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Chapter 6

Overdispersion Modelling with

Individual Deviance Effects and

Penalized Likelihood

Abstract

Overdispersion is common when modelling discrete data like counts or frac-

tions. We propose to introduce and explicitly estimate individual deviance

effects (one for each observation), constrained by a ridge penalty. This turns

out to be an effective way to absorb overdispersion, to get correct standard

errors and to detect systematic patterns. Large but very sparse systems of

penalized likelihood equations have to be solved. We present fast and com-

pact algorithms for fitting, estimation of standard errors and computation of

the effective dimension. Applications to counts, binomial, and survival data

illustrate practical use of this model.

6.1 Introduction

Generalized linear models (GLM) have made regression and smoothing with
counts or binary observations a standard tool of statistics. In contrast to a
normal response, the variance follows implicitly from the Poisson or binomial
distribution and, given the data, it is completely determined by the estimated
expected values. Standard errors are commonly computed based on this the-
oretical variance. Unfortunately, real data often show overdispersion: the ob-
served variance is (much) larger than the theoretical one. Consequently GLM
standard errors will be too small and the significance of effects will be overes-
timated.

A similar problem occurs in smoothing. When the effective bandwidth
is chosen by cross-validation or with an information criterion like AIC [6], it
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will generally come out too small. Formally this makes sense: optimal cross-
validation detects systematic high-frequency components in the data, which
should be exploited when predicting left out observations. However, from the
subject matter we may know that it is reasonable to assume a smooth trend
and we would like to have more or less objective guidance on the amount of
smoothing needed to compute it.

There have been several proposals for dealing with overdispersion, the sim-
plest one being correction of the covariance matrix by a constant φ, assuming
var(yi) = φui with φ estimated by equating the Pearson X2 statistic from a
binomial fit to its degrees of freedom [105], and ui the theoretical variance un-
der the assumed model. Another way is to assume a parametric form for φ

which will lead to a mixing distribution. For example, in binomial data, the
variance of the response probability πi is defined as var(πi) = φpi(1− pi). The
variability of πi can also be modelled by a beta distribution with parameters
αi and bi and φi = 1/(αi + bi + 1) which leads to the beta binomial model [26].
When data come from a Poisson distribution the mean equals the variance.
In such a case, the mean could follow a gamma distribution with mean µ and
variance φµ. This mixture leads to the negative binomial model. A different
approach to deal with overdispersion is to assume a more general form for the
variance function using additional parameters. These models are using quasi-
likelihood methods for estimation and are described by several authors [46, 68].
For a general discussion on overdispersion refer to Collet [22] Chapter 6, [5] and
[69]).

Overdispersion may also rise as a result of unexplained heterogeneity. To
account for this heterogeneity a random effects model can be fitted to the
data. Generalized Linear Mixed Models (GLMM) were proposed as a general
framework by Breslow and Clayton [17]. They include an unobserved vector of
random effects in a GLM, assumed to arise from a normal distribution, and use
an approximation of the marginal quasi-likelihood based on Laplace’s method,
leading to equations based on penalized quasi-likelihood. Lin and Zhang [63]
extended the idea by using smoothing cubic splines to propose generalized ad-
ditive mixed models, in the spirit of [42]. To avoid the complex numerical
integration required to estimate the model, they proposed a double penalized
marginal quasi-likelihood also based on a Laplace approximation. Schall [84]
proposed a general algorithm for the estimation of random effects and disper-
sion parameters applicable in GLMs, regardless of the structure of the linear
predictor, and without the need to specify the distribution of the random ef-
fect. In his application section he used random effects to explain extra-binomial
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variation, however, he did not examine this case in detail. Lee and Nelder [60]
proposed a broader class of models, in which the random vector is not restricted
to be normal, and a hierarchical likelihood to estimate it, without the integra-
tion that is needed in the marginal likelihood techniques; they broadened this
class of models in [61]. All of the above approaches deal with the problem
of overdispersion, depending on different backgrounds of the same problem.
However, some of them are computationally hard to apply, especially in large
datasets and some other involve complicated mathematical procedures.

The present work addresses the problem of overdispersion both in GLMs
and GAMs. Our approach is based on penalized likelihood, using individual
deviance effects as an extra parameter in the linear predictor for each obser-
vation. This makes the number of parameters in the model larger than the
number of observations. To maintain identifiability, we add a ridge penalty on
the deviance effects. This removes collinearity in the estimating equations and
at the same time reduces the effective model dimension drastically. To optimize
the weight of the penalty, AIC or AICc [87] can be used. This setting provides
a tool to deal with a range of problems, including hierarchical structures and
smoothing.

An important merit of our proposal is simplicity. In contrast to random
effects modelling no assumptions are made for the distribution of the deviance
effects, and the ridge penalty provides a way of avoiding integration and com-
plex approximation of a marginal likelihood. We consider individual deviance
effects not only as a device for absorbing overdispersion; we emphasize that
it is worthwhile to study their pattern. In most cases these effects will re-
veal possible bias in the model and indicate the source and nature of increased
dispersion. Inference will also improve because standard errors will be more
realistic.

Implementation of individual deviance effects is straightforward, but it leads
to large systems of equations. However, they are extremely sparse and struc-
tured in such a way that we can use explicit shortcuts. These shortcuts not
only improve the speed of computation by orders of magnitude, but (in the
case of Poisson regression) also reveal interesting relationships with the nega-
tive binomial distribution.

The Chapter is structured as follows. In Section 6.2 we introduce the indi-
vidual deviance effects for regression and smoothing for counts, binomial data
and survival analysis, followed by a Section on inference and the the choice of
penalty weights. In Section 6.4 we discuss an algorithm for efficient computa-
tion. Applications and simulation studies are presented in Section 6.5 and a
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discussion follows in the last Section. Details of the sparse matrix calculations
are presented in the Appendix.

As an acronym for our approach we have invented PRIDE: Penalized Re-
gression with Individual Deviance Effects. Note that individual here means
unit of observation, like an observed count; it does not mean that a parameter
is connected to each individual counted unit. Software, for S-PLUS and R, is
available from the first author.

6.2 Penalized Regression with Individual Deviance Ef-

fects

Count data are often encountered in applications. It is natural to assume that
numbers of events can be fitted with a Poisson model. This model relates
the expected value of Y, E(Y) = µ, to the systematic component η by the
canonical link, log(µ) = η. Let counts yi, i = 1, ..., m be a realization of a
Poisson distribution. Then the probability of yi is given by:

pi = µ
yi
i e−µi /yi!

and the log-likelihood is proportional to:

l =
m

∑
i=1

(yiηi − µi) (6.1)

Consider the Xm×p matrix of p covariates and the systematic component
of the model log(µ) = η = Xβ, with β the vector of unknown but estimable
coefficients.

The optimization of (6.1) leads to a system of linear equations which can
be solved with iterative weighted linear regression as:

(X′W̃X)β̂ = X′(y− µ̃) + X′W̃ β̃

which is equivalent to (X′W̃X)β̂ = X′W̃z̃, where W is a diagonal matrix con-
taining the weights µ and z = W−1(y − µ) + η and the tilde denotes an ap-
proximate solution.

To account for potential model bias and randomness, we propose to include
a vector of ‘deviance’ effects γ: η = Xβ + γ. To maintain identifiability, we
subtract a ridge penalty term from the log-likelihood:

l∗ =
m

∑
i=1

(yiηi − µi)− κ
m

∑
i=1

γ2
i /2.
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Setting the partial derivatives equal to zero gives the following system of pe-
nalized equations:

X′(y− µ) = 0, y− µ = κ I.

One then iteratively solves the following system of weighted regression, with
W = diag(µ): (

X′W̃X X′W̃
W̃X W̃ + κ I

)(
β̂

γ̂

)
=
(

X′W̃z̃
W̃z̃

)
(6.2)

This is a large but sparse system: its size is equal to the size of β plus the
number of observations. However, with some matrix algebra we can avoid com-
putational problems. For details see Section 6.4. Moreover, we can eliminate
γ quite easily:

γ̂ = (W̃ + κ I)−1W̃(z̃− Xβ̂).

If we introduce W∗ = κ(W̃ + κ I)−1W̃, we have κγ̂ = W∗(z̃− Xβ̂). With this
result we can derive, via simplification of

(X′W̃X)β̂ + X′W̃γ̂ = (X′W̃X)β̂ + X′W̃(W∗(z̃− Xβ̂)/κ) = X′W̃z̃,

that

(X′W∗X)β̂ = X′W∗ z̃.

These are the same equations as for fitting a generalized linear model without
overdispersion, with a change of weights and the addition of γ to z.

A common method of dealing with overdispersion in count data is by a
mixture model. The assumption is that the mean of a given individual, say
Z, arises from a gamma distribution in the population, with E(Z) = µ and
the variance proportional to the square of its mean. This mixture of Poisson
and gamma distributions leads to a negative binomial model, where the mean
value of Y is E(Y) = µ as in a Poisson, and the variance is var(Y) = µ + µ2/ψ

for some constant ψ. Note that, for large ψ the model approaches the Poisson
model. McCullagh ([68], Chapter 9), describe how to fit such a model via quasi-
likelihood, and [94] discuss an extension for negative binomial additive models.
McCullagh and Nelder write the canonical parameter as log(µ/(µ + κ)) ([68],
page 326, table 9.1) and Thurston et al. [94] describe an algorithm to fit
the model with weights κµ/(µ + κ). This bears a striking similarity with our
approach where the weight matrix W∗ can be used, which is given as a diagonal
of w∗

i = κwi/(wi + κ) and wi = µi.
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Smoothing with P-splines and PRIDE

Eilers and Marx [31] proposed generalized linear smoothing with penalized
B-splines for data pairs (xi, yi), with non-normal y. The linear predictor is
η = Bα, where B = [bij] is a matrix of B-splines, bij = Bj(xi). The log-
likelihood is modified by a penalty based on differences of α. This model can
also be extended with individual deviance effects as before. In the case of
Poisson regression this leads to the penalized log-likelihood

l∗ =
m

∑
i=1

(yiηi − µi)− λ ∑
k

(∆dαk)2/2− κ ∑
i

γ2
i /2. (6.3)

Here η = Bα + γ and d, the order of the differences, generally will be 2 or 3.
The weighted regression equations are very similar to (6.2), with B taking the
place of X and X′WX replaced by B′WB + λD′D, where D is a matrix such
that Dα = ∆dα.

Binomial data

The scoring algorithm in (6.2) applies to a whole class of generalized linear
models, as detailed by McCullagh and Nelder [68]. Suppose we have binomial
data (yi, ti), where y denotes the number of “successes” and t the number of
trials. Let E(Yi) = µi = ti pi, the canonical link pi = 1/(1 + exp(−ηi)),
with pi the probability of success. The weights are wi = ti pi(1− pi). Again
individual deviance effects can be introduced by setting η = Xβ + γ, in the
case of regression, or η = Bα + γ, in the case of P-spline smoothing.

Smoothing of life tables

Survival data can come as pre-grouped data, when there is a natural unit of
accounting, like years. When individual survival times and censoring status
are given, we can follow [28] and introduce (narrow) time intervals. In each
interval the number of subjects at risk is counted, as well as the number of
events. The relationship between time and probability of an event can then be
estimated with a parametric or semi-parametric model.

Let rj be the number of people at risk in interval j and let yj be the number
of events in the same interval. Then we can write a generalized linear model
for the probability of an event pj as:

log(
pj

1− pj
) = ηj = Bα
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In practice the probabilities are small and then it will be advantageous to switch
to a Poisson model, in which we model the expectation, µj, of yj

log µj = ηj = Bα + log(rj)

where log(rj) is an offset term. Here B is a B-splines basis and a difference
penalty is put on α.

6.3 Inference

We propose individual deviance effects mainly as an exploratory tool. After
fitting γ, one should study plots of its elements, to detect local patterns their
size and direction. This might suggest patterns in the data that can be caught
by modified models. Successful modification should lead to a stronger weight
of the penalty, with correspondingly smaller deviance effects. We could call
this inference in a wide sense.

To appreciate the usefulness of PRIDE for inference in a narrow sense, we
can study bias and standard errors in a simulation setting. We do that on
a limited scale in the applications Section, for Poisson regression. The main
advantage of PRIDE is that is leads to more realistic standard error estimates,
which generally will be (much) more conservative than those obtained under a
model that neglects overdispersion.

The improvements of estimated standard errors are obtained at relatively
low computational costs. One could set up full-scale (generalized linear) mixed
model machinery, specify a distribution for γ and use any of the established
algorithms to estimate its variance. The deviance effects will then, of course,
become bona fide random effects. Our κ is the inverse of their variance. For
exploration little would be gained, and changes in estimated standard errors
will be small too.

For larger problems one would run into problems, unless one uses very smart
generalized linear mixed model software. Our approach has been used on life
tables with 100 by 100 cells. The sparse algorithm keeps memory use and
computation time small. Most standard software will not be able to handle 104

random effects.

Optimal penalty weights

A common technique for finding an optimal value of the smoothing parameter
λ is to combine the deviance and effective degrees of freedom of a fitted model
in Akaike Information Criterion (AIC). We have found that AIC served us well
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in many applications, although AIC has a reputation for under-smoothing,
especially in models with large numbers of parameters. Once individual de-
viance effects are included in models, optimization of AIC generally indicates
a relatively small effective dimension (compared to the nominal number of pa-
rameters, which includes the deviance effects). The use of corrected AIC does
not change results much.

Another approach comes from generalized linear mixed models (GLMM).
A general algorithm for the estimation of the fixed and random effects and
components of dispersion in GLMMs was proposed by [84]. The proposed
algorithm can be adapted here to estimate the optimal values of the penalties.
Consider the model in Section 6.2.1 with log-likelihood function given by (6.3),
let H denote the hat matrix and Hd the lower right submatrix of the hat matrix,
corresponding to the individual deviance effects. Then the optimal value of the
ridge penalty can be computed as:

κ̂ = tr(Hd)/γ′γ

Similarly, the weight of the penalty for the smoothing splines can be given as:

λ̂ = tr(Hs)/αD′
αDαα

with tr(Hs) the trace of the upper left submatrix of the hat matrix. Throughout
this Chapter, we will refer to this approach for computing the optimal weight
as Schall’s algorithm.

6.4 Efficient computation

The penalized likelihood equations and the iterative solution algorithm lead to
large linear equation systems. Unless one tries very small values of κ, numerical
stability problems do not occur, even though the number of equations is larger
than the number of observations. The ridge penalty stabilizes the computation,
as is borne out by the effective dimension, which turns out to be much smaller
than the number of equations.

Solving the system (6.2) can lead to efficiency problems. If the number of
observations becomes larger than, say, 1000, the demands on memory and com-
putation time could become a problem, if one would simply store and repeatedly
solve the system. However, using our proposed algorithm the computations can
become efficient even in very large data sets of 10000 cases or more.

On convergence we also need the inverse of the matrix on the left-hand side
of equation (6.2), to compute the standard errors. Furthermore we need an
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additional matrix product to compute the effective dimension. In the Appendix
we describe how to exploit the extreme sparseness of the equations to speed
up the computations, without explicitly forming the matrices. Note that we
compute the diagonal of the inverse of a sparse matrix; standard sparse matrix
software will not work here.

If one is willing to accept an approximate solution, say in an exploratory
phase of research, a very simple fast algorithm is available for regression prob-
lems. One first estimates β by a standard GLM and keeps it fixed. Then only
a diagonal system of equations for the deviance effects remains, which is trivial
to handle.

6.5 Applications

Number of faults in fabric rolls

Bissell [14] reported a data set on the number of faults in rolls of fabric. As-
suming that the number of faults is proportional to the length of a roll, Poisson
regression on the logarithm of length of roll (x) as the explanatory variable
should provide a reasonable fit, see [47]. The estimated intercept is -4.17 (se =
1.14) and coefficient of log(x) is 0.99 (se = 0.17). The deviance is 64.5 with 30
degrees of freedom, indicating overdispersion. A negative binomial model gives
-3.79 (1.42) for the intercept and 0.937 (0.225) for the coefficient of log(x).

To illustrate the mechanism behind our methodology consider the simple
model, where only a constant is added to the model and there is no information
available on the length of the fabric rolls. Then the fit will be a straight line (as
shown in upper left plot of figure 6.1) with deviance effects corresponding to the
distance of each point from the fitted line. The weight of the penalty for that
model is 3.981. When the fabric length is included in the model the weight of
the penalty becomes 9.549, and the deviance effects are smaller this time (6.1,
middle right plot). However, the model can be further improved by taking
the logarithm of the fabric length. The optimum weight of the penalty was
κ = 8.709. With the inclusion of the deviance effects and log(x) the intercept
is estimated as -3.647 (1.442) and the coefficient of log(x) as 0.909 (0.225).
These results are very similar to those obtained with the negative binomial
model. In the bottom graph the fit has become better, and the deviance effects
even smaller. Some of the bias of the previous models has been eliminated and
what is left described in the deviance effects plot is due to randomness in the
data.

105



Overdispersion Modelling with Individual Deviance Effects and
Penalized Likelihood

Length
200 400 600 800

0
10

20

Fabric data

Length
200 400 600 800

-0
.5

0.
5

Deviance effects

Length
200 400 600 800

0
10

20

Length
200 400 600 800

-0
.5

0.
5

Length
200 400 600 800

0
10

20

Length
200 400 600 800

-0
.5

0.
5

Figure 6.1: Fabric fault data. Results of three models; upper graph: data and
fitted line η = β0 + γ and a plot of deviance effects, middle graph: data and
fitted line η = β0 + β1X + γ and a plot of deviance effects, bottom graph: data
and fitted line η = β0 + β1 log(X) + γ and a plot of deviance effects.
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Figure 6.2: Deviance versus fixed center effects for the gynecological practises
data. (4) represent centers with rate of death less than 0.08 and (×) centers
with death rate more than 0.85.

Comparison of gynaecological practices

The data arise from a project on quality comparison of gynecological practices
in the Netherlands. The study monitors the performance of about 140 centers
from 1988 up to recent date, with respect to different aspects of childbirth. In
this Chapter we only consider data from 1998 and concentrate on the mortality
of pre-term infants (from 32 up to 37 weeks). The covariates are: weight of
the child, pregnancy length, sex, blood pressure and a binary indicator of data
quality.

In 1998, in 114 centers, 2212 infants were born prematurely. We only consid-
ered cases with full records, leaving a data set of 2067 births which contained
561 deaths. The mean number of births per center is 18.13 and the overall
mortality rate is 27.1%.

First we checked whether an individual deviance effect per child made sense.
This was not the case: AIC indicated an essentially infinitely high value of κ.
This is a fundamental issue, since in the binomial case with clusters of size 1
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the individual deviance effects are not identifiable, and that forces the penalty
to infinitive.

We introduced deviance effects for the centers, leading to the linear predictor
η = Xβ + Cθ, where C is an indicator matrix connecting a child to a center,
and X the matrix of covariates. According to AIC the optimal value of log10κ

is 1.25.
It is instructive to compare θ̂ when κ = 0, implying fixed center effects, with

the results of PRIDE. As Figure 2 shows, strong shrinking takes place, espe-
cially for the more extreme center effects. Lack of space does not allow a further
analysis of these data. We note however that the estimated deviance effects
and their standard errors allow the implementation of probabilistic ranking
procedures([98, 88, 36, 93]). We will report on this elsewhere.

Digit preference in demographic data

Age heaping is a common phenomenon in demography, caused by age misstate-
ment in data registration when reliable records are not available. Many people
tend to misstate their age (or their year of birth) in favor of numbers ending
in multiples of five. To illustrate this, Figure 3 shows empirical data of the
observed deaths of the male Greek population in 1960. The raw data are pre-
sented in the upper right histogram (as vertical narrow bars). For ages over 45
we observe large heaps every five years.

The Poisson smoother was constructed as follows. Define yi the number of
death at age i, and E(yi) = µi, then the model is η = log(µ) = Bα where B is
a B-spline bases. The size of y is small and intervals have equal widths, so if we
evaluate a zero-degree B-spline basis B at midpoints we get the identity matrix
I. A difference penalty λ|Dα|2 on α controls the amount of smoothness. The
upper left graph shows the graph of AIC, indicating a small value of λ, leading
to the quite rough line in the upper right graph, which essentially follows the
data. A first indication that the problem stems from the counts at ages that are
multiples of five, can be seen in the lower right graph. The counts at multiples
of five have been replaced by the average of the preceding and the following
age. The optimal smooth curve already looks better, but it still shows spurious
detail.

This phenomenon, also known as digit preference, can lead to complicated
and misleading patterns. Eilers and Borgdorff [30] describe systematic ways of
dealing with the problem, accounting for transfers of counts from “unpopular”
to “popular” ending digits. Here we take the simple route of adding a deviance
effect: log µ = η + γ.

108



6.5. Applications

log10(lamdas)

A
IC

-1 0 1 2 3

10
0

15
0

20
0

25
0 lambda=3.98

Age

D
ea

th

20 30 40 50 60 70 80

20
0

40
0

60
0

80
0

20
0

40
0

60
0

80
0

Raw data and Trend

log10(lamdas)

A
IC

-1 0 1 2 3

10
5

11
5

12
5

lambda=50.11

Age

D
ea

th

20 30 40 50 60 70 80

20
0

40
0

60
0

80
0 Interpolated data and Trend

Figure 6.3: Graphs of optimal AIC, and smoothed data of the Greek male
population in 1960, for the raw and interpolated data set

109



Overdispersion Modelling with Individual Deviance Effects and
Penalized Likelihood

log10(lambda)

lo
g1

0(
ka

pp
a)

116118

121
121

125

125

140
160
177
210

AIC

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.
0

1.
5

2.
0

2.
5

3.
0

AIC for kappa=63.09

log10(lamdas)

A
IC

2.0 2.5 3.0 3.5 4.0 4.5 5.0

11
6

11
8

12
0

12
2

Data and Trend

Age

D
ea

th
s

20 30 40 50 60 70 80

20
0

40
0

60
0

80
0

Deviance Effects

Age

G
am

m
a

20 30 40 50 60 70 80

-0
.2

0.
0

0.
1

0.
2
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in AIC for log10(κ) = 1.8 and varying λ(c). Histogram of empirical data
and smoother, -.- smoother based on Schalls algorithm (d). Values of the
overdispersion γ for different ages.
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We fitted the data using both the AIC and Schall’s algorithm to compute
the weight of the penalty. Results are presented in Figure 4. A contour plot
illustrates the dependence of AIC on λ and κ. The best choice is log10 λ = 3.4
and log10 κ = 1.8, based on a two dimensional grid search. The profile plots
show the behavior of AIC for optimal values of the parameters. Following the
AIC indicated weight the smoothed histogram now looks much more realistic.
On the other hand, the smoother from Schalls algorithm was still influenced
by the digit preference. The pattern of the deviance effects emphasizes digit
preference: large positive values at multiples of five flanked by negative values.

Simulation studies

In order to assess how the PRIDE models perform in cases that the data arise
from a specific theoretical model, a series of simulation studies was performed.
We simulated data coming from a negative binomial model. The framework
within which the data were simulated was similar to the example of the fabric
data. We simulated 100 counts arising from a negative binomial model, based
on an explanatory variable, and variance var(Y) = µ + µ2/ψ with parameter
ψ chosen from the set of different values {2, 4, 6, 8, 10, 20}. For each different
parameter the data were created on the theoretical model with η = 2.7172 + x
and each setting was repeated a thousand times. Three different models were
fitted on the data, a simple Poisson model, a negative binomial and a PRIDE
model. The results are presented in table 6.5.4. As expected, a simple Poisson
model does not perform well, especially for small values of the ψ parameter,
where it underestimates the standard errors, and the number of cases where
the true value of the coefficient was in the interval created from the estimated
coefficient plus or minus two times the standard errors, was small. On the
other hand the negative binomial model corrected the standard errors and
gave estimates for the coefficients closer to the real ones. Even though the
negative binomial is the true model from which the data rise, the PRIDE model
outperforms it in most of the cases. The pride model corrects the estimated
standard errors, gives better estimates for the coefficients but also estimates
the ψ better than the negative binomial model, with the only exception when
ψ = 2. In the last row of the table we also present a case when the “true”
model is Poisson (when ψ = 20).

Survival of Mediterranean flies

We will now extend the idea of adjusting for overdispersion in Poisson counts
to the field of survival analysis. As an example consider data which consist of
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Table 6.1: Results of 1000 simulations on 100 cases, simulated from a negative
binomial model with η = 2.7172 + x and ψ (the parameter of the negative
binomial distribution) was chosen from the set {2, 4, 6, 8, 10}. Standard errors
of the estimated coefficients are given in parentheses. The last column presents
the number of times that the true value of the constant lied within the estimated
confidence interval of the coefficient (95% nominal coverage).

β̂1 β̂2 ψ̂ coverage (%)

Poisson 1.132 (.125) 0.591 (.066) 55.4

ψ = 2 neg. bin. 1.215 (.236) 0.544 (.132) 2.09 80.7

PRIDE 1.016 (.321) 0.527 (.181) 1.12 96.4

Poisson 1.160 (.124) 0.578 (.065) 55.1

ψ = 4 neg.bin 1.229 (.190) 0.539 (.105) 4.16 72.5

PRIDE 1.163 (.202) 0.525 (.112) 3.88 83.2

Poisson 1.142 (.125) 0.586 (.065) 59.4

ψ = 6 neg.bin. 1.201 (.172) 0.552 (.094) 6.33 70.5

PRIDE 1.169 (.175) 0.540 (.096) 6.03 76.5

Poisson 1.141 (.125) 0.589 (.065) 60.8

ψ = 8 neg.bin. 1.194 (.162) 0.559 (.088) 8.50 68.2

PRIDE 1.174 (.163) 0.550 (.089) 8.38 72.5

Poisson 1.138 (.124) 0.589 (.065) 65.0

ψ = 10 neg.bin. 1.186 (.156) 0.562 (.085) 10.57 71.0

PRIDE 1.171 (.156) 0.555 (.085) 10.48 73.7

Poisson 1.098 (.126) 0.612 (.066) 82.2

ψ = 20 neg.bin. 1.391 (.105) 0.118 (.014) 621.98 5.6

PRIDE 1.387 (.105) 0.118 (.014) 931.06 6.5

112



6.5. Applications

days
0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

Hazard and smoothed hazard

Raw
AIC
Schall

days
0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

Hazard and smoothed hazard

days
0 10 20 30 40 50 60

-0
.6

-0
.2

0.
2

0.
6

Deviance effects

days
0 10 20 30 40 50 60

-0
.6

-0
.2

0.
2

0.
6

Deviance effects

Figure 6.5: Hazard and smoothed hazard of flies in cohort 2 (left side) and 5
(right side), along with histograms of the corresponding deviance effects.
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lifetables for 46 cohorts of female Mediterranean flies (Ceratitis capitata). Each
cohort consisted of about 4000 flies which were put in a cage and for each cage,
the number of flies alive at the beginning of each day was recorded. The flies
were observed for up to 174 days in some cohorts, and the number of deaths
for each cohort was recorded at the end of each day. For a detailed analysis of
the data see [71]. We restrict our analysis in two cohorts from the study chosen
at random.

The model is essentially the same as for the age distribution that we dis-
cussed before. The response is the number of flies dying per day. The number
at risk, r, is introduced as an offset E(y) = Bα + log(r) + γ. We used both AIC
and Schall’s algorithm to determine the optimal value of the penalty weights.
Figure 6.5 (right) shows an example where the size of the deviance effects are
small, as is also indicated by the large value of κ (251, determined by AIC),
while the difference amongst the fit using AIC and Schall’s algorithm are only
visible in the last few days of the follow up. In cohort 2 one can see quite
large deviance effects (κ = 15.8) with an absolute value up to 0.6. Apparently,
there is clustering in dying (and not dying) of the medflies. This means that
on certain episodes the hazard increases or decreases by a factor of almost 2
(exp(0.6) = 1.8). In this cohort however, the smoother chosen by Schall’s
algorithm follows the fluctuations of the data somewhat closer than required.
Based on that, the AIC will be preferred in determining the optimal value of
the penalty.

6.6 Discussion

We have introduced a simple device, individual deviance effects, to model
overdispersion, account for model bias and randomness in generalized linear
regression and smoothing. Although the nominal number of parameters is
increased enormously this way, a ridge penalty makes all parameters identifi-
able, reduces the effective model dimension, and stabilizes computations. A
very large system of estimating equations results from our model, but it is ex-
tremely sparse and we have shown how to solve it efficiently, deriving explicit
formulas for components of partitioned matrices.

Although our approach shows similarities with mixed modelling we stress
that PRIDE models do not estimate random effects. In contrast to the quasi-
likelihood approach, we prefer the appropriate exponential family distribution,
like Poisson or binomial. Established information criteria, like AIC, corrected
AIC or BIC can be computed, because the proper likelihood is available. Of
course our proposed methodology could be translated to mixed model method-
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ology, and use for instance REML methods to estimate the variance of the
deviance effect. However, our experience from generalized linear smoothing
and semi-parametric modelling has shown that AIC serves well.

Mixed models treat the random effects as parameters and require mod-
elling and distributional assumptions for their estimate. These assumptions
are part of the overall modelling of the data, and as such, they should be
checked whether they hold or not. In our approach, we have to deal with a
penalty which is chosen for modelling convenience and it is not open to the
usual model criticism using tests on the significance of the random effects.

The estimating strategy of PRIDE models can be closely related to penal-
ized quasi likelihood (PQL). In fact the penalized likelihood defined in (6.1)
is actually an extended likelihood ([73], p:429) and can be written in a more
general form as:

L(θ, y) = pθ(x|y)pθ(y)

where pθ(x|y) is the pure likelihood term and pθ(y) is the information that y
is random. In our penalized likelihood, the penalty term is equivalent to pθ(y)
and is derived by assuming normality for the deviance effects. This likelihood
is essentially the same as the h−likelihood, defined by [60], while in smoothing
literature it is known as quasi-likelihood [41]. However, Lee and Nelder chose to
estimate the variance of the random effect using restricted maximum likelihood
estimates (REML) whereas we use AIC for optimizing a penalty which is related
to deviance effects. Moreover, Lee and Nelder defined their likelihood to work
in a special class of conjugate hierarchical models where the distribution of
the random effect is conjugate to the conditional distribution of y given that
random effect. In our approach, although the likelihood is like being derived
on the assumption of normality of the deviance effects, in practice normality
need not to hold and no distributional assumptions have to be met.

We have considered a number of simple, but realistic, applications. We
have shown that PRIDE models can work as an approximation of the negative
binomial distribution, in the example of the fabric data. Experiments in large
life tables (over 100 years, 100 ages) have also shown good results (Iain Currie,
personal communication). Fitting the model is no more complicated than for
the Poisson model, because only the effective weights change. On convergence,
the fast algorithm we describe in the Appendix allows efficient computation of
effective dimension and standard errors of the fitted values.

When presenting this work to colleagues, we sometimes experienced that
the adjective “individual” in PRIDE caused confusion, especially in the context
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of counts or proportions. We emphasize that it does not point to the subjects
(faults, flies or men) that make up the counts, but the individual observational
units (fabric rolls, days or ages intervals) to which the counts are connected. In
other words: the individual rows in the regression model η = Bα for the linear
predictor.

The proposed methodology could easily be extended to handle hierarchical
structures. Whatever the linear component of the model would be, individual
parameter vectors could be added to account for overdispersion due to different
causes. Such an extended model would involve multiple ridge penalties, one
for each set of deviance effects. Methods for extending the proposed method-
ology on correlated and multivariate deviance effects can be derived, as well
interactions of the fixed with the deviance effects, and is currently a topic of
research.

One can look at PRIDE as taking conditional modelling to the limit. The
analysis of the fabric fault data illustrates this. We get essentially the same
results as from a negative binomial (NB) fit, which is a marginal model, without
the complications of the NB likelihood. There the deviance effects showed no
obvious pattern. We could have used NB smoothing for the Greek mortality
data and perhaps we would have found a pleasing trend. However, we could
only look at residual plots and we would not have isolated the digit preference
pattern that the deviance effects represent.
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APPENDIX: Efficient Computation

Consider a PRIDE model with systematic component η = Bα + γ where B is
the basis matrix, α the corresponding coefficients, a penalty α′Pα and individual
deviance effects γ. We have to invert a partitioned information matrix:[

B′WB + P B′W
WB W + κ I

] [
S11 S12
S21 S22

]
=
[

I 0
0 I

]
It follows that

S11 =
[
(B′WB + P)− B′W(W + kI)−1WB

]−1
= (B′W∗B + P)−1,

with W∗ a diagonal matrix having w∗
ii = κwii/(κ + wii). This is a small matrix

with size equal to the number of basis functions. We also have:

S22 =
[
(W + κ I)−WBS11B′W

]−1 = (W + κ I)−1 + (W∗/κ)BS11B′(W∗/κ),

where we have used the Morrison-Woodbury matrix inversion lemma:

(A + PQR)−1 = A−1 − A−1P(P′A−1R + Q−1)−1RA−1

The off-diagonal submatrices follow directly:

S21 = S′12 = −(W∗/κ)BS11.

For the estimation of the effective dimension of the model the trace of the
hat matrix is needed. That means multiplying the inverse of the information
matrix, with the information matrix without the penalties as given by:

H =
[

S11 S12
S21 S22

] [
B′WB B′W
WB W

]
=
[

H11 H12
H21 H22

]
Working in the same way as before:

H11 = S11B′WB + S12WB = S11(B′WB− B′W∗WB) = S11B′W∗B.

H22 = S21B′W + S22W = (W ∗ /κ)− (W ∗ /κ)BS11B′W∗

In the practical implementation one should handle large diagonal matrices as
vectors. Pre-multiplication, as in WB, with such a matrix should be imple-
mented as scaling of the rows of B by the corresponding elements of the vector
w that forms the diagonal of W. The code fragment below, for R or S+, uses
these devices.
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v <- kappa * w / (w + kappa)

Fm <- 1/(w+kappa)

G1 <- rep(v, ncol(X)) * X

S11 <- solve(t(X) %*% G1 + P)

G2 <- rep((v / kappa), ncol(X)) * X

G3 <- G2 %*% S11

L1 <- (G3 * G2) %*% rep(1, ncol(X))

S22 <- Fm + L1

R11 <- S11 %*% t(X) %*% G1

R22 <- (v / kappa)- L1 * kappa

tr <- sum(diag(R11)) + sum(R22)
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