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General introduction

1 Preface
Every cell is able to communicate by sending, receiving or responding to signals in its 

environment. In order to trigger a physiological response, these signals must be transmitted 

across the cell membrane. Cells have developed a complex array of mechanisms to sense 

changes in the extracellular environment and to transduce these changes into intracellular 

signals (signal transduction) that can generate a cellular response. Signal transduction can 

be initiated by a ligand binding to a specific receptor at the plasma membrane. These ligands 

(primary messengers) bind to a diverse family of receptors, such G protein-coupled receptors, 

tyrosine kinase receptor or serine-threonine kinase receptors. Upon ligand binding, receptors 

activate diverse signaling pathways giving rise to change in abundance of intracellular signaling 

molecules, called second messengers. One important group of second messengers is the 

phosphoinositide family.
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General introduction

1Phosphoinositides
Phosphoinositides are distinct class of phospholipids, consisting of an inositol head group 

that is linked, via a phosphate diester bond, to the 1, 2-diacylglycerol (DAG) moiety. The 

hydrophobic DAG moiety remains buried in the membrane (can maintain the phosphoinositide 

as part of the membrane), whereas the inositol head group is soluble and can interact with 

components (proteins) in the cytosol. Phosphoinositides can be hydrolysed by phospholipase 

C family enzymes to generate two important second messengers; DAG, which can stimulates 

protein kinase C (PKC) activity, and inositol-(1,4,5)trisphosphate (IP3), which triggers calcium 

release from intracellular stores (Berridge, 1987; Hirasawa, 1985). Phosphatidylinositol (PI) 

can also be sequentially phosphorylated at the 3’, 4’ and 5’ positions of the inositol ring 

to generate seven different (biologically active) phosphoinositides, namely PI(3)P, PI(4)P, 

PI(5)P, PI(3,4)P
2
, PI(3,5)P

2
, PI(4,5)P

2
 and PI(3,4,5)P

3
 (Lietha, 2001). The (de)phosphorylation of 

phosphoinositides and its derivatives is catalyzed by distinct lipid kinases and phosphatases, 

each specific for a given hydroxyl or phosphate group at the inositol ring (Sasaki et al., 2009). 

In this way, phosphoinositide-specific kinases and phosphatases can generate various bioactive 

phosphoinositides in specific subcellular compartments (Figure 1). This subcellular distribution 

is regulated by specific protein-protein interactions unique to each kinase or phosphatase 

(Kutateladze, 2010). This allows the generation of a spatially regulated phosphoinositide 

signaling system.

Phosphoinositides can regulate numerous cellular processes, including ion channel 

function, protein localization and enzymatic activity, which in turn can affect many downstream 

processes such as vesicular transport, cell polarity and migration, gene transcription, 

cytoskeletal dynamics and cell proliferation and survival (Di Paolo et al., 2006; Irvine, 2005; 

McCrea et al., 2009). Thus, phosphoinositides function (exert their roles) either as precursors 

of second messengers (DAG and IP3), or by interacting with target proteins that contain 

specific phosphoinositide-interacting domains (PIDs). Over the past decades, a number of 

protein domains have been identified that can bind to phosphoinositides with varying degrees 

of specificity and affinity (Figure 1). These include the pleckstrin homology domain (PH), Phox 

domain (PX), epsin N-terminal homology domain (ENTH), FYVE domain and lysine/arginine-rich 

peptide sequences (Kutateladze, 2010; Lemmon, 2008). The interaction of phosphoinositides 

with these domains is key to the function of many signaling proteins and networks.

Nuclear Phosphoinositides
Most of our knowledge of phosphoinositide signaling is derived from receptor-mediated 

signaling pathways in the cytosol, yet evidence has emerged on the existence of phosphoinositide 

pathways in the nucleus. Many studies have shown that nuclear phosphoinositide metabolism 

and its regulation are independent of their cytoplasmic/plasma membrane counterparts 

(Irvine, 2003). Nuclear phosphoinositides have been shown to play key roles in a wide range 

of nuclear events, including cell proliferation and differentiation, DNA repair, mRNA splicing 

but also chromatin structure and transcription as will be described in chapter 3 of this thesis. 
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General introduction

1Phosphatidylinositol phosphate kinases (PIPKs)
The generation of phosphatidylinositol 4,5-bisphosphate PI(4,5)P

2
 by phosphatidylinositol 

phosphate kinases (PIPK) is central to phosphoinositide signaling not only in the cytosol but 

also within the nucleus (Bunce, 2006). PI(4,5)P2 can be synthesized by two different classes 

of PIPKs that utilize different substrates (van den Bout et al., 2009). Phosphatidylinositol-4-

phosphate 5 kinase (PIP5K) phosphorylates PI(4)P on the 5 position on the inositol ring, while 

phosphatidylinositol-5-phosphate 4 kinase (PIP4K) phosphorylates PI(5)P on the 4 position 

(Loijens et al., 1996; Rameh et al., 1997; Roberts et al., 2005). Although PI(3)P can acts a 

substrate, it is much less efficiently catalyzed than PI(5)P (Morris et al., 2000). Several isoforms 

of (consisting of α, β, γ isoforms) PIP5Ks and PIP4Ks have been found to localize in the nucleus. 

Despite synthesizing the same product, PIP5Ks and PIP4Ks appear functionally nonredundant. 

For instance, genetic deletion of PIP5K can be rescued by expression of PIP5Ks but not PIP4Ks, 

suggesting that PIP4Ks do not increase the cellular levels of PI(4,5)P
2
 to the same extent as do 

the PIP5Ks. Because the cellular levels of PI(5)P is present at much lower levels than PI(4)P in the 

cell, the amount of PI(4,5)P
2
 synthesized by PIP4K relative to PIP5K is likely to be much smaller 

(Clarke et al., 2001; Morris et al., 2000; Rameh et al., 1997; Roberts et al., 2005). Therefore, it is 

thought that PIP4Ks primarily function to remove the substrate PI(5)P and thereby regulate its 

potential signaling functions (as will be detailed below).

Phosphatidylinositol 5-phosphate 4-kinase (PIP4K)
The three different PIP4K isoforms, encoded by distinct genes, are found at different cellular 

locations. The PIP4Kα isoform is predominantly localized in the cytosol, although there is also 

a significant amount in the nucleus, whereas PIP4Kγ localizes to the Golgi and intracellular 

vesicles (Boronenkov et al., 1995; Clarke et al., 2008). PIP4Kβ is predominantly nuclear; its 

16 amino acid α-helix insertion (not present in the other PIP4K isoforms) is essential for nuclear 

localization (Ciruela et al., 2000). The relative expression levels of PIP4K isoforms can differ 

between various tissues. The ratio of PIP4Kβ compaired to PIP4Kα and PIP4Kγ expression is 

particularly high in skeletal muscle, where there is approximately 10-fold more PIP4Kβ than 

PIP4Kα and PIP4Kγ (Lamia et al., 2004). Furthermore, in situ hybridation studies and RT-PCR in 

mice revealed similar expression of PIP4Kα and β in the brain, whereas PIP4Kα is expressed at 

higher levels than PIP4Kβ and γ in spleen. PIP4Kγ is particularly highly expressed in the kidney 

compared to PIP4Kα and β (Clarke et al., 2008; Volpicelli-Daley et al., 2010). These studies 

indicate that the differential expression and subcellular localization of each PIP4K isoform 

may serve specific functions (depending on cell and tissue context) of each organism (Clarke, 

2010). The three isoforms of PIP4Ks also differ greatly in catalytic activity: PIP4Kα has the 

highest activity, followed by PIP4Kβ which has 2000-fold less activity towards PI(5)P compared 

to PIP4Kα, whereas PIP4Kγ is generally thought to be inactive (Bultsma et al., 2010; Clarke 

et al., 2008; Wang et al., 2010). However, recent evidence indicates that distinct isoforms can 

affect one another’s sub-cellular localization (Clarke et al., 2012). For instance, the high activity 

PIP4Kα isoform can interact with PIP4Kβ possibly by forming a heterodimer. The interaction 

and targeting of different isoforms suggest a mechanism by which low activity isoforms like 
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General introduction

1
PIP4Kβ can regulate PI(5)P levels in a given cellular compartment (Bultsma et al., 2010). Finally, it 

should be mentioned that the physiological roles of PIP4Ks remain poorly understood. PIP4Kβ-

deleted mice are mildly growth retarded and hypersensitive to insulin (Lamia et al., 2004). 

However, knockout or knockdown phenotypes of PIP4Kα and PIP4Kγ have not been reported 

to date. Chapter 5 examines the role of PIP4Ks in vertebrate embryonic development using 

zebrafish as a model.

Phosphatidylinositol 5-phosphate (PI(5)P) signaling
Function
PI(5)P is the last identified member of the seven known phosphoinositides. Its late discovery is 

probably due to the fact that PI(5)P is low abundant (1-5%) compared to PI(4)P (Rameh et al., 

1997; Sarkes et al., 2010). Therefore, PI(5)P has long been considered to be just an intermediate 

metabolite in the synthesis of other phosphoinositides. PI(5)P resides in the plasma membrane, 

intracellular membranes and the nucleus. Interestingly, several physiological and pathological 

stimuli alter cellular PI(5)P levels. For instance, the levels of PI(5)P are very low in resting cells, 

but they rise upon thrombin and insulin stimulation in human platelets or by osmotic stress 

in plant cells (Meijer, 2001; Morris et al., 2000; Ndamukong et al., 2010; Sbrissa et al., 2004). 

During bacterial infection with Shigella flexneri or Salmonella typhimurium, the levels of PI(5)P 

are elevated and were shown to facilitate infection (Niebuhr et al., 2002; Terebiznik, 2002). 

Moreover, a nuclear pool of PI(5)P has been found to increase when cells progress through the 

cell cycle and in response to oxidative stress and ultraviolet (UV) irradiation (Clarke et al., 2001; 

Jones et al., 2006; Jones et al., 2012; Keune et al., 2012). 

As described above, phosphoinositides exert their function through interaction with specific 

phosphoinositide-binding domains. Identification of the binding of PI(5)P to ING2 (Inhibitor of 

Growth Protein 2) through the plant homeobox domain (PHD) motif defined this domain as 

the first PI(5)P phosphoinositide-binding domain in the nucleus(Gozani et al., 2003). ING2 is 

a candidate tumor suppressor that induces growth arrest and apoptosis in a p53-dependent 

manner (Nagashima, 2001; Shi, 2005). Mutations resulting in loss of interaction with PI(5)P 

affect localization and the activity of ING2, leading to a decrease in ING2-mediated apoptosis 

and p53 acetylation. Another example of PI(5)P-PHD domain interaction is the relocalization 

of the histone H3 lysine 4 methylase ATX1 from the nucleus to the cytoplasm in response to 

dehydration stress (Alvarez-Venegas et al., 2006; Ndamukong et al., 2010b). Furthermore, the 

activity of the cullin 3 (CUL3) ubiquitination complex appears to be stimulated by nuclear PI(5)P 

(Bunce, 2008). Together, these studies indicate that nuclear PI(5)P levels play important roles in 

regulating nuclear protein function, especially in nuclear events such as chromatin remodeling, 

as discussed in Chapter 3. 

PI(5)P signaling functions in the cytosol have also been reported (Grainger, 2012). In the 

cytosol, overexpression of PIP4Kβ resulted in a decrease in Akt activity in response to insulin 

(Carricaburu, 2003). Conversely, cells expressing IpgD, a bacterial PI(4,5)P
2
-4-phosphatase 

that generates PI(5)P, had higher levels of basal and insulin-stimulated Akt phosphorylation 

(Pendaries, 2006). Interestingly, deletion of PIP4Kβ in mice also leads to increased insulin-

induced Akt activation in muscle (Lamia et al., 2004). Additionally, it has recently been shown 
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1
that PI(5)P-dependent Akt activation occurs via translocation of the EGF receptor (Ramel et al., 

2011). Next to insulin, H
2
O

2
-induced PI(5)P levels also regulate the activity of Akt, which in turn 

is important for cell growth inhibition by H
2
O

2
(Jones et al., 2012). Furthermore, PI(5)P has been 

shown to play a role in cell morphology by mediating actin rearrangements downstream of 

the insulin receptor (Sbrissa et al., 2004). More recently, PI(5)P was shown to promote cell 

migration through the activity of specific kinases and phosphatases involved in metabolizing 

PI(3,5)P
2
 (Oppelt et al., 2012). 

Regulation
How is the abundance of PI(5)P regulated in distinct cellular compartments? Several 

pathways have the potential to generate PI(5)P, but their relative contributions to PI(5)P 

regulation in vivo are unclear (Figure 2). PI(3)P and PI(4)P phosphoinositides are produced by 

phosphorylation of PI by their specific kinases; however, no such kinase has been identified 

for PI(5)P so far (Lecompte et al., 2008). Instead, it appears that PI(5)P production is regulated 

by specific phosphatases that dephosphorylate PI(4,5)P
2
. This pathway was first identified by 

P
PI(5)P

P
PI(3,5)P2

P

PI

?

Chromatin remodeling Cell migrationInsulin signaling Oxidative stress response

MTM

P
P

PI(4,5)P2

3

4

5

2 6

PIP4ptaseMTMR

Ubiquitin ligase activity

P

Figure 2

Figure 2. Regulation of PI(5)P and its distinct roles in nuclear and cytosolic signaling. PI(5)P can be 
synthesized by MTM/MTMR phosphatases via dephosphorylation of PI(3,5)P

2
 and bacterial IpgD and 

mammalian Type I,II PIP-4-phosphatases that convert PI(4,5)P
2
 to PI(4,5)P

2
. PIP4K can phosphorylate 

PI(5)P to PI(4,5)P
2 

which is important for the physiological regulation of PI(5)P and downstream 
signaling. PI(5)P binds to PHD domain present on ING2, ATX1 and other nuclear proteins involved in 
nuclear signaling. Furthermore PI(5)P levels plays an important role in other cellular functions such 
as cell migration, insulin responses etc. 

PIP4K

IPGD
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1
the PI(4,5)P

2 
-4-phosphatase IpgD, responsible for the profound increase in PI(5)P observed 

in S.Flexneri-infected cells (Niebuhr et al., 2002). Subsequently, two human homologous 

PI(4,5)P
2 

-4-phosphatases have been characterized that can translocate to the nucleus upon 

stress induction (Zou, 2007). The abundance of PI(5)P can also be increased by the stress-

activated lipid kinase PIKfyve, whose main function is to produce PI(3,5)P
2
 from PI(3)P (Tolias et al., 

1998). Overexpression of PIKfyve increases cellular PI(5)P (Sbrissa, 2002). Mice lacking one copy 

of the gene have reduced PI(5)P levels (Ikonomov, 2011). However, PI(5)P can also be generated 

by the major product of PIKfyve, PI(3,5)P
2
, by myotubularin 3-phosphatases(Schaletzky, 

2003). For example, MTM1 overexpression is required for enhanced PI(5)P production in 

osmotically stressed muscle (Tronchere et al., 2004). However, the ability of myotubularin to 

dephosphorylate PI(5)P and their operation in vivo is not yet established.

Unlike the dephosphorylation to PI(5)P, the PI(5)P removal via PI(5)P phosphorylation is 

much better established. PIP4Ks plays an important role in the regulation of PI(5)P levels in 

the nucleus, where stressing cells activates p38 MAP kinase, which phosphorylates PIP4Kβ on 

Ser326 (Jones et al., 2006). This decreases its PIP4K activity leading to an increase in the nuclear 

abundance of PI(5)P. A possible explanation of how PIP4Kβ, (which has low catalytic activity) 

can regulate nuclear PI(5)P levels comes from the observation that PIP4Kα and PIP4Kβ can form 

heterodimers (Bultsma et al., 2010). Thereby PIP4Kβ can target PIP4Kα activity to the nucleus. 

How phosphorylation by the p38 pathway regulates the PIP4Kα/PIP4Kβ complex and its activity 

is currently not clear. PIP4Kβ is heavily post-translationally modified: in addition to being 

phosphorylated, it is also extensively acetylated. Consequently, these modifications might 

regulate PIP4Kα/PIP4Kβ complex formation. In Chapter 4, we describe acetylated residues 

on PIP4Kβ and we identify it as a target of the SIRT1 deacetylase (see below). In conclusion, 

the metabolic pathways governing the levels and the signaling roles of PI(5)P are still not well 

understood, but recent data reveal its function as lipid mediator.

Protein Acetylation
Acetylation refers to the addition of an acetyl group on lysine residues present within both 

histone and non-histone proteins. Acetylation is mediated by histone acetyl transferases 

(HATs). Since a large number of nonhistone proteins are targeted by HATs, these enzymes 

are also called K-acetyltransferases (KATs) (Berndsen, 2008). Acetylation of histones directly 

influences chromatin remodeling, by reducing the positive charge on lysine residues and 

by decreasing the affinity of histones for negatively charged DNA. This allows a localized 

“unraveling” of chromatin, making it more accessible for the binding of coactivators and the 

basal transcription machinery (Jiang, 2009). 

The removal of acetyl groups is catalyzed by histone deacetylases (HDACs) and is 

associated with chromatin condensation and transcriptional repression. HDACs exert their 

repressive function on transcription either by condensing the chromatin or as components of 

large multiprotein complexes, by recruiting inhibitory factors to gene promoter regions (Jiang, 

2009). Transcriptional regulation exerted by HDACs determines many cellular processes 

including cell cycle progression, apoptosis, autophagy, response to diverse types of stress, 

differentiation, and development (Norris et al., 2009). Mammalian HDACs can be classified 
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1
into one of four different classes based on their amino acid sequence and structure. Sirtuins, 

or class  III HDACs, have no homology to class I, II, or IV HDACs (TSA-sensitive enzymes and 

are localized in both the nucleus and the cytoplasm). Their deacetylase activity depends 

on the cofactor NAD+, rather than zinc, and they are localized in the nucleus, cytoplasm, or 

mitochondria and can deacetylate histone and nonhistone proteins (Imai et al., 2000).

Sirtuins
Sirtuins are highly conserved from bacteria to human and SIR2 (silent mating-type information 

regulation 2) was originally shown to extend lifespan in budding yeast (Kaeberlein, 1999). In 

mammals, there are seven sirtuins (SIRT1-7) all containing a conserved NAD-binding and 

catalytic domain, termed the sirtuin core domain, but they differ in their N and C-terminal 

domains (Frye, 2000). Sirtuins show significant sequence and functional differences from other 

classes of HDACs in that they carry out deacetylation via a two-step reaction that consumes 

NAD+ and releases, O-acetyl-ADP-ribose (AADPR), the deacetylated substrate and nicotinamide 

(used as sirtuin inhibitor) (Houtkooper, 2010). Sirtuins, although relatively similar to each other, 

have divergent biological functions which can be due to distinct cell-type-specific subcellular 

localisation of each member of the family (Finkel et al., 2009). SIRT1 is located in both the 

nucleus and the cytoplasm, SIRT2 in the cytoplasm, SIRT3, 4, and 5 are mitochondrial, and SIRT6 

and 7 are nuclear (Michan et al., 2007). Apart from intracellular localization, SIRT1, 3, and 5 differ 

from SIRT2, 4, and 6 in the type of reaction they catalyse. SIRT1, 3, and 5 are NAD+-dependent 

deacetylases catalyzing the deacetylation of histones and nonhistone proteins, whereas SIRT6 is 

a NAD+-dependent ADP ribosyltransferase (ART) mediating mitochondrial protein ribosylation; 

SIRT2 and 4 exert both NAD+-dependent HDAC and ART activities (Westphal, 2007). The 

enzymatic activity of SIRT7 as well as its specific substrates has not yet been determined. 

SIRT1 functions
SIRT1 is the most evolutionarily conserved sirtuin among the seven mammalian homologs, and it 

has been shown to play crucial roles in complex physiological processes, including metabolism, 

cancer, and aging (Sebastian et al., 2012). SIRT1 participates in various cellular functions ranging 

from differentiation and development to metabolism and cell survival by deacetylating diverse 

substrates, summarized in Figure 3 (Nakagawa et al., 2011). SIRT1 can deacetylate histone 

H4K16, H3K9 and H1K26 and thereby mediate heterochromatin formation (Liu et al., 2013). 

Through its enzymatic activity, SIRT1 has also the capacity to regulate the activity of various 

transcription factors and other regulatory proteins. For example, SIRT1 regulates energy by 

inducing gluconeogenic while repressing glycolytic gene expressions through deacetylation 

of PGC-1α and PPARγ (Picard, 2004; Rodgers, 2005). Deacetylation of NFKB, AP1 and Foxp3 by 

SIRT1 modulates the inflammation and immune pathway (Kong, 2012). And the deacetylation 

of DNA repair proteins Ku70, NBS1, WRN and XPA by SIRT1 regulates genomic stability (Fan, 

2010; Li et al., 2008; Yuan, 2007). SIRT1 regulates cell growth, apoptosis and stress response by 

deacetylating tumor suppressor protein like forkhead box protein FOXO1,3 and 4, Hif-1α, HSF1, 

Rb and survivin (Brunet et al., 2004; Lim, 2010; Luo, 2008; Motta et al., 2004; Wang et al., 2008; 
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Wong, 2007). The first and most widely known substrate of SIRT1 is tumor suppressor p53, which 

has critical roles in the cell-cycle regulation and apoptosis(Luo et al., 2001; McCubrey, 2012). 

p53 is a short-lived protein that is sustained at low levels under normal physiological 

conditions. However, p53 is maintained at a relative high level by posttranslational modifications 

in response to various stresses (Gu, 2012). The acetylation of p53 in response to DNA damage 

by HAT CBP/p300 was shown to acetylate p53 at K373/K382 and K320. Lysine acetylation at 

these sites promotes both its DNA binding ability and its transcriptional activity, and include 

p21, Bax and puma as p53 targets (Smith, 2002). In mice harboring a mutant p53 allele in which 

all the acetylation sites have been replaced a deficiency in gene transcription in response to 

DNA damage was shown, which illustrates that acetylation is indispensible for p53 function 

(Chao et al., 2006; Tang et al., 2008). Conversely, SIRT1 binds to and deacetylates p53, thereby 

negatively regulating p53-mediated transcriptional activation. SIRT1 functions by deacetylating 

of p53 which prevents cellular senescence and apoptosis caused by DNA damage and stress 

(Luo et al., 2001; Vaziri et al., 2001). 

SIRT1 regulation
Although much attention has been focused on the identification of the cellular targets and 

functional networks controlled by SIRT1, the mechanisms that regulate SIRT1 activity by 

biological stimuli have only recently begun to emerge. As an enzyme, the activity of SIRT1 can 
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Figure 3. SIRT1 pathway overview. SIRT1 is an NAD+-dependent histone deacetylase that catalyses 
the removal of acetyl (Ac) groups from a number of non-histone targets. The downstream effects 
of target deacetylation include changes in chromatin structure, cellular metabolism as well as cell 
survival and DNA repair. Several factors are involved in the regulation of SIRT1 function. SIRT1 function 
can be controlled availability of NAD+, posttranslational modifications, changes in expression or 
protein-protein interactions. 
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be controlled by the availability of its substrates, post-translational modifications, interactions 

with other proteins and changes in its expression levels (Figure 3) (Revollo et al., 2013).

The basal intracellular NAD+ levels are maintained relatively constant by the NAD+ 

biosynthetic and salvage pathways (Houtkooper, 2010). Proper functioning of these pathways 

is important for the activation of SIRT1 catalytic activity since the availability of NAD+ in cells is 

a limiting step(Revollo et al., 2004). Glucose deprivation and metabolic changes by forexample 

calorie restriction can cause fluctuations in NAD+ levels. Since SIRT1 associate with chromatin 

and its function is NAD+-dependent, SIRT1 can couple changes in the cellular metabolic state 

and NAD+ levels to transcription (Chalkiadaki, 2012). 

Furthermore, SIRT1 enzymatic activity can be regulated by several posttranslational 

modifications. First, prosurvival dual specificity tyrosine phosphorylation-regulated kinases 

(DYRKs), DYRK1A and DYRK3, have been shown to phosphorylate SIRT1 in response to 

genotoxic stress (Guo, 2010). This PTM substantially enhances SIRT1 deacetylase activity 

towards acetylated p53 and protects cells from genotoxic stress-induced apoptosis (Guo, 2012). 

Another serine residue located at the highly conserved core domain of SIRT1, Ser 434, has been 

shown to be a phosphorylation target of the cyclic AMP/protein kinase A (cAMP/PKA) signaling 

pathway (Gerhart-Hines et al., 2011). This PTM rapidly enhances the intrinsic deacetylase 

activity of SIRT1 independently of cellular NAD+ levels. Finally, C-Jun N-terminal kinase (JNK)1, 

phosphorylates SIRT1 on several serines, particularly under stressful cellular conditions (Nasrin, 

2009). Intriguingly, these phosphorylations appear to increase the deacetylase activity of SIRT1 

towards one of its substrates, histone H3, but have no effect towards another substrate, p53. 

This suggests that some or all of these PTMs can alter the activity of SIRT1 in a substrate-specific 

manner. SIRT1 is also sumoylated at K734, which in turn increases its activity and nitrosylation 

at Cys 387 and 390 in the catalytic core reduces SIRT1’s ability to deacetylate PGC-1α (Kornberg, 

2010; Yang, 2007). 

In addition to posttranslational modification, alteration in expression levels can also 

regulate SIRT1 activity. The “tumor suppressor hypermethylated in cancer” protein (HIC1) has 

been shown to inhibit SIRT1 expression by forming a repressive complex with SIRT1 on its own 

promoter (Chen, 2005; Zhang et al., 2007). Conversely, through a DNA damage dependent 

matter transcription factor E2F1 can induce SIRT1 expression (Wang et al., 2006). Members 

of the FOXO transcription factors also regulated the expression of SIRT1, like FOXO1, which 

induces SIRT1 expression by binding to FOXO1 response elements in the SIRT1 promoter 

(Nemoto, 2004; Xiong, 2011). The SIRT1 promoter also contains several cyclic AMP response 

element-binding protein (CREB) binding sites and through CREB, a transcription factor whose 

activation is mediated by PKA in response to low nutrient availability, the expression of SIRT1 is 

induced (Fusco, 2012; Noriega, 2011). The abundance of SIRT1 is also controlled by translational 

events and RNA stability. For instance, the Hu antigen (HuR) an mRNA binding protein that 

binds the 3’UTR of SIRT1 mRNA and plays a major role in stabilizing SIRT1 mRNA transcript 

(Abdelmohsen, 2007; Yamakuchi, 2012). Furthermore, SIRT1 expression and its activity are also 

under the influence of several miRNA’s as reported by several studies.

Finally, protein–protein interactions also play key roles in the regulation of SIRT1. For 

instance, interaction with active regulator of SIRT1 (AROS) enhances the activity of SIRT1 

towards acetylated p53. AROS appears to bind to the N terminus of SIRT1, but little is known 
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about how this interaction increases the SIRT1 activity (Kim et al., 2007). In contrast to AROS, 

deleted in breast cancer 1 (DBC1) is a negative regulator of SIRT1 (Kim et al., 2008; Zhao et al., 

2008). The ‘essential for SIRT1 activity’ (ESA) domain (a 25-amino-acid region in the C terminus 

of SIRT1), which intramolecularly interacts with the SIRT1 deacetylase core, was also shown to 

activate its enzymatic activity (Kang et al., 2011). DBC1 also interacts with the SIRT1 deacetylase 

core, potentially displacing ESA, decreasing the accessibility of the core domain to protein 

substrates, and thereby inactivating SIRT1. Moreover, cellular stress results in phosphorylation 

of DBC1 at Thr 454, which appears to create a second binding site for SIRT1 to augment the 

DBC1–SIRT1 interaction (Yuan, 2012). However, for most of studies where SIRT1 activity was 

shown to be modulated by protein-protein interactions, it is not clear yet whether allosteric 

changes or substrate access to catalytic core are responsible for the decrease in SIRT1 activity. 

These studies show that SIRT1 is temporally and spatially regulated in response to various 

environmental cues. In Chapter 2, we describe a novel aspect of the regulation of SIRT1 by its 

interaction with and activation by phosphoinositides. 

Thesis outline
The studies described in this thesis focus on the novel role of the PI(5)P/PIP4K signaling axis in 

regulating acetylation and understanding their physiological functions. Chapter 1 is a general 

introduction giving an overview of the molecules and pathways involved in phosphoinositide 

signaling and regulation of SIRT1 activity. Chapter 2 identifies PI(5)P as novel lipid regulator of 

SIRT1 activity and that SIRT1 is subject to acute regulation in response to lipid signaling. Chapter 3 

reviews the latest insights of phospholipids in the nucleus and their emerging role as important 

modulators of chromatin and gene transcription. Next, chapter 4 explores the posttranslational 

modifications on PIP4Kβ and describes its biochemical interaction and deacetylation by SIRT1 

deacetylase. Chapter 5 provides insight on the physiological roles of PIP4Ks and provides the 

first description of how lack of PIP4Kα expression and activity affects zebrafish development. In 

chapter 6, the results presented in this thesis are summarized and discussed 
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