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Abstract

High fat feeding induces a variety of obese and lean phenotypes in inbred rodents. 
Compared to Diet Resistant (DR) rodents, Diet Induced Obese (DIO) rodents are 
insulin resistant and have a reduced dopamine receptor D2 (DRD2) mediated 
tone. We hypothesized that this differing dopaminergic tone contributes to the 
distinct metabolic profiles of these animals.

C57Bl6 mice were classified as DIO or DR based on their weight gain during 
10 weeks of high fat feeding. Subsequently DIO mice were treated with the DRD2 
agonist bromocriptine and DR mice with the DRD2 antagonist haloperidol for 
2 weeks.

Compared to DR mice, the body weight of DIO mice was higher and their 
insulin sensitivity decreased. Haloperidol treatment reduced the voluntary 
activity and energy expenditure of DR mice and induced insulin resistance in 
these mice. Conversely, bromocriptine treatment tended to reduce body weight 
and voluntary activity, and reinforce insulin action in DIO mice.

These results show that DRD2 activation partly redirects high fat diet 
induced metabolic anomalies in obesity-prone mice. Conversely, blocking 
DRD2 induces an adverse metabolic profile in mice that are inherently resistant 
to the deleterious effects of high fat food. This suggests that dopaminergic 
neurotransmission is involved in the control of metabolic phenotype.Ch
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Introduction

Dopamine is intimately involved in the regulation of energy balance. Genetically 
engineered dopamine-deficient mice fail to initiate feeding and consequently 
die of starvation, unless L-DOPA, the precursor of dopamine, is provided 
daily1. Conversely, dopamine release in response to food intake induces satiety 
and reward2. Thus, dopamine plays an important dual role in the complex 
physiology driving meal initiation and termination. Moreover, dopaminergic 
neurotransmission profoundly affects glucose and lipid metabolism3.

Dopamine action is mediated by 5 distinct G-protein coupled receptor 
subtypes, functionally classified into 2 receptor families according to their 
effect on target neurons. Activation of dopamine receptor D2 (DRD2), D3 or D4, 
comprising the D2 family, inhibits adenylyl cyclase. Activation of the receptors 
belonging to the D1 family (DRD1 and DRD5) stimulates adenylyl cyclase4.

Dopaminergic transmission is altered in insulin resistant and obese animals. 
Basal and feeding evoked dopamine release is exaggerated in several nuclei of 
the hypothalamus of obese Zucker rats5-7, whereas DRD2 expression is reduced 
in hypothalamic nuclei of obese animal models8,9. The number of DRD2 binding 
sites in the striatum of obese humans is reduced and inversely correlated with 
body mass index10.

Modulation of DRD2 activity profoundly affects energy homeostasis in 
humans and animals. Drugs that block DRD2 enhance appetite and induce 
weight gain in animals and humans11-14. Conversely, DRD2 agonist drugs reduce 
body weight, increase energy expenditure and improve glycemic control in 
obese animals and individuals15-18. 

High fat feeding induces obesity, insulin resistance and diabetes in rodents. 
However, the amount of weight gained in response to a high fat diet varies 
considerably, even among animals with a genetically identical background19-21. 
Indeed, diet sensitive (diet induced obese, DIO) rodents display several 
alterations in pathways regulating energy homeostasis compared to diet 
resistant (DR) rodents21,22, and DIO and DR rodents differ with respect to 
various components of their dopaminergic system, even before the onset of 
obesity23,24. In particular, DIO mice and rats are characterized by an increased 
expression of dopamine transporter and reduced DRD2 expression23. In view 
of the evidence summarized above, altered DRD2 mediated neurotransmission 
could contribute to the metabolic phenotype of these animals. We hypothesized 
that modulation of dopaminergic transmission in DIO and DR mice with DRD2 
agonist or antagonist drugs would redirect the metabolic phenotypes of these 
mice. We particularly postulated that stimulation of DRD2 would ameliorate 
insulin resistance of DIO C57Bl6 mice, whereas DRD2 antagonism would induce 
insulin resistance in DR animals of the same strain. To address this hypothesis, 
DIO and DR mice were treated with bromocriptine, a DRD2 agonist, or 
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haloperidol, a DRD2 antagonist, respectively. After 1 week of treatment, energy 
metabolism was measured in a Comprehensive Laboratory Animal Monitoring 
System and after 2 weeks a hyperinsulinemic euglycemic clamp was performed 
to quantify insulin action, in particular with respect to its propensity to inhibit 
lipolysis.

Materials and Methods

Animals
Seventy-two male C57BL/6J mice (Charles River, Maastricht, The Netherlands), 
11 or 12 weeks old, were housed in a temperature- and humidity-controlled 
room on a 12-h light–dark cycle with free access to food and water, unless 
mentioned otherwise.

All animal experiments were performed in accordance with the principles 
of laboratory animal care and regulations of Dutch law on animal welfare, and 
the experimental protocol was approved by the Animal Ethics Committee of the 
Leiden University Medical Center.

Experimental design
All mice were maintained on a high fat diet (45 energy% of fat derived from 
palm oil, 35 energy% of carbohydrate and 20 energy% of protein; Research 
Diet Services, Wijk bij Duurstede, The Netherlands). After 10 weeks of high fat 
feeding, the 24 mice with the highest weight gain were classified as DIO mice 
and the 24 mice with the lowest weight gain were classified as DR mice. The 24 
mice with intermediate weight gain were not further used in this study.

DIO and DR mice were randomly divided into a placebo and treatment group. 
DR treated mice received haloperidol (1 mg/kg/day), DIO treated mice received 
bromocriptine (10 mg/kg/day) and DIO and DR placebo mice received placebo 
treatment. Subcutaneous implantable haloperidol, bromocriptine and placebo 
pellets (Innovative Research of America, Florida, USA), ensuring continuous 
release of the medication were used. Pellets were implanted under isoflurane 
anesthesia. Mice were treated for 2 weeks, meanwhile maintained on the high 
fat diet.

Measurement of energy metabolism
Mice were subjected to indirect calorimetric measurements for a period of 3 
consecutive days using a Comprehensive Laboratory Animal Monitoring System 
(CLAMS; Columbus Instruments, Ohio, USA). Due to a limited number of cages, 
eight mice per group were measured. Mice were allowed to acclimatize to the 
cages for a period of 14 hours prior to the start of the experiment. Measurements 
started at 7.00 am and continued for 72 hours. The CLAMS system enables 
real time continuous monitoring of food intake, drinking behavior, activity 
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and metabolic gas exchange. Oxygen consumption (VO2) and carbon dioxide 
production rates (VCO2) were measured at 7 minute intervals. The respiratory 
exchange rate (RER), as a measure for metabolic substrate choice, was calculated 
using the following formula:

RER = VCO2/VO2
Carbohydrate and fat oxidation rates were calculated from VO2 and VCO2 using 
the following formulas25:

Carbohydrate oxidation (kcal/h) = ((4.585*VCO2)-(3.226*VO2))*4/1000
Fat oxidation (kcal/h) = ((1.695*VO2)-(1.701*VCO2))*9/1000

VO2 and VCO2 are in ml/h.
Total energy expenditure was calculated as the sum of carbohydrate and fat 
oxidation. Activity was monitored by infrared beam breaks across the x- and 
y-axis. All energy metabolism data was calculated separately for day and night 
time.

DEXAscan
Body composition was measured by dual-energy X-ray absorptiometry (DEXA) 
using the Norland pDEXA Sabre X-Ray Bone Densitometer (Norland, Hampshire, 
UK). Before measuring, mice were anesthetized with a combination of 6.25 mg/
kg acepromazine (Alfasan, Woerden, The Netherlands), 6.25 mg/kg midazolam 
(Roche, Mijdrecht, The Netherlands) and 0.3125 mg/kg fentanyl (Janssen-Cilag, 
Tilburg, The Netherlands).

Hyperinsulinemic euglycemic clamp
Prior to the experiment, mice were fasted for 16 hours after food withdrawal 
at 5.00 pm. Hyperinsulinemic euglycemic clamp studies started at 9.00 am 
and were performed as described earlier26. During the experiment, mice 
were anesthetized with a combination of 6.25 mg/kg acepromazine (Alfasan, 
Woerden, The Netherlands), 6.25 mg/kg midazolam (Roche, Mijdrecht, 
The Netherlands) and 0.3125 mg/kg fentanyl (Janssen-Cilag, Tilburg, The 
Netherlands). First, the basal rate of glycerol turnover was determined by 
giving a primed (0.6 μCi) continuous (0.9 μCi/h) intravenous (i.v.) infusion 
of [1-(3)-3H]-Glycerol (GE Healthcare, Little Chalfont, UK) for 60 minutes. 
Subsequently, insulin (Novo Nordisk, Bagsværd, Denmark) was administered 
in a primed (4.5 mU) continuous (6.8 mU/h) i.v. infusion for 90 minutes to attain 
a steady state circulating insulin concentration of ~6 μg/l.

Every 10 min the plasma glucose concentration was determined via tail 
vein bleeding (< 3 µl) (Accu-chek, Sensor Comfort, Roche Diagnostics GmbH, 
Mannheim, Germany) and accordingly the i.v. infusion rate of a 12.5% D-glucose 
solution was adjusted to maintain euglycemia. Blood samples (60 µl) were taken 
during the basal period (at 50 and 60 min) and during the hyperinsulinemic 
period (at 70, 80, and 90 min) to determine plasma concentrations of glucose, 
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insulin, Non-Esterified Fatty Acids (NEFA), free glycerol and 3H-Glycerol specific 
activities. At the end of the clamp mice were sacrificed.

Analytical procedures
Commercially available kits were used to determine the plasma concentration 
of glucose (Instruchemie, Delfzijl, The Netherlands), NEFA (Wako, Nuess, 
Germany) and free glycerol (Sigma, MO, USA). The plasma insulin concentration 
was measured by an ELISA (Mercodia AB, Uppsala, Sweden). Total plasma 
3H-Glycerol was determined in plasma and in supernatant after trichloroacetic 
acid (20%) precipitation and water evaporation.

Calculations
The turnover rate of glycerol (µmol/min/kg) was calculated during the basal 
period and under steady-state hyperinsulinemic conditions as the rate of tracer 
infusion (dpm/min) divided by the plasma-specific activity of 3H-Glycerol 
(dpm/µmol). The turnover rates were corrected for body weight.

Statistical analysis
Data is presented as mean ± standard deviation. Statistical analysis was 
performed using SPSS. A one-way ANOVA was used for analysis of the data. If 
significant differences were found, the LSD method was applied as post-hoc 
test to determine differences between 2 groups. Statistical differences are 
only shown when apparent between DIO and DR placebo groups, between DIO 
placebo and bromocriptine groups or between DR placebo and haloperidol 
groups. Differences were considered statistically significant when p<0.05.

Results

Body weight and basal plasma metabolites
Mice were designated DIO or DR according to their weight gain following a 
10-week high fat diet. By definition, DIO mice had a significantly higher body 
weight compared to DR mice after this dietary pre-treatment (35.4±1.5 vs. 
30.6±1.9; p<0.001), which was completely accounted for by a difference in fat 
mass (fig 1B). Lean body mass did not differ (not shown). Two weeks of placebo 
treatment did not alter the difference in body weight between DIO and DR mice 
(fig 1A). Two weeks of bromocriptine treatment tended to induce weight loss in 
DIO mice (primarily fat mass, fig 1B), although the effect did not reach statistical 
significance. Haloperidol did not impact on the body weight of DR mice.

The fasting plasma glucose concentration was not different between 
placebo treated DIO and DR mice (fig 2A), whereas the fasting plasma insulin 
concentration was significantly elevated in DIO mice (fig 2B). Haloperidol 
significantly increased fasting plasma glucose and insulin concentrations in 
DR mice, while the insulin and glucose concentrations in DIO mice remained 
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unchanged upon bromocriptine treatment. The fasting plasma NEFA 
concentration didn’t differ between the groups (fig 2C).

Figure 2 - Fasting plasma glucose (A), 
insulin (B) and NEFA (C) concentrations 
in DIO and DR mice after treatment with 
bromocriptine (BC), haloperidol (HP) or 
placebo (P) for 2 weeks. Data is presented 
as mean ± SD for 9 or 10 mice per group.
* p<0.05, ** p<0.01

A

C

B

Figure 1 - Body weight (A) and fat mass (B) of DIO and DR mice after treatment with 
bromocriptine (BC), haloperidol (HP) or placebo (P) for 2 weeks. Data is presented as 
mean ± SD for 12 (A) or 10 (B) mice per group.
** p<0.01, *** p<0.001

A B
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Energy metabolism
After 1 week of treatment, whole body energy metabolism of mice was assessed 
with a Comprehensive Laboratory Animal Monitoring System using indirect 
calorimetry. Individual food intake, activity and respiratory gas exchange was 
monitored for 3 consecutive days. Cumulative food intake (fig 3A), voluntary 
activity (fig 3B,C), energy expenditure (fig 3D) as well as the carbohydrate 
oxidation rate (data not shown) did not differ between placebo treated DIO and 
DR mice. The diurnal fat oxidation rate tended to be higher in DIO mice, but this 
failed to reach statistical significance (fig 3E). Diurnal and nocturnal voluntary 

Figure 3 - Cumulative food intake (A), 
mean nocturnal (B) and diurnal x-axis 
activity (C), mean nocturnal energy 
expenditure (D) and mean diurnal fat 
oxidation rate (E) in DIO and DR mice 
after treatment with bromocriptine (BC), 
haloperidol (HP) or placebo (P) for 1 
week. Data is presented as mean ± SD for 
7 or 8 mice per group.
** p<0.01, *** p<0.001

A

E
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B
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activity in DR mice was dramatically reduced by haloperidol (fig 3B,C), and this 
was accompanied by a reduction in whole body nocturnal energy expenditure 
(fig 3D). The impact of haloperidol on fat (fig 3E) and carbohydrate oxidation 
(data not shown) did not reach statistical significance. Food intake was not 
affected by haloperidol treatment (fig 3A). The diurnal voluntary activity 
tended to be lower in DIO mice receiving bromocriptine, but this also failed to 
reach statistical significance (fig 3C). Furthermore, bromocriptine treatment 
had no significant effect on food intake (fig 3A), energy expenditure (fig 3D), fat 
oxidation (fig 3E) or carbohydrate oxidation (data not shown).

Insulin action
After 2 weeks of treatment, mice were subjected to a hyperinsulinemic euglycemic 
clamp. Basal and hyperinsulinemic plasma glucose, insulin, free glycerol and 
NEFA concentrations are shown in table 1. The plasma NEFA concentration was 
reduced to the same extent in all groups during hyperinsulinemia.

The glucose infusion rate necessary to maintain euglycemia was significantly 
higher in DR compared to DIO mice (fig 4), which indicates that DIO mice were 
insulin resistant compared to DR animals. Haloperidol significantly diminished 
the glucose infusion rate in DR mice, reflecting a deterioration of insulin action, 
whereas bromocriptine tended to increase glucose infusion required to maintain 
euglycemia in DIO mice (indicating improved insulin action). The capacity of 
insulin to inhibit glycerol turnover was not different between DR and DIO mice 
and it was not affected by either drug (data not shown).

Table 1 - Plasma glucose, insulin, free glycerol and NEFA concentrations during the 
basal and hyperinsulinemic conditions of the hyperinsulinemic euglycemic clamp in 
DIO and DR mice after treatment with bromocriptine, haloperidol or placebo for 2 
weeks.

DIO mice DR mice
Clamp condition Placebo Bromocriptine Placebo Haloperidol

Glucose 
(mM)

B 5.9 ± 0.6 5.3 ± 1.1 5.0 ± 0.6 6.7 ± 1.7
HI 5.4 ± 0.7 5.6 ± 0.6 6.0 ± 0.7 4.8 ± 1.1

Insulin 
(μg/l)

B 2.4 ± 0.3 2.0 ± 0.8 1.6 ± 0.5 2.6 ± 0.7
HI 6.8 ± 1.9 7.2 ± 1.4 6.7 ± 1.3 7.1 ± 0.6

Free Glycerol 
(mM)

B 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
HI 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

NEFA 
(mM)

B 1.0 ± 0.2 1.1 ± 0.3 1.1 ± 0.2 1.0 ± 0.3
HI 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.2 0.5 ± 0.1

B, Basal; HI, Hyperinsulinemia
Data is measured in 9 or 10 mice per group and presented as mean ± SD.
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Discussion

The results presented here demonstrate that pharmacological modulation of 
dopaminergic transmission by a DRD2 agonist or antagonist can partly redirect 
the divergent metabolic phenotypes of DIO and DR mice. In particular, blocking 
dopaminergic transmission by means of haloperidol induces insulin resistance 
of glucose metabolism in DR mice. Conversely, activation of dopaminergic 
neurotransmission by bromocriptine tends to ameliorate insulin resistance 
in DIO animals. These data suggest that DRD2 mediated neurotransmission is 
involved in the control of glucose and insulin metabolism.

Although they have a genetically identical background, individual C57Bl6 
mice show distinct susceptibility to develop obesity and insulin resistance 
when maintained on a high fat diet. We classified mice as DIO or DR based on 
the amount of weight gained during 10 weeks of high fat feeding. DIO mice were 
insulin resistant compared to DR mice, as evidenced by higher fasting plasma 
insulin levels and a lower glucose infusion rate required to maintain euglycemia 
during insulin infusion. These findings are in accordance with other rodent 
studies19-21,24,27. Remarkably, there was no measurable difference in food intake, 
energy expenditure or voluntary physical activity in DIO compared to DR mice.

DIO mice have significantly lower DRD2 expression levels in certain brain 
areas compared to DR mice23. Also, dopamine turnover is reduced in hypothalamic 
nuclei of DIO rats even before the onset of obesity24 and the hypothalamus is 
intimately involved in the control of glucose and lipid metabolism28,29. Since 
pharmacological activation of DRD2 ameliorates insulin resistance in various 
obese animal models17,30, we hypothesized that modulation of DRD2 mediated 
neurotransmission could reverse the metabolic phenotypes of DIO and DR 
mice. In keeping with this hypothesis, blocking DRD2 by haloperidol induced 
insulin resistance in DR mice, whereas activation of DRD2 by bromocriptine 
tended to improve insulin sensitivity in DIO mice. In concert, these data suggest 
that DRD2 activation is involved in the control of glucose metabolism and that 
reduced dopaminergic transmission via DRD2 contributes to the metabolic 

Figure 4 - Glucose infusion rate during 
a hyperinsulinemic euglycemic clamp in 
DIO and DR mice after treatment with 
bromocriptine (BC), haloperidol (HP) or 
placebo (P) for 2 weeks. Data is presented 
as mean ± SD for 9 or 10 mice per group.
* p<0.05, *** p<0.001
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phenotype (insulin resistance) of obese animals.
However, we can not exclude the possibility that the observed effects of 

bromocriptine and haloperidol are (partly) mediated by receptors other than 
DRD2. Haloperidol is also known to have a high affinity for DRD3, DRD4 and 
adrenergic α1 receptors31 and bromocriptine also possesses high affinity 
for DRD3, the serotonergic 5-HT1A and 1D receptors and the adrenergic α1 
and α2 receptors32. Each of these receptors might participate in the impact 
of haloperidol and/or bromocriptine on energy and nutrient homeostasis. 
Adrenergic receptors (AR) are involved in the control of energy expenditure 
and glucose metabolism. Stimulation of α2-AR reduces spontaneous physical 
activity33 and impairs insulin secretion34-36. Accordingly, overexpression of 
α2A-AR is associated with glucose intolerance37. Stimulation of α1-AR, on the 
other hand, has a positive impact on glucose homeostasis by promoting glucose 
uptake by adipose and muscle tissue38-40 and absence of the α1B-AR leads to 
hyperinsulinemia and insulin resistance41. Acute stimulation of the 5-HT1A 
receptor increases food intake42,43, reduces plasma insulin levels and induces 
a concomitant rise in plasma glucose levels44,45. As far as we know, the specific 
impact of DRD3, DRD4 and 5-HT1D receptors on the regulation of energy and 
nutrient homeostasis is still unknown. Thus, the effects of bromocriptine and 
haloperidol we observe here may be the ultimate result of modulation of various 
of these receptor activities. 

The fact that haloperidol induced insulin resistance is consistent with 
literature reporting an increased incidence of diabetes among individuals 
treated with haloperidol46. Interestingly, treatment with haloperidol is not 
associated with (massive) weight gain in humans47, which also fits with our data 
and suggests that the drug hampers insulin action via mechanistic routes other 
than obesity. First, haloperidol dramatically reduced physical activity of DR mice. 
This is in agreement with a wealth of data from other animal experiments48,49. 
Diminished locomotor activity hampers insulin action in muscle50,51. Second, a 
major (side) effect of haloperidol treatment is elevation of prolactin levels52,53 
which may contribute to the induction of glucose intolerance and insulin 
resistance54,55. Third, haloperidol may alter glucose metabolism by modifying 
plasma levels of peptide hormones. The data documenting effects of haloperidol 
on leptin levels are inconsistent; increased56 as well as unchanged leptin levels 
in response to haloperidol treatment have been reported57,58. But, haloperidol 
seems to increase plasma ghrelin levels, while leaving levels of adiponectin, 
resistin and visfatin unaffected56. Both leptin and ghrelin may impact on 
insulin sensitivity directly59,60. Fourth, haloperidol may diminish glucose 
induced insulin secretion by blocking D2 receptors on pancreatic β-cells61,62, 
which leads to (postprandial) hyperglycemia. In the long run, hyperglycemia 
diminishes insulin action through “toxic” effects on insulin sensitive tissues63. 
Fifth, blockade of central DRD2 may induce insulin resistance via modulation 
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of autonomic nervous output to peripheral tissues (including muscle, adipose 
tissue and liver)64.

Bromocriptine treatment tended to improve insulin sensitivity of glucose 
metabolism in DIO animals, but its effect on glucose infusion rate did not reach 
statistical significance. It is important to note that the route of bromocriptine 
administration we used here may have diminished the efficacy of the drug. 
Indeed, it has been shown that subcutaneous, compared to intraperitoneal, 
administration of the drug limits its metabolic impact65. The tendency 
we observed though, is in line with data obtained in diet induced obese 
hamsters66, and genetically engineered obese mice67. In accordance, short term 
administration of bromocriptine ameliorates various metabolic anomalies 
in obese humans without affecting body weight18 and longer term treatment 
improves glycemic control and serum lipid profiles in patients with type 2 
diabetes68. In addition, DRD2 agonists improve glucose and lipid metabolism 
in patients with hyperprolactinemia69,70 and acromegaly71-73. Although DRD2 
agonists generally benefit nutrient metabolism, the use of these drugs is 
sometimes associated with the development of impulse control disorders, 
including binge and compulsive eating, in patients with Parkinson’s disease, 
which may lead to excessive weight gain and insulin resistance74,75.

The effects of bromocriptine on metabolism may be mediated by 
central dopamine receptors, as is suggested by Luo et al.17 who showed that 
intracerebroventricular administration of low dose bromocriptine during 
14 days improves insulin sensitivity in obese, insulin resistant, hamsters. 
However, peripheral receptors might also be involved. We previously reported 
that bromocriptine acutely impairs insulin secretion by stimulating the α2-AR 
on β-cells36. To explain that (sub)chronic bromocriptine treatment improves 
glucose metabolism15,66,76, we hypothesized that suppression of insulin secretion 
induces β-cell ‘rest’, which might allow β-cells to replenish insulin stores, 
thereby enhancing the secretory capacity in the long run77,78. It might also 
increase the number of organ specific insulin receptors leading to improved 
insulin sensitivity79,80. In addition, bromocriptine may alter glucose metabolism 
via modulation of circulating peptide levels. In obese women bromocriptine 
reduces leptin concentrations81; the biological relevance of this for the results 
reported by us is questionable however, as leptin improves insulin sensitivity59. 
The impact of bromocriptine on other regulatory peptide hormones remains to 
be determined.

In summary, activation of DRD2 tends to ameliorate the metabolic profile 
of DIO mice, whereas antagonism of these receptors induces insulin resistance 
in DR mice. In concert with previous findings by other groups indicating that 
dopaminergic (DRD2 mediated) neurotransmission is reduced in the brain of 
DIO mice, our data suggest that DRD2 mediated dopaminergic mechanisms 
may be involved in the development of the divergent metabolic phenotypes in 
response to high fat feeding in C57Bl6 mice.
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