterial 

endophytes feed on plant nutrients came from several radioactive labeling 

experiments. For example, after incubation of potato plants with 
13

CO2, Rasche et al. 

(2009) detected the isotope label first in the plant’s photosynthetic metabolites and 

subsequently in diverse bacterial endophytes. 

Several attempts were made to find carbon sources which might be important or 

crucial for the endophytic lifestyle (Shishido et al., 1999; Krause et al., 2011; Malfanova 

et al., 2013). Shishido et al. (1999) compared carbon oxidation profiles of the 

endophytic Paenibacillus polymyxa strain Pw-2R and Pseudomonas fluorescens Sm3-

RN with those of rhizospheric strains, which were unable to colonize spruce 

endophytically. Strains Pw-2R and Sm3-RN were able to metabolize D-sorbitol and D-

galacturonic acid while their rhizospheric colleagues could not. In our recent study 

(Malfanova et al., 2013) we found that, in contrast to most rhizospheric Pseudomonas 

spp., endophytic pseudomonads isolated from cucumber plants were able to utilize L-

arabinose, one of the most abundant available sugars in the xylem fluid of various 

plants (Iwai et al., 2003). In another study Krause et al. (2011) detected induced 

expression of several bacterial alcohol dehydrogenases inside rice roots during their 

colonization by Azoarcus sp. BH72. Mutant strains with disrupted genes coding for 

alcohol dehydrogenases colonized the root interior less efficiently than the wild type. 

Since ethanol is abundant in waterlogged rice, these data suggest that it might be one 

of the major carbon sources for strain BH72 cells inside the plant. Taking together, 

these studies show that the ability of bacteria to utilize certain plant metabolites might 

be a prerequisite for their successful endophytic establishment. 

 

1.5. Colonization of the reproductive organs 

It is likely that the concentration of available nutrients in xylem is decreasing along the 

plant axis. This can explain the facts that the diversity and population density of 

endophytic bacteria decreases with the distance from the root and that only a small 

number of bacteria reaches the upper parts of shoots, the leaf apoplast and 

reproductive organs, such as flowers, fruits and seeds (Compant et al., 2010; Fürnkranz 

et al. 2011). The presence of endophytic bacteria in reproductive organs of plants was 

confirmed by cultivation (Samish and Etinger-Tulczynska, 1963; Mundt and Hinkle, 
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1976; Graner et al., 2003; Okunishi et al., 2005; Fürnkranz et al., 2011) and by 

microscopic visualization (Coombs and Franco, 2003; Compant et al., 2011). Most 

likely, bacterial cells enter the reproductive organs through the plant’s vascular tissues. 

For example, many bacterial and fungal phytopathogens infect the developing seeds 

via vascular tissues of the funiculus and chalaze region as well as via the stigma and 

micropyle (Agarwal and Sinclair, 1996). It is also possible that if one of the reproductive 

cells (egg cell or male gametes) carries a microbe, the resulting embryo and 

endosperm may be colonized. This could explain the transfer of endophytes from 

plants to seeds. However, so far the invasion of reproductive tissues (ovule, 

megaspore mother cell, stamens, and pollen mother cells) has been shown only for 

viruses (Agarwal and Sinclair, 1996). The exact mechanism of transmission of 

endophytic bacteria from the vascular tissues to the reproductive organs and 

subsequently to the new plant generation still remains to be established. 

 

1.6. Other ways of plant colonization 

Although the rhizosphere is assumed to be the main source of endophytic colonizers, 

other sites of entry cannot be ignored. Some bacteria are able to enter a plant through 

stomata as has been shown for Gluconobacter diazotrophicus on sugarcane (James et 

al., 2001) and for Streptomyces galbus on rhododendron (Suzuki et al., 2005). In the 

latter case, production of non-specific wax-degrading enzymes might have facilitated 

the leaf surface colonization and the subsequent endophytic establishment of this 

microbe (Suzuki et al., 2005). Bacteria can also enter a plant through flowers, fruits and 

seeds. However this is mostly known for specialized phytopathogens and was not 

shown for (non-pathogenic) bacterial endophytes. 

 

2. Beneficial endophytic bacteria and their effects on a plant 

After establishing in a plant, endophytes can positively influence plant growth and its 

resistance to different stresses. For detailed overviews of their beneficial actions the 

reader is referred to Ryan et al. (2008), Hardoim et al. (2008) and Berg (2009). In the 

following section we will restrict ourselves to the plant growth-promoting effects 

mediated by endophytic bacteria. These can be grouped as direct PGP (plant growth 

promotion) and biocontrol of phytopathogens. A variety of PGP and biocontrol 

mechanisms can be expected for endophytic bacteria based on those described for 

rhizobacteria (see Chapters 3 and 4, respectively). However, only a few mechanisms 

have been proven to occur in planta (Fig. 3). 
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Fig. 3. Illustration of the main mechanisms of PGP and BC mediated by endophytic plant-beneficial 

bacteria. Indicated in bold are the mechanisms used by endophytes as shown by experimental studies. 

Other mechanisms are putatively involved based on genomic data. 

 

2.1. Plant growth promotion by endophytic bacteria 

PGP has been shown for many endophytic bacteria (Zachow et al., 2010; Gasser et al., 

2011; Malfanova et al., 2011). Direct PGP mediated by endophytes is mostly based on 

providing essential nutrients to plants and production and/or regulation of 

phytohormones.  

After water, nitrogen is the major limiting compound for crop production. Many 

plants can obtain nitrogen through a process known as BNF (biological nitrogen 

fixation). For details see Chapter 3. BNF by legumes is based on a symbiosis with root-

nodule nitrogen-fixing bacteria while other agriculturally important plants such as 

maize, rice, sugar cane and wheat can benefit from the association with diverse 

endophytic diazotrophs. The best studied endophytic diazotrophs include members of 

Azoarcus, Burkholderia, Gluconobacter, Herbaspirillum and Klebsiella (James, 2000).  

The ability of endophytic diazotrophs to fix N2 in planta was demonstrated in 

several studies. This was done by monitoring the expression of nitrogenase genes in 

nitrogen-fixing cells at the endophytic stage (Egener et al., 1999; Roncato-Maccari et 

al., 2003; You et al., 2005) and by isotope analysis (Sevilla et al., 2001; Elbeltagy et al., 

2001). 
15

N2 incorporation experiments showed that sugar cane plants inoculated with 

G. diazotrophicus Pal5 obtained up to 0.6% of total N from BNF over a 24-h period 

(Sevilla et al., 2001); for rice plants harboring Herbaspirillum sp. B501 this value was 



Chapter 2 

24 

0.14% (Elbeltagy et al., 2001), indicating that diazotrophic endophytes can contribute a 

significant amount of N to a plant. Other studies suggested that plants can get up to 

70% of the required nitrogen through BNF mediated by endophytic diazotrophs 

(James, 2000). 

Nitrogen fixation is regulated by the concentration of oxygen and the availability of 

nitrogen. In Herbaspirillum sp. B501 the expression of nitrogenase was repressed in 

free air (21% O2) and induced under microoxic conditions (2% O2) (You et al., 2005) 

suggesting that the plant’s interior is a suitable environment for BNF. Sevilla et al. 

(2001) have demonstrated that under N-deficient conditions sugarcane plants 

inoculated with wild type G. diazotrophicus Pal5 have significantly greater shoot mass 

and N content than plants inoculated with a mutant unable to fix N2, suggesting that 

BNF is the likely cause of PGP. It is interesting to note that N starvation can also 

derepress the biosynthesis of the plant hormone IAA (indole-3-acetic acid). For 

example, Brandi et al. (1996) demonstrated that IAA synthesis in the culture 

supernatant of Erwinia herbicola 299R was over 10-fold higher under nitrogen-limiting 

conditions. IAA was detected in the culture supernatant of G. diazotrophicus (Fuentes-

Ramirez et al., 1993; Bastian et al., 1998). Therefore, it is likely that some diazotrophic 

bacteria stimulate plant growth both by supplying N and by production of 

phytohormones, in particular IAA. This possibility is further supported by the 

observation that when N was not limiting, both wild type G. diazotrophicus Pal5 and its 

fix
- 
mutant strains were able to increase the biomass of sugar cane (Sevilla et al., 2001). 

The in vitro production of IAA and its possible involvement in PGP has been reported 

for many other endophytic bacteria (Govindarajan et al., 2008; Rothballer et al., 2008; 

Jha and Kumar, 2009; Malfanova et al., 2011). However, the principal role of IAA in 

PGP was confirmed only for rhizobacteria, using mutational studies (Patten and Glick, 

2002; Spaepen et al., 2008). For a more detailed overview of the microbial production 

of auxins and its role in the interaction with plants the reader is referred to Spaepen 

and Vanderleyden (2011). 

Many IAA-producing endophytes possess ACC (1-aminocyclopropane-1-

carboxylate)-deaminase activity which is involved in lowering the level of plant 

ethylene (Long et al., 2008). Elevated levels of ethylene caused by some stresses (see 

Chapter 3) are known to inhibit root elongation and lateral root emergence 

(Ivanchenko et al., 2008). According to the model proposed by Glick (2005) bacterial 

IAA activates ACC-synthase of plants resulting in the production of ACC, the ethylene 

precursor. Some bacteria can use ACC as a nutrient source and thereby decrease the 
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synthesis of ethylene in plants. ACC-deaminase activity was described for plant 

growth-promoting endophytic strains of Burkholderia (Sun et al., 2009; Gasser et al., 

2011), Herbaspirillum (Rothballer et al., 2008) and Pseudomonas (Long et al., 2008). 

The role of ACC-deaminase in plant growth promotion has been further confirmed in a 

mutational study by Sun et al. (2009). Deletion of the acdS gene, coding for ACC-

deaminase, in B. phytofirmans PsJN resulted in a decrease of the root length of canola 

seedlings by 32%. 

Other phytohormones produced by endophytic bacteria include ABA (abscisic acid) 

(Cohen et al., 2008), cytokinins (Sgroy et al., 2009) and GBs (gibberellins) (Lucangeli 

and Bottini, 1997; Malfanova et al., 2011). Inoculation of maize with a GB-producing 

endophytic Azospirillum spp. increased the level of GA3 in plant roots and resulted in 

promotion of plant growth (Lucangeli and Bottini, 1997). An enhanced ABA content in 

plants has been detected after inoculation of A. thaliana with an ABA-producing strain 

of Azospirillum (Cohen et al., 2008). However, whether endophytic bacteria directly 

contribute to the increase of the plant phytohormone pool remains to be elucidated.  

 

2.2. Biocontrol of phytopathogens by endophytic bacteria 

While the biocontrol effect of endophytic bacteria is well known (Berg and Hallmann, 

2006; Scherwinski et al., 2008; Malfanova et al., 2011), the mechanisms of biocontrol 

mediated by endophytes are less well elucidated. Biocontrol of phytopathogens can be 

based on several mechanisms which include antibiosis, CNN (competition for nutrients 

and niches) and ISR (induced systemic resistance) (Fig. 3). For more mechanisms, see 

Chapter 4. So far, only the role of ISR in biocontrol mediated by endophytes has been 

confirmed in planta. This was done by microscopic observations of endophytic bacteria 

inside the plant, where they induce morphological changes associated with ISR and 

reduce disease symptoms at locations where the endophyte itself is absent. For 

example, Melnick et al. (2008) evaluated the ability of several Bacilli to colonize cacao 

plants and reduce the symptoms of black pod rot caused by Phytophthora capsici. 

Inoculation of leaves with a suspension of vegetative cells resulted in a local 

colonization of plants. A small subpopulation (5-15%) of bacteria was recovered from 

the inner leaf tissues and no bacteria were detected in vascular tissues or in newly-

developed leaves, indicating that bacteria were unable to systemically colonize the 

plant. Significant biocontrol was observed 26 days after inoculation on newly 

developed, non-colonized leaves, suggesting the induction of systemic resistance of 

cacao plants by bacilli. 
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Colonization of plants by biocontrol endophytes induces several cell-wall 

modifications, such as deposition of callose, pectin, cellulose and phenolic compounds 

leading to the formation of a structural barrier at the site of potential attack by 

phytopathogens (Benhamou et al., 1998; Benhamou et al., 2000). Another common 

response of bacterized plants challenged with a pathogen is an induction of defense-

related proteins such as peroxidases, chitinases and β-1,3-glucanases (Fishal et al., 

2010). These reactions result in a substantial reduction of pathogen spreading in a 

plant. For example, in Pythium-infected cucumber plants the hyphal growth was 

mainly restricted to the outer root tissue five days after oomycete inoculation 

(Benhamou et al., 2000). Moreover, 80% of the oomycete hyphae which penetrated 

the epidermis barrier were distorted. Significant disease suppression was also reported 

for wheat plants endophytically colonized with B. subtilis (Liu et al., 2009) and for 

banana plants pre-inoculated with endophytic Pseudomonas and Burkholderia (72 days 

before pathogen challenge) (Fishal et al., 2010).  

Most likely, a combination of several mechanisms is exhibited by many biocontrol 

endophytic bacteria. This notion is supported by the fact that some antimicrobial 

compounds are involved in both antibiosis and triggering ISR (Ongena et al., 2007). The 

presence of other mechanisms such as competition for iron and for colonization sites is 

proposed for some endophytes based on the analysis of their genomes (see below). 

However this has not yet been confirmed in planta.  

 

3.Genomic and postgenomic view of plant-endophyte interactions 

In recent years a number of genomes of endophytic bacteria has been sequenced 

(Table 1). All beneficial traits which are discussed above (N fixation, IAA, ACC 

deaminase, etc.) are reflected in their genomes. Moreover, analysis of their genomes 

also revealed the existence of a high number of genes involved in iron uptake and 

metabolism. For example, the genome of Enterobacter sp. 638 has nine ABC 

transporters for siderophore complexes in contrast to four in E. coli K12 (Taghavi et al., 

2010). Azoarcus sp. BH72 has 22 iron TonB receptor genes, which is twice as much as 

its free-living soil colleague EbN1 (Krause et al., 2006). These data suggest that 

endophytic bacteria are well-equipped to survive in a low-iron environment and can 

efficiently compete for this element with other microorganisms, including 

phytopathogens. 

In addition to the above-mentioned plant beneficial traits, a number of genes 

involved in QS (quorum sensing) have been identified in the endophytic genomes. For
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example, 24 luxR QS genes are present in the genome of Serratia proteamaculans 568. 

In the related endophytic strain S. plymuthica G3 QS controls important colonization-

related traits such as swimming motility and biofilm formation (Liu et al., 2011). 

Interestingly, in some free-living Serratia spp. these traits are QS-independent, 

suggesting that the precise role of QS depends on the bacterium’s lifestyle.  

Further genome analysis revealed genes which might be important for the 

endophytic lifestyle. For example, the genome of diazotrophic K. pneumoniae (Kp) 342 

contains genes for superoxide dismutases, putative catalases, peroxidases and 

reductases which are involved in the protection of bacterial cells against plant ROS 

(reactive oxygen species) (Fouts et al., 2008). Additionally, genome analysis revealed 

the ability of Kp342 to metabolize a wide range of plant sugars, carbohydrates and 

hemicellulosic substrates. Furthermore, a comparison of the genome of Kp342 with 

that of the clinical isolate MGH78578 revealed a major difference in their metabolism, 

surface attachment and secretion. These data suggest that Kp342 is well adapted to 

escape plant defense reactions and successfully establish itself inside a plant.   

Metagenomic analysis of the most abundant endophytic bacteria of rice verified 

traits which are shared among endophytes and are therefore potentially important for 

their interactions with plants (Sessitsch et al., 2012). These include (i) a whole set of 

specialized secretion systems, except the type III secretion system which was not 

highly conserved among rice endophytes, (ii) cellulolytic and pectinolytic enzymes, (iii) 

flagellins, (iv) enzymes involved in ROS degradation, (v) receptors and transporters for 

iron uptake, (vi) QS systems, (vii) metabolic pathways for degradation of plant 

compounds, and (viii) numerous plant-growth promoting and biocontrol traits (ACC-

deaminase activity, BNF, production of antimicrobial compounds, phytohormones and 

volatiles).  

Applying postgenomic approaches, such as metaproteomics, metaproteogenomics 

and metatranscriptomics, can link the genomic potential with function and therefore 

give a deeper insight into plant-endophyte interactions. These tools deal with global 

expression of proteins (metaproteomics) or mRNA (metatranscriptomics) from 

microbial communities. Metaproteogenomics links the proteome and the genome of 

the environmental sample. This allows identification of more proteins (functions) than 

proteomics alone. Recently, a metaproteogenomic approach was used to study 

microbial communities in the phyllosphere and rhizosphere of rice (Knief et al., 2011). 

The results showed that despite the presence of nifH genes in both 

microenvironments, dinitrogenase reductase was exclusively identified in the 
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rhizosphere. If such an approach could be applied to study the endosphere, more 

significant data regarding the endophyte functionality can be collected.   
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Abstract 

Since the world’s population is still growing, food production should be increased. This 

should be done without damaging the environment further and with a decreased input 

of chemical hormones and fertilizers. This realization has resulted in an increasing 

interest in the use of microbes as sustainable and inexpensive alternatives for 

agrochemicals.  In this chapter, we will describe three classes of microbial alternatives 

for agrochemicals, namely a) general microbial plant growth promoters, b) microbial 

fertilizers for specific nutrients, and c) microbial plant growth regulators which act 

through a hormonal mechanism. The latter class includes microbial stress controllers.  
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Introduction 

The world’s population is assumed to increase from 7 billion now to 8.3 billion in 2025. 

The world will need 70 to 100 percent more food by 2050 (Godfray et al., 2010). 

Therefore, the production of cereals, especially wheat, rice and maize, which accounts 

for half of the human’s calorie intake, has to be increased. Currently, plant growth is 

enhanced by the input of chemicals which act as plant growth regulators (using a 

hormonal mechanism) and as nutrients. Of the nutrients added to the soil, nitrogen 

and phosphorous are the major ones. They are, together with potassium, applied as 

chemical fertilizers to improve grain yield. According to Roberts (2009) the present 

global annual use of chemical nitrogen, phosphorous, and potash fertilizer is 130, 40, 

and 35 million tonnes, respectively.  

The high input of chemicals raises a number of concerns such as water 

contamination leading to euthrophication and health risks for humans. Moreover, it 

results in soil degradation and loss of biodiversity. In this chapter we will describe 

beneficial microbes which can act as environmentally friendly alternatives for 

agrochemicals. Their application will increase the sustainability of agriculture.  

We will sub-divide these beneficial microbes in the following groups. A. General 

plant growth promoters. These microbes stimulate plant growth through a variety of 

known mechanisms or by one or more unknown mechanisms. B. Microbial fertilizers 

for specific nutrients, the most important ones being N, P and Fe
3+

. C. Microbial plant 

growth regulators. These secrete hormones or hormone-like substances which 

stimulate plant growth in extremely low concentrations. This sub-division is not perfect 

since one microbe can combine several mechanisms.  

The major global nutrition processes will be illustrated in Figures, whereas the PGP 

traits of some species will be listed in Table 1. 

 

A. General microbial plant growth-promoters 

Some microbes and molecules have a general plant growth promoting effect. They can 

stimulate for example plant establishment and enhance plant vigor. They will be 

treated in this section. Other microbes have a more specific effect for a certain 

nutrient. They will be discussed in section B. 

 

A.1. Arbuscular Mycorrhizal Fungi  

Approximately 90% of the land plants live in symbiosis with AMF (Fig. 1 and Table 1A). 

AMF are not host-specific. Combinations of AMF and plant roots can form enormous 
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underground networks. Since exudates from fungal hyphae solubilise more P than root 

exudates alone, it was suggested that mycorrhizae contribute to the increase of P-

uptake through P-solubilisation. AMF can enhance plant establishment and increase 

water and nutrient uptake, especially of P, Zn and Cu (Clark and Zeto, 2000; see Fig. 1; 

Table 1A). AMF also protect plants against biotic and abiotic stresses and can improve 

soil structure (Smith and Read, 2008). Since AMF perform similar functions as roots, 

they functionally extend the root system. Therefore, the area around roots with 

attached AMF is called mycorrhizosphere. Because of their smaller diameter, the 

fungal hyphae are able to reach places where roots cannot penetrate. AMFs are also 

beneficial for soil structure, because they cause aggregate formation. 

SLs (strigolactones), the recently discovered class of shoot branching inhibiting 

hormones, are involved in early stages of the plant-AMF interaction (see Fig. 1). They 

 

 

 
Fig. 1. Role of Arbuscular Mycorrhizal Fungi (AMF) in PGP. For explanation, see text and Table 1A. Colours: 

green, plant; pink, microbes; blue: processes. 
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Table 1. Selection of PGP microbes and their relevant PGP  

A. Arbuscular Mycorrhizal Fungi 

Trait Reference 

Functions as extension of the root system Parniske, 2013 

AMF branching and contact formation with roots stimulated by SLs Lopez-Raez, 2013 

AMF secrete Myc-factors which stimulate root growth and branching Maillet et al., 2011 

Uptake of water, P, Zn, Cu and other nutrients Clark and Zeto, 2000 

Improve of soil structure Smith and Read, 2008 

Protection against (a)biotic stresses Smith and Read, 2008 

Mycorrhiza helper bacteria promote pre-symbiotic survival and fungal 

growth  

Frey-Klett et al., 2007 

B. TRICHODERMA 

Trait Reference 

Can act as endophyte; increases uptake of water and nutrients; 

increases solubilization of soil nutrients; increase of nitrogen use 

efficiency; enhancement of plant vigor; enhanced growth and 

development of roots and above-ground plant parts; increases root hair 

formation; causes deeper rooting; improved photosynthetic efficiency 

Harman, 2006 ; Lorito et al., 

2010; Shoresh et al., 2010; 

Hermosa et al., 2012 

Degrades phenolic compounds secreted by plants. Ruocco et al., 2009 

Produces auxin  Contreras-Cornejo et al., 2009 

Accelerates seed germination Mastouri et al., 2010 

Increase of plant resistance, especially under sub-optimal growth 

conditions 

Lorito et al., 2010 

Amelioration of abiotic stress; alleviation of physiological stresses, e.g. 

seed aging 

Mastouri et al., 2010 ; Shoresh et 

al., 2010 

The secondary metabolite harzianic acid promotes plant growth Vinale et al., 2009 

C. BACILLUS 

Trait Reference 

N2-fixer Borriss, 2011 

Phosphate solubilizer Rodríguez et al., 2006; Borriss, 

2011 

Release of Pi from phytate Idriss et al., 2002 

Potassium solubilizer Wu et al., 2005 

D. PSEUDOMONAS 

Associative N-fixer Dobbelaere et al., 2003 

Phosphate solubilizer Rodríguez et al., 2006 

Siderophore producer Lemanceau et al., 2009 

Auxin producer Kamilova et al., 2006 

Cytokine producer García de Salmone et al., 2001 

ACC deaminase producer Glick et al., 2007a 
aNote that not all strains of the mentioned species have the listed traits and that all listed traits are not 

present in a single strain.  
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are present in the root exudates of both mono- and dicotyledonous plants. Their 

synthesis is upregulated by phosphate limitation. SLs from root exudate cause 

branching of neighbouring AMF spores, thereby increasing their chances to encounter 

a plant root. SLs also influence auxin transport. In principle, SLs or some of their 

analogues have the potential to be used for weed control: they are able to induce 

germination of spores of the weed Striga, which causes massive crop losses of cereals 

in developing countries. If this induction takes place in the absence of crop plants, the 

Striga will die (see Schachtschabel and Boland, 2009). 

AMF produce diffusible symbiotic signals, recently identified as 

lipochitooligosaccharides and designated as Myc factors (see Fig 1; Table 1A). They 

stimulate root growth and branching. It is expected that (derivatives of) these 

compounds will be used in future agriculture (Maillet et al., 2011). 

Some bacteria help AMF (MHB’s; Frey-Klett et al., 2007; Frey-Klett et al., 2011; see 

also Fig. 1). In the case of the Pseudomonas fluorescens helper bacterium strain 

BBc6R8 it was shown that this bacterium promotes the pre-symbiotic survival and 

growth of the fungus (Deveau et al., 2007).  

 

A.2. Trichoderma 

Although the soil fungus Trichoderma is mainly known as a biocontrol agent (Harman 

et al., 2004; Lorito, 2010), it has also a large set of direct plant growth-promoting 

properties (see Table 1B). Trichoderma is claimed to increase plant resistance under 

sub-optimal growth conditions, to increase nutrient uptake, to increase nitrogen use 

efficiency, to enhance solubilization of soil nutrients, to enhance growth, vigor, 

photosynthetic efficiency, and development of roots and above-ground plant parts, to 

increase root hair formation and to enhance deeper rooting (Harman, 2006; Shoresh et 

al., 2010; Lorito et al., 2010; see Table 1B). Moreover, it can reduce abiotic and 

physiological stresses. The latter may be due to ACC deaminase (Viterbo et al., 2010). 

The secondary metabolite harzianic acid has been identified as a plant growth 

promoter (Vinale et al., 2009; see Table 1B). We conclude that Trichoderma has 

properties similar to those of AMF. However, Trichoderma has the advantage that it 

can be grown in pure culture. Products with Trichoderma as the active ingredient have 

been commercialized. 

 

 

 



Chapter 3 

44 

B. Biofertilisers for specific nutrients.   

Plant growth-promoting microbes which fix N2, solubilise phosphate, and/or produce 

siderophores are classified as biofertilisers, since they increase the availability of these 

nutrients to plants (Fuentes-Ramirez and Caballero-Mellado, 2006). 

 

B.1. Nitrogen fixation. 

N2 is abundant in the atmosphere, but is unavailable to plants. Plants receive their 

nitrogen in the form of ammonium (NH4
+
) and nitrate (NO3

-
). Uptake of NO3

-
 occurs 

together with influx of protons whereas uptake of NH4
+
 occurs together with release of 

protons. These processes therefore cause alcalinization and acidification of the 

rhizosphere, respectively, and substantially influence rhizosphere processes. 

Conversion of atmospheric N2 to ammonium is known as the process of biological 

nitrogen fixation or diazotrophy. The ability to fix nitrogen is widespread among 

prokaryotes with representatives in both bacteria and archaea (Dekas et al., 2009). 

This reaction is catalyzed by the nitrogenase enzyme complex which in most bacteria 

contains molybdenum-iron (Mo-Fe) as the cofactor. Some bacteria have an additional 

 
Fig. 2. Microbial contribution to plant N-nutrition. For explanation, see text. Colours: green, plant; pink, 

microbes; blue: processes. 
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nitrogenase containing vanadium (Robson et al., 1986) or only iron (Chisnell et al., 

1988). However, the alternative nitrogenases have a lower efficiency of nitrogen 

fixation compared with the conventional ones (Joerger and Bishop, 1988). 

Many diazotrophic bacteria are able to establish a symbiotic relationship with 

plants. The best studied symbiotic diazotrophs belong to the gram-negative rhizobia 

which induce nodules on leguminous plants (Fabales; see Fig. 2). The only exception is 

the genus Parasponia which belongs to Rosales but is nodulated by rhizobia 

(Markmann and Parniske, 2009). 

The rhizobium-legume symbiosis is considered to be the major source of fixed 

nitrogen. It has been estimated that this symbiosis contributes more than 45 million 

metric tons of N per year to the terrestrial ecosystems (Vance, 2001). The current 

taxonomy of rhizobia includes 12 genera with more than 90 species (Weir, 2011) and it 

is still expanding. The best known rhizobia are those of the α–subclass of 

Proteobacteria (Allorhizobium, Azorhizobium, Rhizobium, Mesorhizobium, Ensifer 

(former Sinorhizobium) and Bradyrhizobium). In addition, several beta-proteobacteria 

belonging to Burkholderia and Cupriavidus have been shown to nodulate plants 

(Moulin et al., 2001). Rhizobia and other N-fixing bacteria share essential nod and nif 

genes encoding nodulation and nitrogen fixation functions, respectively (Zehr and 

Turnet, 2001). These genes are often carried on symbiotic plasmids which are highly 

transferable (Brom et al., 2004). Moreover, recipient bacteria are able to obtain a 

symbiotic function after being transformed with these plasmids (Rogel et al., 2001). 

Since this can happen under both laboratory and field conditions, it might partly 

explain the diversity of root-nodulating bacteria. 

The symbiosis is initiated by root exudate components, flavonoids or isoflavonoids, 

which, upon uptake by the bacterium, activate nod genes in the bacterium (see Fig. 2). 

The bacterial answer in this molecular dialogue is secretion of products encoded by the 

nod-genes, the NOD factors. NOD factors are lipo-chitin oligosaccharides differing from 

each other in the length of the chitin fragment, in the unsaturation of their fatty acyl 

chain and in the presence of several molecular decorations. This makes NOD factors 

major determinants of the host-specificity of the symbiosis (Spaink et al., 1998; see 

also Fig. 2). Specific perception of NOD factors by plants results in activation of a set of 

plant genes leading to the formation of root nodules and entry of bacteria (Geurts and 

Bisseling, 2002). However, certain photosynthetic bradyrhizobia lacking nod genes rely 

on a different, yet to be characterized, strategy for plant signaling (Giraud et al., 2007). 

nod genes have also not been detected in the genome of Frankia, Gram-positive 
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bacteria from the family of Actinobacteria which nodulate non-leguminous plants 

belonging to the Rosales, Fagales and Cucurbitales. These interesting findings 

represent a promising source for developing nitrogen-fixing cereals. 

Rhizobia can interact with other plant-associated bacteria in the rhizosphere. Such 

a cooperation can have a beneficial effect on plant growth. For example, 

Egamberdieva et al. (2010) recently showed that co-inoculation of fodder galega with 

Rhizobium and biocontrol pseudomonads improves shoot and root dry matter of the 

plant. One of these strains, the cellulase-producing Pseudomonas trivialis 3Re27 

(Scherwinski et al., 2008), significantly increased nodule numbers and nitrogen content 

of the co-inoculated plant. The authors coined the term “Rhizobium helper bacteria“ 

for this biocontrol strain (see Fig. 2). 

In addition to symbionts, there are also free-living and associative diazotrophs; 

these include bacteria from a number of genera: Acetobacter, Azoarcus, Azospirillum, 

Azotobacter, Bacillus (Table 1C), Beijerincka, Burkholderia, Enterobacter, 

Herbaspirillum, Klebsiella, Paenibacillus, Pseudomonas (Table 1D), and 

Stenotrophomonas (Dobbelaere et al., 2003; see Fig. 2). Using mutants unable to fix 

nitrogen, Hurek et al. (2002) showed that the beneficial effects of the  endophytic 

diazotrophic bacteria Azoarcus sp. on Kaller grass are directly associated with their 

nitrogen-fixing ability and this is also true for Acetobacter diazotrophicus on sugarcane 

(Sevilla et al., 2001). 

Klebsiella pneumoniae and Azospirillum are free-living nitrogen-fixing rhizosphere 

bacteria. In the past, the plant growth-promoting properties of Azospirillum were 

thought to be due to its N2-fixing property but recent developments show that this 

property is mainly due to its ability to produce the root architecture influencing 

hormone auxin. See section C.1 in this Chapter.  

 

B.2. Phosphate solubilization.  

After water and nitrogen, phosphorus is the third plant growth-limiting compound. 

Phosphorus plays a role in numerous plant processes including energy generation, 

nucleic acid synthesis, photosynthesis, respiration and cellular signaling (Vance et al., 

2003).  

Plants can absorb phosphorus only as H2PO4
-
 and HPO4

2-
 ions. Most soils contain 

amounts of phosphate which are in principle sufficient to support plant growth. 

However, many of these organic and inorganic forms are not accessible for the plant. 

Also phosphorus added to the soil as a soluble chemical fertiliser can be rapidly fixed  
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Fig. 3. Microbial contribution to plant P-nutrition. For explanation, see text. Colours: green, plant; pink, 

microbes; blue: processes. 

 

into insoluble forms and thus made unavailable to plants (Rodriguez and Fraga, 1999; 

Igual et al., 2001; Smyth, 2011). 

Plants react to P-limitation by acidification of the rhizosphere, by increased growth 

of roots towards unexploited soil zones, by increasing the number of root hairs, and by 

secreting phosphatases. Acidification is the result of secretion of organic anions 

together with protons. Organic anions, with citrate and oxalate being more effective 

than others, can directly facilitate the mobilisation of phosphate (Richardson, 2009; 

see Fig. 3).   

Phosphorus is widely applied as a chemical fertilizer, and the excessive and 

unmanaged application of phosphorus can have negative impacts on the environment, 

including the eutrophication and hypoxia of lakes and marine estuaries (Smyth, 2011).  

Some bacteria, referred to as phosphate-solubilising bacteria (Igual et al., 2001; 

Kim et al., 1998) are able to solubilise bound phosphorous from organic or inorganic 

molecules, thereby making it available for the plant (Lipton et al., 1987; see Fig. 3). 

Phosphate-solubilizing bacteria are ubiquitous and Bacillus (Table 1C), Enterobacter, 

Erwinia and Pseudomonas spp. (Table 1D) are among the most potent species. 
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Production of organic acids such as gluconic acid is a major factor in the release of 

phosphorous from mineral phosphate (Rodríguez et al., 2006). Also the release of a 

range of enzymes results in the generation of phosphate forms which can be taken up 

by the plant (see Fig. 3). These include non-specific phosphatases that 

dephosphorylate phosphor-ester and/or phosphoanhydride bonds in organic matter, 

phytases that release phosphorus from phytic acid (Idriss et al., 2002), and 

phosphonatases and C-P lyases that dissociate C-P bonds in organophophonates 

(Rodriguez et al., 2006). Vyas and Gulatti (2009) showed that phosphate-solubilising 

Pseudomonas spp. are able to increase both the growth and phosphorus content of 

maize. Sundara et al. (2002) showed that a phosphate-solubilising Bacillus megaterium 

increases both the amount of plant-available phosphorus as well as the yield of 

sugarcane. De Freitas et al. (1997) showed that phosphate-solubilising Bacillus spp. 

increase the yield of canola. Using molecular techniques, it was possible to identify a 

possible new mechanism involved on P solubilization: assessing a genomic library of 

Pseudomonas fluorescens B16, pyrroloquinoline quinone (PQQ) biosynthetic genes 

were identified responsible for plant growth promotion in this strain (Choi et al., 2008). 

AMF were initially thought to provide the plant with phosphorous only. Since it is 

now known that AFM has a more general function, AFM has been described under 

section A.1.  

  

B.3. Fe and siderophores.  

Iron is an essential element for all organisms. Iron is an abundant element on the earth 

crust but it is hardly soluble and therefore not suitable for uptake by living organisms. 

The concentration of Fe
3+

, the form of iron ions available for living organisms, is only 

10
-18

 M.  

Plants produce and excrete chelators and/or phytosiderophores which bind Fe
3+

 

and transport it to the root surface where it is either reduced to Fe
2+

, that is 

subsequently taken up by the plant, or it is absorbed as a Fe
3+

-phytosiderophore 

complex by the plant (Lemanceau et al., 2009; see Fig. 4).  

Bacteria growing under low Fe
3+ 

concentrations also produce a variety of 

siderophores which bind this ion with high affinity (see Fig. 4). A number of plant 

species can absorb bacterial Fe
3+

-siderophores complexes, but it is unclear whether the 

uptake of these complexes has any significance to plant iron nutrition and/or direct 

plant growth promotion (Zhang et al., 2008).  
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Fig. 4. Possible microbial contributions to plant Fe-nutrition. For explanation see text. Colours: green, plant; 

pink, microbes; blue: processes. 

 

B.4. Mixures of biofertilizers 

Wu et al. (2005) performed a thorough greenhouse study to evaluate the effect of a 

mixture of four biofertilizers, namely an AMF (Glomus mossae or Glomus intraradices), 

an N-fixer (Azobacter chroococcum), a P-solubiliser (Bacillus megaterium) and a K-

solubilizer (Bacillus mucilaginous) on growth of Zea mays and soil properties. Controls 

were no fertilizer, chemical fertilizer, organic fertilizer, and two types of biofertilizers. 

The mixture of the four microbes significantly increased the growth of Z. mays and 

resulted in the highest biomass and seedling height. It also increased assimilation of N, 

P and K. Moreover, soil properties such as organic matter and total N in soil were 

improved. The presence of the bacteria in the inoculum resulted in an at least 5-fold 

higher root infection rate by AMF. 

 

C. Microbial plant growth regulators 

Plants produce phytohormones or plant growth regulators, i.e. compounds which at 

concentrations lower than 1 μM can regulate plant growth and development. There 

are six classes of plant hormones, namely auxins, brassinosteroids, cytokinins, 
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gibberellins, abscisic acid, ethylene, and the recently discovered strigolactones. 

Phytohormones regulate processes such as cell division, cell expansion, differentiation, 

shoot branching and cell death. Phytohormone pathways and cross-talk between them 

plays a key role in process coordination and cellular responses (Moller and Chua, 1999; 

Santner et al., 2009).  

Many rhizosphere bacteria can produce plant growth regulators in vitro, such as 

auxins, cytokinins, gibberellins, abscisic acid, and ethylene (Zahir et al., 2003). Bacteria 

which produce abscisic acid, and ethylene are known as stress controllers. As far as 

presently known, brassinosteroids and strigolactones are not produced by bacteria or 

fungi. 

Phytohormone production by microbes can modulate the endogenous plant 

hormone levels and consequently can have an enormous influence on plant growth 

and development (Gray, 2004; van Loon, 2007). For details on hormones produced by 

plants and rhizosphere bacteria, the reader is referred to excellent reviews by García 

de Salome et al. (2006), and Spaepen et al. (2009). 

 

C.1. Auxins. 

Nonconjugated indole-3-acetic acid (IAA) is the most abundant member of the auxin 

family. The concentration of auxin and the ratio of auxin to other hormones are critical 

for the physiological response of the plant (Lambrecht et al., 2000).  

It has been estimated that up to 80% of the rhizosphere bacteria can synthesize IAA 

(Khalid et al., 2004; Patten and Glick, 1996). Bacteria which produce IAA can add to, or 

influence, the levels of endogenous plant auxin (Patten and Glick, 1996). It is assumed 

that plant growth promotion by exogenously added auxin acts by increasing root 

growth, length and surface area, thereby allowing the plant to access more nutrients 

and water from the soil (Vessey, 2003; see Fig. 5).  

Rhizosphere bacteria can use several different pathways for IAA biosynthesis. Most 

of them use tryptophan, secreted by the plant as a component of root exudate, as a 

precursor (Costacurta and Vanderleyden, 1995; Spaepen et al., 2007; Spaepen et al., 

2009; see Fig. 5). Indeed, Kamilova et al. (2006) observed that P. fluorescens biocontrol 

strain WCS365, which produces IAA in the presence of tryptophan, is able to stimulate 

root growth of radish, a plant which secretes high amounts of tryptophane in its 

exudate, but not of tomato, sweet pepper or cucumber plants which secrete at least 

10-fold less tryptophan. 

Azospirillum brasilense is an N2-fixer which promotes plant growth by increasing its 
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Fig. 5. Stimulation of root branching and growth by auxin. For explanation, see text. Colours: green, plant; 

pink, microbes; blue: processes. 

 

root surface through shortening the root length and enhancing root hair formation. It 

has been thought for a long time that its plant growth-promoting ability was based on 

N2 fixation. However, the present notion is that auxin production is the major factor 

responsible for its root changes and therefore for its plant growth-promoting 

properties (Pliego et al., 2011; see Fig. 5). This notion is based on the following 

observations. (i) Dobbelaere et al. (1999) showed that the effect of the wild type strain 

on the root can be mimicked by the addition of pure auxin. (ii) A mutant strain strongly 

reduced in IAA production did not induce the root changes and, (iii), a strain 

constitutive for IAA production showed the same effect on the root changes as the 

wild type strain but already at lower bacterial cell concentrations (Spaepen et al., 

2008). Interestingly, when the amount of root exudate becomes limiting for bacterial 

growth, Azospirillum brasilense increases its IAA production, thereby triggering lateral 

root  and root hair formation which results in more exudation and, therefore in further 

bacterial growth. In this way, a regulatory loop is created which connects plant root 

proliferation with bacterial growth stimulation (Spaepen et al., 2009). 
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C.2. Cytokinins 

Zeatin is the major representative of a group of molecules called cytokinins. Cytokinins 

have the capacity to induce division of plant cells in the presence of auxin. Starting 

from callus tissue, the ratio between the amounts of auxin and cytokinin determines 

whether callus differentiates in root or shoot: high auxin promotes root differentiation 

whereas high cytokinin promotes shoot morphogenesis. Equimolar concentrations 

induce cell proliferation.  

Cytokinin production is linked to callus growth of tobacco. A test based on this 

principle can be used as a screening method for cytokinin-producing bacteria. Many 

rhizosphere bacteria can produce cytokinins in pure culture, e.g. Agrobacterium, 

Arthrobacter, Bacillus, Burkholderia, Erwinia, Pantoea agglomerans, Pseudomonas, 

Rhodospirillum rubrum, Serratia and Xanthomonas (reviewed in García de Salome et 

al., 2001). The spectrum of cytokinins produced by rhizobacteria is similar to that 

produced by the plant (Barea et al., 1976; García de Salome et al., 2001; Frankenberger 

and Arshad, 1995) of which isopentenyladenine, trans-zeatin, cis-zeatin and their 

ribosides as the most commonly found.  

García de Salome et al. (2001) provided evidence for a role of cytokinin of 

rhizosphere bacteria in plant growth promotion. They used mutants of P. fluorescens 

strain G20-18 which produce reduced amounts of cytokinin and normal amounts of 

auxin. In contrast to the wild type strain, the mutants appeared to be unable to 

promote growth of wheat and radish plants (García de Salome et al., 2006).  

Concerning the mechanism of action of cytokinins, one speculates that cytokinin 

produced by rhizosphere bacteria becomes part of the plant cytokinin pool, and thus 

influences plant growth and development. 

The ability to produce auxins and cytokinins is a virulence factor for the pathogen 

Agrobacterium tumefaciens which produces crown galls. This bacterium can transfer 

the genes for production of auxins and cytokinins to the plant and incorporate these 

genes in the plant’s DNA (see Spaink et al., 1998). Another bacterium from this genus, 

A. rhizogenes, modifies cytokinin metabolism, resulting in the appearance of masses of 

roots - instead of callus- from the infection site (Hamill, 1993).  

 

C.3. Gibberellins (GAs) 

These hormones consist of a group of terpenoids with 20 carbon atoms, but active GAs 

only have 19 carbon atoms. This group of compounds consists of over 130 different 

molecules (Dodd et al., 2010). GAs are mainly involved in cell division and cell 



Plant growth promotion by microbes 

53 

elongation within the subapical meristem, thereby playing a key role in internode 

elongation. Other processes affected by these hormones are seed germination, pollen 

tube growth and flowering in rosette plants. Like auxins and cytokinins, GAs mainly act 

in combination with other hormones. 

Bacteria which produce gibberellins, such as Acinetobacter, Agrobacterium, 

Arthrobacter, Azospirillum brasilense, A. lipoferum, Azotobacter, Bacillus, 

Bradyrhizobium japonicum, Clostridium, Flavobacterium, Micrococcus, Pseudomonas, 

Rhizobium and Xanthomonas, secrete it in the rhizosphere (Frankenberger and Arshad, 

1995; Gutiérrez Manero et al., 2001; Rademacher, 1994; Tsavkelova et al., 2006). 

Hardly anything is known about gibberellin synthesis in rhizosphere bacteria.  

Kang et al. (2009) showed that culture suspensions of GA-producing Acinetobacter 

calcoaceticus were able to increase the growth of cucumber, Chinese cabbage and 

crown daisy. The mechanism of plant growth stimulation by gibberellins is still rather 

obscure. It is thought that bacteria may increase GA levels in planta by either 

producing GAs, deconjugating GAs from root exudates or hydroxylating inactive GA to 

active forms (Bottini et al., 2004). Fulchieri et al. (1993) speculate that gibberellins 

increase root hair density in root zones involved in nutrient and water uptake. 

 

C.4. Abcisic Acid (ABA) 

ABA is a 15-carbon compound which, like ethylene, is involved in plant responses to 

biotic and abiotic stresses. It inhibits seed germination and flowering. It is involved in 

protection against drought, salt stress and toxic metals. It also induces stomatal 

closure (Smyth, 2011). 

ABA can be produced in culture media by several bacteria such as Azospirillum 

brasilense (Cohen et al., 2008; Perrig et al., 2007) and Bradyrhizobium japonicum 

(Boiero et al., 2007). ABA levels in planta have been increased in Arabidopsis thaliana 

by Azospirillum brasilense Sp25 (Cohen et al., 2008). 

The effect of inoculation with ABA-producing bacteria on plant growth is 

experimentally poorly underpinned. Since ABA inhibits the synthesis of cytokinins 

(Miernyk, 1979) it was speculated that ABA increases plant growth by interfering with 

the cytokinin pool (Spaepen et al., 2009). It could also alleviate plant stress by 

increasing the root/shoot ratio (Boiero et al., 2007).  
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C.5. Ethylene (ET) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. 

Ethylene is a gaseous hormone best known for its ability to induce fruit ripening 

and flower senescence. ET affects numerous plant developmental processes including 

root growth, root hair formation, flowering, fruit ripening and abscission, and leaf and 

petal senescence and abscission (Dugardeyn et al., 2008). ET usually inhibits both 

primary root elongation and lateral root formation but it can promote root hair 

formation (Dodd et al., 2010). It generally inhibits stem elongation in most dicots 

favouring lateral cell expansion and leading to swelling of hypocotyls. ET also breaks 

seed and bud dormancy. ET production is typically up-regulated in plants in response 

to pathogen attack, heat and cold stress, waterlogging, drought, excess heavy metals, 

high soil salinity and soil compaction (Dodd et al., 2010; Glick, 2005). 

ET is synthesised under biotic stress conditions following infection by pathogens, as 

well as by abiotic stress conditions such as drought. It is therefore also known as the 

stress hormone. In the plant, ethylene is produced from S-adenosylmethionine (SAM) 

which is enzymatically converted to ACC and 5’-deoxy-5’methylthioadenosine (MTA) 

by ACC synthase (Giovanelli et al., 1980; see Fig. 6).  

The enzyme ACC deaminase is present in many rhizosphere bacteria, such as 

Achromobacter, Pseudomonas, and Variovorax and in the fungus Trichoderma. Such 

microbes can take up ACC secreted by the plant root and convert it into α-

ketobutyrate and ammonia (Glick et al., 2007a) (Fig. 6). This results in the decrease of 

ACC levels, and therefore also of ethylene levels, in the plant and in decreased plant 

stress. Inoculation of plants with ACC deaminase producing bacteria can protect plants 

against stress caused by flooding, salination, drought, waterlogging, heavy metals, 

toxic organic compounds and pathogens (Berg, 2009; Glick, 2005; Glick et al., 2007a; 

Glick et al., 2007b; Belimov et al., 2005). ACC deaminase activity has been found in 

fungi such as Trichoderma (Viterbo et al., 2010) and in free-living soil bacteria, 

endophytes, and rhizobia from a wide range of genera, and there have been many 

correlations between ACC deaminase activity in a range of bacteria and their ability to 

promote plant growth under various conditions, for example in wheat (Zahir et al., 

2009), maize (Shaharoona et al., 2006), and tomato (Grichko and Glick, 2001; Mayak et 

al., 2004a; Mayak et al., 2004b).  

In addition to a direct role of ethylene on plant growth, this hormone can also act 

as a virulence factor and a signalling molecule in plant protection against pathogen 

attack. Ethylene production was reported to act as a virulence factor for bacterial  
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Fig. 6. Role for microbial ACC deaminase in plant stress control. For explanation, see text. The figure is 

mainly based on papers by the group of B. Glick. According to his hypothesis (Glick et al., 1998), bacterial 

auxin activates plant ACC synthase. The produced ACC can be used by some microbes as an N-source, 

thereby decreasing ethylene levels.  In order to explain how the ACC produced by the plant is converted by 

ACC deaminase from the bacterial cytoplasm, Glick et al. (1998) assumed that a significant portion of ACC is 

exuded from plant roots and seeds and then taken up by the microbe. We would like to suggest the 

following alternative explanation, namely that the microbe uses the TTSS (type three secretion system) for 

this purpose since it has been proposed earlier that a beneficial bacterium uses the needle of the TTSS to 

suck nutrients from the plant root (De Weert et al., 2007). Another possibility is that the bacterium uses its 

TTSS to deliver the enzyme into the plant. In the case of Trichoderma, one can imagine that its endophytic 

localization facilitates contact between enzyme and substrate.  

Colours: green, plant; pink, microbes; blue: processes. 

 

pathogens e.g. P. syringae (Weingart and Völksch, 1997; Weingart et al., 2001). 

Furthermore, ethylene acts as a signalling compound in induced systemic resistance 

caused by some rhizobacteria (Van Loon et al., 2007).  

 

C.6. Volatiles 

Bacteria can produce a wide range of volatiles. While the biological function of most of 

these volatiles is not fully understood, it is assumed they are involved in a number of 

processes including cell-cell signaling, inter-species signaling, a possible carbon release 

valve and that these compounds can promote plant growth and act as microbial 

inhibiting agents (Wheatley, 2002; Vesperman et al., 2007; Kai et al., 2009).  

Bacterial volatiles produced by Bacillus spp. have been shown to promote plant 

growth in A. thaliana. The highest level of growth promotion was observed with 2, 3 

butanediol and its precursor acetoin (Ryu et al., 2003).  
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Farag et al. (2006) identified 38 volatile compounds from rhizobacteria. Blom et al. 

(2011) screened 42 strains grown in four different growth media on the growth 

response of A. thaliana. Under at least one of these conditions each strain showed 

significant volatile-mediated plant growth modulation. Only one strain, a Burkholderia 

pyrrocinia, showed significant plant growth-promotion on all four media. The volatiles 

indole, 1-hexanol and pentadecane showed plant growth promotion but the results 

suggested that this occurred only under stress conditions. 

 

C.7. A-HSLs 

N-acyl homoserine lactones (A-HSLs) are signal molecules secreted by many bacteria. 

When their extracellular concentration reaches a certain value, the quorum, they play 

a role in many processes such as secretion of antibiotics and exo-enzymes (Vivanco, 

2013). In terms of growth promotion, it was shown recently that 10µm C6-AHL and C8-

AHL increase root growth in A. thaliana (see Fig. 5). This is accompanied by an increase 

in the auxin/cytokinin ratio and in increased expression of over 700 genes in the roots 

and of a lower number in the stem (von Rad et al., 2008).  

 

C.8. nod gene inducers and LCO’s (Nod-factors) 

The nod genes of (Brady)Rhizobium are induced by flavonoids or isoflavonoids. LCO’s 

signal molecules are the products of nod genes. They initiate root hair curling and 

subsequent steps in the nodulation of leguminous plants by (Brady)rhizobium bacteria 

(see section B.1).  

Interestingly, both the inducers as well as the products of the nod genes promote 

plant growth and this effect is not restricted to leguminous plants (see Fig. 2). See 

http://www.bioag.novozymes.com. For example, one product is based on 

isoflavonoids and is claimed to activate mycorrhizae before the plant does so, resulting 

in  enhancing nutrient uptake, which in turn leads to lateral root development, and 

stress tolerance. Formulations for soybean, peanut, alfalfa and pea/lentil, combining 

the respective LCO and rhizobia, have also been commercialized. When LCOs were 

applied on seeds of the non-legumes corn, cotton, and wheat, increased plant growth 

as well as yield increase in the field was observed. In furrow application as well as 

foliar sprays have similar effects. Possible explanations given are enhanced 

germination, early seedling growth, increased photosynthesis, enhanced nutrient 

uptake and enhanced LCO-stimulated mycorrhizal root colonization (Smith et al., 

2011). 

http://www.bioag.novozymes.com/
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Conclusions 

Nitrogen and phosphorous are the major chemical fertilizers applied to enhance crop 

yield. This raises a number of concerns such as water contamination leading to 

euthrophication and health risks for humans. Moreover it results in soil degradation 

and loss of biodiversity. Presently, the cost for nitrogen fertilizer is steeply increasing 

as a consequence of the increasing energy prices. The amount of available 

phosphorous is limited. For these reasons, the interest in sustainable fertilization, 

using microbes, is strongly increasing. In this chapter we have discussed many 

microbes which can be applied for a more environmentally friendly agriculture. 
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Abstract 

Most plant diseases are caused by fungi and oomycetes. Presently, the major method 

for controlling plant diseases is the use of agrochemicals. However, this practice raises 

health and environmental concerns among consumers and politicians. An alternative 

for chemicals is the application of products based on natural enemies of the pathogen. 

Several of such BCAs (Biological Control Agents) with bacteria or fungi as the active 

ingredient are already on the market. In this review we describe the discovery of such 

microbes as well as methods for their isolation. Using microscopy, we visualized 

biocontrol at the cellular level. Furthermore, we describe the role of root colonization 

by the BCA in biocontrol. Finally, mechanisms of biocontrol at the molecular level are 

described and the risk of resistance towards BCAs is discussed. 
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Introduction 

Some practical aspects of biocontrol 

For recent reviews on microbial control of plant root diseases the reader is referred to 

Berg (2009), Compant et al. (2005), Haas and Défago (2005), Lorito et al. (2010); 

Lugtenberg and Kamilova (2009), Pliego et al. (2011), and Raaijmakers et al. (2009). 

The concept of microbial control of plant root diseases originates from the discovery of 

disease-suppressive soils (Schroth and Hancock, 1982) and is explained in detail in 

excellent reviews by Weller et al. (2002) and Haas and Défago (2005). Briefly, disease-

conducive soils contain pathogens and therefore cause plant disease. In contrast, there 

are soils which also contain pathogens but hardly cause disease. These so-called 

disease-suppressive soils contain microbes which suppress the action or growth of the 

pathogen or even kill the pathogen (Mendes et al., 2011). The disease-suppressive trait 

can be transferred to conducive soils by mixing the latter with a small amount of 

disease-suppressive soil. Details on factors influencing transfer of disease-

suppressiveness can be found in Haas and Défago (2005).  

Plant diseases are responsible for annual crop losses at a total value of more than 

200 billion Euro (Agrios, 2005). Major root diseases are caused by fungi, oomycetes 

and nematodes. Also some bacteria are responsible for root diseases. The fungi 

include Fusarium oxysporum, Gaeumannomyces graminis var. tritici, Rhizoctonia 

solani, and Thielaviopsis. The major oomycetes are Phytophthora spp. and Pythium 

spp. The pathogenic bacteria include Erwinia amylovora, Ralstonia solanacearum and 

Streptomyces scabies, whereas Meloidogyne incognita is an example of a root-

pathogenic nematode.  

The major form of crop protection is the use of chemicals. However, this practice 

raises health and environmental concerns among public and politicians. As a result, 

many chemicals have been banned and more will follow. Also, some supermarket 

chains put pressure on fruit and vegetable producers by requiring zero tolerance.  

An attractive alternative to chemical crop protection products, or more realistically, 

for the reduction of chemical input, is the use of disease-suppressing microbes. These 

are found among natural enemies of the pathogens. In principle, the use of these 

microbes is an environmentally friendly and safe way to replace or reduce chemicals. 

In case these microbes produce antibiotics, these molecules are produced in only 

minute amounts and only at the site where they are needed, i.e. on the plant surface. 

In contrast to this form of precision agriculture, most chemicals are applied in much 

higher amounts and a significant fraction of the applied molecules does not even reach 
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the plant surface. A disadvantage of biologicals is that they are often less efficient than 

chemicals and their action is less consistent than that of chemicals. Therefore a major 

challenge for biocontrol scientists and producers of microbial products is to create 

more efficient products. In order to sell a product, the producer should make clear that 

the product is safe and effective. Despite the strong public and political demand for 

biological alternatives for chemicals, there are no specific registration procedures for 

biologicals but they are regulated as general plant protection products which are 

designed for chemicals.  

Although most crops are grown in soil, many greenhouse vegetables are nowadays 

grown on other substrates such as stonewool. New stonewool is practically sterile. This 

means that pathogens which invade the young plants can have a devastating effect on 

the whole plant population because the buffering capacity of indigenous microbes, 

which is strong in healthy soil, is absent in new stonewool. However, biocontrol 

microbes such as Pseudomonas putida strain PCL1760, added to new stonewool before 

planting, can protect the plantlets very efficiently against pathogens (Validov et al., 

2009). Cells of this strain appeared to stick tightly to stonewool and remain the 

dominant microbe on the root for at least 3 weeks (Validov et al., 2007). This suggests 

that addition of such microbes to stonewool can replace indigenous microbes with 

respect to buffering capacity against pathogens. 

 

Life style of microbes in the rhizosphere   

The rhizosphere is defined as the soil area around the root which is influenced by the 

root (Hiltner, 1904). It is 10 to 1,000 times richer in microbes than bulk soil. This so-

called rhizosphere effect is assumed to be caused by nutrients for microbes secreted 

by the root and by residues of dead roots or root cells. It has been estimated that 5 to 

21 percent of the carbon fixed by the plant is secreted, mainly as exudate (Marschner, 

1995). 

The simplest nutrients in root exudate, which are the most attractive food sources 

for rhizosphere microbes, are organic acids, sugars, and amino acids. In addition, a 

large variety of compounds such as enzymes, fatty acids, nucleotides, 

osmoprotectants, putrescine, sterols and vitamins have been detected in root exudate, 

as well as signal molecules playing a major role in communication between different 

microbes and also between microbes and other organisms (see later on in this 

chapter). The exudate composition is the net result of secretion, conversion by soil 
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enzymes, and uptake by microbes and plant. For reviews on exudates, the reader is 

referred to Lugtenberg and Bloemberg (2004) and Uren (2007).  

BCAs which are added to the soil have to compete for nutrients and niches on the 

plant root with indigenous microbes, such as bacteria and fungi, and with predators 

such as nematodes and protozoa. Microbes living in the rhizosphere usually live under 

nutrient-starvation conditions since the nutrient concentration is much lower than that 

in laboratory media (Lugtenberg and Kamilova, 2009). The doubling time of 

pseudomonads in the rhizosphere is 3 to 6 hours, i.e. ten times slower than in rich 

laboratory media (Haas and Défago, 2005). Also osmotic stress may play a role in the 

life of a rhizosphere microbe since the osmotic conditions may vary due to drought 

and rainfall. This is probably the reason why many rhizosphere microbes produce 

osmoprotectants (Berg et al., 2013). 

BCAs may communicate with other organisms through a variety of signal 

molecules. We will restrict ourselves here to AHLs because they are relevant for 

biocontrol. AHLs are molecules secreted by many Gram-negative bacteria. They can 

sense the level of other bacteria of the same kind. When the concentration of these 

bacteria reaches a certain level (the quorum), as sensed by the extracellular 

concentration of AHLs, they start to produce many secondary metabolites and exo-

enzymes (Uroz et al., 2009).  

 

Visualisation of biocontrol 

GFP can be visualized using CLSM. Since gfp mutants with different colors exist, several 

microbes labeled with GFP and derivatives can be visualized simultaneously in the 

same preparation against the autofluorescent plant root (Bloemberg et al., 2000). 

Using the combination of gfp-labeled microbes and CLSM, the process of biocontrol of 

TFRR was visualized, first by following the behavior of BCA and fungus on the root 

separately, later with all players present. After application on the seed and subsequent 

germination, the microbe starts to colonize the root collar, followed by colonization of 

the root, first as single cells and later as micro colonies or biofilms (Fig. 1) (Chin-A-

Woeng et al., 1997; Bloemberg and Lugtenberg, 2004). The first step carried out by the 

causal agent of TFRR, Forl, is attachment of hyphae to root hairs (Fig. 1a). 

Subsequently the hyphae colonize preferentially the grooves along the junctions of the 

epidermal cells (Fig 1b), penetrate the epidermal cells (Fig. 1c) and overgrow the root 

completely (Fig. 1d) (Lagopodi et al., 2002). Pseudomonas BCAs, applied on the seed,  
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Fig. 1. Visualisation of biocontrol. CLSM (confocal laser scanning microscopy) (a-g and i) and scanning 

electron microscopy (h) were used to visualize control of TFRR caused by Forl (Fusarium oxysporum f. sp. 

radicis-lycopersici) by Pseudomonas biocontrol bacteria. For CLCM, bacteria and fungi were labeled using 

mutants of the gfp (green fluorescent protein) gene. The tomato root is autofluorescent. The infection 

process by the pathogen starts with attachment of hyphae to the root hairs (a) followed by colonization of 

the grooves between the junctions of the epidermal cells (b), penetration of the root cells (c) and 

overgrowth of the internal root (d). Upon seed germination, bacteria coated on the seed multiply, colonize 

the grooves between plant cells (e) and form biofilms on part of the root (f). Note that the bacteria in 

biofilms are covered by a mucoid layer (see g, which is a detail of f, and 1h in which the mucoid layer is 

broken open) which creates an ideal condition for quorum sensing and processes dependant on QS, such as 

F-mediated DNA transfer, and the syntheses of antibiotics and exo-enzymes. The bacteria also colonize the 

hyphae extensively (i).  

Panels a, c, and d were reproduced from Lagopodi et al. (2002), panel b from Bolwerk et al. (2003), and 

panel h from Chin-A-Woeng et al. (1997).  Panel e is from Bolwerk, Lagopodi and Bloemberg, unpublished. 

Panels f and g are from Bloemberg et al., (1997); Copyright © American Society for Microbiology. 

 

multiply extensively upon germination, start to colonize the root surface, first the 

grooves along the junctions between root cells (Fig. 1e), form biofilms (Fig. 1f) which 

are covered by a mucoid layer (Fig. 1g, h) and eventually reach the root tip. The 

bacteria also colonize the fungal hyphae (Fig. 1i) (Lagopodi et al., 2002; Bolwerk et al., 

2003). The observation that the two microbes colonize the same niche on the root, 

initially suggested to us that they therefore have a fair chance to interact, which would 

be beneficial for biocontrol. However, it could be that even smaller micro-niches are 

required for BCA and pathogen to meet (see section f. Competition for nutrients and 

niches). 

Under the tested biocontrol circumstances, i. e. BCA applied on the root and 

pathogen mixed through the sand, the BCA reaches the root first. In addition, it 

colonizes the hyphae extensively (Lagopodi et al., 2002; Bolwerk et al., 2003). The 
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metabolic basis of the initiation of the interactions during the colonization processes 

was unraveled: Pseudomonas is chemotactically attracted to the root by root exudate 

components, in particular malic acid and citric acid (De Weert et al., 2003), and 

chemotactically attracted to the fungus by fusaric acid (De Weert et al., 2002). 

Detailed colonization studies suggest that each BCA is characterized by a more or 

less specific colonization pattern and mode of interaction with pathogens and plant 

hosts (Zachow et al., 2010; Compant et al., 2011). 

 

Competitive root colonization by biocontrol microbes 

Since root colonization is the delivery system of beneficial microbes and their 

products, effective biocontrol microbes should be rhizosphere competent. This has 

been proven for the mechanisms antibiosis (Chin-A-Woeng et al., 2000) and 

competition for nutrients and niches (Kamilova et al., 2005; Validov et al., 2007). For 

the mechanism ISR it seems to be sufficient that the microbe is present on part of the 

root although full root colonization provides better protection (Dekkers et al., 2000). 

In order to identify traits involved in root colonization, a gnotobiotic competitive 

tomato root colonization system was developed in which bacteria from two different 

strains are applied on the seed and, upon germination, compete for nutrients by 

moving chemotactically towards the root tip. The ratio in which the microbes were 

found on the root tip was used as the criterion for effective competitive root 

colonization (Simons et al., 1996). This system was not only used for comparison of the 

competitive root colonization abilities of wild type strains, but also for the screening 

for competitive colonization mutants. After complementation analysis and after 

confirmation of the colonization defect of the putative mutants in a soil system, traits 

playing a role in competitive root colonization were identified. These traits include 

phase variation, motility, adhesion to the root, utilization of organic acids from 

exudate, the syntheses of amino acids, nucleotides, uracil, vitamin B1, and the LPS O-

antigenic side chain, and the TTSS (Lugtenberg and Dekkers, 1999; Lugtenberg et al., 

2001; Lugtenberg and Bloemberg, 2004; Lugtenberg and Kamilova, 2009). In the 

following we will discuss some important traits in detail, namely chemotaxis of the BCA 

towards the root, utilization of root exudate nutrients, and the role of TTSS in 

competitive colonization.  

Not surprisingly, it turned out that not motility in general but chemotaxis towards 

specific root exudate components, especially malic acid and citric acid, is crucial for 
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effective competitive tomato root colonization by Pseudomonas (De Weert et al., 

2003).  

In an early stage of the colonization research fast growth on root exudate 

components was shown to be important. Consistent with this notion was the 

observation that mutants impaired in the utilization of the major group of exudate 

nutrients, organic acids, were impaired in competitive root colonization whereas 

mutants impaired in the  utilization of sugars, which  are present is lower amounts in 

tomato root exudate, showed practically normal behavior (Simons et al., 1997; 

Lugtenberg et al., 1999).  

Since mutants impaired in their TTSS are poor in competition with the parental 

strain for root colonization, it was concluded that type three secretion plays a role in 

competitive root colonization. Since the presence of the parental cells did not 

compensate the colonization defect of the mutants, it was suggested that the needle 

of the TTSS in wild type cells was not used to release nutrients from the plant cells into 

the environment because that would have resulted in phenotypic complementation. 

Rather, the presence of the needle gives the wild type a competitive growth 

advantage. Apparently, the needle was used to tap nutrients from the plant cell 

directly into the bacterium. Based on this result it was hypothesized that early in 

evolution the TTSS needle was developed to give the bacterial cell access to nutrients 

present in the plant cell and that the system later evolved to inject bacterial molecules 

into the plant cell (De Weert et al., 2007).  

 

Antibiotics and biocontrol 

Up to one third of rhizosphere bacteria produce AFMs and therefore may play a role in 

the control of diseases caused by fungi (Opelt et al., 2007). This has to be confirmed by 

mutational analysis followed by complementation studies. The best known antibiotics 

involved in biocontrol by Gram-negative bacteria are Phl, phenazines, pyoluteorin, 

pyrrolnitrin and the volatile HCN. The possible modes of action of several of these 

antibiotics are discussed by Haas and Défago (2005). Some bacilli can produce 

zwittermycin A (Emmert et al., 2004) and kanosamine (Milner et al., 1996). More 

recently, BCAs were discovered which produce the antibiotics D-gluconic acid (Kaur et 

al., 2006), 2-hexyl-5-propyl resorcinol (Cazorla et al., 2006) and the volatiles 2,3-

butanediol (Ryu et al., 2003), 6-pentyl-α-pyrone (Lorito et al., 2010) and  DMDS 

(Dandurishvili et al., 2011). The role of the volatile HCN in biocontrol has been known 
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for a long time (Haas and Défago, 2005) and it was recently discovered that also other 

volatiles can play a role in biocontrol (Ryu et al., 2003; Dandurishvili et al., 2011).  

A class of antibiotics which was studied in great detail during the last decade is that 

of the c-LPs. These compounds are produced by several bacterial species, including 

Bacillus (Borriss, 2011; Chen et al., 2009; Ongena et al., 2007; Romero et al., 2007) and 

Pseudomonas (Raaijmakers et al., 2006; Raaijmakers et al., 2010). Bacillus c-LPs belong 

to three major families, the iturins (bacillomycins, iturins and mycosubtilins), the 

fengycins (plipastatins) and the surfactins (bamylocin A, esperins, lichenysins, 

pumilacidins and surfactins). These c-LPs are composed of seven (iturins and 

surfactins) or ten (fengycins) amino acids of both D- and L-configuration which form a 

ring linked to either a β-hydroxy (fengycins and surfactins) or a β-amino (iturins) fatty 

acid. Both the peptide moiety and the fatty acyl chain are essential for the biological 

functions of c-LPs (Jacques, 2011). All three major families of cLPs are key effector 

molecules of biological control. The mechanism of their beneficial action is based on 

direct antibiosis of phytopathogens and/or triggering ISR (Borriss 2011; Raaijmakers et 

al., 2010; Pérez-García et al., 2011). Iturins and fengycins are originally known for their 

strong antifungal activity against a wide range of phytopathogens while surfactins are 

mostly antibacterial (Ongena and Jacques, 2008). Recently Zeriouh et al. (2011) 

provided strong evidence for a major role of iturins in inhibition of the Gram-negative 

bacterial phytopathogens Xanthomonas campestris and Pectobacterium carotovorum. 

This is an interesting finding since the antibacterial activity of iturins was initially 

thought to be restricted to only a few Gram-positive species (Besson et al., 1978). 

Several mutational analysis studies have shown a role of iturins in biocontrol of both 

fungal and bacterial phytopathogens (Leclère et al., 2005; Arrebola et al., 2010; 

Zeriouh et al., 2011). Touré et al (2004) presented strong evidence for the involvement 

of fengycins in biocontrol of Botrycis cinerea on apple. They detected fengycins in 

infected tissues in inhibitory concentrations. Using mutational analysis, Yánez-

Mendizábal et al (2011) showed a major role for fengycins in suppression of peach 

brown rot. Surfactins are very effective against Pseudomonas syringae on Arabidopsis 

plants (Bais et al. 2004). Fengycins and surfactins trigger defense pathways in bean and 

tomato plants (Ongena et al., 2007; Henry et al., 2011). Furthermore, when different 

families of c-LPs are co-produced they can interact in a synergistic manner resulting in 

more effective plant protection (Ongena et al., 2007; Romero et al., 2007). c-LPs and 

particularly surfactins are not only directly responsible for biocontrol, they are also 
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involved in motility and biofilm formation (Bais et al., 2004) and in cell differentiation 

and cannibalism (López et al., 2009). 

 

Mechanisms of biocontrol 

For major reviews about biocontrol and its mechanisms the reader is referred to Table 

1. An overview of the microbes most used for biocontrol of root diseases, their traits 

and mechanisms of action is presented in Table 2. 

 

1. Antibiosis 

Since antibiotic-producing bacteria occur frequently, are easy to isolate, and are 

interesting for molecular studies on biosynthesis and regulation, they are the best 

known class of BCAs. The production of antibiotics is very dependent on environmental 

conditions such as temperature, pH and the levels of various metal ions, particularly of 

Zn
2+

 (Duffy and Défago, 1999; van Rij et al., 2004). Tripartite interactions and signaling 

among plants, pathogens, and bacteria is involved in the regulation of antifungal traits 

of Pseudomonas (Jousset et al., 2011) Moreover, the effect of environmental 

conditions is strain-dependent (van Rij et al., 2004). Therefore, and because efficient 

colonization is required for antibiosis (Chin-A-Woeng et al., 2000; Dekkers et al., 2000), 

it is not surprising that some strains which show anti-fungal activity on plates, do not 

act as biocontrol agents in vivo. The identification and quantification of the antibiotics 

which are produced during biocontrol in situ is a challenge and has been shown only 

for a few cases (Tomashow and Weller, 1996). 

The slow growth rate of bacteria in the rhizosphere favors the production of 

secondary metabolites (Haas and Défago, 2005). It is also very likely that the presence 

of bacterial biofilms under a mucoid layer (Fig. 1 g,h) is favorable for quorum sensing 

(Chin-A-Woeng et al., 1997), a prerequisite for the production of many antibiotics.  

 A risk of using an antibiotic-producing BCA in practice is that cross-resistance can 

occur with antibiotics used in human or animal practice. Another risk is that genes 

encoding the antibiotic production ability can be transferred to related strains (Zhang 

et al., 1993). This is a realistic possibility since some forms of conjugative transfer 

require quorum sensing which requires a high density of microbes. This is the case on 

the root where pseudomonads form micro colonies under a mucoid layer (Fig 1g,h) 

(Chin-A-Woeng et al., 1997). Indeed, it has been shown by van Elsas et al. (1988) that 

genetic material is exchanged at a high frequency in the rhizosphere. These facts form  
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Table 1. Major reviews about biocontrol and its mechanisms 

Topic References 

Biocontrol general Schroth and Hancock, 1982; Compant et al., 2005; Haas and Défago, 

2005; Berg, 2009; Lugtenberg and Kamilova, 2009; Mendes et al., 2011 

Biocontrol by Bacillus  Raaijmakers et al., 2006; Borriss, 2011; Pérez-Garcia et al., 2011 

Biocontrol by Pseudomonas Haas and Défago, 2005; Raaijmakers et al., 2006; Validov, 2007; Pliego et 

al., 2011 

Biocontrol by Trichoderma Harman et al., 2004 ; Lorito et al., 2010 

Antibiosis Thomashow and Weller, 1996; Opelt et al., 2007 

CNN Lugtenberg and Kamilova, 2009; Pliego et al., 2011 

Ferric iron ion acquisition Leong, 1986 

Induced systemic resistance Van Loon, 2007; Van Wees et al., 2008  

Predation and parasitism Harman et al., 2004; Lorito et al., 2010 

Root colonization Chin-A-Woeng et al., 1997; Lugtenberg and Dekkers, 1999; Lugtenberg et 

al., 2001; Bolwerk et al., 2003; De Weert et al., 2007 

 

Table 2. Major microbes used for biocontrol, their traits and mechanisms of action 

A. Bacillus 

Traits / mechanisms of action References 

Root colonization Fan et al., 2011 

Antibiosis Romero et al., 2007 ; Ongena and Jacques, 2008 ; Chen et 

al., 2009 ; Raaijmakers et al., 2010; Borriss, 2011 

Induced systemic resistance Kloepper et al., 2004; Ongena et al., 2007  

Signal interference Dong et al., 2004 

B. Trichoderma 

Root colonization Harman et al., 2004; Harman, 2006 

Antibiosis Lorito et al., 2010 

CNN Lorito et al., 2010 

Induced systemic resistance Lorito et al., 2010 

Predation and parasitism Lorito et al., 2010 

C. Pseudomonas and some other Gram-negatives 

Traits / mechanisms of action References 

Root colonization Simons et al., 1996; Lugtenberg et al., 2001; Lagopodi et al., 

2002; Berg, 2009; Lugtenberg and Kamilova, 2009  

Antibiosis Thomashow and Weller, 1996; Chin-A-Woeng et al., 1998; 

Haas and Défago, 2005; Compant et al., 2005; Cazorla et al., 

2006; Raaijmakers et al., 2010; Egamberdieva et al., 2011 

Predation and parasitism Ordentlich et al., 1998 

Induced systemic resistance Audenaert et al., 2002; Iavicoli et al., 2003; Shuhegger et al., 

2006; Van Wees et al., 2008 

Competition for Nutrients and Niches Kamilova et al., 2005; Pliego et al., 2007; Validov, 2007 

Colonization of hyphae Bolwerk et al., 2003; De Weert et al., 2003 

Ferric iron ion acquisition Kloepper et al., 1980; Leong, 1986 
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risks for human health and represent reasons why registration of products based on 

antibiotic-producing microbes is difficult. 

 

2. Signal interference 

Several pathogens perform their action by hydrolyzing the cell walls of cells of their 

target plant. The production of many exo-enzymes is regulated by quorum sensing. 

One way to control exo-enzymes of pathogens is to inactivate the AHL molecule 

required for exo-enzyme production. This mechanism has been designated as signal 

interference (Dong et al., 2004). Two classes of AHL-inactivating enzymes have been 

identified, namely AHL-lactonases which hydrolyse the lactone ring, and AHL-acylases 

which break the amide linkage. For a review on these two enzymes, on AHL modifying 

enzymes, and on abiotic factors influencing the stability of AHLs, the reader is referred 

to Uroz et al. (2009). 

In the pathosystem Verticillium dahliae-oilseed rape, the essential role of AHL-

mediated signaling for disease suppression, including production of AFMs and VOCs, in 

Serratia plymuthica HRO C48 was demonstrated (Müller et al., 2009). Dandurishvili et 

al. (2011) reported that VOCs produced by rhizospheric strains P.fluorescens B-4117 

and S. plymuthica IC1270 might be involved in the suppression of crown gall disease in 

tomato plants caused by Agrobacterium. Recently, Chernin et al. (2011) showed that 

VOCs emitted by cells of these strains, as well as the pure volatile DMDS, can cause 

significant suppression of transcription of AHL synthase genes phzI and csaI. Since AHLs 

play a role in conjugational transfer of A. tumefaciens Ti plasmids to the plant (Zhang 

et al., 1994), which is an essential step in crown gall formation, the volatile DMDS may 

control crown gall disease through signal interference. 

 

3. Predation and parasitism 

Since the cell walls of many fungi contain chitin, ß-1,3 glucan and protein, BCAs which 

produce exo-enzymes which degrade these compounds, alone or in combination, are 

often successful in killing the pathogen. This biocontrol mechanism is called P&P. It is 

used by some strains of Trichoderma (Harman et al., 2004) and Serratia marscescens 

(Ordentlich et al., 1998). 

 

4. Induced systemic resistance 

ISR is a broad spectrum plant immune response that is activated by some plant-

beneficial bacteria that live on plant roots (Kloepper et al., 2004; van Wees et al., 2008; 
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Pieterse et al., 2009), such as P. fluorescens strains WCS417R (van Loon and Bakker, 

2003; van Wees et al., 1997) and WCS365 (Kamilova et al., 2005). Immunized plants 

become potentiated to mobilize infection-induced defense responses faster and 

stronger after pathogen or insect attack, resulting in an enhanced level of protection. 

ISR microbes induce resistance systemically, i.e. also in distant plant parts such as 

leaves (Van Peer et al., 1991; Wei et al., 1991). The outcome of ISR can be a broad 

range of protection but it is also somewhat unpredictable. ISR can protect the plant 

against several pathogenic bacteria, fungi and viruses (van Loon et al., 1998; van Loon, 

2007). The success of ISR-inducing strains depends on the plant species and cultivar 

(van Loon and Bakker, 2003; van Wees et al., 1997). The hormones jasmonic acid and 

ethylene are key regulators of ISR (van Wees et al., 2000).  It was suggested that ISR 

resembles innate immunity and uses Toll like receptors (de Weert et al., 2007). 

ISR does not require complete root colonization persé as was shown using 

competitive colonization mutants (Dekkers et al., 2000). In addition to live microbes, 

such as Bacillus, Pseudomonas and Trichoderma, ISR can be triggered by dead 

microbes and even by bacterial molecules and organelles such as siderophores, 

lipopolysaccharides, flagella, salicylic acid, the combination of pyocyanin and pyochelin 

(Audenaert et al., 2002), the volatile 2,3-butanediol (Ryu et al., 2003), the signal 

molecule AHL (Schuhegger et al., 2006), the antibiotic phloroglucinol (Iavicoli et al., 

2003) and some c-LPs (Ongena et al., 2007; Pérez-García et al., 2011) 

 

5. Competition for ferric iron ions 

All organisms need Fe
3+

 for growth. Under conditions of Fe
3+

-limitation, many bacteria 

secrete Fe
3+

-chelating compounds, called siderophores. The siderophore-Fe
3+ 

complex 

is subsequently bound to Fe
3+

-limitation-inducible outer membrane protein receptors 

and the Fe
3+

 ion is transported into the bacterial cell, in which it becomes biologically 

active as Fe
2+

. An example of a siderophore is pyoverdin or pseudobactin, the pigment 

responsible for the fluorescence of fluorescent pseudomonads. Fe
3+ 

is poorly soluble 

under aerobic conditions at neutral and alkaline pH. Some bacteria produce 

siderophores which are sufficiently strong to bind Fe
3+

 to the extent that fungi in their 

neighbourhood cannot grow anymore under iron limitation and siderophore-

producing bacteria can then act as biocontrol agents (Leong, 1986), as examplified by 

the control of Erwinia carotovora by P. fluorescens strains (Kloepper et al., 1980). 
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6. Competition for nutrients and niches 

Kamilova et al. (2005) showed that CNN is a mechanism for biocontrol. They selected 

enhanced root tip colonizers from a crude mixture of rhizosphere bacteria. 

Approximately half of the selected enhanced colonizers appeared to be able to control 

TFRR caused by Forl. They showed that such strains out compete other microbes in 

competition for exudate nutrients and in competition for niches on the root (Kamilova 

et al., 2005; Validov et al., 2007). The observation that not all enhanced colonizers are 

BCAs can be explained by a discovery of Pliego et al. (2008) who found that two very 

similar Pseudomonas strains, selected for their efficient colonizing abilities, colonized 

different micro-niches on the root. This difference was used as an explanation why one 

strain is able to control the disease avocado white root rot whereas the other strain 

could not. 

Bacteria controlling disease using CNN as a mechanism have several advantages. (i). 

CNN is the only mechanism for which strains can be selected. So, such strains can be 

isolated from a soil, a plant and a climate of preference. (ii). Most CNN strains do not 

produce antibiotics which is an advantage for registration since regulatory authorities 

do not like the introduction of antibiotic-producing strains in the environment. (iii). In 

case antibiotic production is considered to be an advantage, strains can be selected 

which use a combination of CNN and antibiosis as mechanisms (Pliego et al., 2007). 

(iv). Resistance against BCAs using CNN as their biocontrol mechanism is hard to 

imagine. The same applies for biocontrol strains which use both CNN and antibiosis as 

mechanisms since pathogens resistant to one mechanism can be controlled by the 

other mechanism.  

 

7. Interference with activity, survival, multiplication, germination, sporulation and 

spreading of the pathogen 

Studies with biocontrol strain P. fluorescens WCS365 have shown that this strain shows 

a series of activities which contribute to control of TFRR. (i). Cells of the strain are 

attracted to FA secreted by the hyphae. Subsequently they colonize the hyphal surface 

of the pathogen extensively, resulting in the formation of micro colonies or biofilms 

(Fig. 1i) (de Weert et al. 2003). This is probably the first step in an attempt to use the 

fungus as a food source. It is likely that colonization of hyphae makes the fungus less 

virulent, inhibits its activity and is detrimental for its survival and multiplication. (ii). 

Microconidia of Forl germinate in tomato root exudate. Germination is inhibited by 

biocontrol strain P. fluorescens WCS365, presumably because of nutrient deprivation. 
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(iii). When hyphae are grown in tomato root exudate, microconidia are formed. These 

are spores that can spread the pathogen through the environment. The presence of 

WCS365 reduces spore formation and therefore reduces pathogen spread (Kamilova et 

al., 2008). In conclusion, P. fluorescens WCS365 bacteria inhibit activity, survival, 

multiplication, germination, sporulation and spreading of the pathogen. We have not 

studied other bacteria or BCAs on these traits, which therefore may not be unique for 

P. fluorescens WCS365. 

 

Resistance towards biocontrol microbes 

Several mechanisms of resistance towards BCAs have been discovered in fungi (Duffy 

et al., 2003) which resemble resistance mechanisms used by bacteria against 

antibiotics. (i). Inhibition of antibiotic production. The secondary metabolite FA, 

secreted by many Fusarium strains (Notz et al., 2002), previously shown to be a 

chemoattractant for biocontrol strain P. fluorescens WCS365 (De Weert et al., 2003), 

inhibits the synthesis of Phl in the biocontrol bacterium P. fluorescens CHA0 by 

repression of the phlA promoter (Duffy and Défago, 1997). FA also inhibits the 

synthesis of another antibiotic, PCN, in another biocontrol bacterium, namely P. 

chlororaphis PCL1391. In this case a different inhibition mechanism is used, namely at 

or before the level of AHL production (van Rij et al., 2005). Note that AHL is required 

for the synthesis of PCN but not for that of Phl. (ii). Detoxification of the antibiotic. 

Between 18 and 25 percent of the isolated Fusarium strains were tolerant to Phl.  

Deacetylation of the antibiotic to the mono-acetyl form is the major mechanism of 

action (Schouten et al., 2004). Another form of detoxification is acetylation, which is 

used by biocontrol strain Bacillus subtilis strain UW85, the producer of the antibiotic 

zwittermycin A (Milner et al., 1996). (iii). The presence of phenazine induces an efflux 

pump for this compound in Botrytis cinerea. Mutants lacking the pump are more 

sensitive to the antibiotic (Schoonbeek et al., 2002). 

In order to avoid resistance in biocontrol, it is preferable to use a BCA which uses 

more than one mechanism. Alternatively, a combination of BCAs with different 

mechanisms of action can be used. If a pathogen is resistant to one mechanism it can 

still be inactivated by a second one. Suitable microbes would for example be 

Trichoderma spp. (Lorito et al., 2010), which use at least mechanisms a, c and d (see 

section Mechanisms of biocontrol), and P. fluorescens WCS365, which uses at least 

mechanisms d, e, f and g, and some bacilli, which use mechanisms a and d. A summary 

of processes in which signal molecules and nutrients play a role in the rhizosphere 
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Fig. 2. Nutrients and molecules involved in biocontrol of TFRR. Cells of a hypothetical biocontrol bacterium 

applied on the seed proliferate on nutrients from seed exudate. Subsequently they are attracted to the root 

by citric acid and malic acid from root exudate and successfully compete for root exudate nutrients and 

niches in case the mechanism is CNN. Specific cell surface components and secondary metabolites of the 

BCA can induce the mechanism ISR. Upon formation of biofilms, the resulting quorum results in AHL 

synthesis. AHL in turn leads to synthesis of antibiotics, some of which also cause ISR, and of exo-enzymes 

which are required for the mechanism P&P. When the pathogen Forl arrives close to the root, cells of a BCA 

can be chemo-attracted to FA secreted by the hyphae, and subsequently colonize the hyphae. Whether 

syntheses of the AFFs phenazine and Phl are inhibited by FA or whether the cells of the BCA damage or kill 

the hyphae will depend on timing and concentrations of the metabolites and organisms and on whether the 

fungus is resistant and, if so, by which mechanism. Additional abbreviations: AB, antibiotic; LP, lipopeptide. 

 

during biocontrol is shown in Fig. 2. 

 

Conclusions 

Phytopathogenic fungi and oomycetes cause enormous crop losses. Presently, 

chemical agents are the major way of disease control but they have the disadvantages 

that i) many of them are detrimental for health and environment, and ii) that 

resistance occurs rather fast. In this review, we discuss that products which contain 

natural microbial enemies of these pathogens are a realistic alternative and addition to 

chemical pesticides. The quality of these BCAs can be further increased by using 

fundamental knowledge to improve methods for their production and to increase their 

shelf life. In addition, the fast development of very advanced techniques in microbial 
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ecology and a focus on mechanisms of actions make improvement of strain selection 

feasible. 
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Abstract 

Thirty endophytic bacteria were isolated from various plant species growing near 

Saint-Petersburg, Russia. Based on a screening for various traits, including plant-

beneficial properties and DNA fragment patterns, potential siblings were removed. The 

remaining isolates were taxonomically identified using 16S rDNA sequences and 

potential human and plant pathogens were removed. The remaining strains were 

tested for their ability to promote radish root growth and to protect tomato plants 

against tomato foot and root rot (TFRR). One strain, Bacillus subtilis HC8, isolated from 

the giant hogweed Heracleum sosnowskyi Manden, significantly promoted plant 

growth and protected tomato against TFRR. Metabolites possibly responsible for these 

plant-beneficial properties were identified as the hormone gibberellin and 

(lipo)peptide antibiotics, respectively. The antibiotic properties of strain HC8 are 

similar to those of the commercially available plant-beneficial strain B. 

amyloliquefaciens FZB42. However, thin layer chromatography profiles of the two 

strains differ. It is speculated that endophytes such as B. subtilis HC8 contribute to the 

fast growth of giant hogweed. 
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Introduction 

Bacteria which associate with plants include rhizobacteria, epiphytic bacteria and 

endophytic bacteria. Endophytic bacteria are defined as bacteria that can be detected 

within the tissues of apparently healthy plants (Schulz and Boyle, 2006). Although the 

majority of research on plant-associated bacteria has been focused on rhizobacteria, 

interest in the diversity and role of endophytic bacteria is increasing. The main reason 

for the interest in endophytes is the realization that, if these bacteria can be re-

introduced in the endophytic stage, a more stable relationship can be established 

between plant-beneficial endophytic bacteria and plants than for rhizospheric or 

epiphytic bacteria and plants. Therefore, endophytes with the plant-beneficial traits 

are potentially excellent plant growth promoters and/or biological control agents for 

sustainable crop production (Di Fiore and Del Gallo, 1995; Strobel, 2006). 

The best studied host plants of bacterial endophytes are species of agricultural 

importance, such as rice (Baldani et al., 2000; Okunishi et al., 2005), maize (McInroy 

and Kloepper, 1995; Rijavec et al., 2007), cotton (Misaghi and Donndelinger 1990; 

McInroy and Kloepper, 1995), potato (Sturz et al., 1998; Krechel et al., 2002), and sugar 

cane (Rennie et al., 1982; James and Olivares, 1997). The most common taxa of 

isolated heterotrophic endophytes include Bacillus (Bai et al., 2003), Enterobacter 

(Torres et al., 2008), Pseudomonas (Reiter et al., 2003; Rai et al., 2007), Serratia 

(Gyaneshwar et al., 2001; Berg et al., 2005), and Streptomyces (Sessitsch et al., 2002; 

Coombs and Franco, 2003).  

It is assumed that bacterial endophytes use the same mechanisms of biological 

control and plant growth promotion as their rhizospheric counterparts (Berg and 

Hallmann, 2006). Widely recognized mechanisms of biocontrol mediated by plant 

growth-promoting microbes are antibiosis (Thomashow and Weller, 1995; Chin-A-

Woeng et al., 1998; Haas and Défago, 2005; Lugtenberg and Kamilova, 2009), induced 

systemic resistance (Van Peer et al., 1991; Kloepper et al., 2004; Van Loon, 2007), 

competition for niches and nutrients (Kamilova et al., 2005; Validov, 2007) and 

predation and parasitism (Ordentlich et al., 1998; Harman et al., 2004).  

Beneficial bacterial endophytes which use the above-mentioned mechanisms of 

biocontrol include (i) Bacillus sp. CY22 which produces the antibiotic iturin A and 

suppresses root rot of balloon flower caused by Rhizoctonia solani (Cho et al., 2003), 

(ii) B. pumilus SE 34 which induces systemic resistance against Fusarium wilt of tomato 

(Benhamou et al., 1998), and (iii) P. fluorescens, carrying the chitinase-encoding gene 

chiA, which is able to control the phytopathogenic fungus Rhizoctonia solani on bean 
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seedlings (Downing and Thomson, 2000). In addition to protecting against pathogens, 

a number of endophytic bacteria is supposed to promote plant growth directly by the 

production and/or modulation of plant hormones (Bastian et al., 1998; Spaepen et al., 

2009), by fixing atmospheric nitrogen (Baldani et al., 2000; Oliveira et al., 2002) and by 

solubilization of bound phosphates (Verma et al., 2001; Kuklinsky-Sobral et al. 2004). 

Using these mechanisms, some endophytic bacteria can significantly contribute to the 

growth of plants on low-fertility soils (Sevilla et al., 2001).   

The main aims of this study are: (i) to collect different endophytic bacteria from 

different plants, (ii) to screen these bacteria for a number of plant-beneficial traits, 

such as secretion of the exo-enzymes chitinase, cellulase, β-glucanase and protease, 

and production of hormones and antifungal metabolites, (iii) to test the selected 

potentially beneficial strains for their abilities to promote growth of radish and to 

control tomato foot and root rot (TFRR) caused by the fungus Fusarium oxysporum 

f.sp. radicis-lycopersici (Forl), and (iv) to evaluate the putative compounds responsible 

for the plant growth promotion and antifungal activities of (a) selected endophytic 

strain(s). The results are reported in this paper. 

 

Materials and Methods  

Isolation of endophytic bacteria 

Endophytic bacteria were isolated from several plant species. These include four 

vegetable plants [beet (Beta vulgaris L.), carrot (Daucus carota L.), potato (Solanum 

tuberosum L.) and tomato (Lycopersicon esculentum L.)], two grasses [maize (Zea mays 

L.) and millet (Panicum miliaceum)], and the weed plant Heracleum sosnowskyi 

Manden. Plants were collected from experimental fields of the All-Russia Research 

Institute for Agricultural Microbiology (ARRIAM) which is located near Pushkin, Saint-

Petersburg, Russia.   

To isolate endophytes, different surface sterilization procedures were developed 

(see Results) which are modifications of previously published ones (Misaghi and 

Donndelinger, 1990). Briefly, plant samples were disinfected and subsequently crushed 

with a pestle in a mortar under sterile conditions. Aliquots of 100 µl of the resulting 

plant juices were plated on 1/20 tryptic soy agar (TSA, Difco Laboratories, MI, USA) 

plates. The sterility check consisted of aliquots of water from the last rinsing which 

were plated on 1/20 TSA. Plates were incubated at 28°C for 3 days. Colonies derived 

from plant juice were further analyzed. 
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Microbial strains and growth conditions 

All isolated bacterial strains were grown in, and maintained on, full strength TSA. Strain 

Bacillus amyloliquefaciens FZB42 (Idriss et al., 2002), and its mutants AK1 and AK2 

(Koumoutsi et al., 2004) were purchased from the Bacillus Genetic Stock Center (BGSC, 

http://www.bgsc.org/). Strain FZB42 was used for comparison studies as a known 

antibiotic-producing Bacillus strain. This strain is also commercialized as a biofertilizer, 

biocontrol and plant-growth promoting agent (RhizoVital®, ABiTEP, Berlin, Germany). 

Its two mutants, AK1 (∆bmyA, defective in the production of bacillomycin D) and AK2 

(∆fenA, defective in the production of fengycin), were used to attempt to localize these 

antibiotics on TLC plates.  

The fungi Aspergillus niger, Forl, F. solani and the oomycete Pythium ultimum were 

routinely cultivated on potato-dextrose agar (PDA, Difco Laboratories). To obtain 

spores of Forl to be used in biocontrol experiments, the fungus was grown in Czapek-

Dox liquid medium (Difco Laboratories) for 4 days at 28°C at 150 rpm. 

For the extraction of antibiotics and gibberellins, strains were grown in Brain Heart 

Infusion broth (BHI, Difco Laboratories, MI, USA). To extract cytokinins and to check 

the ability of strains to sulubilize phosphates, bacteria were grown in minimal medium 

(MM) containing per liter of distilled water: NH4Cl, 0.4 g; MgSO4·7H2O, 0.5 g; 

CaCl2·2H2O, 0.1 g; glucose, 10 g; yeast extract, 50 mg, and agar, 18 g. For the 

evaluation of ACC (1-aminocyclopropane-1-carboxylate) utilization, bacteria were 

grown in sucrose-malt extract-yeast extract medium (SMY) which has the following 

composition (weight/L): glucose, 1.2 g; KH2PO4, 0.4 g; K2HPO4, 2.0 g; MgSO4, 0.2 g; 

CaCl2, 0.1 g; FeSO4, 5.0 mg; H3BO3, 2 mg; ZnSO4, 5.0 mg; Na2MoO4, 1.0 mg; MnSO4, 3.0 

mg; CoSO4, 1.0 mg; CuSO4, 1.0 mg; NiSO4, 1.0 mg; yeast extract, 50 mg; pH 6.4.  

 

Characterization of exo-enzymes produced by endophytic bacteria 

Production of the exo-enzymes cellulase, chitinase, β-glucanase, and protease was 

judged as the appearance of clear zones around the growth of a bacterium on the 

following solid media. Cellulase activity was tested on 1/20 TSA agar plates 

supplemented with 1% carboxymethylcellulose (Hankin and Anagnostakis, 1977). 

Production of chitinase were evaluated on 1/20 TSA agar plates supplemented with 1% 

colloidal chitin (Wirth and Wolf, 1990). ß-glucanase activity was detected on 1/20 TSA 

agar plates supplemented with 0.1% lichenan (Walsh et al., 1995). Protease secretion 

was evaluated after growing the strains for 48 hours on 1/20 TSA supplemented with 

5% skimmed milk according to Brown and Foster (1970).  
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Characterization of antifungal metabolites produced by bacteria 

To test production of antifungal metabolites in vitro, a plug of mycelium, 5-mm in 

diameter, was taken from an actively growing culture on solid medium and stabbed in 

the center of a PDA agar plate which was subsequently inoculated with up to 6 

individual bacterial strains at a distance of 3 cm from the fungus. All plates were 

incubated at 28°C for one week and subsequently scored for inhibition of fungal 

growth.  

The method of Chittara et al. (2002) was used with some modifications to extract 

antibiotics produced by Bacillus subtilis HC8. Briefly, the strain was grown in BHI 

medium for 60 h. Subsequently cells were removed by centrifugation at 13 000 rpm for 

10 min. The supernatant fluid was divided into two equal parts, one part (100 ml) was 

freeze-dried and the other was acidified to pH 2.0 with concentrated HCl. The resulting 

dry biomass and precipitate, respectively, were extracted twice with methanol. The 

methanolic extract was concentrated by vacuum evaporation, dissolved in methanol 

and stored at -20°C.  

The methanolic extracts were analyzed by thin layer chromatography (TLC) on silica 

gel 60 F254 plates with a 20 x 2,5 cm concentrating zone (Merck, Darmstadt, 

Germany). Plates were developed in chloroform/methanol/water 65:25:4 (v/v/v) for 

1.5 h at room temperature. After drying, the pattern of compounds on the developed 

plate was visualized using UV254 and stained in an iodine chamber for 5 min at room 

temperature followed by dipping in 1% aqueous starch. The putative antifungals were 

preliminarily characterized by their Retention factor (Rf) values. Pure iturin A from B. 

subtilis (Sigma-Aldrich, Steinheim, Germany) was used as a reference. 

 To analyze the antifungal activity of the different spots, TLC plates were run in 

duplicate, one was used for staining and the other one to recover the fractions by 

extraction. To extract the spots, silica regions were scratched off the plate and were 

extracted with methanol. The activity of the individual extracts was tested against Forl 

in in vitro assay as follows. A plug of mycelium was placed in the center of a PDA plate 

and pre-grown for 2 days. Subsequently six wells, 8 mm in diameter, were made in the 

agar plate at a distance of 1.0 cm from the growing fungus. The bottom of the wells 

was sealed using melted agar, and each of the wells was filled with 80µl of an 

individual extract. Methanol was used as a control. The plates were incubated for 2 

days at 28°C and the inhibition of the Forl growth was judged. All experiments were 

carried out at least three times. To compare the activity and Rf values of the HC8 

extract with those of a known antibiotic-producing strain, methanolic extracts of B. 
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amyloliquefaciens FZB42 were prepared and profiled on TLC plates as described for 

strain HC8. 

 

Characterization of bacterial phytohormone production 

The production of auxin (IAA, indole-3-acetic acid) was determined as described by 

Kamilova et al. (2005) using Salkowski reagent (Gordon and Weber, 1951). A modified 

method of Gutierrez-Manero et al. (2001) was used for the extraction of gibberellins 

from the supernatant fluid of Bacillus subtilis HC8. Bacteria were grown in 100 ml BHI 

medium for 60 h at 28°C at 150 rpm. Bacterial cells were removed by centrifugation for 

15 min at 5 000 rpm and the supernatant fluid was subsequently filtered through a 

0.22-µm Millipore filter. Bacteria-free supernatant was then acidified to pH 2.5 with 

concentrated HCl and partitioned four times with water-saturated ethyl acetate (v/v). 

The organic phase, containing the gibberellins, was dried by vacuum evaporation and 

subsequently dissolved in water-saturated ethyl acetate and stored at -20°C. A 

modified method of Jones and Varner (1967) was used for the evaluation of the 

biological activity of the crude extract. Briefly, seeds of barley cv. Triumph, 1989 

harvest, were transversely cut in half and the embryo part was removed. The embryo-

free halves were then surface-sterilized with 70% ethanol for 2 min followed by 4% 

sodium hypochlorite for 2 min and several rinses with sterile water. The disinfected 

half seeds were stored in sterile water at +4°C for 2 days. For gibberellin assays, 10 half 

seeds were transferred to a 100 ml Erlenmeyer flask with 6 ml of test solution 

containing: (i) 20 mM sodium succinate buffer, pH 5.3, (ii) 20 mM CaCl2 , and (iii) the 

sample to be assayed. Chloramphenicol at a final concentration 10µg/ml was added to 

each flask to prevent bacterial growth. After incubation for 27 h at 25°C in the dark, 1.0 

ml of the solution was added to a tube containing 1.0 ml of starch reagent (Jones and 

Varner, 1967) and incubated for 10 min at room temperature. The reaction was 

stopped by adding 1.0 ml of iodine reagent (Jones and Varner, 1967). A volume of 2.0 

ml of distilled water were added and, after mixing, the intensity of blue colour was 

measured at 620 nm. The gibberellin concentration in the crude extract was 

determined by using a calibration curve with pure gibberellic acid (GA3) as a standard. 

The experiment was performed three times. 

A modified method of Vereecke (personal communication) was used for the 

extraction of cytokinins secreted by B. subtilis HC8. Briefly, bacteria were grown in 50 

ml MM for 96 h at 28°C and 150 rpm. Subsequently the bacterial cells were removed 

by centrifugation for 20 min at 10 000 rpm and subsequently filtering the supernatant 
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through a 0.22-µm Millipore filter. The cell free supernatant fluid was transferred to a 

Sep-Pak®Plus C18 column (Waters, USA), which had previously been activated with 5 

ml 100% methanol and equilibrated with 0.1% acetic acid. Subsequently the cytokinins 

were eluted with 3 ml of 80% methanol-2% acetic acid, concentrated in vacuo and re-

suspended in water before further use. The method of Biddington and Thomas (1973) 

was used for the evaluation of the biological activity of the eluate. Briefly, seeds of 

Amaranthus caudatus L. (purchased from Sluis Garden http://www.gardenseeds.nl/) 

were allowed to germinate on wet filter paper at 25°C in the dark for 72 h. The seed 

coats and the roots were subsequently removed and ten explants consisting of 

cotyledons and the upper part of the hypocotyl were placed on filter paper which had 

been moistened with 2 ml 0.2 M phosphate buffer (pH 6.3) containing 1 mg/ml 

tyrosine and the sample to be tested. After an incubation period of 18 h at 25°C in the 

dark the seedlings were placed in 1.0 ml distilled water. Betacyanin was extracted from 

the samples by 3 cycles of freezing and thawing and the optical density of the 

supernatant fluids was measured at 542 nm. The amount of cytokinins was determined 

by using a calibration curve with pure trans-zeatin as a standard. The experiment was 

performed three times. 

 

Utilization of ACC and solubilization of bound phosphates by endophytic bacteria 

The ability of bacteria to utilize ACC as the sole nitrogen source was monitored by 

screening for growth on plates according to Belimov et al. (2005).  

The ability of bacteria to solubilize phosphates was evaluated on hydroxyapatite 

medium as described by Kim et al. (1997) with some modifications. Briefly, endophytic 

strains were grown in MM in which the  phosphorus was present in the form of 

hydroxyapatite (Ca5HO13P3, Sigma-Aldrich, Steinheim, Germany) at 12 g/L and the pH 

was adjusted to 7.0. Plates were incubated at 28°C for one week.  Phosphorus-

solubilizing activity was judged as the appearance of clear zones around the growth 

area of a bacterial sample spotted on the plate. 

 

Molecular characterization of endophytic strains 

Amplified ribosomal DNA restriction analysis (ARDRA) in combination with phenotypic 

characterization was applied to eliminate putative siblings as described by Validov et 

al. (2007). Briefly, portions of the 16S rRNA genes were obtained via PCR amplification 

with primers 27 fm (5'- AGA GTT TGA TCM TGG CTC AG-3') and 1522R (5'-AAG GAG 

GTG ATC CAG CCG CA-3') (Weisburg et al., 1991). The amplified DNA fragments were 
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subsequently digested with the four nucleases TaqI, BsuRI, HinfI and Hin6I. The 

resulting fragments were subsequently separated on a 2% agarose gel and the profiles 

of the endophytic strains were compared.    

For nucleotide sequence determination, PCR products were separated on a 1% 

agarose gel, recovered and purified from agarose using a QIAquick PCR Purification Kit 

(QIAGEN GmbH, Hilden, Germany). Sequencing was performed by ServiceXS (Leiden, 

The Netherlands). Similarity searches in GenBank were performed using BLAST 

(http://www.ncbi.nlm.nih.gov/blast/; Altschul et al., 1990). 

 

Plant growth promotion 

Endophytic bacteria were tested for their ability to promote the growth of radish 

plants. To do this, seeds of radish cv. Duro (Russkiy Ogorod – NC, Moscow, Russia) 

were allowed to germinate for 24 hours on moist filter paper at room temperature. 

The germinated seeds were then soaked in a suspension of bacterial cells in 0.85% 

NaCl adjusted to 10
6
 cfu/ml for 15 minutes. As a negative control, seedlings were 

treated with 0.85% NaCl without added bacteria. The treated seedlings were 

subsequently planted in non-sterile potting soil (Terravita, Russia) mixed with field 

podsol soil in the ratio 4:1 and grown under agroindustrial conditions in the summer 

greenhouse of ARRIAM. Each variant consisted of four replicates with five seedlings 

each. After 31 days of growth, the fresh weight of the roots was determined.  

 

Biocontrol of tomato foot and root rot 

Biocontrol of TFRR was carried out in stonewool substrate as described by Validov et 

al. (2007). Briefly, 120 stonewool plugs were soaked in 1.0 L of commercial Plant 

Nutrient Solution (PNS, Wageningen UR Greenhouse Horticulture, Bleiswijk, the 

Netherlands) supplemented with Forl spores (10
7
 spores/L) and bacterial cells (10

6
 

cfu/ml). In the negative control PNS was supplemented with spores only. Seeds of 

tomato cv. Carmello (Syngenta, B.V., Enkhuizen, the Netherlands) were placed in the 

stonewool plugs (one seed per plug) and grown for 14 days under greenhouse 

conditions at 80% humidity and 16 h of daylight. The plants were then removed from 

the stonewool and examined for symptoms of foot and root rot. Only roots without 

any brown spots or lesions were referred to as healthy. Dead plants, wilting plants or 

plants with symptoms of foot and root rot were considered as diseased. All 

experiments were performed twice.  

 

http://www.ncbi.nlm.nih.gov/blast/
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Statistics 

Homogeneity of variance and analysis of variance (ANOVA) at P = 0.05 were conducted 

with the program DIANA (Saint-Petersburg, Russia) and SPSS software (Chicago, IL, 

USA) for the plant-growth promotion and biocontrol assays, respectively.  

 

Results and Discussion 

Isolation and preliminary characterization of endophytic bacteria 

Procedures of chemical sterilization of plant parts from different plants were 

developed (Table 1) to kill non-endophytic microorganisms. Validation of the surface 

sterilization procedure was done by culturing aliquots of water from the last rinsing 

onto nutrient media. Bacterial growth was never detected on such control plates, 

indicating the efficiency of the developed sterilization protocols.   

A total of 30 morphologically different strains was chosen from a larger collection 

of isolates obtained after plating plant juices on 1/20 TSA. The strategy described by 

Validov et al. (2007) was used for the elimination of siblings and potential pathogens.  

 

Table 1. Origin of endophytes and protocols for surface sterilization of plant samplesa 

Host plant Part of isolationb Sterilization procedurec 

Beta vulgaris L. (beet) 

Daucus carota L. (carrot) 

Lycopersicon esculentum L. (tomato) 

Solanum tuberosum L. (potato) 

Beetroot 

Taproot 

Fruit 

Tuber 

A: 

     1. tap water for 30 sec 

     2. 70% ethanol for 5 min 

     3. 15% H2O2 for 10 min 

     4. sterile water 2 min ×5 

Heracleum sosnowsky Mandend 

(hogweed) 

Stem B: 

     1. 70% ethanol for 10 min 

     2. 15% H2O2 for 15 min 

     3. sterile water 2 min ×5 

Panicum miliaceum (millet)d 

Zea mays L. (maize)d 

Stem 

Stem 

  

C: 

     1. tap water for 30 sec 

     2. 70% ethanol for 7 min 

     3. 15%  H2O2 for 10 min 

     4. sterile water 2 min ×5 
a Plant samples were collected from experimental fields of St-Petersburg suburbs. 
b The disinfected plant samples were crushed with a pestle in a mortar under sterile conditions.  
c Validation of the surface sterilization procedure was done by culturing aliquots of water from the last 

rinsing onto nutrient medium. Bacterial growth was never detected on control plates. 
d Plants were analyzed at the stage of flowering. 
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To eliminate siblings, the 30 strains were compared for their motility, their ARDRA 

patterns and production of the exo-enzymes chitinase, cellulase, β-glucanase and 

protease. Strains originating from the same sample which were indistinguishable with 

respect to these mentioned traits were considered as likely siblings. Eighteen isolates 

were removed from the collection as possible siblings. This left us with 12 strains for 

further analysis. 

 

Characterization of potential plant- beneficial traits 

The 12 remaining strains were screened for their antagonistic activity towards four 

phytopathogens, their ability to produce auxin, their growth on ACC as the sole N-

source and their ability to solubilize bound phosphates (Table 2).  

Three strains, namely BT18, HC8 and MZ3 show strong antifungal activity against all 

four tested pathogens. These strains also have cellulase, glucanase and protease 

activity. Strain ML15 is antagonistic only towards P. ultimum and does not secrete 

cellulases and glucanases. None of the strains showed chitinase activity.  

 

Table 2. Overview of potential plant-beneficial traits of the selected endophytic strainsa 

Strain Host plant Antifungal activityb Exo-enzymesc Auxind/e ACCf/PO4
g 

BT18 Beta vulgaris L. (beet) A,Forl,Fs,Pu C, βG, P -/- -/- 

CAR2 Daucus carota L.(carrot) - C,βG +++/- -/- 

HC2 Heracleum sp. (hogweed) - - +/+ -/+ 

HC8 Heracleum sp. (hogweed) A,Forl,Fs,Pu C, βG, P -/- -/- 

ML15 Panicum miliaceum (millet) Pu P +/- -/- 

ML16 Panicum miliaceum (millet) - C,βG ++/- -/- 

TM1 L. esculentum L. (tomato) - - +++/+ -/- 

TM2 L. esculentum  L. (tomato) - - -/- -/- 

PT19 Solanum tuberosum L. (potato) - P -/- -/- 

PT20 Solanum tuberosum L. (potato) - - -/- -/- 

MZ3 Zea mays L.(maize) A,Forl,Fs,Pu C, βG, P -/- -/- 

MZ4 Zea mays L.(maize) - - -/- -/+ 
a After elimination of siblings. 
b A, Aspergillus niger; Forl, Fusarium oxysporum f.sp. radicis-lycopersici; Fs, Fusarium solani; Pu, Pythium 

ultimum. 
c C, cellulase; βG, β-glucanase; P, protease. 
d Auxin level after growth in medium supplemented with tryptophan: +++ >60 µg/ml, ++ >30 µg/ml, + >10 

µg/ml, - < 10 µg/ml.  
e Auxin level after growth in medium without tryptophan: + >10 µg/ml, - < 10 µg/ml. 
f ACC, 1-aminocyclopropane-1-carboxylate. 
g Solubilization of bound phosphates. 
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Two strains, HC2 and TM1, produce detectable amounts of auxins in the presence 

and absence of tryptophan in the medium. The level of auxin secreted by strain HC2 is 

less than 30 µg/ml. In the case of TM1, the auxin level in the media without and with 

tryptophan is less than 30 µg/ml and higher than 60 µg/ml, respectively. Three strains, 

namely CAR2, ML15, and ML16, produce different auxin levels and only in the medium 

supplemented with tryptophan.  

None of the twelve strains was able to utilize ACC as the sole nitrogen source. 

However, all of them, except ML15 and TM2, showed a poor to good growth on N-free 

medium. Two strains, namely HC2 and MZ4, were able to solubilize hydroxyapatite in 

an in vitro plate assay. 

 

Molecular identification of endophytic strains 

BLAST searches in the GenBank database using 16S rDNA sequences revealed that the 

strains belong to different bacterial species (Table 3). To see whether these strains are 

safe to be applied in the field as bioocontrol and/or plant-growth promoting strains, 

we evaluated to which risk group (Anonymous, 1998) they belong. Of the twelve 

 

Table 3. Molecular identification of endophytic strains and risk group classificationa 

Strain Bacterial species and accession numberb Phylum Risk groupc 

BT18 Bacillus subtilis   HQ667318 Firmicutes 1 

CAR2 Enterobacter agglomerans  HQ667319 γ-Proteobacteria 2 

HC2 Rahnella aquatilis   HQ667320 γ-Proteobacteria 1 

HC8 Bacillus subtilis HM441224 Firmicutes 1 

ML15 Bacillus cereus  HQ667321 Firmicutes 2 

ML16 Enterobacter agglomerans   HQ667322 γ-Proteobacteria 2 

MZ3 Bacillus subtilis   HQ667323 Firmicutes 1 

MZ4 Acinetobacter baumannii  HQ667324 γ-Proteobacteria 2 

PT19 Serratia sp.  HQ667325  γ-Proteobacteria 1 

PT20 Enterobacter amnigenus  HQ667326 γ-Proteobacteria 2 

TM1 Enterobacter agglomerans   HQ667327 γ-Proteobacteria 2 

TM2 Kocuria sp.  HQ667328 Actinobacteria 2 
a Based on comparison of their 16S rDNA sequences with those in the GenBank database sharing at least 

99% homology. 
b All sequences have been submitted to GenBank. Sequences were obtained by sequencing the 5’end using 

primer 27fm for HC8 and the 3’end using primer R1522 for all other strains. Sequences are between 600 and 

800 bp long. 
c Risk group 1 includes bacteria which are safe to be applied in the field; risk group 2 includes potential 

human and plant pathogens. 
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remaining strains as many as seven strains belong to risk group 2 (Table 3), indicating a 

high percentage of potential human and/or plant pathogens among these endophytes. 

Therefore, they were excluded from further experiments. High levels of potential 

pathogens have been found earlier for rhizosphere bacteria (Berg et al., 2005; 

Egamberdiyeva et al., 2008). 

The remaining five endophytic strains were BT18, HC8 and MZ3, identified as 

Bacillus subtilis, HC2 (Rahnella aquatilis), and PT19 (Serratia sp.). All of them have been 

found earlier as endophytes (Bai et al., 2003; Berg et al., 2005; Torres et al., 2008). Of 

these, strains BT18, HC8 and MZ3, which possess strong antifungal activity in vitro 

against A. niger, Forl, F. solani and P. ultimum as well as strain HC2, which produces 

auxin, can be considered as potential beneficial strains.  

 

Plant growth promotion by B. subtilis HC8 and possible mechanism of action 

Four endophytic strains, namely BT18, HC2, HC8 and MZ3 were tested for their ability 

to promote the growth of radish plants in non-sterile potting soil (Fig. 1). Radish was 

chosen as the model plant because its roots secrete a high level of tryptophan 

(Kamilova et al., 2006) which can be used by many beneficial bacteria as the precursor 

of auxin. The only tested strain which was able to increase the root weight of radish 

plants was Bacillus subtilis HC8 (Fig. 1). The root weight was chosen since this is the 

commercially interesting plant part. Strain HC8 significantly enhanced fresh root 

biomass, with as much as 46% compared with uninoculated control plants. Inoculation  

 
Fig. 1.  Plant growth promotion mediated by endophytic bacteria. Seedlings of radish were inoculated with 

a suspension of bacterial cells except for the control (C) and planted in soil. Each variant consisted of four 

replicates with five seedlings each. Numbers inside the columns represent the mean fresh weight of the root 

system scored 31 days after inoculation. Bars indicate confidence interval (p = 0.05). The asterisk indicates a 

significantly different value. 
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with the auxin-producing strain Rahnella aquatilis HC2 and with B. subtilis BT18 did not 

show a significant increase of root growth. B. subtilis strain MZ3 decreased the root 

biomass, but not significantly. 

One of the mechanisms of stimulation of plant growth by bacteria involves the 

production of phytohormones, such as auxins, gibberellins and cytokinins. Auxins are 

known to be essential for plant physiology directly affecting the root and shoot 

architecture (Spaepen et al., 2009). Since HC8 did not produce auxin in the tested 

laboratory media (Table 2) its ability to produce the plant hormones cytokinin and 

gibberellin was tested. Indeed, gibberellin but not cytokinin was found to be produced 

by HC8 (150 ng per 10
9
 cells). Previously, microbial production of similar amounts of 

gibberellins (appr. 200 ng per 10
9
 cells) has been reported for B. lichenoformis and B. 

pumilus (Gutierrez-Manero et al., 2001). Gibberellin is not known to enhance root 

growth directly (Spaepen et al., 2009). A possible explanation of the results is that 

gibberellin acts synergistically with another, unknown compound. 

 

Biocontrol of TFRR by B. subtilis HC8 and possible mechanism of action  

The three B. subtilis strains, BT18, HC8 and MZ3, were selected as the best antagonists 

(Table 2). Therefore, their ability to control TFRR was evaluated. Seed bacterization 

with only HC8 significantly decreased disease symptoms, from 91 to 42% (Fig. 2a). 

Significant biocontrol activity of HC8 was also found in a second experiment (Fig 2b). 

 
Fig. 2. Biocontrol of TFRR in stonewool substrate by endophytic bacteria. Tomato seeds were inoculated 

with a suspension of bacterial cells except for the control (C) and grown in stonewool plugs with added 

spores. Each variant consisted of 4 replicas with 30 plants each. Numbers inside the columns present the 

percentage of sick plants scored 2 weeks after inoculation. Bars indicate confidence interval (p < 0.05). 

Statistically different values are indicated with asterisks. (a) and (b) represent different experiments. 



Chapter 5 

106 

Although the two other antagonistic strains, MZ3 and BT18, did not show significant 

biocontrol of TFRR (Fig. 2a) plants bacterized with these strains did show reduced 

disease severity (results not shown).  

For the detection of one or more compounds responsible for the antifungal activity, 

and therefore probably for biocontrol, the crude methanolic extracts from the dried 

and acid precipitated supernatant fluid of B. subtilis HC8 were profiled on thin layer 

chromatography (TLC) plates, using iturin A as a reference antibiotic (Fig. 3a). We have 

also profiled B. amyloliquefaciens FZB42 to evaluate the similarity/difference between 

two beneficial strains. 

The iodine-starch pattern of supernatant fluids of FZB42 and HC8 are very similar. 

Dried supernatant fluids and acid precipitated supernatant fluids had indistinguishable 

patterns (results not shown). We found for both HC8 and FZB42 major spots in 

positions t, u, w, x and y. The Rf values of these spots shown in Fig. 3a are t, 0.10; u,  

0.16; w, 0.21; x, 0.23; and y, 0.26. Although the two strains produce very similar 

antibiotic patterns, there are also clear differences, not only in taxonomy. Spot v (Rf = 

0.18) is present in HC8 but always missing in FZB42. In addition, FZB42 lacks spot z with 

the Rf value similar to that of iturin A (Rfz=0.47). Spot s (Rf=0.31) of strain FZB42 is not 

visible in HC8 material. To test which spots are active against Forl, we extracted the 

whole HC8 and FZB42 strips (major and minor spots as well as the regions without 

visible spots) and checked their antibiotic activity against Forl in vitro (Fig. 3b). Also for 

biological activity dried supernatant fluids and acid precipitated supernatant fluids 

have indistinguishable patterns. We found for both HC8 and FZB42 that four spots, 

namely t, u (in case of HC8 it was u/v since spot v sometimes migrates very close to 

spot u, which makes it difficult to analyze them separately), w and x, clearly inhibit the 

growth of Forl. Spot y does not show any antibiotic activity. Interestingly, both spot z 

of HC8 and spot s of FZB42 had very low antibiotic activities when re-extracted from 

TLC plate.  

Based on Rf values and activity against Forl, spot z could be iturin. We used mutant 

strains of FZB42 which do not produce bacillomycin D and fengycin, to see which 

FZB42 spots, and possibly HC8 spots, correspond with these antibiotics. The results (Fig 

3a) showed that the fengycin-deficient mutant lacks two spots, t and w, both of which 

are present in both HC8 and FZB42. These spots are also still present in the fengycin 

producing mutant strain ∆bmyA indicating that compounds in positions t and w 

represent (derivatives of) fengycin. The bacillomycin D lacking mutant ∆bmyA does  
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Fig. 3. Evaluation of antifungal metabolites produced by B. subtilis HC8 and B. amyloliquefaciens FZB42. 

a) TLC analysis of methanol extract of the supernatant fluids of Bacillus strains. The plate was developed in 

chloroform/methanol/water 65:25:4 (v/v/v) for 2,5 hours. For visualization, the developed plate was stained 

in iodine followed by dipping in 1% aqueous starch. Pure iturin A (It) was used as a reference. HC8, 

endophytic strain B. subtilis HC8; FZB42, Bacillus amyloliquefaciens FZB42; ∆bmyA, mutant of FZB42 unable 

to produce bacillomycin D; ∆fenA, mutant of FZB42 unable to produce fengycin; t-z, major spots of the HC8 

crude extract; z, likely correspond to iturin; s, fraction likely to contain bacillomycin D; w and t likely to 

contain fengycin. 

b) Antifungal activity of individual fractions of crude extract from B. subtilis HC8 towards Forl in vitro. t-z, 

major fractions corresponding to spots in a). 

 

produce spot s but in lower amounts than its wild type strain FZB42, therefore this 

spot probably contains bacillomycin D. No information on the identity of spots u, x, 

and y from HC8 was generated. 

The antibiotics iturin and bacillomycin D belong to the same family of cyclic 

lipopeptides which comprises iturins A, C, D and E, bacillomycin D, F and L, 

bacillopeptin and mycosubtilin (Moyne et al., 2004). Iturins interact with the 

cytoplasmic membrane of the target cells forming ion-conducting pores (Magnet-Dana 

and Peypoux, 1994). These antifungals appeared to work synergistically with other 

lipopeptides, such as surfactins and fengycins. For example, Chen et al. (2009) report 

that the fungicidal activity of FZB42 is due to synergistic action of bacillomycin D and 

fengycin since without fengycin the antifungal effect of this strain is less profound. This 
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may explain why the iturin and bacillomycin D fractions almost lack biological activity 

in our experiments. 

Taking together all these data suggest that B. subtilis HC8 produces several 

(lipo)peptide antibiotics, some of them are different from FZB42 and may be important 

for antifungal and biocontrol activity of HC8. 

 

Do endophytes play a role in the growth of the giant hogweed? 

In this study we have isolated the novel biocontrol and plant growth promoting strain 

B. subtilis HC8 from the giant hogweed H. sosnowskyi.  This plant can grow in low 

nutritional environments while reaching a high biomass. This observation has led us to 

speculate that microbes colonizing the inner plant tissues of Heracleum have beneficial 

traits which may contribute to its enormous growth. Strain HC8 appears to have the 

ability to produce a large variety of bioactive compounds that might play a role in 

biocontrol and plant growth promotion mediated by this strain. Although it was 

isolated from H. sosnowskyi, it is able to promote the growth of radish and reduce 

TFRR in tomato plants. This will facilitate its application as a bioinoculant. Endophytes 

from the plant Heracleum have never been isolated previously. It may be interesting to 

evaluate the entire endophytic microbial content of Heracleum in more detail.  
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Abstract 

In a previous study (Malfanova et al. 2011) we described the isolation and partial 

characterization of the biocontrol endophytic bacterium B. subtilis HC8. Using thin-

layer chromatography we have detected several bioactive antifungal compounds in the 

methanolic extract from the acid-precipitated supernatant of HC8. In the present study 

we have further analyzed this methanolic extract using liquid chromatography-mass 

spectrometry (LC-MS). Based on the comparison of retention times and molecular 

masses with those of known antifungal compounds we identified three families of 

lipopeptide antibiotics. These include four iturins A having fatty acyl chain lengths of 

C14 to C17, eight fengycins A (from C14 to C18 and from C15 to C17 containing a 

double bond in the acyl chain), four fengycins B (C15 to C18) and five surfactins (C12 to 

C16). Evaluation of the antifungal activity of the isolated lipopeptides showed that 

fengycins are the most active ones. To our knowledge this is the first report of an 

endophytic Bacillus subtilis producing all three major families of lipopeptide antibiotics 

containing a very heterogeneous mixture of homologues. The questions remain open 

which of these lipopeptides (i) are being produced during interaction with the plant 

and (ii) are contributing to the biocontrol activity of HC8. 
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Introduction 

Endophytes are plant-associated microbes which are able to colonize plants internally. 

Due to the nature of their endophytic lifestyle they establish a long-lasting stable 

relationship with a plant. In this symbiotic association the plant provides nutrients and 

shelter for the microbes and, in turn, the endophyte can help the plant by protecting it 

against phytopathogens or by promoting its growth. One of the mechanisms of such a 

protection includes production of bioactive secondary metabolites which either can be 

directly involved in antibiosis (Thomashow and Weller 1995; Haas and Défago 2005; 

Lugtenberg and Kamilova 2009) and/or in triggering induced systemic resistance (ISR) 

(Tran et al. 2007; Ongena et al. 2007). Bacillus spp. are known to produce a wide range 

of secondary metabolites including cyclic lipopeptides(c-LPs), some of the most 

powerful ones with regard to their antifungal and biosurfactant activity (Ongena and 

Jacques 2008; Jacques 2011). 

Secondary metabolites produced by Bacillus spp. consist mainly of three families of 

non-ribosomally synthesized c-LPs. These are the iturins, the fengycins and the 

surfactins. These c-LPs contain a peptide ring with seven (iturins and surfactins) or 10 

(fengycins) amino acids linked to a β-hydroxy (fengycins and surfactins) or β-amino 

(iturins) fatty acid. Each lipopeptide family is further sub-divided into groups based on 

its amino acid composition. For example, the fengycin family comprises fengycin A and 

fengycin B, which differ in a single amino acid in the sixth position (D-alanine and D-

valine, respectively). Within each group there are homologues differing in the length, 

branching and saturation of their acyl chain (Ongena and Jacques 2008). Members of 

the iturin family range from C14 to C17, fengycins from C14 to C19 and surfactins from 

C12 to C17. Both iturins and fengycins are mainly known for their anti-fungal 

properties, while surfactins are mostly anti-viral and anti-bacterial. When different 

families are co-produced, their interaction can become synergistic and enhances each 

of their respective activities (Maget-Dana et al. 1992; Ongena et al. 2007; Romero et 

al. 2007). 

In our previous work (Malfanova et al. 2011) we have described the isolation and 

partial characterization of the plant-beneficial endophytic bacterium B. subtilis HC8. 

This strain shows strong in vitro antifungal activity against various fungal 

phytopathogens. When applied to seeds, B. subtilis HC8 is able to significantly 

decrease symptoms of tomato foot and root rot which is caused by the phytopathogen 

Forl. The crude methanolic extract from the acid-precipitated supernatant fluid of this 

strain contains several bioactive compounds which behave similar to some known 
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lipopeptide antibiotics on a TLC plate. Taking together, all these data suggested that B. 

subtilis HC8 produces several lipopeptide antibiotics which might be important for its 

antifungal and biocontrol activities. Therefore, the aims of this study were (i) to 

identify the putative lipopeptides produced by the beneficial endophytic strain Bacillus 

subtilis HC8, (ii) to characterize the antifungal activity of the isolated c-LPs families 

against Forl in an in vitro bioassay, (iii) to test whether there is synergistic activity 

between the families of c-LPs towards Forl in vitro, and (iv) whether active c-LPs affect 

hyphal morphology.  

 

Materials and Methods 

Extraction of antifungal compounds 

The extraction of antifungal compounds was performed as described in our previous 

study (Malfanova et al. 2011). Briefly, B. subtilis HC8 was grown in Brain Heart Infusion 

broth (BHI, Difco Laboratories, MI, USA) for 60h at 28°C. Subsequently, cells were 

removed by centrifugation at 13 000 r.p.m. for 10 min. The supernatant fluid was 

acidified to pH 2.0 with concentrated HCl. The resulting precipitate was extracted 

twice with methanol, the combined extracts were concentrated by vacuum 

evaporation and the resulting material was subsequently dissolved in 1/50
th

 of the 

initial culture volume of methanol. 

 

Identification of c-LPs using LC-MS analysis 

Putative c-LPs were identified as described by Arguelles-Arias and colleagues (2009) 

using LC-MS analysis. Briefly, the crude methanolic extract was analyzed by reverse-

phase high pressure liquid chromatography (Waters Alliance 2695/diode array 

detector) coupled to a quadrupole mass analyzer on an X-Terra MS 150*2.1 mm, 3.5 

μm C8 column (Waters, Milford, MA, USA). Lipopeptides were eluted using a two 

component solvent system of which solvent A is water and solvent B is acetonitrile, 

both acidified with 0.1% formic acid.  We used four different elution programs 

including one general program to elute all lipopeptides and three family-specific 

programs to get a better separation and quantification of the different lipopeptides 

within each family (Table 1). All elution programs used a flow rate of 0.5 ml/min and 

detection occurred using the positive ion mode. 

Identification of lipopeptides was based on the comparison of retention times and 

molecular masses with those of known cyclic lipopeptides (Ongena et al. 2005; Ongena 

and Jacques 2008). As a control, the 95% pure authentic standards for each family 
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were used. The fengycin A and B lipopeptides with identical molecular mass and 

retention time were distinguished as described by Sun et al. (2006) based on the 

formation of specific product ions upon mild conditions of fragmentation of molecular 

ions. Product ions with mass-to-charge value  (m/z) 966 and 1080 correspond to 

fengycin A while those at m/z 994 and 1108 correspond to fengycin B. Amount of each 

lipopeptide family present in the sample was calculated based on calibration curves of 

purified iturins, fengycins and surfactins available in the laboratory.   

 

Evaluation of antifungal activity of the isolated c-LPs 

Antifungal activity of the isolated c-LPs was evaluated in the 96-well microtiter plate 

assay against Forl. To do this, the suspension of fungal spores, adjusted to a density of 

5x10
5
 spores/ml was combined either with single compounds dissolved in methanol 

ranging from 3 to 100 µg/ml or with their combination according to the co-production 

profile (iturins 47%, fengycins 36% and surfactins 17%) in a final volume of 150 µl of 

half strength Potato Dextrose Broth (PDB, Difco Laboratories, MI, USA). In the positive 

control, c-LPs were replaced with the corresponding volume of methanol. In the 

negative control, no spores and no c-LPs were added. Inoculated plates were 

incubated for 25 h at 30°C and subsequently the fungal growth was determined by 

measuring the optical density (OD) at 620 nm with a microplate reader. To see the 

impact of c-LPs on fungal morphology, fungal hyphae treated with 100 µg/ml of c-LPs 

were observed with an Axioskop2-type microscope using a 40x objective (Carl Zeiss 

Jena GmbH, Germany). All experiments were performed at least twice.  

 

Results and Discussion 

LC-MS was performed on a crude methanolic extract of the acid precipitated 

supernatant fluid of B. subtilis HC8. To elute all putative c-LPs we used a general 

elution program (Table 1a). This program uses a gradient of increasing amounts of 

acetonitrile (a polar solvent) and thus the first eluents include the less polar iturins 

followed by the increasingly polar fengycins and surfactins (Fig 1). Iturins and fengycins 

are less separated compared to surfactins due to the similar polarity of the biggest 

iturins and the smallest fengycins. Based on calibration curves for standard c-LPs, 

iturins represent the most abundant family of the lipopeptides (65 µg/ml culture 

supernatant, followed by fengycins (50 µg/ml) and surfactins (23 µg/ml).  

Before the elution of surfactins (20-22 min) several peaks appeared which 

correspond to unknown compounds that could be related to surfactin lipopeptides 
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Table 1. Elution programs used in HPLCa 

a General Elution Program b Iturin Specific Elution Program 

Time A% B% Curve Time A% B% Curve 

0 57 43 1 0 62 38 1 

1,5 57 43 1 20 55 45 6 

17 37 63 6 25 50 50 6 

17,5 20 80 6 27 0 100 6 

26 0 100 6 32 0 100 6 

27 57 43 6 33 62 38 6 

35 57 43 6 40 62 38 6 

c Fengicyn Specific Elution Program d Surfactin Specific Elution Program 

Time A% B% Curve Time A% B% Curve 

0 60 40 1 0 22 78 1 

20 35 65 6 20 22 78 1 

21 0 100 6 
    

26 0 100 6 
    

27 60 40 6 
    

35 60 40 6 
    

 
a Solvent A is water, acidified with 0.1% formic acid and solvent B is acetonitrile, acidified with 0.1% formic 

acid. The curve indicates the rate at which the solvent is changed to the new compositions, curve 1 is 

exponential and curve 6 is linear. 

 

 
Fig. 1. LC-MS analysis of the crude methanolic extract from the acid-precipitated supernatant fluid of B. 

subtilis HC8. Analysis was performed as described by Arguelles-Arias et al. (2009). a, iturins A; b, fengycins; c, 

surfactins; d, unknown compounds. 
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based on their chromatographic behavior and fragmentation pattern. Preliminary 

analysis of their product ions (results not shown) indicates that these compounds 

contain unusual amino acid(s) in their peptide moiety. The presence of unknown 

surfactin-like compounds can be either specific for B. subtilis HC8 or due to relative 

abundance of certain amino acids in the medium. A possible influence of the 

composition of the medium was shown in several studies (Peypoux et al. 1994; 

Grangemard et al. 1997). For example, addition of L-alanine to the growth medium 

resulted in incorporation of this amino acid in the fourth position of the peptide ring of 

surfactins instead of the usual amino acid L-valine (Peypoux et al. 1994). This can be 

explained by the non-specificity of the adenylation domain of some non-ribosomal 

peptide synthetases involved in surfactin biosynthesis (Jacques 2011). Additional 

culturing in various growth media, purification and analysis would be required to 

elucidate the exact composition and structure of these minor unknown surfactin-like 

compounds detected in the present study. 

To obtain a better separation and quantification of the different lipopeptides of the 

same family, we ran three family-specific programs (Tables 1b, c and d). The iturin-

specific program revealed the presence of all four members of iturin A, having fatty 

acyl chain lengths from C14 to C17 (Table 2; Fig 2a). The most abundant homologue is 

C15, followed by C14, C16 and C17. The fatty acid chain length of iturins is known to be 

important for their antifungal activity which increases with increasing number of 

carbon atoms (Bonmatin et al. 2003; Shai et al. 2006; Tabbene et al. 2011). For 

example, it has been shown that the C16 homologue of bacillomycin D-like compound, 

which is a member of the iturin family, displayed the strongest fungicidal activity in 

vitro against Candida albicans whereas C14 and C15 homologues showed weak and 

moderate activity, respectively (Tabbene et al. 2011). This is supposed to be due to the 

fact that long chain iturins are more hydrophobic and therefore may interact more 

effectively with ergosterol-containing membranes of fungi and yeasts. Moreover, 

Malina and Shai (2005) suggested that the length of the acyl chain can also affect the 

specificity of lipopeptide-cell membrane interactions. They synthesized several 

lipopeptides with increasing acyl chain lengths of 10, 12, 14 and 16 carbons to the 

peptides. Lipopeptides with short fatty acid chains (C10 and C12) displayed both 

antibacterial and antifungal activity, whereas those with long chains (C14 and C16) 

were active only against fungi. A possible explanation of this result is that long chain c-

LPs more readily form oligomers and thus interact easier with the fungal membrane 

than with the bacterial one (Malina and Shai 2005). This might partly explain the strong 
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Table 2. c-LPs production by B. subtilis HC8 as detected by LC-MSa 

Cyclic lipopeptide family Molecular mass (M-H)+ Homologue 

Iturin A 1043,7 C-14 

 

1057,74 C-15 

 

1071,75 C-16 

 

1085,71 C-17 

Fengycin Aa 1436,18 C-14 

 

1450,16 C-15  

 

1464,14 C-16 

 

1478,12 C-17 

 

1492,16 C-18 

 

1448,15 C=15c 

 

1462,19 C=16c 

 

1476,1 C=17c 

Fengycin Bb 1478,05 C-15 

 

1492,16 C-16 

 

1506,2 C-17 

 

1521,22 C-18 

Surfactin 994,21 C-12 

 

1008,75 C-13 

 

1022,33 C-14 

 

1036,87 C-15 

 

1050,92 C-16 
a c-LPs were identified by comparing both their molecular masses and their retention times with those from 

the literature (Ongena et al., 2005; Ongena and Jacques, 2008). 

 

antifungal and the limited antibacterial properties of iturins. 

Using the fengycin-specific program, we found eight fengycins A and four fengycins 

B (Table 2, Fig 2b). Fengycins A consist of the saturated C14 to C18 homologues and 

C15 to C17 containing a single double bond in the fatty acyl chain. Fengycins B 

comprise C15 to C18 homologues with a saturated acyl chain. Fengycins A are present 

in our sample in a larger quantity compared to fengycins B. The C17 fengycin A is the 

most abundant homologue while the C15-C17 homologues with unsaturated acyl chain 

appear to be the least abundant ones. Among fengycins B, C17 is the most abundant 

homologue and C18 is the least. Although fengycin homologues have long fatty acyl 

chains, they are less hemolytic than iturins and more active towards filamentous fungi 
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a) 

 

b) 

 

c) 

 

Fig. 2. Family-specific LC-MS analysis of the methanolic extract of B.subtilis HC8. Each lipopeptide family 

was characterized using specific elution gradients as described elsewhere (Toure et al., 2004). 

a) Iturin-specific analysis. The homologues of iturin A contain C14-C17 acyl chains.  

b) Fengycin-specific analysis. A, fengycin A; B, fengycin B; 15,18 include C15 fengycin A homologue with an 

unsaturated fatty acyl chain and the saturated C18 homologue. Fengycins A C16 and C17 homologues with a 

double bond elute together with 18B. 

c) Surfactin-specific analysis. The homologues of surfactin contain C12-C16 acyl chains.chains (up to C19). 
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(Jacques 2011). Indeed, in our study we found that fengycins are bioactive at all tested 

concentrations while iturins display an inhibitory effect only at high concentrations (30 

and 100 µg/ml) (Fig 3). Moreover, fengycins alone are significantly more active than 

the mix of the three c-LP's suggesting that fengycins are the major antifungal 

compound against Forl. This notion is supported by the microscopic observation of 

more severe growth restriction of fungal hyphae incubated with fengycins than with 

any of the other compounds (Fig 4). The result with the mixture also shows that there 

is no (strong) synergy in the action of the various c-LP’s (Fig 4). 

The surfactin-specific program revealed the presence of six out of seven known 

surfactins with an acyl chain from C12 to C16 and the amino acid leucine at the 

seventh position of the peptide ring (Table 2; Fig 2c). The most abundant homologue is 

C15 followed by C14, C13, C12 and C16. Numerous studies showed that C14 and C15 

surfactin homologues are the most bioactive ones with respect to their antiviral 

activity (Kracht et al. 1999), insecticidal activity (Assié et al. 2002), triggering several 

plant defense mechanisms (Jourdan et al. 2009) and foaming properties 

(Razafindralambo et al. 1998). Although surfactins do not show significant antifungal

Fig. 3. Evaluation of antifungal activity of c-LPs against Forl. The fungal spores were incubated with c-LPs at 

four different concentrations and with a combination of iturins, fengycins and surfactins. The inhibition of 

the fungal growth was judged as the decrease in OD620 compared to the control. Bars indicate confidence 

intervals. 
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Fig. 4. Visualization of the inhibitory effect of c-LPs. a. methanol; b. surfactins; c. fengycins; d, iturins. Fungal 

spores were treated with a 100 µg/ml of each c-LP and incubated at 30°C for 25 hours. 

 

activity at the concentrations tested (see Fig 3 and 4), they can favor establishment 

and spreading of biocontrol bacteria in internal host tissues. LP has been shown to be 

implicated in a flagella-independent surface motility (Kinsinger et al. 2003; Leclère et 

al. 2006) and in the formation of biofilms (Hofemeister et al. 2004) thereby globally 

contributing to the ability of some bacilli to efficiently colonize surfaces of plant roots 

(Bais et al. 2004). 

In this study we show for the first time that an endophytic B. subtilis strain is able 

to produce all three families of c-LPs of which the fengycins displayed the strongest 

antifungal activity against Forl. Production of fengycins A and B was also reported for 

the endophytic bacteria B. amyloliquefaciens ES-2 (Sun et al. 2006) and B. subtilis B-

FS01 (Hu et al. 2007). However, in contrast to HC8, neither of these strains co-

produces significant amounts of surfactin, fengycin and iturin. Moreover, a very 

heterogeneous mixture of homologues was detected in the methanolic extract of our 

strain. Whether the same c-LPs and homologues are being produced during interaction 

of B. subtilis HC8 with plants and which of them are involved in its biocontrol activity 

remains to be established. 
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Abstract   

Twenty endophytic bacteria were isolated from surface-sterilized stems and roots of 

cucumber plants. After removal of potential siblings and human pathogens, the 

remaining seven strains were identified based on their 16S rDNA as Pseudomonas 

fluorescens (2 strains) and P. putida (5 strains). Three strains, namely P. fluorescens 

CS1, P. fluorescens CR2 and P. putida CR3, were able to suppress tomato foot and root 

rot (TFRR). Special attention was paid to the characterization of the BIOLOG carbon 

oxidation profiles of the isolated pseudomonads in order to identify nutrients which 

might be important for their endophytic lifestyle. Comparative analysis of the profiles 

of these seven strains with those of seven rhizospheric Pseudomonas spp. revealed 

that endophytes were able to oxidize L-arabinose and 2,3-butanediol significantly 

more often than the rhizospheric group. An independent growth experiment 

performed in tubes using L-arabinose and 2,3-butanediol as sole carbon sources 

showed the same results as seen using BIOLOG for L-arabinose, but not for 2,3-

butanediol. Since L-arabinose is one of the most abundant sugars in xylem of 

cucumber plants and was not detected in their rhizosphere, our data suggest that 

utilization of L-arabinose might be a trait contributing to the endophytic lifestyle of the 

isolated Pseudomonas endophytes.  

  



Chapter 7 

130 

Introduction 

Plants live in association with many bacteria which can be classified as rhizobacteria, 

epiphytic bacteria and endophytic bacteria. Endophytic bacteria are referred to as 

those which are able to colonize plants internally without causing any apparent harm. 

Due to their endophytic lifestyle, bacterial endophytes establish a more stable and 

long-lasting relationship with a plant than other plant-associated bacteria do (Hardoim 

et al. 2008). In addition, some endophytic bacteria have beneficial effects on plants. 

Therefore, bacterial endophytes with plant-beneficial traits are considered to be 

promising bio-inoculants for agricultural application (Strobel 2006). 

Once endophytes establish themselves inside a plant, some of them can stimulate 

plant growth and/or protect plants against phytopathogens. Endophytic bacteria are 

able to promote plant growth directly by the secretion of phytohormones (Spaepen et 

al. 2008; Sgroy et al. 2009), by nitrogen fixation (You et al. 2005; Pedraza 2008) and by 

phosphate solubilization (Taurian et al. 2009; Lopez et al. 2011). In addition, several 

beneficial bacteria contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) 

deaminase, which hydrolyses ACC, the precursor of the plant hormone ethylene, to 

NH3 and α-ketobutyrate (Glick 2005). The bacteria utilize NH3 as a source of N and 

thereby decrease the ACC and ethylene levels within the plant and, as a result, can 

stimulate plant growth (Sun et al. 2009). The ACC-deaminase activity of endophytic 

bacteria and its responsibility for growth promotion of Solanum nigrum was reported 

for various strains of Pseudomonas (Long et al. 2008).  

Endophytic bacteria can also promote plant growth indirectly via biocontrol of 

phytopathogens. Known mechanisms of biocontrol mediated by endophytic bacteria 

include (i) antibiosis through the production of antibiotics (Cho et al. 2003) or exo-

enzymes (Downing and Thomson 2000) and (ii) induction of systemic resistance (Van 

Wees et al. 2008; Yasuda et al. 2009). 

Endophytic bacteria are able to colonize intercellular spaces of the cell walls and 

xylem vessels which together form the plant apoplast (Compant et al. 2010). 

Biochemical studies of nutrients which are present in the apoplast indicate that this 

niche contains sugars, alcohols, amino acids, organic acids, growth factors, and mineral 

elements (Bacon and Hinton 2006). The question remains open of which carbon 

sources are utilized by endophytic bacteria in the plant apoplast. 

The main aims of the present study were: (i) to isolate and identify the major 

culturable heterotrophic bacterial endophytes from stems and roots of cucumber 

plants grown in a greenhouse, (ii) to select novel beneficial strains based on their 
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abilities a) to promote growth of radish and/or b) to control TFRR caused by the fungus 

Fusarium oxysporum f.sp. radicis-lycopersici (Forl), and (iii) to characterize and 

compare oxidation profiles of carbon sources of endophytic and rhizospheric 

Pseudomonas spp. in an attempt  to identify compounds which might be involved in 

the endophytic lifestyle. 

 

Materials and Methods 

Isolation of endophytic bacteria 

Endophytic bacteria were isolated from stems and roots of cucumber (Cucumis sativus 

L.) plants collected from greenhouses in the Tashkent area, Uzbekistan. Plant samples 

were treated with 70% ethanol for 3 min, followed by 4% sodium hypochlorite for 5 

min, and several rinses with sterile water. To verify adequate surface sterilization, 

aliquots of water from the last rinsing were plated on 1/20 strength TSA control plates. 

Subsequently, the surface-sterilized plant samples were crushed under sterile 

conditions and the resulting juices were plated on 1/20 strength tryptic soy agar (TSA, 

Difco Laboratories, MI, USA) plates. After incubation at 28°C for 3 days colonies 

originating from plant juice with empty control plates were used for further analysis. 

 

Microbial strains and growth conditions 

All isolated bacterial strains and eight Pseudomonas rhizospheric strains (P. fluorescens 

WCS365, PCL1444 and PCL1751 and P. putida PCL1760, PCL1759, PCL1758, PCL1603 

and PCL1445), which belong to the collection of Institute of Biology Leiden, were 

grown and maintained on full strength TSA. The rhizospheric strains used for a 

comparative analysis originate from the following plants: avocado (P. putida 1603 and 

1760), Barmultra grass (P. fluorescens 1444 and P. putida 1445), tomato (P. putida 

1758 and 1759) and potato (P. fluorescens WCS365). P. fluorescens PCL1751, which is 

an excellent root colonizer (Kamilova et al. 2005) and is naturally resistant to 

kanamycin, was used as a reference strain for competitive cucumber root tip 

colonization experiments. Kanamycin was used at the final concentration of 50 µg ml
-1

. 

The fungi Aspergillus niger, Forl, F. solani and the oomycete Pythium ultimum were 

routinely cultivated on potato-dextrose agar (PDA, Difco Laboratories). To obtain 

spores for biocontrol experiments, Forl was routinely grown on Czapek-Dox liquid 

medium (Difco Laboratories) and incubated on a rotary shaker at 150 rpm at 28 °C.  
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Molecular characterization of endophytic strains 

Amplified ribosomal restriction analysis (ARDRA) and identification of endophytic 

strains was performed as described previously (Malfanova et al. 2011). Briefly, 16S 

rRNA gene was amplified, cut with four different restriction enzymes and the resulting 

fragments were separated using a 2% agarose gel. Those strains which gave a unique 

restriction pattern and appeared morphologically distinct were sent for sequencing to 

Service XS, Leiden, the Netherlands. Species they belonged to were identified as 

sharing at least 99% homology with those of known species.  

 

Characterization of potential plant-beneficial traits 

Characterization of potential plant-beneficial traits such as the production of exo-

enzymes (β-glucanase, cellulase, chitinase, lipase and protease), antifungal metabolites 

(AFM) and auxins was performed as described previously (Malfanova et al. 2011). The 

presence of ACC deaminase was judged by growth on 1-aminocyclopropane-1-

carboxylate (ACC) as the sole N-source according to Belimov et al. (2005).  

 

Plant growth promotion 

Endophytic bacteria were tested for their ability to promote the growth of radish 

plants. This was done by soaking seeds of radish in a bacterial cell suspension (adjusted 

to 10
8
 cfu/ml) in phosphate buffered saline solution (PBS) for 15 minutes. As a negative 

control, seeds were treated with sterile PBS. The treated seeds were subsequently 

planted in non-sterile potting soil and grown under greenhouse conditions at 80% 

humidity and 16 h of daylight. Each variant consisted of four replicates with five seeds 

each. After two weeks of growth, the fresh weight of the roots was determined. All 

experiments were performed at least twice. 

 

Biocontrol of tomato foot and root rot 

Biocontrol of TFRR in soil was performed according to Kamilova et al. (2005) with small 

modifications. Briefly, tomato seeds of cultivar Carmello (Syngenta, Enkhuizen, the 

Netherlands) were coated with bacteria by dipping the seeds in a suspension of 1% 

(w/v) methylcellulose (Sigma, St Louis, MO, USA) in PBS containing 10
8
 cfu/ml. The 

treated seeds were then planted in non-sterile potting soil supplemented with 10
7 

Forl 

spores per kg. For each treatment, 96 plants were tested in eight trays of 12 plants 

each. Plants were grown in a greenhouse at 21–24°C, 70% relative humidity and 16 h 

light. After 3 weeks of growth, plants were removed from soil and examined for 
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symptoms of foot and root rot, such as brown spots, lesions, wilting or even death. 

Only roots without any of these symptoms were referred to as healthy and all others 

were scored as diseased. All experiments were performed at least twice.   

Biocontrol of TFRR in stonewool substrate was conducted as described by Validov 

et al. (2007). Briefly, tomato seeds were placed in stonewool plugs which had been 

soaked in advance in Plant Nutrient Solution (PNS) (Wageningen UR Greenhouse 

Horticulture, Bleiswijk, the Netherlands) supplemented with Forl spores (10
7
 spores/L) 

and bacterial cells (10
6
 cfu/ml). In the negative control PNS was supplemented with 

spores only. Plants were grown for 14 days under greenhouse conditions at 80% 

humidity and 16 h of daylight. The plants were then removed from the stonewool and 

examined for symptoms of foot and root rot. All experiments were performed twice. 

Homogeneity of variance and analysis of variance (ANOVA) at p = 0.05 were conducted 

with SPSS software (Chicago, IL, USA).  

 

Carbon oxidation/utilization assay 

Seven Pseudomonas strains isolated from roots and stems of cucumber plants and 

seven rhizospheric strains of Pseudomonas spp. of different plant origin were tested 

for their ability to oxidize various carbon sources using BIOLOG GN2 Microplates 

(Biolog Inc., Hayward, CA, USA). Bacteria were grown overnight at 28 °C under aeration 

(150 rpm), harvested by centrifugation and subsequently resuspended in 0.85% (w/v)  

NaCl solution to a final OD590 of 0.15. Aliquots of 150 µl were inoculated in each well of 

a 96-wells microplate using a multichannel pipette. Plates were covered with a lid and 

incubated statically at 28˚C for 48 hours. The appearance and intensity of a purple 

color, caused by the reduction of the tetrazolium salt, was read using a microplate 

reader at OD590 and by direct observation. Only results with values of OD590 > 0.3 and 

the visible presence of the purple color were scored as positive. In the case of border 

values between 0.29-0.3 and/or absence of purple color in the test wells, the results 

were scored as “+/-“. To check whether there is a significant difference in carbon 

oxidation abilities between the endophytic and rhizospheric group, the Chi-square test 

(p=0.05) was performed using SPSS software.  

To verify results obtained using the Biolog assay, we performed independent 

growth experiments. Endophytic and rhizospheric bacteria were grown overnight in LB 

broth and washed twice with 0.85% NaCl to remove traces of extracellular carbon. 

Subsequently bacteria were inoculated in M9 minimal medium containing (i) 0.2% 

(w/v) L-arabinose or 2,3-butanediol (experiment), (ii) 0.2% (w/v) glucose (positive 
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control), and (iii) no added carbon source (negative control) to a final OD590 of 0.15. 

Falcon tubes containing 5 ml of each suspension were incubated for 24 h at 28˚C and 

150 rpm. Subsequently the bacterial growth was scored spectrophotometrically at 

OD590. All experiments were performed at least twice. 

 

Competitive cucumber root tip colonization 

In order to verify the ability of rhizospheric pseudomonads to efficiently colonize the 

rhizosphere of cucumber plants, competitive root tip colonization experiments were 

performed as described by Kamilova et al. (2005). Briefly, surface-sterilized cucumber 

seeds were inoculated with a 1:1 mixture of two bacterial strains (experiment vs. 

reference strain). The treated seeds were then planted in a gnotobiotic sand system 

(Simons et al. 1996) and grown for 7 days under greenhouse conditions. Subsequently, 

one cm of the root tip was cut off and vigorously shaken for 15 min to remove the 

adhered bacteria. Suspensions with bacterial cells were then diluted and plated on TSB 

with and without Km. The number of Km-sensitive (experiment) and Km-resistant 

(reference) colonies was determined and the average of each group was calculated. All 

colonization experiments were performed in five replicates.  

 

Results 

Isolation and characterization of endophytic bacteria 

Endophytic bacteria were isolated from stems and roots of greenhouse-grown 

cucumber plants. The controls showed that all living microorganisms on the plant 

surface were killed or became nonculturable.  

A total of 20 strains were randomly chosen from the colonies obtained after plating 

plant juices on 1/20 strength TSA. To eliminate potential siblings, these strains were 

compared for their colony morphology, motility, their ARDRA patterns and production 

of the exo-enzymes β-glucanase, cellulase, chitinase, lipase and protease. Eleven 

strains which were indistinguishable with respect to the mentioned traits were 

considered as likely siblings and not further studied. 

The nine remaining strains were screened for their antagonistic activity towards 

four pathogens, their ability to produce auxin, and their growth on ACC as the sole N-

source (Table 1). Strain CR3 is antagonistic towards P. ultimum, but not A. niger, F. 

solanum or Forl and does not secrete any exo-enzymes. None of the other strains 

showed any antagonism against these phytopathogens or production of exo-enzymes 
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Table 1. Overview of plant-beneficial traits of selected endophytic bacteria 

Strain Antifungal activitya Exo-enzymesb Auxinc ACCd 

CS1 - P - + 

CS4 - - + - 

CS5 - - ++ - 

CS6 - - - - 

CS8 - - + - 

CR2 - - - - 

CR3 Pu - + - 

CR6 - - + - 

CR9 - - - - 
a Pu, Pythium ultimum. 
b P, protease. 

c Auxin level after growth in medium supplemented with tryptophan: ++ >80 µg/ml, + >10-20 µg/ml, - < 10 

µg/ml. Auxin level after growth in medium without tryptophan was zero for all strains. 
d ACC (1-aminocyclopropane-1-carboxylate), growth on ACC as the sole N-source. 

 

except for CS1 which showed protease activity.  

Five strains, namely CR3, CR6, CS4, CS5 and CS8 produce detectable amounts of 

auxins, but only in the presence of tryptophan in the growth medium. The level of 

auxin secreted by strain CS5 is more than 80 µg/ml. In the case of CS4 and CR3, the 

auxin level in the media with tryptophan is more than 15 µg/ml. Two other strains, 

namely CR6 and CS8 produce appr. 10 µg/ml of auxins.  

The only strain able to utilize ACC as the sole nitrogen source is CS1.  

 

Molecular identification of endophytic strains 

The strains were identified based on comparison of their rRNA sequences with 

database sequences from correctly identified strains (Table 2). The following species 

were isolated from stems and roots of cucumber plants: one Bacillus cereus strain, two 

P. fluorescens strains, five P. putida strains and one Stenotrophomonas maltophilia. To 

see whether these strains are safe to be applied in the field as biocontrol and/or plant-

growth promoting strains, we evaluated to which risk group (Anonymous 1998) they 

belong. Two strains, namely B. cereus and S. maltophilia belong to risk group 2, 

representing potential human pathogens. Therefore, they were excluded from further 

experiments. This left us with seven pseudomonads. 
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Table 2. Molecular identification of endophytic strainsa and risk group classificationb 

Strain Bacterial speciesc Identity (%) Phylum Risk group 

CS1 Pseudomonas fluorescens  99 β-Proteobacteria 1 

CS4 Pseudomonas putida  99 β-Proteobacteria 1 

CS5 Pseudomonas putida  99 β-Proteobacteria 1 

CS6 Stenotrophomonas maltophilia  99 β-Proteobacteria 2 

CS8 Bacillus cereus  99 Firmicutes 2 

CR2 Pseudomonas fluorescens 100 β-Proteobacteria 1 

CR3 Pseudomonas putida 99 β-Proteobacteria 1 

CR6 Pseudomonas putida 99 β-Proteobacteria 1 

CR9 Pseudomonas putida 99 β-Proteobacteria 1 
a After elimination of siblings. 

b Risk group 1 includes bacteria which are safe to be applied in the field; risk group 2 includes potential 

human and/or plant pathogens (Anonymous, 1998). 
c Sequences have been submitted to GenBank under accession numbers JX010776-JX010784. 

 

Plant growth promotion  

Four auxin-producing strains, namely CR3, CR6, CS4 and CS5, and one ACC-utilizing 

strain, CS1, were tested for their ability to promote radish growth under greenhouse 

conditions. Radish was chosen as the model plant because its roots secrete a high level 

of tryptophan on filter paper (Kamilova et al. 2006) which can be used by many 

beneficial bacteria as the precursor of auxin. However none of the tested strains 

showed plant growth promotion (results not shown).  

 

Biocontrol of tomato foot and root rot 

All seven Pseudomonas spp. were tested for their ability to suppress TFRR in soil and 

stonewool. Two strains, namely P. fluorescens CR2 and P. putida CR3, significantly 

decreased disease symptoms of tomato plants in soil from 38% in the non-inoculated 

control to 22% and 24%, respectively (Fig 1a). Significant biocontrol activity of these 

strains was also found in the second soil experiment. In the stonewool biocontrol 

experiments strains CR2 and CR3 were not significantly active but another strain, P. 

fluorescens CS1, was able to suppress TFRR symptoms from 71% to 41% in the first and 

from 58% to 36% in the second experiment (Fig 1b).  

 

Carbon oxidation assay 

Seven endophytic and rhizospheric Pseudomonas spp. were characterized and 

compared in respect to their carbon oxidation profiles in order to identify carbon 

sources which might be important for their endophytic lifestyle (Table 3). Out of 95  
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Table 3. Carbon sources oxidized by endophytic and rhizospheric pseudomonadsa 

Carbon source (GN2) Rb Eb Carbon source (GN2) Rb Eb 

Dextrin 2 2 D-glucuronic acid 6 7 

Glycogen 2 2 Alpha-hydroxybutyric acid 6 6 

NAC-D-glucosamine 3 1 Gamma-hydroxibutyric acid 1 1 

L-arabinose* 2 7 P-hydroxiphenylacetic acid* 5 1 

D-arbitol 3 2 Itaconic acid 0 1 

D-fructose 7 6 Alpha-keto- butyric acid 4 3 

D-galactose 2 2 Malonic acid 4 5 

M-inositol 1 2 Sebacic acid 1 0 

D-mannitol 3 2 Succinamic acid 5 3 

D-mannose 7 6 Glucuronamide 5 5 

D-psicose 2 2 L-alanil-glycine 7 6 

D-sorbitol 1 2 Glyciyl-L-Glutamic acid 1 0 

Sucrose 1 3 D-serine 5 5 

D-trehalose 1 2 L-threonine 6 7 

Succinic acid mono-methyl ester 5 3 Urocanic acid 3 5 

Acetic acid 6 7 Inosine 6 6 

Formic acid 6 7 Uridine 2 2 

D-galactonic acid lactone 2 2 Phenylethylamine 6 5 

D-galacturonic acid 6 6 2,3-butanediol* 1 6 

D-glucosaminic acid 2 2 D,L-alpha-glycerol phosphate 1 2 
a Does not include carbon sources which oxidized by all or none of the tested strains (see Results). 
b Number of strains out of the seven tested pseudomonads which oxidized the carbon source. 
* Carbon sources which were differently oxidized between the rhizospheric (R) and the endophytic (E) group 

based on Chi-square analysis (p < 0.05). 

 

different carbon sources, as many as 34 were oxidized by all tested strains. These 

include one sugar (alpha-D-glucose), 12 organic acids (cis-acetonic, citric, D-gluconic, 

beta-hydroxybutyric, alpha-ketoglutaric, alpha-ketovaleric, D,L-lactic, propionic, quinic, 

D-saccharic, succinic and bromosuccinic acid), 13 amino acids (D-alanine, L-alanine, L-

asparagine, L-aspartic, L-glutamic, L-histidine, hydroxy-L-proline, L-leucine, L-ornithine, 

L-proline, L-pyroglutamic acid, L-serine and gamma-amino butyric acid) and eight other 

compounds. A total number of 21 carbon sources were not oxidized by any of the 

strains. These comprise 11 sugars (D-cellobiose, L-fucose, gentiobiose, alpha-D-lactose, 

lactulose, maltose, D-melibiose, beta-methyl-D-glucoside, D-raffinose, L-rhamnose and 

turanose), three sugar alcohols (adonitol, i-erythritol and xylitol), one amino acid (L-

phenylalanine), one amino acid derivative (glycil-L-aspartic acid) and five other 

compounds. 

Three out of the 40 remaining carbon sources gave significantly different oxidation 
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Fig. 1. Biocontrol of TFRR by endophytic Pseudomonas spp. a) in soil; b) in stonewool substrate. Numbers 

inside the columns present the percentage of sick plants. Bars indicate confidence interval (p < 0.05). 

Statistically different values are indicated with asterisks. C, uninoculated control. 

 

profiles between the endophytic and rhizospheric group, namely L-arabinose, 2,3-

butanediol and p-hydroxyphenylacetic acid (Table 3). L-arabinose was oxidized by all 

seven endophytes and only by two rhizospheric strains, namely P. fluorescens strains 

WCS365 and PCL1444 (p < 0.05). Six out of seven endophytic pseudomonads (P. 

fluorescens CS1 and CR2 and P. putida CS5,CR3, CR6 and CR9) and one out of seven 

rhizospheric ones (P. fluorescens WCS365) were able to oxidize 2,3-butanediol (p < 

0.05). Para-hydroxyphenylacetic acid was oxidized by five rhizospheric and one 

endophytic strain (p < 0.05).  

The results of an independent growth experiment, as judged by an increase in the 

optical density (590 nm) compared to M9 medium without added carbon source, using 

L-arabinose as the sole carbon source showed the same results as the BIOLOG 

experiments obtained for L-arabinose. However for 2, 3-butanediol as the sole carbon 

source, growth was measured for all endophytic strains and for six out of the seven 

rhizosperic strains.  

a) 

b) 
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Competitive cucumber root tip colonization experiment 

To check whether the tested rhizospheric strains which originate from different plant 

hosts are cucumber rhizosphere competent and therefore can serve as suitable 

controls for the cucumber endophytes, we evaluated these strains in a competitive 

root tip colonization experiment against P. fluorescens PCL1751 (Kamilova et al. 2005), 

an excellent root colonizer. It appeared that all strains colonized the cucumber root tip 

in competition with P. fluorescens PCL1751 and therefore are cucumber rhizosphere 

competent (Table 4).  

 

Discussion 

General remarks about the isolated endophytes 

After developing the protocol for the isolation of endophytic bacteria from cucumber 

plants, we used a similar strategy as described by Validov et al. (2007) for the 

elimination of siblings and potential pathogens. The fact that 11 out of the 20 strains 

are siblings indicates that the diversity among the isolated endophytes is low. Out of 

the nine remaining strains, two strains belong to risk group 2 (Table 2), indicating the 

presence of potential human pathogens among these endophytes. This phenomenon 

has been reported previously for both rhizospheric (Berg et al. 2005; Egamberdiyeva et 

al. 2008) and endophytic bacteria (Malfanova et al. 2011). 

  

Table 4. Competitive cucumber root tip colonization experiment. 

Competing strainsa                    cfu/cm of root tipb  

  Test strain Reference strain  

365 vs 1751 (3,52±0,43)*104 (4,27±0,39)*104  

1444 vs 1751 (2,60±1,41)*105 (4,03±0,48)*105  

1445 vs 1751 (9,81±4,1)*103 (1,35±1,64)*105  

1603 vs 1751 (5,43±4,2)*103 (2,21±0,37)*105  

1758 vs 1751 (2,00±0,35)*104 (7,65±2,78)*104  

1759 vs 1751 (2,40±0,54)*104 (4,90±0,72)*104  

1760 vs 1751 (5,14±0,66)*104 (3,38±0,39)*105  
a The tested strains were inoculated on cucumber seeds in a 1:1 ratio with the reference strain P. fluorescens 

PCL1751.  
b The average number of Km-sensitive (test) and Km-resistant (reference) colonies after plating the 

suspension with bacterial cells washed from the cucumber root tip. 
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Seven remaining bacteria were identified as Pseudomonas spp. of which members 

have been found as endophytes of different plants (Mercado-Blanco and Bakker 2007; 

Ramesh et al. 2008). Several representatives of this group, namely P. fluorescens and 

P. putida, are widely known for their various plant-beneficial traits which include 

production of antifungal metabolites and exo-enzymes, ACC-deaminase activity and 

secretion of phytohormones (Mercado-Blanco and Bakker 2007). In our study only a 

few identified pseudomonads displayed these characteristics (Table 1). The most 

common beneficial trait was the production of auxin in the presence of its precursor L-

tryptophan.  

 

Plant growth promotion 

Auxin-producing strains were further tested under greenhouse conditions for their 

ability to promote the growth of radish roots. Auxins are known to be essential for 

plant physiology because they affect the root and shoot architecture (Spaepen et al. 

2009). To our surprise, none of the tested pseudomonads had a significant effect on 

the root biomass of radish plants. The same results were obtained on tomato and 

cucumber plants (data not shown). The amount of L-tryptophan secreted by cucumber 

and tomato plants is low (1.8 and 7.4 ng per seedling, respectively), while the amount 

secreted by radish plants exceeds 0.29 µg per seedling (Kamilova et al. 2006) and is 

sufficient to stimulated microbial IAA production in nutrient rich medium (Kravchenko 

et al. 2004). However in nutrient poor soil, addition of high amounts of either L-

tryptophan or IAA (up to 3 mg per kg soil) does not lead to a significant increase in 

radish root weight (Frankenberger et al. 1990). This may explain the absence of plant 

growth promotion in our experiments and highlights the importance of the substrate 

used during such investigations.   

 

Biocontrol of TFRR 

Biocontrol results (Fig 1) indicated that P. fluorescens strains CS1 and CR2 and P. putida 

strain CR3 have a strong ability to control TFRR. However, the biocontrol effect of 

these strains was substrate-dependent. Apparently, the biocontrol mechanisms used 

by the different strains do not necessarily function well in both substrates. A similar 

effect was reported previously by Validov et al. (2009) who found that flagellar 

motility, which is a key trait for the biocontrol ability of PCL1751 in potting soil, is not 

important during colonization of stonewool by P. putida PCL1760.  
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Despite the fact that the selected biocontrol strains do not produce exo-enzymes 

and antifungal metabolites against Forl in vitro, they were able to suppress the disease 

caused by the fungus in vivo. This observation is in agreement with other reports (Berg 

and Hallmann 2006; Malfanova et al. 2011), indicating that in vitro and in vivo 

beneficial activity of some bacteria is not necessarily correlated. Possible mechanisms 

of biocontrol include induction of systemic resistance (ISR) and competition for niches 

and nutrient (CNN) (Lugtenberg and Kamilova 2009). It is tempting to speculate that 

CNN is likely to be involved in biocontrol mediated by the selected endophytic 

pseudomonads. This mechanism has been proven for P. fluorescens PCL1751 and P. 

putida PCL1760 which also do not inhibit Forl in the plate assay but show significant 

biocontrol of TFRR in stonewool (Kamilova et al. 2005; Validov et al. 2007; Validov et 

al. 2009). Since the three strains which showed biocontrol did only so on one of the 

two substrates, we did not study the mechanism(s) of action. 

 

Utilization of carbon sources by endophytic and rhizospheric pseudomonads 

Out of the 95 different carbon sources tested, three were significantly differentially 

oxidized between the rhizospheric and the endophytic group (p<0.05). An independent 

growth experiment using M9 medium confirmed the BIOLOG result in the sense that L-

arabinose is utilized by all endophytic pseudomonads while only two out of the seven 

tested rhizospheric strains could use it as their sole carbon source. Interestingly, L-

arabinose is one of the major sugars present in the apoplast of different plants, 

including cucumbers (Iwai et al. 2003). Therefore our results suggest that utilization of 

L-arabinose might be a trait contributing to the endophytic lifestyle of the 

Pseudomonas endophytes isolated from cucumber plants.  

Our suggestion about the role of L-arabinose may be extended to other endophytes 

and plants because Prakamhang et al. (2009) found that all 51different endophytes 

isolated from rice were able to use L-arabinose as well as glucose as their sole carbon 

sources. L-arabinose was not detected in the root exudate of cucumber plants 

(Kamilova et al. 2006). This fact together with the results from the competitive 

cucumber colonization experiment, which showed that all tested rhizospheric strains 

are able to reach the tip of the root at high density (see Table 4), suggests that the root 

tip colonization ability of the rhizospheric strains is not dependent on utilization of L-

arabinose. The results also suggest that those rhizosperic strains which are able to 

utilize L-arabinose have an enhanced possibility of becoming endophytes.  
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Further analysis of the BIOLOG results showed that 2, 3-butanediol was 

differentially oxidized. However this could not be fully verified in an independent 

growth experiment although the endophytic strains were able to reach a higher cell 

density level than the rhizospheric strains (data not shown). It is interesting to note 

that 2, 3-butanediol is a volatile signaling molecule involved in plant growth regulation 

and triggering of ISR (Ryu et al. 2003). As can be expected from signal molecules, they 

can be degraded and several pseudomonads apparently are able do so. 

In conclusion, the results of the present study show that among the seven isolated 

Pseudomonas cucumber endophytes three strains have biocontrol activity. Moreover, 

we also found that, in contrast to most rhizospheric Pseudomonas spp., endophytic 

pseudomonads were able to utilize L-arabinose, one of the most abundant sugars in 

the xylem fluid of various plants.  
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General discussion 

 

Limitations for the isolation of endophytic bacteria 

Endophytic bacteria can be found in virtually all parts of a plant, including roots and 

stems (Chapters 5 and 7) as well as reproductive and storage organs (Chapter 5). Since 

various plant tissues react differently to chemicals which are used for surface 

sterilization, each plant and plant organ require adjusted sterilization procedures. A 

harsh treatment of delicate plant samples can reduce quantitative and qualitative 

evaluation of bacterial endophytes, particularly of vegetative cells. On the other hand, 

a too mild surface sterilization may result in the isolation of epiphytic microorganisms 

which would be incorrectly identified as endophytes and this is why a proper control 

on sterility is required. Therefore, selecting an adequate sterilization protocol is a 

crucial step in endophytic research. We demonstrated that certain variations of 

established disinfection protocols (concentration of chemicals and incubation time) 

result in efficient sterilization of plant surfaces and allow the isolation of various 

phylogenetic groups of endophytic bacteria (Chapter 5 and 7). 

From a technological point of view, cultivability and fast multiplication of 

microorganisms are important prerequisites for the production of effective 

bioproducts. In this context, use of the appropriate nutrient media and growth 

conditions can favor growth of some species over others and, as a result, increase the 

possibility of obtaining useful strains. For this reason, bacterial endophytes were 

isolated on general nutrient medium which supports the growth of fast-growing 

heterotrophic bacteria, such as those belonging to the phyla Firmicutes and 

Proteobacteria which harbor the majority of the species of agricultural importance 

(Chapters 5 and 7). To recover bacteria from a low-nutrient environment such as plant 

tissues, diluted synthetic media have been successfully used (Chapters 5 and 7; Adams 

and Kloepper, 2002). However, even after simulating the natural habitat, up to 99% of 

the bacteria cannot be isolated due to their (yet-) unknown growth requirements 

(Donachie et al., 2007). Recent progress in applying metagenomic tools and analysis of 

sequence information from the entire population might facilitate in finding an optimal 

cultivation strategy for (yet-) uncultured microorganisms and therefore result in 

increasing the number of biotechnologically promising strains (Handelsman, 2004). 
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Siblings, plant-beneficial strains and human pathogens 

Isolation of bacteria in pure culture was followed by several initial screenings in order 

to discard siblings (Chapters 5 and 7). This procedure considerably decreased the 

number of strains for subsequent analysis and therefore made the remaining part of 

the screening process less laborious and time-consuming. Identification of the 

remaining strains showed the numerical prevalence of gram-negative 

Gammaproteobacteria (71%) over gram-positive Firmicutes (24%) and Actinobacteria 

(5%) (Table 3 in Chapter 5; Table 2 in Chapter 7). This finding confirms some of the 

earlier reports that members of the Gammaproteobacteria head the list of the most 

abundant culturable endophytes of many different plants (Kuklinsky-Sobral et al., 

2004; Khan and Doty, 2009; Taghavi et al., 2009). As many as seven different genera 

were identified within these phyla, with Bacillus and Pseudomonas being the most 

frequently isolated ones (Chapters 5 and 7).  

With regard to the plant-beneficial traits, 76% of the isolated strains had at least 

one of the tested beneficial properties indicating the occurrence of a large proportion 

of possible plant-beneficial strains among the isolated endophytic bacteria (Table 2 in 

Chapter 5; Table 1 in Chapter 7). The most common endophytic traits were (i) 

secretion of auxin (48%) and (ii) production of fungal cell-wall degrading enzymes 

(38%). The proportion of endophytic bacteria with antagonistic properties towards one 

or more fungal pathogens was 24% which is comparable with values reported by Berg 

et al. (2005) for endophytic bacteria of potato roots. Interestingly, the percentage of 

bacterial antagonists in the endosphere (21%) was always higher than found in the 

rhizosphere (14%). This fact, together with the notion that the root endosphere is the 

primary site attacked by most soilborne pathogens, allows the suggestion that plants 

can harbour specific endophytic bacterial groups in response to environmental stress. 

This suggestion is further supported by work of Siciliano et al (2001) who found that a 

number of bacterial genotypes containing catabolic genes for the degradation of 

petroleum hydrocarbons and nitrotoluenes increased in the interior of plant roots in 

response to soil pollution and that this response was contaminant-dependent. 

Understanding to which extent plants can regulate their bacterial inhabitants, remains 

an interesting research direction.   

Along with agriculturally important strains, the identified phyla are known to 

comprise a number of well-known human and plant pathogens. For this reason it is 

important to evaluate the biosafety risk of the isolated bacteria and to do this at an 

early stage of the screening for bioinoculant agents. Indeed, we found that all analyzed 
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plants, except Heracleum sosnowskyi, harbor close relatives of species associated with 

human and plant diseases (Chapters 5 and 7). Moreover, these species account for 

43% of the diversity of the entire bacterial collection indicating a remarkably high 

incidence of potential pathogens among endophytes. This finding supports previous 

reports that pathogenic bacteria are widespread in many natural environments and 

that they use plants as alternative hosts and an important source of transmission (Berg 

et al., 2005; Tyler and Triplett, 2008). Although some of these potential pathogens 

have interesting plant-beneficial traits (Table 2 in Chapter 5 and Table 1 in Chapter 7) 

and might miss some of the virulence factors present in clinical isolates (Dong et al., 

2003), they are prohibited for agricultural application due to their possible threat to 

human and environmental health. Therefore, they were excluded from further studies. 

 

Endophytic bacteria promoting plant growth 

Auxin production is the best documented mechanism of plant growth promotion used 

by various plant-associated bacteria, including endophytes (Chapters 2 and 3; Spaepen 

and Vanderleyden, 2011). Inoculation of plants with auxin-producing strains can result 

in increasing the total root absorption surface and subsequent nutrient uptake leading 

to enhanced plant growth and biomass production. However, we did not observe the 

expected phytostimulating effect of the auxin-producing endophytic bacteria after 

their application on radish, tomato or cucumber plants (Chapters 5 and 7). Moreover, 

the IAA-producing strain P. fluorescens WCS365 which shows plant growth promotion 

of these plants also failed to stimulate the plant biomass in our experiments 

(Malfanova et al., unpublished). Taking this fact into consideration, our results can 

possibly be explained by assuming increased plant sensitivity to exogenous auxins 

under certain growth conditions, particularly when P is limited. For example, it has 

been shown that when P is not limiting, even low concentrations of exogenous IAA (up 

to 100 nM) increase nodule numbers as well as dry shoot and root weight of common 

bean (Remans et al., 2007). However, when P is low, the same concentrations of IAA 

can have a negative effect on nodule formation. In agreement with this, the increase in 

nodulation induced by the well-known IAA-producing strain Azospirillum brasilense 

Sp245 detected under high P was not detected under low P (Remans et al., 2007).  

Overall, these results indicate that soil fertility and plant nutrition status can 

determine the outcome of plant-microbial interactions. This suggestion is further 

supported by the fact that when NPK fertilizer was added to soil, two IAA-producing 

endophytic strains, namely Pseudomonas putida CR3 and Rahnella aquatilis HC2 were 
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able to stimulate growth of radish and some cereal plants (Zaplatkin et al., 

unpublished). Moreover, the phytostimulating effect of these strains was also recorded 

in salinated and heavy metal-contaminated soils (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The phytostimulating effect of endophytic bacteria on growth of cereal plants under high salt and 

heavy metal conditions.  

a) Plant growth promotion of wheat by Pseudomonas fluorescens CR2 in the presence of 1% of salt. A – 

control without bacteria or salt added, B – control with 1% NaCl, C,D,E – three replicates of the experiment 

in which the bacterium and salt were present. A positive effect was also observed for the bacteria Bacillus 

subtilis HC8, P. putida CR3 and Rahnella aquatilis HC2. 

b) Effect of R. aquatilis HC2 on growth of oat plants in the presence of 0.25% of salt.  

A – control without salt or bacteria added; B – control with 0.25% NaCl added; C – plants inoculated with 

bacteria and salt. 

c) Plant growth promotion of wheat by P. putida CR3 in the presence of 800 µM Cd2+.  

A – control without Cd2+; B – plants inoculated with bacteria and Cd2+; C – control with Cd2+. A positive effect 

was also observed for CR2, HC2 and HC8. 

All experiments and photos are from A. Zaplatkin, ARRIAM, Saint-Petersburg, Russia. 

a) 

b) 

c) 
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Along with auxins, other phytohormones are known to have a stimulatory effect on 

plant growth (Chapters 2 and 3). Since Bacillus subtilis HC8 is capable of promoting 

plant growth of both radish (Chapter 5) and wheat plants (Zaplatkin et al., unpublished) 

but does not produce detectable amounts of auxin, we tested this strain for its ability 

to produce cytokinins and gibberellins. While cytokinin production was not observed, a 

high amount of bioactive gibberellin was found to be secreted by B. subtilis HC8. 

Generally, GB-producing bacteria increase the endogenous content of these 

phytohormones and promote shoot and root growth of plants (Joo et al., 2005). 

However, since we did not detect GB in the tested plants, we cannot exclude an effect 

of other phytostimulatory compounds on growth promotion. Evidence for this notion 

was obtained by finding that B. subtilis HC8 was able to influence the growth of 

Arabidopsis seedlings in a split-plate assay when bacteria and plants were physically 

separated from each other (Malfanova et al., unpublished). This is likely due to the 

production of volatile compounds which have been shown to stimulate growth of 

various plants (Ryu et al., 2003).  

 

Endophytic Bacillus and Pseudomonas with biocontrol properties 

Species of Bacillus have attracted considerable attention because they produce many 

potent antibiotics. Among them c-LPs present the structurally most diverse group due 

to the variation in the amino acid composition of the peptide ring as well as in the 

length, branching and saturation of the acyl chain (Chapter 4). We found that B. subtilis 

HC8 is able to produce all three major families of c-LPs, namely iturin A, fengycin A and 

B and surfactin (Table 2 in Chapter 6). Within each family, we detected a remarkable 

high number of different homologues – more than has been reported for other 

beneficial bacilli, including for the commercial strain B. amyloliquefaciens FZB42 

(Koumautsi et al., 2004). Moreover, these homologues comprise variants with long 

fatty acyl chains which are assumed to be more bioactive (Ongena and Jacques, 2008; 

Raaijmakers et al., 2010). In case of fengycins, long C18 homologues of fengycin A and 

B secreted by HC8 have been described only for a limited number of strains (Ongena et 

al., 2005; Nihorimbere et al., 2012).  

These results suggest that HC8 is a powerful producer of c-LPs, a trait which can 

favor broad biotechnological applications of this strain, for example in the control of 

phytopathogens. Indeed, HC8 shows biocontrol in both stonewool substrate (Chapter 

5) as well as in soil (Malfanova et al., unpublished) and is able to reduce TFRR of 

tomato plants by almost 50 and 25%, respectively. It is interesting to note that the two 
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other c-LP-producing endophytic bacilli which lack some of the c-LP fractions present 

in HC8 (unpublished), failed to show significant biocontrol in any of the tested 

substrates (Chapter 5).  

There are three main modes of action by which endophytic bacteria can exert 

biocontrol of phytopathogens. These are antibiosis, CNN and ISR (Chapter 4). We 

found that fengycin and iturin LPs are responsible for most, if not all, antifungal activity 

of HC8 in in vitro assays against Forl (Chapter 6). Whereas these metabolites can 

suppress growth of Forl in soil, we expect that antibiosis is not powerful in stonewool 

because of diffusion of c-LPs in PNS. In addition to antagonistic activity, c-LPs are 

known to trigger ISR. Particularly, fengycins and surfactins induced significant 

protection in bean and tomato leaves against Botrytis cinerea following root treatment 

(Ongena et al., 2007). c-LPs, and more specifically surfactins, can also stimulate 

motility (Bais et al., 2004) and solubilization of plant nutrients (Lindow and Brandl, 

2003), the two processes important for CNN (Lugtenberg and Kamilova, 2009). These 

data suggest that production of c-LPs can be the molecular basis of at least three 

different disease control mechanisms. 

Other examples of shared determinants of different biocontrol mechanisms include 

volatiles (Ryu et al., 2003) and hydrolytic enzymes (Connelly et al., 2004). These 

compounds are also produced by HC8 (Chapters 5 and 8) and could also be involved in 

the biocontrol of TFRR by this strain. Moreover, since c-LPs, hydrolytic enzymes and 

volatiles are involved in different modes of action, we can speculate that HC8 can use a 

combination of different disease control mechanisms. Therefore, it is not very likely for 

a pathogen to acquire resistance to HC8, which makes this strain a strong candidate for 

the development of a biofungicide. Also, its ability to interact with multiple plants (see 

the previous section) and to express a beneficial effect under different growth 

conditions can facilitate its use in multifaceted plant protection. 

Three other promising biocontrol strains characterized in our study are P. 

fluorescens CS1 and CR2 and P. putida CR3 (Chapter 7). Unlike B. subtilis HC8, these 

strains do not produce any exo-enzymes or antifungal metabolites, except for CR3 

which secretes protease and inhibits the oomycete P. ultimum in vitro (Table 1 in 

Chapter 7). Nevertheless, strains CR2 and CR3 appeared to be able to significantly 

reduce TFRR symptoms in soil and had a biocontrol effect comparable to HC8 (Fig. 1b 

in Chapter 7). Whereas CS1 failed to show biocontrol in soil, it was effective against 

TFRR in stonewool substrate where the other two pseudomonads were not active.  
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Endophytic lifestyle 

With regard to plant growth promotion and biocontrol, endophytism is in principle 

advantageous since endophytic biological agents can form a long-lasting association 

with plants in a relatively safe environment. Therefore, it is important to demonstrate 

the endophytic lifestyle of promising strains after production outside the plant and 

subsequent application. This can be done by visualization of labeled bacteria in inner 

plant tissues using confocal laser scanning microscopy (CLSM). Despite numerous 

attempts, we could not label B. subtilis HC8, neither by transforming it with reporter 

plasmids, nor by hybridizing it with fluorescent probes in situ. However we were able 

to show an endophytic lifestyle for P. fluorescens CS1 in gnotobiotic tomato plants 

using FISH followed by CLSM (Fig. 2). Microcolonies of CS1 have been detected in 

cortex tissues of seven days-old tomato roots as can be clearly observed in 3D 

projections (Fig. 2d-h).  

Microscopic results of endophytic colonization of tomato plants by CS1 were 

further supported by the introduction of a rifampicin-resistant derivative of this strain 

inside tomato seeds followed by its re-isolation on antibiotic-containing medium 

(Malfanova et al., unpublished). Introduction of a biological agent inside a seed is 

generally referred to as seed biopriming and its aim is physiological enhancement of 

seed germination and plant vigor (Müller, 2006). Colonization of inner seed structures 

by bacterial cells is likely to be initiated by the process of water uptake by dormant 

seeds (imbibition) and release of growth substances which are readily used by bacteria 

(Bewley and Black, 1993). After four hours of incubation (imbibition time of tomato 

seeds) and two hours of air-drying, the population density of bacteria on the seed 

surface varies between 10
2
-10

3
 CFU per seed. Similar values were obtained for 

endophytic populations of rifampicin-resistant CS1
r
 following 36 h germination of 

seeds under gnotobiotic conditions. This value increases to 10
5
 cfu for 7-days old 

tomato seedlings. These results indicate that CS1 is not only able to maintain itself, but 

can also thrive within a growing plant. 

For successful endophytic colonization, bacteria should be capable of efficient 

utilization of carbon sources available inside a plant. In Chapter 7 we suggested that 

utilization of L-arabinose by endophytic pseudomonads might be important for their 

endophytic lifestyle in cucumber plants. It is unlikely that L-arabinose utilization is the 

only trait relevant for this complex life style. For example, other major xylem nutrients 

could also play a role, certainly in crops with a different xylem composition as well as 

for other endophytic bacterial species. 
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Fig. 2 Endophytic colonization of tomato roots by Pseudomonas fluorescens CS1 revealed by FISH followed 

by CLSM.  

Tomato seeds were surface-sterilized using twice a 4% sodium hypochlorite treatment for 10 min followed 

by 10 washes with sterile water. Sterile seeds were soaked for 30 min in a bacterial suspension of CS1 

adjusted to 108 cfu/ml. The treated seeds were then placed in a quartz sand gnotobiotic system and allowed 

to germinate for seven days. Subsequently, plant roots were aseptically removed and treated according to 

the FISH protocol described by Cardinale et al., 2008. 

 a – 10× magnified (objective) section of a tomato root heavily colonized with CS1 (bacterial signal shown in 

red); 

b,c – 20× magnified (objective) sections of a tomato root with fluorescent signal in the cortex (bacterial 

signal is in red (b) and green (c).  

d,e – z-stack of sections b and c, respectively, viewed from the top 

f,g,h – z-stack of 200× magnified (objective) section of tomato root with macrocolonies of CS1. 

Experiment and photos are from A. Shcherbakov, ARRIAM, Saint-Petersburg, Russia. 
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Concluding remarks and future prospects 

In this research project we succeeded in the isolation of many endophytic strains with 

plant-growth promoting and biocontrol abilities. Among them, B. subtilis HC8 isolated 

from giant hogweed proved to be the most versatile promising bioinoculant since it 

expressed its beneficial effect on diverse plants under different growth conditions. It 

was also shown that this strain, so far, is the only endophytic Bacillus – and one out of 

a few Bacillus strains – which is capable of producing excessively high levels of a large 

variety of c-LPs. The high and varied production of c-LPs and other metabolites by HC8 

might partly explain its excellent plant growth-promoting and biocontrol properties 

and favor its broad biotechnological application. This and other beneficial endophytic 

bacteria are currently being tested in pilot trials under various environmental 

conditions to select the most effective strains with a wide spectrum of action. For final 

bioproduct development, a number of important aspects still need to be further 

investigated, including evaluation of toxicity and environmental impact, fermentation, 

preservation, storage and formulation. 

Our results as well as literature data suggest that the plant response to endophytic 

bacteria is a very complex process which involves interplay of many known and (yet-) 

undefined biotic and abiotic factors. Therefore, understanding mechanisms of 

beneficial action of selected endophytes as well as of plant growth parameters, such as 

soil type and nutritional status, can help to develop a better formulation and 

application strategy. With regard to plant growth conditions, additional greenhouse 

and field experiments are required to provide more conclusive information about the 

potential of using auxin-producing strains for plant inoculation in soil with limited 

nutrient resources, for example in combination with other beneficial bacteria. 

Attempts were made to shed light on the endophytic lifestyle of several isolated 

strains. For P. fluorescens CS1, we confirmed its endophytic nature by a combination of 

microscopy studies and re-isolation of the introduced bacterium. These results are 

promising for further studies, e.g. to use multiple time points to examine entry sites 

for bacterial cells and to follow bacterial spreading inside the plant. Whereas such 

colonization studies are normally conducted under gnotobiotic conditions, it would be 

more relevant to investigate whether the beneficial strains also have the endophytic 

lifestyle of under practical conditions.  

We found that, in contrast to most rhizospheric Pseudomonas spp., endophytic 

pseudomonads isolated from cucumber plants were able to utilize L-arabinose, one of 

the most abundant available sugars in the xylem fluid of various plants. This and other 
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(yet-) unidentified traits could contribute to the complex interaction of endophytic 

bacteria and plants. To further test the role suggested for L-arabinose, it would be 

interesting to use an L-arabinose utilization-negative mutant of one of the isolated 

pseudomonads and compare the abilities of wild type and mutant to live 

endophytically.  

 

References 

Adams PD, Kloepper JW. 2002. Effect of host geno- type on indigenous bacterial 

endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240: 181–189. 

Berg G, Eberl L, Hartmann A. 2005a. The rhizosphere as a reservoir for opportunistic 

human pathogenic bacteria. Environ. Microbiol. 71: 4203–4213. 

Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J. 2005b. Endophytic and 

ectophytic potato-associated bacterial communi- ties differ in structure and 

antagonistic function against plant patho- genic fungi. FEMS Microbiol. Ecol. 51: 215-

229. 

Bewley J, Black M. 1993. Seeds: Physiology of development and germination. Plenum 

Press, New York. 

Cardinale M, Vieira de Castro J, Müller H, Berg G, and Grube M. 2008. In situ analysis 

of the bacterial community associated with the reindeer lichen Cladonia arbuscula 

reveals predominance of Alphaproteobacteria. FEMS Microbiol. Ecol. 66: 63–71. 

Connelly MB, Young GM, Sloma A. 2004. Extracellular proteolytic activity plays a 

central role in swarming motility in Bacillus subtilis. J. Bacteriol. 186: 4159-4167. 

Donachie SP, Foster JS, Brown MV. 2007 Culture clash: challenging the dogma of 

microbial diversity. ISME 1: 97-102. 

Dong Y, Chelius MK, Brisse S, Kozyrovska N, Podschun R, Triplett EW. 2003. 

Comparisons between two Klebsiella: the plant endophyte K. pneumoniae 342 and a 

clinical isolate K. pneumoniae MGH78578. Symbiosis 35: 247-259.  

Handelsman J. 2004. Metagenomics: application of genomics to uncultured 

microorganisms. Microbiol. Mol. Biol. Rev 68: 669–685  

Joo GJ, Kim Y.M, Kim JT, Rhee IK, Kim JH, Lee IJ. 2005. Gibberellins-producing 

rhizobacteria increase endogenous gibberellins content and promote growth of red 

peppers. J. Microbiol. 43: 510–515. 

Khan Z, Doty SL. 2009. Characterization of bacterial endophytes of sweet potato 

plants. Plant Soil 322: 197–207. 



General discussion 

157 

Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss 

R. 2004. Structural and functional characterization of gene clusters directing 

nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens 

strain FZB42. J. Bacteriol. 186: 1084–1096. 

Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AP, Azevedo JL. 

2004. Isolation and characterization of soybean-associated bacteria and their potential 

for plant growth promotion. Environ. Microbiol. 6: 1244-1251. 

Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl. Environ. 

Microbiol. 69: 1875–1883. 

Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting-rhizobacteria. Annu. Rev. 

Microbiol. 63: 541-556. 

Müller H. 2007. Novel concepts in biological plant protection on the basis of the 

biological control agent Serratia plymuthica HRO-C48. PhD thesis, University of 

Rostock, Germany. 

Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M. 2012. Impact of 

rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain 

Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 79: 176–191. 

Ongena M, Adam A, Jourdan E, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P. 

2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced 

systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. 

Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease 

biocontrol. Trends Microbiol. 16: 115-125. 

Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. 2005. Involvement of 

fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. 

Appl. Microbiol. Biotechnol. 69: 29–38. 

Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M. 2010. Natural functions of 

lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. 

FEMS Microbiol. Rev. 34: 1037-1062. 

Remans R, Croonenborghs A, Gutierrez RT, Michiels J, Vanderleyden J. 2007. Effects 

of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are 

dependent on plant P nutrition. Eur. J. Plant Pathol. 119: 341–351. 

Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW. 2003. Bacterial 

volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. (USA) 100: 4927-4932. 



Chapter 8 

158 

Siciliano S, Fortin N, Himoc N et al. 2001. Selection of specific endophytic bacterial 

genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 67: 

2469–2475.  

Spaepen S, Vanderleyden J. 2011. Auxin and plant-microbe interactions. Cold Spring 

Harbor perspectives in biology 3: 1-13. 

Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, 

Vangronsveld J, van der Lelie D. 2009. Genome survey and characterization of 

endophytic bacteria exhibiting a beneficial effect on growth and development of 

poplar trees. Appl. Environ. Microbiol. 75: 748-757. 

Tyler HL, Triplett EW. 2008. Plants as a habitat for beneficial and/or human pathogenic 

bacteria. Annu. Rev. Phytopathol. 46: 53–73. 



Chapter 9 

159 

 

Summary 

 

In Chapter 1 I give a brief introduction to the topic of my Ph.D. thesis and its main 

aims. Since global food insecurity is one of the major problems faced by humanity, 

there is a necessity to increase plant productivity. For this, biofungicides and 

biofertilizers present an ecologically friendly alternative to their chemical counterparts. 

Among these bioinoculants, endophytic bacteria with plant growth promotion and 

biocontrol abilities are the most promising candidates due to their ability to colonize 

the plant’s interior and establish a stable, long-lasting relationship with a plant.    

 

In Chapter 2 I give a detailed overview of endophytic bacteria and their interactions 

with plants. According to the current knowledge, more than 200 different bacterial 

genera from 16 phyla can be found as endophytes, with Actinobacteria, Firmicutes and 

Proteobacteria being the best studied phylogenetic groups. They colonize virtually all 

plants and plant organs and can enter a plant through the root zone, phylosphere and 

antosphere, or can be vertically transmitted from one generation to another. For 

successful rhizosphere colonization and subsequent endophytic establishment, 

bacteria have to possess a number of  “competence” traits, such as expression of 

surface components (e.g. pili, LPS, EPS) as well as production of cell-wall degrading 

enzymes and the ability to utilize certain plant compounds. Inside a plant, endophytic 

bacteria can positively influence plant growth through providing plants with N and/or 

modulating the phytohormone level. Some endophytes protect plants from pathogens 

via ISR or, most likely, by using a combination of different biocontrol mechanisms. 

Analysis of the 13 sequenced endophytic genomes revealed the existence of additional 

traits which are possibly involved in endophytic colonization and in beneficial 

interactions with a plant. 

 

In Chapter 3 we describe different plant growth promoting microbes and their modes 

of beneficial action. For example, Arbuscular Mycorrhizal Fungi and Trichoderma have 

a general growth promoting effect on plants through a variety of mechanisms. Other 

microbes, e.g. Bacillus, Pseudomonas, Serratia etc. have a more specific effect by 

providing a plant with certain nutrients (e.g. N, P and Fe
3+

). The well-recognized 

mechanisms mediated by these bacteria include biological nitrogen fixation, 

phosphate solubilization and siderophore production.  The third class of beneficial 
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microbes includes microbial plant growth regulators which secrete hormones (e.g. 

auxins, cytokinins, gibberellins, etc.) or hormone-like substances (e.g. volatiles, N-Acyl 

Homoserine Lactones) which stimulate plant growth in extremely low concentrations. 

 

In Chapter 4 we describe different mechanisms of disease control by microbes. The 

majority of plant-associated bacteria produce various antifungal metabolites (e.g. c-LPs 

of Bacillus spp.) which can play a role in antibiosis and ISR. In addition to antifungal 

metabolites, ISR can also be triggered by bacterial molecules and organelles such as 

flagella, LPS, siderophores etc. Some beneficial bacteria are capable of signal 

interference with a pathogen by production of AHL-lactonases and AHL-acylases, which 

destroy AHLs which are required for the expression of pathogenicity factors. 

Moreover, biocontrol bacteria can interfere with activity, survival, multiplication, 

germination, sporulation and spreading of a pathogen. Other biocontrol mechanisms 

include CNN, predation and parasitisms and competition for Fe
3+

. 

 

In Chapter 5 I describe the isolation and partial characterization of the novel biocontrol 

and plant-growth promoting endophytic bacterium Bacillus subtilis HC8 from giant 

hogweed. This strain exhibits a high number of plant-beneficial traits including in vitro 

production of the phytohormone gibberellin, of cyclic lipopeptide antibiotics and 

fungal cell-wall degrading enzymes. When applied to seeds, B. subtilis HC8 is able to 

stimulate plant growth and suppress TFRR. Moreover, this strain has the ability to 

express its beneficial effect on different plant hosts which is an important prerequisite 

of an efficient bio-inoculant agent. 

 

In Chapter 6 I describe the identification of the lipopeptide antibiotics produced by B. 

subtilis HC8 and evaluation of their antifungal effect against Forl in vitro. We showed 

for the first time that an endophytic B. subtilis is able to produce all three major 

families of lipopeptides with a remarkably wide range of different homologues. Among 

them, fengycins are the most potent lipopeptides with regard to their fungicidal 

activity. We expect that the wide range of different homologues strongly contributes 

to the excellent disease control properties of the strain.  Surprisingly, we did not find 

any synergism between different groups of lipopeptide antibiotics in contrast to some 

claims in the literature.  
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In Chapter 7 I describe novel biocontrol endophytic Pseudomonas spp. isolated from 

cucumber plants. The selected biocontrol strains do not exhibit any of the potential 

plant-beneficial traits in vitro. Nevertheless, when applied to seeds, they were able to 

significantly suppress TFRR caused by Forl in a growth substrate-dependent way. 

Perhaps most interesting is the observation that utilization of L-arabinose by 

endophytic pseudomonads might be important for their endophytic lifestyle in the 

cucumber plants. 

 

In Chapter 8 I discuss the major findings of this thesis and included some unpublished 

results. For example, I showed that B. subtilis HC8 and Rahnella aquatilis HC2 from 

giant hogweed as well as P. fluorescens CR2 and P. putida CR3 from cucumber not only 

reduce stress of cereal plants caused by salinity and heavy metals, but have a 

stimulatory effect on plant growth as well. I also presented strong evidence of 

endophytic colonization of tomato plants when the biocontrol strain P. fluorescens CS1 

was applied. 

 

 

 

Samenvatting 

 

In Hoofdstuk 1 presenteer ik een korte inleiding over het onderwerp van mijn 

proefschrift evenals de belangrijkste doelstellingen. Omdat de behoefte aan voedsel in 

de wereld sterk zal toenemen is het nodig de productiviteit van gewassen te vergroten. 

Daarvoor zijn biologische antischimmel middelen en biologische meststoffen 

ecologisch vriendelijke alternatieven voor chemische producten. Onder deze 

biologische middelen zijn endofytische bacteriën met ziekteonderdrukkende en/of 

groeibevorderende eigenschappen de meest belovende kandidaten omdat ze zich 

binnenin de plant vestigen om daar een stabiele, langdurende relatie met de plant op 

te bouwen. 

 

In Hoofdstuk 2 presenteer ik (met enkele co-auteurs) een gedetailleerd overzicht over 

endofytische bacteriën en hun interacties met planten. Volgens onze huidige kennis 

worden meer dan 200 verschillende bacteriële genera van 16 phyla gevonden als 

endofyten met Actinobacteria, Firmicutes en Proteobacteria als de best bestudeerde 

fylogenetische groepen. Ze koloniseren bijna alle planten en plantenorganen en zijn in 
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staat de plant binnen te gaan via de wortelzone, de fylosfeer en de antosfeer, of ze 

kunnen verticaal worden doorgegeven van de ene generatie naar de andere. Voor 

succesvolle kolonisatie van de rhizosfeer en de daaropvolgende vestiging als endofyt, 

dienen bacteriën over een aantal competenties te beschikken, zoals expressie van 

oppervlaktecomponenten (bv. pili, lipopolysaccharide, exopolysaccharide etc.) 

alsmede de productie van schimmelcelwand-afbrekende enzymen en het vermogen 

bepaalde planten bestanddelen te gebruiken als voedsel. Binnenin de plant kunnen 

endofytische bacteriën een positieve invloed hebben op de groei van de plant door 

deze te voorzien van stikstof of door het nivo van hun hormonen te veranderen. 

Sommige endofyten beschermen de plant tegen ziekteverwekkers via ISR (induced 

systemic resistance) of (vaker) door een combinatie van verschillende mechanismen. 

Analyse van dertien genomen van endofyten liet het bestaan zien van nóg meer 

eigenschappen die mogelijk betrokken zijn bij endofytische kolonisatie en van hun 

gunstige interacties met de plant.  

 

In Hoofdstuk 3 beschrijven mijn co-auteurs en ik verschillende 

plantengroeibevorderende bacteriën alsmede de manier waarop ze hun gunstige 

werking uitvoeren. AMF (Arbuscular Mycorrhizal Fungi) en Trichoderma vertonen 

bijvoorbeeld een algemeen groeibevorderend effect op planten via een aantal 

verschillende mechanismen. Andere micro-organismen zoals bv. Bacillus, 

Pseudomonas en Serratia hebben een meer specifiek effect door de plant van 

bepaalde voedingsstoffen te voorzien (bv. N, P en Fe
3+

). De bekende mechanismen die 

door deze bacterien worden gebruikt zijn o.a. biologische stikstoffixatie, fosfaat 

oplossen en productie van sideroforen. De derde groep van gunstige micro-

organismen zijn de microbiële plantengroeibevorderaars die hormonen (bv. auxines, 

cytokinines, gibberellines, etc) of hormoonachtige stoffen (bv. vluchtige organische 

stoffen en AHLs (N-acyl homoserine lactones) uitscheiden die de plantengroei in 

extreem lage concentraties stimuleren.  

 

In Hoofdstuk 4 beschrijven mijn co-auteurs en ik verschillende mechanismen van 

ziekte beheersing door micro-organismen. De meerderheid van de plant-geassocieerde 

bacteriën produceert verschillende anti-schimmel metabolieten (bv. c-LPn (cyclische 

lipopeptiden) van Bacillus spp.) die een rol kunnen spelen bij antibiose en/of ISR. ISR 

kan worden veroorzaakt door anti-schimmel metabolieten en door bacteriele 

organellen en moleculen zoals flagellen, LPS en sideroforen. Sommige gunstige 
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bacteriën veroorzaken “signal interference” door productie van AHL-lactonases en/of 

AHL-acylases die AHLs inactiveren. AHLs zijn noodzakelijk voor de productie van vele 

pathogeniteitsfactoren. Ziekteonderdrukkende bacteriën kunnen ook interfereren met 

activiteit, overleving, vermeerdering, kieming, sporulatie en verspreiding van een 

pathogeen. Andere biocontrole mechanismen zijn CNN (competition for nutrients and 

niches), predatie en parasitisme, en competitie voor Fe
3+

. 

 

In Hoofdstuk 5  beschrijf ik de isolatie en gedeeltelijke karakterisatie van de unieke 

biocontrole en  plantengroeistimulerende bacterie Bacillus subtilis HC8, geïsoleerd uit 

de plant Heracleum sosnowskyi Manden. Deze stam heeft een groot aantal voor de 

plant gunstige eigenschappen zoals de productie van het hormoon gibberelline, van c-

LP antibiotica en van schimmelcelwand afbrekende enzymen. Na op zaad te zijn 

aangebracht is B. subtilis HC8 in staat plantengroei te bevorderen en de ziekte TFRR 

(tomato foot and root rot) te reduceren. Bovendien kan deze stam haar gunstige effect 

tot expressie brengen op diverse waardplanten, hetgeen een belangrijke eigenschap is 

voor een commercieel efficiënt product. 

 

In Hoofdstuk 6 beschrijf ik de identificatie van de c-LP antibiotica van B. subtilis HC8 en 

de evaluatie van hun antischimmel werking tegen Forl in vitro. We toonden aan dat B. 

subtilis HC8 het eerste voorbeeld is van een endofytische Bacillus die alle drie 

belangrijke families van c-LPs produceert en dat tevens doet met een opvallend breed 

scala aan verschillende analogen van elk van deze drie families. Onder deze c-LPn zijn 

de fengicines de meest potente antischimmel agentia. We verwachten dat het brede 

scala aan verschillende analogen sterk bijdraagt aan de voortreffelijke 

ziekteonderdrukkende eigenschappen van deze stam. Tot onze verbazing vonden we 

geen synergie tussen de verschillende groepen c-LP antibiotica, in tegenstelling tot 

sommige claims daarover in de literatuur . 

 

In Hoofdstuk 7 beschrijf ik nieuwe endofytische Pseudomonas soorten geïsoleerd uit 

komkommerplanten. In vitro experimenten met de geselecteerde Pseudomonas 

biocontrolestammen leverden geen aanwijzingen voor potentiële voor de plant 

gunstige eigenschappen. Desondanks zijn ze in staat om, na coaten op zaad, de door 

Forl veroorzaakte ziekte TFRR significant te onderdrukken, op een 

substraatafhankelijke wijze. De mogelijk meest interessante waarneming is dat het 
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vermogen van endofytische pseudomonaden om L-arabinose als koolstofbron te 

gebruiken belangrijk zou kunnen zijn voor de endofytische levenswijze in komkommer. 

 

In Hoofdstuk 8 bediscussieer ik de belangrijkste resultaten uit dit proefschrift en 

beschrijf ik sommige recentere resultaten. Ik laat bv. zien dat zowel B. subtilis HC8 en 

Rahnella aquatilis HC2 van Heracleum sosnowskyi Manden als P. fluorescens CR2 en P. 

putida CR3 van komkommerplanten niet alleen de door zout en zware metalen 

veroorzaakte stress bij granen verminderen, maar de groei van de plant ook nog 

stimuleren. Tenslotte beschrijf ik sterke aanwijzingen voor endofytische kolonisatie 

van tomaat door de biocontrolestam P. fluorescens CS1. 
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