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The lipid second messenger phosphatidylinositol-5-
phosphate activates SIRT1 deacetylase activity
Protein lysine acetylation affords a rapid, selective and reversible method for controlling cellular 

processes such as transcription and gene expression (Scott, 2012). The acetylation signal is 

terminated primarily by deacetylation realizing a rapid and reversible mechanism for linking 

protein function to changes in cellular environment (Choudhary et al., 2009; Ellis et al., 2008). 

However, the differential signaling input that components of lysine (de)acetylation pathways 

are subjected to and their responses are not completely understood. 

In chapter 2 we identify a novel link between phosphoinositide metabolism and the 

direct control of acetylation. We show a direct interaction between SIRT1 deacetylase and 

phosphoinositides, particularly PI(5)P, through a previously unrecognized phosphoinositide 

binding motif that regulates SIRT1 deacetylation activity in vitro and in vivo. Increased PI(5)P 

levels stimulates SIRT1 activity and thereby regulates p53 deacetylation, transcription and the 

induction of apoptosis. Our results show that phosphoinositides, important signaling inputs 

in aging and metabolism, are endogenous and direct regulators of SIRT1 deacetylase, thereby 

linking lipid metabolism with regulation of protein acetylation status in the cell. 

Our study shows that SIRT1 controls deacetylation of lys-382 on p53 and inhibits apoptosis in 

a PI(5)P dependent manner. However, a previous study shows that ING2 stimulates acetylation of 

p53 on Lys-382 and induces apoptosis, which was also dependent on PI(5)P binding (Gozani et al., 

2003). It appears that PI(5)P can both influence acetylation (binds to PHD domain of ING2) and 

deacetylation (binds to KRKKRK region of SIRT1) of p53. Future efforts should explore the spatial 

and temporal regulation of PI(5)P through investigation of its generation and conversion in 

more depth. 

How phosphoinositides exactly regulate SIRT1 activity is not yet known. The whole crystal 

structure SIRT1 has not yet been determined; therefore, its overall structural features remain 

unknown (Sanders, 2010). However, recent studies have suggested that SIRT1 harbors next to its 

central conserved catalytic domain, allosteric regulatory domains(Autiero et al., 2009; Pan et al., 

2012; Revollo et al., 2013; Zhao et al., 2008). Indeed, of the seven human sirtuin proteins, the 

SIRT1 protein contains the most extended N- and C-terminal segments that flank a catalytic 

core domain which have been proposed to play specific regulatory roles. Based on our data one 

could also speculate that phosphoinositides bind to SIRT1 via the KRKKRK region which resides 

in the N terminus in close proximity to the catalytic domain, thereby inducing a conformational 

change that affects SIRT1 deacetylase activity or substrate accessibility. In an effort to examine 

the intramolecular interaction of N and C termini of SIRT1 Fluorescence-lifetime imaging 

microscopy (FLIM) measurements were performed (Becker, 2012). We hypothesized that the 

distances between both termini of SIRT1 would be amenable to detecting FRET and could be 

used to generate a conformational biosensor to analyze the conformation of SIRT1 in live cells. 

We fused a donor GFP and an acceptor RFP fluorophore to the amino and carboxyl termini of 

SIRT1, respectively, and tested this construct under various PI(5)P conditions in live cells using 

FLIM. One would expect that a change in the intramolecular conformation resulting in a “closed 

conformation” would yield an increase in FRET efficiency, correlating with a decrease in the 
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donor lifetime. Alternatively, when SIRT1 in a more “open” conformation, the fluorophores are 

no longer in close spatial proximity and thus predicted to yield in a reduction in FRET efficiency. 

Although preliminary results were promising, quantifying a significant difference in donor 

lifetime between different conditions and experiments proved challenging. To what extent 

phosphoinositide (PI(5)P) binding may influence SIRT1 protein conformation remains to be 

examined in further details, perhaps by using an improved mTurquoise–Venus FRET pair sensor 

which is much more suitable for FLIM determinations. Alternatively, phosphoinostide binding 

may also affect SIRT1’s abililty to bind to its specific protein binding partners like AROS and 

DBC-1, which in turn could modulate SIRT1 catalytic efficiency (Kim et al., 2007; Kim et al., 2008; 

Zhao et al., 2008). 

How the binding of PI(5)P exactly can allosterically activate SIRT1 remains to be determined. 

Co-crystallization studies of SIRT1 (or parts if it) bound to phosphoinositides (PI(5)P) will be 

required to answer this question. 

Nuclear Phospholipids as epigenetic regulators
There is precedent for phospholipids to regulate protein deacetylation and other players in 

the epigenetic landscape. This provokes the question whether other phospholipids could fulfill 

a similar role in interacting with chromatin components and regulating gene transcription. 

Chapter 3 summarizes the evidence for a role of phospholipids in epigenetic gene regulation. 

Initially identified for their cytosolic roles, many lipid kinases and phosphatates are also found 

in the nucleus where they regulate cell cycle progression, gene expression and chromatin 

remodeling. These enzymes generate distinct nuclear phospholipids such as sphingolipids, 

inositol polyphosphates and phosphoinositides that associate with several nuclear components 

(Irvine, 2003). A key component in nuclear lipid signaling involves PI(4,5)P
2
 and its metabolite IP

3
. 

The latter, through the action of inositol phosphate kinases (IPK’s) in the nucleus, is used as a 

precursor for the generation of higher inositol polyphosphate species, with established roles 

in gene transcription (Odom, 2000; Zhao, 1998). Additionally, recent evidence has implicated 

distinct role for enzymes that are involved in histone and protein acetylation (Hait et al., 2009; 

Watson, 2012). Both members of acetyltransferases and deacetylases can bind and contribute 

to the activation or inhibition these enzymes, such as IP4 and S1P but also phosphatidylinositol 

monophosphates like PI(5)P (as decribed in chapter 2). There are also many other lipid kinases 

and phosphotases that have been found in the nucleus, however their nuclear function have not 

been defined to the same extent as their IP/PI counterparts, such as kinases that phosphorylate 

DAG to generate PA (DGKs) (Topham et al., 1999). 

An intriguing aspect of nuclear lipid metabolism is the evidence that some of these 

phospholipids exist not only within the inner nuclear membrane, but in the compartmentalized 

pools in the nucleus as well. Especially for phosphoinositides these pools have been detected 

both by biochemical and imaging approaches (Boronenkov, 1998; Divecha, 1993; Mellman, 2008; 

Osborne, 2001). Current data suggest two compartments for the nuclear phosphoinositide 

cycle: one associated with the nuclear envelope and another in a subnuclear compartment 

separate from known membrane structures. PI and PI-generating enzymes that are present 

at nuclear speckles are separate from known membrane structures (Barlow et al., 2010; 
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Bunce et al., 2006; Bunce, 2006; Heck et al., 2007). Therefore, in subnuclear compartments, 

phosphoinositides are hypothesized to be associated with carrier or effector proteins. Such 

proteins could specifically present phosphoinositides to other effectors. The motifs of PI-

binding proteins contain charged residues that are thought to interact with the head group 

of inositol lipids (Lewis et al., 2011). This would leave the hydrophobic tails free; however, it 

seems unlikely that the acyl chains would be exposed. How then are these phosphoinositides 

present in the endonuclear compartment? It is possible that the phosphoinositides and other 

lipids form a mixed micelle structure, thus protecting the free acyl chains. Another possibility 

is that the phosphoinositides are associated with carrier proteins in the nucleus that contain 

phosphoinositide acyl chain-binding pockets. Such proteins would integrate the hydrophobic 

acyl chain in the binding cleft exposing only the charged inositol head group. However, the exact 

molecular mechanisms responsible for their endonuclear distrution remain largely elusive. 

In conclusion, mounting evidence on intranuclear phospholipid metabolism and signaling 

has shown that signaling lipid species, particularly the phosphoinositides, can associate with 

different nuclear proteins and thereby regulate gene transcription (Lewis et al., 2011). This 

suggests that phospholipids through association with these proteins can translate their nuclear 

concentration into transcriptional responses. Future efforts should focus on identifying the 

molecular and cellular consequences of nuclear phospholipid signaling pathways.

Phosphatidylinositol-5-phosphate 4 kinase beta 
(PIP4Kβ) binds to and is deacetylated by SIRT1
As described in this thesis, phosphoinositides can bind to SIRT1 and thereby regulate SIRT1 

deacetylase activity towards well characterized substrate p53. In vitro SIRT1 deacetylase 

experiments demonstrated that phosphatidylinositol monophosphates, in particular 

PI(5)P, could stimulate SIRT1 deacetylase activity. This confirmed the binding of SIRT1 to 

phosphatidylinositol monophosphates in lipid overlay assays. (Jones et al., 2006) previously 

showed that nuclear PI(5)P is increased after treatment of cells with various stressors such as UV 

irradiation and etoposide, and that PI(5)P plays a role in regulating the acetylation of p53. Since 

PI(3)P and PI(4)P are known to be involved in the regulation of intracellular vesicles and Golgi 

function, respectively, we hypothesized that among the phosphatidylinositol monophosphates 

PI(5)P (given its nuclear accumulation) was more likely to act as lipid activator of SIRT1 deaceylase 

(Pendaries, 2005). However, it cannot be completely ruled out that PI(4)P and PI(3)P might also 

regulate SIRT1 function. Experiments where cellular PI(4)P and PI(3)P levels are manipulated by 

overexpression of, for example, PI-3-Kinases or PI-4-Kinases should be performed to determine 

their effect on SIRT1 activity. To establish that PI(5)P indeed can regulate SIRT1 function, the 

levels of PI(5)P were manipulated by overexpression of two isoforms of the PIP4K family that are 

able to phosphorylate and remove PI(5)P in the used cellines. However, in vitro PIPK4 enzymes 

can phosphorylate both PI(5)P and PI(3)P to produce PI(4,5)P2 and PI(3,5)P2, respectively 

(Morris et al., 2000; Rameh et al., 1997). Although many data suggest that PIP4K function 

trough controlling cellular PI(5)P, it can not be ruled out that PI(3)P can also (in part) stimulate 

SIRT1 deacetylase activity and therefore p53 acetylation status. 
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We observed that the manipulation of PIP4K isoforms expression modulated SIRT1 activity, 

which prompted of the question whether these kinases themselves may have a role in SIRT1 

function. Chapter 4 describes PIP4K isoform β as a novel interacting partner of SIRT1. The 

interaction of SIRT1 with PIP4Kβ suggested that PIP4Kβ could be modified posttranslationally 

by (de)acetylation. Mass spectroscopic analysis identified eight distinct lysine residues, one of 

which lysine 239 appeared to be sensitive to the SIRT1 inhibitor nicotinamide. Further analysis 

revealed that lysine 239 was acetylated in cells that ectopically expressed wildtype but not 

K239R mutant as well endogenous PIP4Kβ lysine239 acetylation. 

It is noteworthy that lysine 239 acetylated PIP4Kβ was found in untreated cells using the 

generated acetyl antibody, whereas in the mass spec assays lysine 239 acetylation levels 

accumulated only after using the SIRT1 inhibitor. It is possible that our K239 acetyl-specific 

antibody is able to detect the acetylated fraction of PIP4Kβ that was not detectable by mass 

spectrometry. Alternatively, the difference could be explained by variation in cell lines used for 

both experiments. Perhaps, differential cues change the acetylation levels of PIP4Kβ via histone 

acetyl transferases (HAT) in the different cell lines. It will also be important to demonstrate 

that the manipulation of cellular PI(5)P does not modulate p53 acetylation trough a decrease 

in HAT activity.

Finally, deacetylation assays demonstrated that PIP4Kβ is deacetylated on lysine 239 by 

SIRT1 in a nicotinamide-sensitive manner. However, whether SIRT1 can deacetylate PIP4Kβ 

in  vivo remains to be determined. Studying PIP4Kβ lysine 239 acetylation in cell lines where 

SIRT1 is inhibited pharmacologically or trough knockdown should be included in future studies 

to address this issue. 

An important question is how acetylation contributes to PIP4K functions. For instance: 

does acetylation, particularly lysine 239, effect PIP4K lipidkinase activity and localization or 

perhaps association with interacting proteins or both? Since preliminary data suggested that 

239 acetylation does not regulate PIP4Kβ localization, mostly likely acetylation of PIP4Kβ will 

modulate the binding to its interacting partners, perhaps PIP4Kβ interaction with PIP4Kα. Based 

on the recent insight into PIP4Kα/PIP4Kβ heterodimerization, it is tempting to hypothesize that 

acetylation might regulate this heterodimer formation (Bultsma et al., 2010; Wang et al., 2010). 

If this is indeed the case, most likely PIP4Kβ lipidkinase activity will be altered since the majority 

of PIP4K activity associated with PIP4Kβ comes from its interaction with PIP4Kα. Making use 

of the PIP4Kβ acetylation mutants described in this study, future efforts should focus on their 

interaction with PIP4Kα.

A second outstanding question is how acetylation of PIP4Kβ will alter cellular PI(5)P levels 

and what consequence this may have for PI(5)P-dependent SIRT1 activation. An attractive 

hypothesis proposes a feedback loop where PI(5)P-dependent stimulation of SIRT1 deacetylase 

activity may be regulated by acetylation of PIP4Kβ as illustrated in chapter 4 figure 6. At this 

moment it remains unclear if such a regulatory mechanism is indeed in place and whether 

these would positivity or negatively modulate SIRT1 deacetylase activity. Future studies should 

preferably focus on determining to what extent (de)acetylation of PIP4Kβ will first changes 

cellular PI(5)P levels for example by lipid kinase assays and secondly effect SIRT1 deacetylase 

activity by assessing the p53 acetylation status. 
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Role of phosphatidylinositol 5-phosphate 4-kinase 
alpha in zebrafish development
Vertebrate genomes contain three genes (α, β and γ) that encode PIP4K activity. PIP4kinases 

exist in all fully sequenced multicellular organisms, including Caenorhabditis elegans and the 

Drosophila melanogaster, but are not present in unicellular organisms (Lecompte et al., 2008). 

Several biochemical studies have highlighted many important cellular functions in different 

intracellular compartment for the distinct PIP4K isoforms (Clarke et al., 2012; Clarke, 2010). 

Yet, the physiological significance of which this class of lipid kinase remain largely elusive. 

The only hint about the in vivo function of PIP4K comes from a study in mice. Knockout mice 

of PIP4Kβ are reported to be growth retarded and hypersensitive to insulin (Lamia et al., 

2004). Knockout or knockdown organisms of PIP4Kα or PIP4Kγ have not been reported to 

date and no developmental functions has been attributed to these genes. In chapter 5 we 

identified the Danio rerio zebrafish orthologue (zPIP4Kα) of the high-activity PIP4Kα human 

isoform and analyzed its role in embryonic development (Elouarrat, 2013). Phenotype analysis 

of zebrafish depleted of zPIP4Kα by specific morpholino’s (MOs) reveal anomalies involving 

primarily the development of the eye, heart and midbody axis. zPIP4Kα catalytic activity was 

found to be conserved between zebrafish and human and the catalytic role of zPIP4Kα in these 

phenotypic alterations were confirmed in rescue experiments. Although we did not perform 

the rescue experiments with a zPIP4Kα resilient to morpholino knockdown we anticipate no 

difference in rescuing ability between zebrafish and human counterpart as they display high 

degree of sequence similarity. This is indeed illustrated by the ability of human PIP4Kα to 

complement reduced zPIP4Kα function in the ‘rescued’ morphants, supporting the notion 

that besides the sequence similarities human and zebrafish PIP4Kα also share physiological 

functions. Importantly, mRNA transcribing PIP4Kα catalytic dead protein was unable to rescue 

the zPIP4Kα knockdown phenotype, suggesting that the defects in zebrafish development 

upon knockdown of zPIP4Kα are attributed to the lack of catalysis of PI(5)P to PI(4,5)P2. This 

observation was further confirmed by the reduced PIP4K kinase activity measured in  vivo in 

PIP4Kα ATG morphants. Whereas it is possible that the phenotypes related to loss of zPIP4Kα 

function may be a consequence of elevated PI(5)P levels, changes in a quantitatively minor pool 

of PI(4,5)P2 generated by PIP4Kα cannot be excluded. Mass levels measurements of PI(5)P and 

PI(4,5)P2 should be measured to answer this question and help understand the biochemical 

consequence of zPIP4Kα. Taken together, these experiments establish the specificity of the 

phenotype, its dependence on catalytic activity, and conservation of PIP4Kα function between 

zebrafish and humans. 

It is important to note that the ability of other PIP4K isoforms to compensate for the loss of 

zPIP4Kα could interfere with the severity of the knockdown phenotype in this study. We have 

searched for PIP4Kβ and γ orthologs and identified for both a predicted protein. However, we 

were unable to clone and confirm expression of the predicted zPIP4Kβ based on the annotated 

sequence. zPIP4Kγ expression was confirmed and when targeted by morpholino knockdown 

the majority of zPIP4Kγ morphants displayed normal development with a low percentage 

(5-15%) displaying a mild “bent tail” phenotype. Moreover, the combined knockdown of 
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zPIP4Kγ and zPIP4Kα did not result in more severe phenotype and were in large identical to 

single zPIP4Kα knockdown (data not shown). This suggests that zPIP4Kγ does not have as a 

important function as zPIP4Kα in the development of zebrafish midbody. Previous studies have 

reported that PIP4Kγ lacks catalytic activity, which could explain the lack of detectable gross 

morphological defects (Clarke et al., 2008). To address the physiological roles of PIP4Kα and 

other PIP4K isoforms, a more comprehensive approach is required in zebrafish PIP4K models. 

Such studies should focus on the development of skeletal muscle and other tissues in genetic 

PIP4K knockout zebrafish strains. These efforts should complement the physiological role of 

PIP4K in vertebrate embryonic development described in this study.

Concluding remarks and perspectives
Overall, the studies presented in this thesis describe a novel role for nuclear phosphoinositide 

signaling, particular for the PI(5)P/ PIP4K axis, in the regulation of protein deacetylation, 

through SIRT1 deacetylase. SIRT1 is implicated in numerous age-related diseases and, as 

such, have become pharmaceutical target for small molecule modulation (Donadini, 2013). 

Although much attention has focused on the identification of the cellular targets controlled 

by SIRT1, the mechanisms that regulate SIRT1 activity by biological stimuli have just recently 

begun to emerge. Our study identified the lipid second messenger PI(5)P as an allosteric 

activator of the deacetylase SIRT1 and defines an important general role for deacetylases 

as signal transducing enzymes. Understanding of SIRT1 regulation will help to resolve 

controversies derived from the opposed physiological effects that were demonstrated for 

SIRT1, for example, in oncogenic and endocrine responses (Bosch-Presegue et al., 2011; 

Canto et al., 2012; Revollo et al., 2013; Sebastian et al., 2012). Also various SIRT1-activating 

compounds (STACs) like resveratrol (a  compound found in red wine) have been studied 

extensively; yet the molecular basis by which such compounds affect SIRT1 have remained 

somewhat controversial. In part because recent evidence suggested that STACs may not 

even bind directly to SIRT1 but rather to fluorophores attached for assay purposes (Dai et al., 

2010; Pacholec et al., 2010). Our defined small molecule allosteric site within SIRT1 constitutes 

an advantage in drug discovery for the development of both activators and inhibitors of 

SIRT1 enzymatic activity. Hence, the allosteric regulation of SIRT1 by PI(5)P is an interesting 

mechanism to explore in future studies. 

PIP4Kβ was identified as target for deacetylation by SIRT1 in our studies, which suggest 

a regulatory role for PIP4Kβ in the PI(5)P-dependent SIRT1 stimulation. Therefore, the 

development of pharmacological inhibitors of PIP4K might also be useful as modulators of 

SIRT1 enzymatic activity. Unfortunately, potent PIP4K inhibitors are still not available. However, 

Davis et al. have developed a new high-throughput screening methodology. This luciferase-

coupled bioluminescence assay should enable large chemical library screening to help identify 

selective inhibitors of PIP4K enzymes (Davis et al., 2013). Potentially these inhibitors of PIP4K 

also open new avenues for implicating PI(5)P in the many physiological processes and diseases 

in which SIRT1 is involved. In the end, these compounds would also serve as valuable research 

tools to investigate the still not fully understood role of PIP4K (activity) in the physiology and 

development of different organisms. 
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