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General Introduction



Diabetes

Characteristics
The prevalence of Diabetes Mellitus Type 2, also known as non-insulin-
dependent diabetes or adult-onset diabetes, is rising alarmingly. In 1985 
approximately 30 million people worldwide suffered from diabetes. In 2007 
this number had escalated to 246 million and by 2030 it is expected that ~ 438 
million people (7.8% of the adult population) will be affected by diabetes1. At 
present, especially the developed world is coping with the diabetes epidemic, 
the prevalence in the US being 12.3% and in the Netherlands 7.7%, yet the 
developing countries are rapidly catching up1. It is estimated that, in the 
developing countries, the prevalence of diabetes will more than double in the 
years 2000-2030, compared to an increase of merely 50% in the western world2.

Diabetes is a major cause of mortality. According to the WHO, diabetes has 
reached the top 10 of death causes in middle and high income countries3. It is 
predicted that in 2010 almost 4 million deaths will be attributed to diabetes, 
which represents 6.8% of global all-cause mortality4. The mortality risk for 
individuals with diabetes is 2.3 times higher than the risk for people with 
normal glucose homeostasis5. Cardiovascular disease, which is a frequently 
encountered complication of diabetes, is the main reason for the elevated 
mortality risk. Compared to the general population, diabetic people younger 
than 45 years are 10 times more likely to display cardiovascular disease, 
ranging from relatively mild (hypertension and atherosclerosis) to severe 
(stroke and myocardial infarction)6. Approximately 16% of diabetic patients 
suffer from severe cardiovascular incidents leading to hospital admission; this 
risk is ~ 2.3 fold higher than for non-diabetic subjects7,8. In addition, the risk of 
mortality due to cardiovascular disease is 2.6 times higher in diabetic patients5.

Long term diabetes and poor glycemic control also lead to several other 
seriously disabling disorders. Diabetic nephropathy e.g. is one of the major 
causes of end-stage renal failure in the Western world9. Approximately 1.2% 
of diabetic patients develop renal failure, which represents a ~ 4 times higher 
risk than observed for people without diabetes7,8. Also, diabetes is the leading 
cause of new cases of blindness among adults aged 20-74 years10. The risk of 
developing any ophthalmologic complication, including cataract, glaucoma 
and diabetic retinopathy, is ~ 3 times elevated in diabetic versus nondiabetic 
individuals8. And, ~ 50% of diabetic patients develop neuropathy, which might 
manifest as sensory loss, muscle weakness, pain and/or erectile dysfunction10,11.

Aetiology
Type 2 diabetes originates from a complex interplay between genetic 
and environmental factors. The contribution of a genetic component in 
the development of diabetes is undeniable, given the observation of an 
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extremely high diabetes prevalence among certain population groups like 
the Pima Indians12,13. Likewise, the high concordance rate of diabetes among 
both monozygotic and dizygotic twins suggests a genetic component to the 
disease14,15. And first-degree relatives from diabetic patients display several 
defects in energy and nutrient metabolism16,17.

Some forms of type 2 diabetes, such as the different types of MODY (Maturity-
Onset Diabetes of the Young), are of monogenic origin, meaning that one gene 
is responsible for the disease18. These forms of diabetes are characterized by a 
single gene mutation, an autosomal dominant inheritance pattern and an early 
onset of the disease. These cases however, represent only about 1-5% of all 
type 2 diabetes cases18. The majority of type 2 diabetes is of polygenic origin, 
meaning that several susceptibility genes additively increase the risk of disease 
onset. The contribution of single susceptibility genes to the diabetes risk is 
generally small; with odds ratios between 1.10 and 1.30. However, if several 
susceptibility loci are present, the risk of developing diabetes may increase 
substantially, as was shown for a Japanese population in which the risk of 
developing diabetes increased ~ 3.7 fold in the presence of a combination of 
7 specific susceptibility loci19. Association studies in large population cohorts 
revealed several susceptibility genes, including PPARγ, TCF7L2, KCNJ11, 
CDKAL1, CDKN2A/CDKN2B, IGF2BP2, SLC30A8 and HHEX19-21.

The contribution of the genetic predisposition is believed to remain stable 
throughout time; therefore it can not explain the recent rapid increase in 
diabetes incidence. Rather, this has been triggered by advances in health care 
and lifestyle changes. The prevalence of obesity, which is a major risk factor for 
diabetes development, has increased considerably the last decennia. In the US, 
the prevalence of adult obesity rose from 13.4% in 1960 to 30.9% in 200022 and 
the number of overweight children aged 6-11 and 12-19 increased from 4% 
and 6% in 1971 to 15.3% and 15.5% respectively in 200023. The rise in diabetes 
incidence may greatly be accounted for by the recent rise in number of obese 
subjects. An objective measure to describe obesity is the body mass index (BMI), 
which is calculated as weight (in kilogram) divided by the square of the height 
(in meters); a BMI of < 18.5 represents underweight, 18.5-25 normal weight, 
25-30 overweight, 30-35 obesity and > 35 morbid obesity. The lifetime risk for 
developing diabetes rises dramatically with increasing BMI. For an 18-year old 
person with normal weight, the risk of developing diabetes was calculated to 
be ~ 18.5%, if this person was morbidly obese though, the risk would increase 
to ~ 72%24. The predisposition of obesity to turn into diabetes is also reflected 
by the observation that in the US ~ 55% of type 2 diabetic patients is obese25.

The change from an active to a sedentary lifestyle, promoted by the 
industrialization, the availability of easy transportation and the introduction of 
computers, television and video games, also independently adds to the elevated 
diabetes prevalence. A prospective cohort study in the US showed that with 
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every additional 2 hours of TV watching daily, the risk of diabetes increases 
with 14% and for every 2 hours/day increase in sitting at work, the risk for 
diabetes rises with 7%26. On the opposite, the impact of physical activity on 
reducing the risk of diabetes development has also firmly been established27-31. 
It is calculated that each 500 kcal increment in energy expenditure per week 
leads a 6% decrease in diabetes risk27. Even in people with impaired glucose 
tolerance, representing a pre-diabetes stage, physical activity is beneficial and 
reduces the risk of overt diabetes with 46%32. Clinical trials in patients with 
overt diabetes also indicate that physical activity, without weight loss, is able to 
improve the diabetic phenotype33-35.

Also, the altered dietary pattern participates in the increased incidence of 
diabetes. With the introduction of highly palatable, energy-dense, food, total 
caloric intake increased and the dietary preferences shifted away from the 
traditionally “healthy” diet, including vegetables, fruits, low-fat dairy products 
and whole grain products, towards the “western type” diet, comprised of red 
and/or processed meat, high fat diary products, refined grain products, fried 
products and sweet beverages. Analyses of the health risk/benefit of both types 
of diets indicated that consumption of the “western type” diet is associated 
with a 28-60% higher risk of developing diabetes, while the “healthy” diet is 
associated with a modestly protective effect of 11-27%36-39.

Finally, improved health care, which dramatically increased life expectancy 
the past decades, accounts for part of the elevated diabetes incidence. Aging is 
associated with an increased prevalence of diabetes; in the US, in the period of 
2005-2006, the prevalence of previously diagnosed diabetes was 2.1% in the 
age group 20-39, 7.9% in the age group 40-59 and 17.6% in the age group 60-
7440. Therefore increased longevity will greatly enlarge the number of diabetes 
patients. It is still a matter of debate whether the increased diabetes risk for 
elderly people is the result of aging per se or the result of age-related alterations 
in lifestyle and body composition. Unhealthy diets, decreased physical activity, 
increased adiposity and an altered fat distribution are all phenomena associated 
with aging and independent risk-factors for the development of diabetes. 
Accordingly, several studies showed an age-related deterioration of insulin 
action, yet in some, the reported differences between young and old individuals 
were diminished, or even completely lost, when corrected for age-related risk 
factors41-45.

Glucose homeostasis

Physiology
Plasma glucose levels are maintained within a narrow range of 4-7 mmol/l. 
If glucose levels fall below the threshold of 3 mmol/l, energy supply to the 
brain becomes inadequate. The brain is unable to use substrates other than 
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glucose for energy and is only equipped with glycogen stores sufficient for a 
few minutes. Therefore, hypoglycemia rapidly leads to functional brain failure, 
seizures and coma. If the hypoglycemia is severe and prolonged it might even 
lead to brain death46. Conversely, elevated glucose levels can damage organs 
leading to macrovascular disease, nephropathy, retinopathy and neuropathy47.

Insulin and glucagon are the key hormones regulating glucose homeostasis. 
Insulin is secreted by pancreatic β-cells in response to a physiological rise in 
glucose levels, e.g. after a meal. The net effect of insulin is to reduce the elevated 
glucose levels by promoting glucose uptake and simultaneously inhibiting 
glucose production. The liver is the main site responsible for the production of 
glucose. It can either convert stored glycogen into glucose or synthesize glucose 
de novo from non-carbohydrate substrates including lactate and amino acids. 
In insulin sensitive tissues like muscle, adipose tissue and also liver, glucose can 
be taken up and subsequently converted into glycerol for storage or oxidized to 
supply energy.

Glucagon is secreted by pancreatic α-cells in response to a reduction in 
blood glucose concentrations, e.g. during fasting. Opposing the action of insulin, 
glucagon increases glucose levels. It promotes the production of glucose by the 
liver, leading to an induction in both the conversion from glycogen to glucose 
and de novo glucose synthesis. Concomitantly glucagon inhibits the synthesis 
of glycogen and the oxidation of glucose in the liver48. During conditions of 
hyperglycemia glucagon production is suppressed by the combined action of 
the elevated glucose levels and the concomitantly raised insulin levels49. Other 
physiological regulators of glucose homeostasis include glucose, which can 
regulate its own disposal and release, catecholamines, cortisol and growth 
hormone.

Pathophysiology
Hyperglycemia is an important hallmark of diabetes and is the direct corollary 
of dysregulation of insulin and glucagon action. Impaired insulin action involves 
both insulin resistance, a reduced ability of tissues to respond to insulin, and 
defects in insulin secretion. In the early development of insulin resistance 
the diminished efficacy of the hormone is overcome by elevated insulin 
production by pancreatic β-cells; hyperinsulinemia therefore is a marker 
for diabetes development. Eventually, β-cells are no longer able to produce 
sufficient amounts of insulin to compensate for the resistance. Consequently, 
the biological function of insulin is undermined and hyperglycemia becomes 
manifest.

Insulin resistance can be demonstrated as a reduction in whole body glucose 
uptake and diminished suppression of glucose production during conditions of 
hyperinsulinemia. Several organ-specific mechanisms are thought to underlie 
the impaired insulin sensitivity.
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Together, muscle, adipose tissue and liver are responsible for glucose 
disposal in response to insulin. As muscle tissue is the major contributor, 
insulin resistance of this tissue will greatly impair the ability of the body to 
remove glucose from the circulation. In response to insulin, GLUT4, the insulin-
responsive transporter mediating the diffusion of glucose across the cell 
membrane, is translocated to the cell membrane. Once glucose has entered the 
cell, it is rapidly phosphorylated in order to maintain a concentration gradient 
for glucose across the cell membrane. In muscle cells from diabetic patients 
both the insulin induced transport of glucose across the cell membrane and 
the subsequent phosphorylation of intracellular glucose are diminished50-52. 
Several alterations in the intracellular signaling pathways downstream of the 
insulin receptor have already been described53-55. Together these might lead to a 
diminished recruitment of GLUT4 from intracellular storage vesicles to the cell 
membrane giving rise to the reduced glucose uptake51. 

Also in adipose tissue from diabetic individuals several defects have been 
noted. Diminished binding of insulin to its receptor in combination with 
a reduced receptor kinase activity greatly impairs the insulin action on 
adipocytes56,57. Concomitantly, both the basal expression of GLUT4 transporters 
on the cell membrane and the insulin stimulated translocation of GLUT4 to 
the surface is decreased in adipocytes from diabetic patients57,58. These latter 
observations might be ascribed to an enhanced turnover of glucose transporters 
and/or a diminished transporter gene expression57,58. 

Glucose uptake by the liver is mainly relevant after a meal, when both 
plasma glucose and insulin concentrations are elevated59. In diabetic patients, 
the capacity of the liver to extract glucose from the circulation under these 
postprandial conditions is compromised60,61 as well as its ability to synthesize 
glycerol62. In contrast to muscle, where glucose transport across the plasma 
membrane is the rate-limiting step for glucose uptake, in liver, phosphorylation 
of glucose, by the enzyme glucokinase, is rate-limiting. Therefore, decreased 
activity of this enzyme, found in diabetic subjects63,64, might be responsible for 
the reduced glucose uptake.

Concomitantly, the role of the liver as main producer of glucose is 
affected. Total, as well as directly measured hepatic, glucose production is 
higher in diabetic patients, both during basal, fasting, conditions60,65-67 and 
hyperinsulinemic, fed, conditions67,68. The direct corollary is fasting and 
postprandial hyperglycemia. The contribution of increased gluconeogenesis to 
the elevated glucose production in diabetic subjects has firmly been established, 
but the contribution of glycogenolysis is still a matter of debate65,66,68. An 
increased ratio of the activity of the enzyme glucose-6-phosphatase to 
glucokinase, measured in diabetic patients, might contribute to the elevated 
glucose production64.
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Another contributory factor to the pathophysiology of hyperglycemia is 
an elevation in glucagon levels. In type 2 diabetic patients the postprandial 
suppression of glucagon production is impaired69,70 leading to hyperglucagonemia 
and, regarding the nutritional status, an inappropriate stimulation of glucose 
production by the liver71. Possibly, resistance of pancreatic α-cells to the 
inhibitory action of insulin underlies this phenomenon.

Defective insulin secretion, which is, in addition to insulin resistance, an 
obligatory step in the development of type 2 diabetes, is the result of both 
a decrease in β-cell mass and β-cell malfunction. The reduced β-cell mass 
observed in type 2 diabetic patients is presumably the net effect an accelerated 
apoptosis rate in combination with normal β-cell replication and neogenesis72,73. 
Physiological signs of insulin secretion defects include an absence of the first 
phase insulin response74,75, alterations in the pulsatility of insulin secretion76,77 
and an increased proinsulin to insulin ratio78,79. Intracellular defects underlying 
this β-cell malfunction include a reduction in the expression of glucose 
transporters GLUT1 and 2, impaired intracellular glucose processing75 and 
a loss of insulin gene expression80. Damage and death of β-cells may be the 
consequence of hyperglycemia per se, as stated by the glucotoxicity theory. 
Accordingly, it was shown that prolonged hyperglycemia, either in combination 
with high circulating FFA levels or alone, promotes apoptosis and alterations in 
key components of cellular functioning through long-term increases in cellular 
Ca2+ concentrations81 and oxidative stress80. Alternatively, or additionally, 
hyperglycemia may induce defects indirectly by promoting hypersecretion of 
insulin, leading to β-cell exhaustion82. 

Diabetic rodent models

Currently, several different rodent models have been established for diabetes 
research. Although most of these animal models fail to develop overt 
hyperglycemia and diabetes related complications, they do develop a diabetes-
like phenotype characterized by obesity and insulin resistance. Some of these 
rodents models are genetic models; the result of single gene alterations. Three 
frequently used genetic models for diabetes research are the obese Zucker 
rat, the ob/ob mouse and the db/db mouse, all of which are characterized 
by mutations in genes involved in leptin signaling. The hormone leptin, 
predominantly synthesized by adipose tissue, serves as a regulator of long-
term energy balance. Leptin is secreted in proportion to the amount of body fat 
and is therefore able to convey information about peripheral energy reserves. 
The long isoform of the leptin receptor is expressed in several regions of the 
brain, including the hypothalamus, and transmits the ‘anti-obesity’ action of 
leptin on food intake and energy expenditure83. In obese Zucker rats and db/
db mice, respectively, a mutation in, and a deletion of, the leptin receptor were 
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found84,85, whereas in ob/ob mice a mutation in the leptin gene was discovered86. 
Resistance to the physiological action of leptin, as well as the absence of leptin,  
leads to the development of a diabetogenic phenotype, including hyperphagia, 
reduced energy expenditure, obesity and insulin resistance87-90. 

Another genetic rodent model is the OLETF rat. These rats, presenting 
several of the characteristic features of diabetes, are naturally occurring CCK-
1 receptor knockouts91,92. Cholecystokinin (CCK) is a peptide released from 
the gastrointestinal tract in response to food intake. CCK action is mediated 
by 2 distinct receptors which are both expressed in the periphery as well as 
in the brain. CCK regulates digestive function and promotes satiety. The CCK-1 
receptor is responsible for the latter function93.

Although the animal models described above, displaying spontaneous 
mutations in essential metabolic pathways, have provided us with important 
information concerning energy and nutrient balance, they only represent a 
small portion of the heterogeneous human diabetes population, since only a 
small percentage of diabetes cases are the result of single gene mutations. Diet 
induced obese (DIO) rodents better reflect the complex physiological alterations 
underlying the disease in the majority of obese type 2 diabetic patients. Several 
wild type (wt) rodents, such as the C57BL/6J mice, develop a diabetic phenotype 
after being fed a high fat diet for several weeks94,95. This DIO animal model is often 
used in diabetes research, yet, it is still a heterogeneous group; on average, DIO 
rodents develop a diabetic phenotype, but, there are large differences in the 
adaptation of individual animals to high fat feeding. It was shown that, after 
being maintained on a high fat diet for 9 months, 45% of a group of C57Bl6 
mice became obese and diabetic, 12% remained lean and non diabetic, 12% was 
lean and diabetic and 30% showed an intermediate phenotype96. The insulin 
resistance phenotype of lean diabetic mice resembled more the phenotype of 
lean non-diabetic mice than of obese diabetic mice, so, simplified, the C57Bl6 
mice could be divided into a diet induced obese (DIO), a lean diet resistant (DR) 
and an intermediate group. For experimental purposes wt rodents, while still 
maintained on a chow diet, can be divided into DIO and DR groups according 
to the amount of norepinephrine they excrete97. Alternatively, wt rodents can 
be classified according to their weight gain following several weeks of high fat 
feeding; the rodents with the highest weight gain are designated DIO and those 
with the least weight gain, DR98. 

Considering the heterogeneous response of humans towards the diabetogenic 
western type diets, we believe the DIO/DR rodent model accurately represents 
the human situation and is therefore best suited for analyzing the complex 
metabolic alterations associated with the development of obesity and diabetes.
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Dopaminergic system

Physiology
Dopamine is the predominant catecholamine neurotransmitter in the 
mammalian central nervous system. It is synthesized in dopamine neurons 
and stored in synaptic vesicles until release. Tyrosine hydroxylase (TH) is the 
rate-limiting enzyme in the conversion of tyrosine into dopamine. Activation 
of dopamine neurons promotes fusion of the synaptic vesicles with the 
neuronal membrane, and dopamine is secreted. Upon release, dopamine binds 
to its receptor, located either on pre- or postsynaptic neurons, and initiates an 
intracellular signaling cascade. Dopamine transporters (DAT) take up dopamine 
from the extracellular fluid, thereby rapidly limiting the activity of secreted 
dopamine. Back in the neuron, dopamine is either transported into synaptic 
vesicles by a vesicular monoamine transporter (VMAT2) to be re-used or it is 
metabolized by monoamine oxidase (MAO) or catechol-O-methyltransferase 
(COMT)99,100.

Dopamine neurons are present in distinct areas of the brain, giving rise 
to three main dopaminergic pathways. The nigrostriatal pathway contains 
dopamine neurons originating in the substantia nigra and projecting to the 
dorsal striatum. Dopaminergic signaling in this pathway controls locomotor 
activity. The mesocorticolimbic pathway consists of dopamine neurons 
projecting from the ventral tegmental area to the ventral striatum, the limbic 
system and the cortex and is involved in emotion, cognition, motivation and 
reward. The dopamine neurons comprising the tuberoinfundibular pathway 
originate in the hypothalamus and project to the pituitary where they control 
hormone secretion and cell survival101,102.

In addition to their role in the tuberoinfundibular pathway, dopamine 
neurons located in the hypothalamus control ingestive behavior. These neurons 
receive signals concerning energy homeostasis and nutrient availability from 
the periphery through afferent nerves, circulating hormones, nutrients and 
small peptide mediators. They integrate the information and relay it to the 
classical food intake-related neurons including NPY/ AGRP producing neurons 
(stimulators of food intake) and POMC producing neurons (inhibitors of food 
intake) to direct energy intake103.

Dopamine receptors
Dopamine action is mediated by 5 distinct receptors which are categorized 
into 2 receptor families based on sequence homology and pharmacological 
characteristics. The D1-like family consists of the dopamine receptors D1 
(DRD1) and D5. Activation of these receptors leads to stimulation of adenylyl 
cyclase and the subsequent production of cyclic AMP. Activation of the D2-like 
family on the contrary, inhibits adenylyl cyclase activity and the concomitant 

General Introduction 17



production of cyclic AMP. The receptors DRD2, DRD3 and DRD4 represent the 
D2-like family101. Apart from different functional characteristics, the dopamine 
receptors also differ in spatial expression patterns. DRD1 and DRD2 are the 
most widely expressed receptors; they are found in all brain areas receiving 
dopaminergic innervation. The other dopamine receptors display more 
restricted expression patterns101,102. Although dopamine D1 and D2 receptors 
are present in the same brain areas, they are only occasionally expressed on the 
same neurons101.

Dopamine receptors belonging to the DRD2 family exist both as pre- and 
postsynaptic receptors. Presynaptic receptors, or autoreceptors, which are 
believed to be mainly DRD2 and DRD3, are part of a dopaminergic feedback 
mechanism regulating neuronal activity and neurotransmitter release. 
Accordingly, stimulation of autoreceptors can alter firing rate of the neuron, 
dopamine synthesis and secretion. Postsynaptic receptors, which can be 
either DRD2, DRD3 or DRD4, modulate the action of second order neurons in 
response to dopamine100,101.

Peripheral dopaminergic system
Dopamine receptors are highly expressed in the central nervous system, yet 
they are also present in several peripheral tissues, orchestrating a variety of 
biological functions. In the cardiovascular system, dopamine receptors are 
involved in the regulation of blood pressure. In the heart, up till now, D1, D2 
and D4 dopamine receptors have been described. The role of the individual 
receptors has not yet been defined, but overall, a low concentration of 
dopamine is associated with an increased cardiac output due to improved 
contractility of the heart104-106. All dopamine receptors are expressed in the 
systemic blood vessels where they control vascular resistance by regulating 
vasodilatation107-109.

In the kidney, dopamine, in general, increases renal blood flow and the 
excretion of water and ions such as sodium and calcium. The participation of the 
individual dopamine receptors in this effect is complex and varies depending 
on several factors such as systemic water and sodium balance109,110. Dopamine 
receptors D1, D2, D4 and D5 are also present in the adrenal glands111,112. The D2-
like receptors are known to control aldosterone production, but the function of 
the D1-like receptors hasn’t been clarified yet112-114.

All dopaminergic receptors are expressed in the gastrointestinal tract. The 
dopamine D2 receptor is involved in the inhibition of gastric acid production115 
and gastrointestinal motility116,117. The role of the other dopaminergic receptors 
remains unclear.

Furthermore, all dopamine receptors, except DRD1, are expressed on 
peripheral blood leukocytes118,119. The action of dopamine on immune cells has 
best been studied in lymphocytes. In these cells dopamine exerts a dual role; 
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activating resting lymphocytes and inhibiting activated ones120,121.
Recently dopamine receptors were also discovered on pancreatic β-cells. 

The dopamine D2 receptor is clearly involved in the modulation of insulin 
secretion, but the role of the other receptors remains to be elucidated122.

DRD2 and diabetes

DRD2 polymorphisms
Several lines of evidence link the dopaminergic system to obesity, insulin 
resistance and type 2 diabetes in humans and animal models. An important 
indication for a functional relationship between dopamine and metabolic 
disturbances came from epidemiological studies. Several groups have examined 
the association of DRD2 polymorphisms and energy and nutrient metabolism. 
Although in general the impact is small, there is an interaction between DRD2 
variants and energy homeostasis. The polymorphism Ser311Cys, which 
impairs the DRD2 signal transduction pathway123, is associated with a higher 
BMI and lower resting energy expenditure in Pima Indians124,125. The TaqIA1 
allele, resulting in lower DRD2 binding126, is associated with obesity127,128. And, 
a haplotype consisting of 2 SNP’s located in intron 5 and exon 6 of the DRD2 
gene is associated with obesity as well129. Recently, proof for a role of DRD2 in 
the regulation of glucose and insulin metabolism was provided by Guigas et al. 
who showed that, in humans, the rate of glucose stimulated insulin secretion is 
associated with a 4-SNP haplotype (including TaqIA1 SNP) of the DRD2 gene130.

DRD2 neurotransmission
More evidence came from the analysis of the dopaminergic system in obese and 
diabetic animals and humans. The expression of DRD2 is reduced in specific 
brain areas of obese Zucker and OLETF rats compared to lean control rats131-

133. This decreased DRD2 expression is also observed in the striatum of obese 
humans. Moreover, in these individuals the number of DRD2 binding sites is 
inversely related to the body mass index134. Additionally, basal dopamine levels 
are increased in the hypothalamus of obese diabetic rats and the dopamine 
release in response to food intake is exaggerated and longerlasting135-138. A 
higher dopamine concentration was also measured in post mortem brains 
of diabetic patients compared to controls139. The reduction in dopaminergic 
neurotransmission elicited by a decreased DRD2 expression is thought to 
induce a “reward deficiency syndrome”, which might be compensated by 
elevated dopamine release and additionally, or alternatively, by “reward seeking 
behavior”, such as increased food intake140.

DRD2 antagonists
Another indication that dopamine D2 receptors might be involved in energy 
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and nutrient metabolism came from the clinical observation that the use of 
antipsychotic medication is associated with obesity, insulin resistance and 
diabetes. Although numerous different antipsychotic drugs are used in clinic, 
the common denominator of these drugs is their affinity for dopamine D2 
receptors. In general, the newer, second-generation ‘atypical’ antipsychotics 
have a broader range of action and a slightly lower affinity for the D2 receptor 
compared to first-generation ‘typical’ antipsychotics, but they are still (at least 
partial) DRD2 antagonists. In fact, it has been suggested that the clinical efficacy 
of these drugs to alleviate psychotic symptoms depends on the interaction of 
the drugs with dopamine D2 receptors141.

Most antipsychotic drugs induce some degree of weight gain, yet the atypical, 
second generation, drugs clozapine and olanzapine are associated with the most 
severe increase in body weight142-144; in a meta-analysis it was calculated that 
both drugs can induce weight gain of up to 4.5 kg in 10 weeks in schizophrenic 
patients142. Other antipsychotic drugs, such as the typical drug haloperidol, 
induce much less weight gain142,144.

The use of antipsychotic drugs is also linked to the development of 
diabetes143,145. Again, treatment with clozapine or olanzapine is associated 
with the greatest risk of developing diabetes145. One study even showed 
that, in a health care center, 36.6% of patients on clozapine treatment were 
newly diagnosed with diabetes within 5 years after the start of treatment146. 
Although the metabolic side effects of antipsychotic drugs have been observed 
in schizophrenic patients and schizophrenia itself contributes to the increased 
risk of developing diabetes147,148, it is generally accepted that antipsychotics can 
directly affect energy and nutrient metabolism. This is confirmed by studies in 
animal models and healthy humans.

As in schizophrenic patients, weight gain is consistently observed in healthy 
volunteers treated with the antipsychotics olanzapine and risperidone149-153. 
The impact of antipsychotic drugs on glucose metabolism in healthy individuals 
though, is less clear; some studies report a reduction in insulin sensitivity 
following drug treatment149,151,152, whereas others fail to observe an effect 
on insulin sensitivity150,153. In rodents the ability of antipsychotics to induce 
weight gain seems to be gender specific; female rats are sensitive to the weight 
inducing effect of the drugs, whereas in most studies using male rodents, body 
weight is not affected, or even decreased, by drug treatment154-158. The impact of 
antipsychotics on glucose metabolism, however, is consistent in animals. Both 
chronic and acute antipsychotic drug treatment is highly associated with the 
development of glucose intolerance and insulin resistance156,159-164.

Alterations in several pathways might underlie these antipsychotic induced 
metabolic abnormalities. In most animal experiments, antipsychotics induce 
a defect in insulin stimulated glucose uptake during hyperinsulinemia161-164. 
Accordingly, it was observed that several antipsychotic drugs reduce glucose 
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uptake in neuronal cells165. The inability of tissues to appropriately respond to 
insulin stimulation might depend on an antipsychotic induced defect in insulin 
signaling, as is described in muscle cells after incubation with olanzapine166.

In addition, an abnormally high endogenous glucose production during 
hyperinsulinemia is found in several animal models on antipsychotic drug  
treatment159,161,164. The underlying mechanism might be the inability of the liver 
to respond to the inhibitory action of insulin and/or the ability of antipsychotic 
drugs to acutely stimulate the endogenous glucose production, as is shown in 
rats160.

A defect in insulin release might further add up to the metabolic alterations 
induced by antipsychotics. Several studies have reported an antipsychotic drug  
induced reduction in insulin response during hyperglycemia162,163. Accordingly, 
it was found that antipsychotic drugs can directly affect insulin release from 
isolated pancreatic islets167-169.

DRD2 agonists
Considering the impact of the dopaminergic system on energy and nutrient 
metabolism, several groups have examined the efficacy of DRD2 agonists in 
ameliorating the adverse metabolic conditions associated with diabetes. The 
best studied DRD2 agonist in relation to obesity and diabetes is bromocriptine, 
clinically used in the treatment of Parkinson’s disease and hyperprolactinemia. 
In humans, several trials have been performed with this DRD2 agonist. The most 
consistent impact of such treatment in obese individuals is normalization of 
elevated plasma glucose levels170-173. In addition, in several studies, bromocriptine 
treatment diminished basal plasma insulin levels in obese individuals170,173. 
The impact of bromocriptine on body weight though, is inconsistent among 
studies; in some the body weight and fat percentage of subjects decreased 
upon treatment174, while in others body weight remained stable throughout 
the experiment171-173. The impact of bromocriptine on glucose metabolism is 
more consistent; it improves glucose tolerance and insulin sensitivity in obese 
people172,174.

In most animal studies bromocriptine was given in combination with 
the DRD1 agonist SKF38393, as this latter drug enhances the efficacy of 
bromocriptine175,176. Unlike in humans, treatment of obese diabetic animal 
models with the combination of bromocriptine and SKF38393 consistently 
decreases food intake, fat mass and overall body weight175,177-180. Surprisingly, 
the decrease in food intake was only moderately involved in body weight 
reduction, as pair feeding was only able to partly reproduce this effect179,180. 
The impact of enhanced DRD2 stimulation on food intake and body weight 
has also been confirmed with quinpirole, another DRD2 agonistic drug176. 
Furthermore, like in humans, bromocriptine/SKF38393 treatment normalizes 
elevated plasma glucose and insulin levels in obese diabetic animals175,177-180. 
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The underlying mechanism(s) for this improvement is not yet fully elucidated, 
but bromocriptine/SKF38393 treatment reduces the activity of 2 key enzymes 
involved in hepatic gluconeogenesis in obese insulin resistant mice179 and 
glucose production is diminished in bromocriptine treated hamsters181. 
Also, bromocriptine improves glucose tolerance and insulin sensitivity177,182. 
This might be mediated by a restoration of the aberrant β-cell function by 
bromocriptine/SKF38393, resulting in a reduction of the elevated basal insulin 
release, an increase in insulin content and an improved glucose-stimulated 
insulin release178,183,184. 

Injection of bromocriptine directly into the brain of diabetic hamsters, in 
a concentration that does not have an effect when administered systemically, 
also diminishes body weight and improves glucose tolerance and insulin 
sensitivity185; suggesting that (part of) the observed effects of DRD2 stimulation 
on metabolism are mediated by dopamine receptors in the brain.

Outline of this thesis

The dopaminergic system in general and the dopamine receptor D2 specifically 
are functionally linked to diabetes-associated metabolic derangements. Genetic 
variations in the DRD2 gene are associated with altered energy and nutrient 
homeostasis. Inhibition of DRD2 promotes a diabetes-like phenotype, while 
activation of DRD2 restores a normal metabolic profile. Also several components 
of dopaminergic signaling are modified in obese and diabetic humans and 
animals. Despite the established interaction between DRD2 and disturbances 
in the energy and nutrient homeostasis, several questions regarding the exact 
role of DRD2 in the aetiology of diabetes and the mechanism underlying the 
metabolic corollary of DRD2 transmission modulation remain unanswered. 
The research described in this thesis is conducted in order to unravel the 
characteristics of the interplay between the DRD2 and glucose metabolism as 
well as to understand the underlying mechanism(s).

The aim of chapter 2 was to determine the role of the dopaminergic system in 
the aetiology of high fat diet induced obesity and insulin resistance. Therefore, 
glucose metabolism and several indicators of dopaminergic neurotransmission 
were evaluated after 4 weeks of high fat feeding in wt mice and compared to 
mice maintained on a low fat diet.

Calorie restriction is the most effective way to extend lifespan and reduce 
morbidity. As such, it also improves insulin sensitivity and delays the age-
related loss of DRD2 expression in the brain. Considering this, together with 
the role of the dopaminergic system in glucose metabolism, it can be suggested 
that the dopaminergic system is involved in the beneficial impact of calorie 
restriction on insulin action. This hypothesis was addressed in chapter 3. Wt 
mice were maintained on a high fat diet, either with unlimited or restricted 
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access, for 12 weeks. During the entire experiment half of the calorie restricted 
mice also received continuous haloperidol treatment. After the treatment 
period glucose metabolism was evaluated and the hypothalamic DRD2 binding 
was determined. 

In general, high fat feeding induces obesity, insulin resistance and a type 2 
diabetic phenotype in rodents, but there is a large diversity in response within 
single strains of rodents. Based on weight gain, the phenotype of rodents on 
a high fat diet can be characterized as diet induced obese (DIO), intermediate 
or diet resistant (DR). DIO and DR rodents differ in several components of 
the dopaminergic system, even before the onset of obesity. This led to the 
suggestion that variation in dopaminergic neurotransmission participates in 
the development of the divergent DIO and DR phenotypes. Therefore, in chapter 
4 we maintained wt mice on a high fat diet for 10 weeks to classify them as DIO 
and DR. Subsequently we treated DIO and DR mice with, respectively, the DRD2 
agonist bromocriptine and the DRD2 antagonist haloperidol and performed 
indirect calorimetric measurements and characterized glucose metabolism. 
Placebo treated DIO and DR mice served as controls.

Antipsychotic drugs are associated with the development of insulin resistance 
and dyslipidemia. It is, however, still unclear if these drugs directly modify 
glucose and lipid metabolism or if they promote weight gain which may lead to 
the disturbed metabolic profile. Therefore, in chapter 5, the short-term impact 
of the typical antipsychotic drug haloperidol and the atypical drug olanzapine 
were studied in order to unravel the mechanism underlying the deregulation of 
nutrient metabolism. The carbohydrate and lipid metabolism of healthy men 
was evaluated before and after 8 days of antipsychotic drug treatment. 

The DRD2 agonistic drug bromocriptine is highly effective in improving 
glucose metabolism and β-cell function, yet, the underlying mechanism remains 
unclear. In chapter 6 we studied the acute impact of bromocriptine on insulin 
secretion and action in wt mice and the impact on intracellular signaling in INS-
1E cells.

In chapter 7 the results obtained with these studies and their implications 
are discussed.
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