
Modelling long term survival with non-proportional hazards
Perperoglou, A.

Citation
Perperoglou, A. (2006, October 18). Modelling long term survival with non-proportional hazards. Retrieved from
https://hdl.handle.net/1887/4918

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of
Leiden

Downloaded from: https://hdl.handle.net/1887/4918

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4918

Chapter 3

A fast routine for fitting Cox

models with time varying effects

Abstract

The S-plus and R statistical packages have implemented a counting process

setup to estimate Cox models with time varying effects of the covariates.

The data set has to be re-arranged in a repeated measurement setting: the

time is divided into small time intervals where a single event occurs and for

each time interval, the covariate values and outcome in the interval for each

subject still under observation are stacked to a large data set. This is the

known (Tstart,Tstop] algorithm implemented in Therneau’s Survival library

(S-plus) which has been ported into an R package by Thomas Lumley.

However, the expansion of a data set leads to a larger set which can be hard

to handle even with fast modern computers.

We propose the use of a fast and efficient algorithm, written in R, which works

on the original data without the use of an expansion. The computations are

done on the original data set, with significant less memory resources used.

This improves the computational time by orders of magnitude. The algorithm

can also fit reduced-rank Cox models with time varying effects.

We illustrate the method on a large data set of 2433 breast cancer patients, a

smaller study of 358 ovarian cancer patients, and compare the computational

times on simulated data of up to 10,000 cases with SAS proc phreg and

survival package in R. For larger data sets our algorithm was several times

faster, and was able to handle larger data sets then SAS and R.

3.1 Introduction

Cox proportional hazards model [24] has become the most common method
to analyze time to event data. Consider information on a set of covariates
as an n × p matrix X, where n is the number of cases and p is the number

33

A fast routine for fitting Cox models with time varying effects

of covariates, and let Xi a row vector of covariates for individual i. The Cox
model specifies the hazard as

h(t|Xi) = h0(t) exp(Xiβ) (3.1)

where h0(t) is the unknown baseline hazard, and β is a p × 1 vector of coef-
ficients. Since the model assumes that the hazard ratio between two subjects
with fixed covariates is constant it is also known as proportional hazards model.

To fit the model a conditional, or partial likelihood is used. Data are sorted
according to their unique failure times (assuming that no ties are present) and
at the time just prior to an event, say ti, the set of individuals still at risk form
the risk set, denoted by Ri. The partial likelihood is given as a product of the
conditional probabilities, given an event, that individual i is the one that failed
at time ti. To estimate the model a Newton-Raphson algorithm is used, where
the definition of the risk sets at each event time is an essential concept. The
creation of the risk sets is done internally in most of the popular statistical
software that fit proportional hazards models. However, it could also be done
externally, by creating explicitly the risk set at each event time and stack them
all together in a new data set. Given that, the estimation of a Cox model, is
essentially the same as fitting a conditional logistic regression model stratified
on the different risk sets.

In many medical studies, individuals are monitored throughout their follow
up period, during which, the values of some covariates may change. For ex-
ample, a covariate may record repeated measurements of blood pressure of a
patient, or a transplant indicator variable. Variables whose values change over
time are known as time dependent covariates. When time dependent covari-
ates are present the creation of an expanded data set with stacked risk sets is
essential. In such a setting, the covariate is denoted as Xi(t) and equation 3.1
is extended to

h(t|Xi(t)) = h0(t) exp(Xi(t)β)

To fit this model one need values of X(t) at all event times.
A different extension of the Cox model is the Cox model with time varying

coefficients. Assume the effect of a covariate that changes over time, such as
the effect of a treatment that might wash away. In this case the covariate itself
is fixed but its effect is allowed to vary through time, and thus leading to time
varying effects of the covariates. In such cases model 3.1 can be extended to

h(t|Xi) = h0(t) exp(Xiβ(t)) (3.2)

34

3.1. Introduction

The time varying effect for covariate j could be modeled by

β j(t) =
q

∑
k=1

θjk fk(t), j = 1, ..., p

where fk(t) is a function of time with k = 1, ..., q and θjk is the coefficient for
the k-th time function on covariate j.

This model is usually fitted using software for time dependent covariates by
introducing p × q pseudo time dependent covariates Xj fk(t). However, since
these pseudo time dependent covariates vary continuously through time this is a
computational challenge for large data sets. For example consider data on three
patients (id=1,2,3) with information on one covariate (x with values x1, x2, x3)
and assume that we want to model the interaction of that covariate with three
basis time functions f1(t), f2(t) and f3(t). To include that interaction, every
function of time must be evaluated at every subject’s failure time, not just the
time for the current subject. Using the command expand.breakpoints in R

would lead to a data set of the following form:

id start stop status X F1 F2 F3
1 0 t1 1 x1 f1(t1) f2(t1) f3(t1)
2 0 t1 0 x2 f1(t1) f2(t1) f3(t1)
2 t1 t2 1 x2 f1(t2) f2(t2) f3(t2)
3 0 t1 0 x3 f1(t1) f2(t1) f3(t1)
3 t1 t2 0 x3 f1(t2) f2(t2) f3(t2)
3 t2 t3 1 x3 f1(t3) f2(t3) f3(t3)

and a model with time varying effects could be fitted with the call:

coxph(Surv(start,stop,status)~X+X:F1+X:F2+X:F3)

The creation of an expanded data set with stacked risk sets can be avoided
here, since these covariates are known and “predictable” at time t = 0. Thus,
the creation of the risks sets can be done internally in order to save memory
and computing time.

The purpose of this Chapter is to describe an efficient computation algo-
rithm written in R, that can fit Cox models with time varying effects of the
covariates, with the definition of the risk sets been done internally, without the
use of an expanded data set. This saves memory, and decreases computation
time by orders of magnitude. The routine can be adapted very easily to fit
reduced- rank hazard models as described by Perperoglou, le Cessie and van

35

A fast routine for fitting Cox models with time varying effects

Houwelingen [77]. The structure of the Chapter is as follows: the basic the-
ory will be briefly reviewed in Section 3.2, followed by a brief description of
reduced-rank models. In Section 3.4 the software details will be discussed and
in Section 3.5 we will present applications to real and simulated data. The
Chapter closes with a discussion.

3.2 Cox model with time varying effects of the covariates

Assume information on p covariates and n cases that form the n× p matrix of
covariates X, sorted on their survival/censoring time t1, t2, ..., tn and for sim-
plicity assume that there are no ties present. Also assume that the effects of
covariates may vary over time, and let F be the n× q matrix of time functions
with Fik = fk(ti). Then, at event times tj, model 3.2 can be written as

h(tj|Xi) = h0(tj) exp(XiΘF′j) (3.3)

where Θ is the matrix of unknown regression coefficients, which we call the
structure matrix, and Xi and Fj denote the i-th row of X and j-th row of F,
respectively. This notation is very useful, especially for representing reduced-
rank models which are presented in Section 3.3. For example, in a simple case
where there is information on two covariates x1, x2 which interact with one time
function f (t) = t model 3.3 is written as:

h(t|X) = h0(t) exp(θ11x1 + θ12x1t + θ21x2 + θ22x2t).

The partial likelihood is given by:

L(Θ) = ∏
event times

exp(XiΘF′i)
∑j∈Ri

exp(XjΘF′i)

The numerator of the partial likelihood depends only on information of the case
that experiences an event, while the denominator contains the information of
all cases in the risk set Ri, that is the set of cases j that have observation
time (censored or not) tj ≥ ti. To maximize the likelihood, a Newton-Raphson
algorithm is used. Define Θν =vec(Θ), which is a vectorization -by column- of
the structure matrix. The score function is then given by:

U(Θν) =
∂ ln(L(Θ))

∂Θν
= ∑

event times
(Xi − X̄i(Θ))⊗ Fi

where ⊗ is the kronecker product and

X̄i(Θ) = ∑
j∈Ri

Xj exp(XjΘF′i)/ ∑
j∈Ri

exp(XjΘF′i)

36

3.3. Reduced-Rank Hazard Regression

the mean of covariate vectors Xj in risk sets Ri , weighted by exp(XjΘF′i).
Then the information matrix is given by

I(Θν) = −∂ ln(L(Θ))
∂Θ2

ν
= ∑

event times
Ci(Θ)⊗ (FiF′i)

with Ci(Θ) the covariance matrix of covariate vectors Xj in risk sets Ri,
weighted again by exp(XjΘF′i). The covariance of Θν is given by inverting
the information matrix.

Our software uses the score functions and the information matrix to maxi-
mize the likelihood via a Newton-Raphson algorithm. By using the kronecker
function the algorithm is very fast in finding the values of the coefficients that
maximize the likelihood. To estimate the standard errors of the coefficients one
has to invert the information matrix and compute the square root of diagonal
values. At the end of the fitting algorithm the baseline hazard can be estimated
as:

Ĥ0(t) = ∑
ti≤t

di

∑j∈Ri
exp(XjΘF′i)

This is the known Breslow estimator given for covariate values X = 0.

3.3 Reduced-Rank Hazard Regression

Perperoglou, le Cessie and van Houwelingen [77] introduced the idea of reduced-
rank regression to survival analysis with time varying coefficients. A reduced-
rank model requires the matrix of regression coefficients Θ, as given in equation
3.3, to be of reduced-rank r, smaller than the number of covariates p and the
number of time functions q. This can be achieved by writing the structure
matrix as a product of two submatrices, Θ = BΓ′, with B of size p × r and
Γ of size q× r. This factorization results in a rich class of models. When the
rank=1 the model assumes that all time varying effects are common and shared
among the covariates, resulting in a very parsimonious model. On the other
hand, when r =min(p, q) the structure matrix is of full rank, and thus giving
the saturated model, identical to the one in equation 3.3.

In their original paper, the authors proposed an alternating algorithm for
estimating the model, which can be slightly modified here, so it can be fitted
using the proposed routine in this Chapter. Starting with some random initial
values of B and Γ, the scores and information matrix are estimated. Observe
that the derivatives of Θ with respect to B and Γ are given by:

37

A fast routine for fitting Cox models with time varying effects

• ∂Θν
∂Bν

= TB(Γ) = Γ⊗ Ip, a (p ∗ q)× (p ∗ r) matrix given by the kronecker
product of Γ with an identity matrix I(p×p)

• ∂Θν
∂Γν

= TΓ(B) = Iq ⊗ B, a (p ∗ q)× (q ∗ r) matrix given by the kronecker
product of B with an identity matrix I(q×q).

Define Bν =vec(B) and Γν =vec(Γ′). At the first step, the B coefficients are
updated by solving

∂ ln(L(Θ))
∂Bν

= TB(Γ)′
∂ ln(L(Θ))

∂Θν
= 0

with second derivatives

∂2 ln(L(Θ))
∂B2

ν
= TB(Γ)′

∂2 ln(L(Θ))
∂Θ2

ν
TB(Γ)

Once the values of B have been updated the algorithm alternates to the
estimation of Γ, by solving:

∂ ln(L(Θ))
∂Γν

= TΓ(B)′
∂ ln(L(Θ))

∂Θν
= 0

where the matrix of the second derivatives is

∂2 ln(L(Θ))
∂Γ2

ν
= TΓ(B)′

∂2 ln(L(Θ))
∂Θ2

ν
TΓ(B)

The whole process alternates between the two steps until the likelihood
stabilizes. The estimation of standard errors for a reduced-rank model is
somewhat more complicated since the information matrix used in the fit-
ting procedure is not of full rank. Furthermore, B and Γ are not identifi-
able. However, Θ is identifiable, but restricted by the rank(Θ) = r. Hence,
the covariance matrix of vec(Θ̂) is singular and it can be obtained from
cov(vec(Θ̂)) = D(D′ I(Θ)D)−1D′, where

D =

(
∂Θν
∂Bν
∂Θν
∂Γν

)

This covariance matrix can be used to obtain confidence bands for the varying
effects.

38

3.4. Description of the software

3.4 Description of the software

The code is written in R (version 2.0.1)[81], and the package coxvc_1-0-1.zip

and coxvc_1-0-1.tar.gz is available for download from the first authors web-
site at
http://clinicalresearch.nl/personalpage. It is also possible to use the
functions on S-plus (it was tested on S-plus 6 for Windows [51]) with a few
modifications. The basic structure can be seen graphically in figure 3.1. The
code is divided into four component functions. On top of the figure, the main
function coxvc is the starting point to define the formula and the data. Then,
depending on the rank of the model, one of the functions full.fit or rr.fit
is used. Within either of these functions, the details of the model are defined
and then a fourth function sumevents computes the risks sets and essential
parts of the score functions and information matrix.

In a bit more detail, the command line is:
coxvc(formula, Ft, rank, iter.max=30, data=sys.parent())

We explain here the basic arguments:

formula: A formula object, with the response on the left of a ‘∼’ oper-
ator, and the terms on the right. The response must be a survival object
as returned by the ‘Surv’ function.

Ft: A numeric matrix containing the values of the time functions. The
first column must be constant.

rank: Specifies the rank of the reduced-rank model. The maximum rank
cannot exceed the minimum of the number of covariates or time functions.

iter.max: Maximum number of iterations, default is 30.

coxvc is the main function that is used for the definition of the variables and the
model. Once the model has been specified the function calls either full.fit

-the function for fitting a full rank model- or rr.fit, a function for fitting
reduced-rank models.

For full rank models the code full.fit is simple and rather straightfor-
ward. The command line of the function is:
full.fit(eventtimes,X,Ft,theta,iter.max,n,p,q) with all the parts de-
fined in the body of coxvc. Some explanation is given here:

eventtimes: Follow up time only where an event occurs.

theta: The structure matrix of coefficients.

39

A fast routine for fitting Cox models with time varying effects

sumevents

(i, X, Ft, theta, n, p,
eventtimes)

full.fit

(eventtimes, X, Ft,
theta, n, p, q)

rr.fit

(eventtimes, X, Ft, b,
gamma, n, p, q, r)

coxvc

(time, death, X, Ft,
rank, iter.max)

Full model Reduced Rank

Figure 3.1: Data flow diagram of the coxvc program.

n: Number of cases.

p: Number of covariates.

q: Number of time. functions

The function calls function sumevents in which the definition of the risk sets
takes place, along with the calculation of parts of the score functions and the
second derivatives for event time i. Function sumevents is called in an sapply

command and the results are returned as a list that has to be unlisted extracting
the right components used in the scoring algorithm. The body of full.fit

has a while loop in which the scoring takes place. At the end of the procedure
the information matrix is solved to provide standard errors of the estimates.
The output contains the estimated coefficients of the Θ matrix, their standard
errors, and the value of the log likelihood.

40

3.5. Applications

For reduced-rank models, the function rr.fit is called which is very similar
to the one used for full rank models. The command line is:
rr.fit(eventtimes,X,Ftime,theta,iter.max,n,p,q,r)

in which the rank r of the model has to be defined. This function divides the
scoring algorithm in two steps, one for the estimation of B -first step- and a
second step for the estimation of Γ. The while loop that contains the scoring
comes to an end when the difference of the two different likelihoods from each
step is very small. At the end of the procedure cov(Θ̂) is computed. In the
case of reduced-rank models a generalized inverse matrix is needed (see end
of Section 3.3). We use the function ginv from the package MASS [102]. For
S-plus users this should be replaced with ginverse. The output of rr.fit

contains the matrices B, Γ and Θ, a matrix of standard errors and the final
likelihood of the model.

In practice only function coxvc has to be used in order for the model to
be defined. The function prepares the data in the appropriate form and calls
one of the internal functions to estimate the model. The returned value at the
end is an object of a class coxvc for the full model, or coxrr for the reduced-
rank model. The package contains routines for summarizing and printing the
models fitted by coxvc. Note that since the package was build mainly for
fitting reduced-rank models, all the covariates are supposed to interact with
the same time functions. However, when the model is of full rank it would be
useful to allow one covariate to interact with say, a linear function of time, and
another covariate to interact with another function. This could be achieved by
imposing some restrictions on the estimation method, and forcing some of the
γ’s to be zero. It is the authors’ intention to provide an update to the present
package just for that reason.

3.5 Applications

Survival of breast cancer patients

From 1981 up to 2002, 2433 women with operable breast cancer were treated
in IASO Woman’s Hospital, in Athens Greece. All of these cases had either a
mastectomy or a breast conserving surgery, and the diagnosis of breast cancer
was confirmed by histological examination after surgery. More than half of
the cases (1405 women) had received a full circle of 6-month chemotherapy
following the operation, 1814 patients were radiated to the area of the chest
and axilla to prevent a local recurrence, and 1810 cases received hormonal
treatment, which consisted of 20mg of Tamoxifen each day, for at least five

41

A fast routine for fitting Cox models with time varying effects

Table 3.1: Characteristics of 2433 breast cancer patients. T represents tumour
size (T1=0-20mm, T2=21-50mm, T3=>50mm), Ln is the number of positive
lymph nodes, and G represents tumour gradind (Bloom-Richardson classifica-
tion, GI=grade 1, GII= grade 2, GIII= grade 3)

n %
T1 1155 47.5
T2 1123 46.1
T3 155 6.4
Ln- 1137 46.7

Ln+1−3 484 19.8
Ln+4−9 428 17.6
Ln+>9 384 15.8

GI 331 13.6
GII 1470 60.4
GIII 632 26.0

years after surgery. The mean age of the patients was 56 years (from 23 up to
98) and 602 patient died within the follow up period. More information about
the cases characteristics can be found in table 3.1. The data are available on
request from the first author.

We consider seven covariates that may be important for the prognosis of
breast cancer: the age of the patient at the time of diagnosis, the tumor size
(measured in mm), the number of positive lymph nodes, the Bloom-Richardson
tumor grading, a binary covariate denoting whether the patient has had a
chemotherapy, another binary covariate for radiotherapy following surgery and
a binary variable denoting whether the patient received hormonal treatment.
We assumed that all of these variables may show a time varying effect especially
since the patients have been under observation for a long time, and there were
several cases that could considered long term survivors. As time functions
second degree b-splines were considered with 3 interior knots, at 1st, 2nd and
3rd quantile of survival time. That led to a matrix of time functions F =
[f1(t), f2(t), f3(t), f4(t), f5(t), f6(t)] with f1(t) a vector of one and f2(t), f3(t), ...
the first and second b-spline function, and so forth. The model assumed that
all seven covariates interact with the six time functions, which results in 42

42

3.5. Applications

Table 3.2: Partial log-likelihood, number of estimated parameters, AIC and
time of computation for different rank models.

log-likelihood parameters IC time of computation(s)
rank=1 -4118.57 12 -4130.57 42.74
rank=2 -4092.22 22 -4114.22 38.83
rank=3 -4083.92 30 -4113.92 34.75
rank=4 -4081.40 36 -4117.40 42.74
rank=5 -4079.69 40 -4119.69 16.97
rank=6 -4079.62 42 -4121.62 13.89

parameters to be estimated in total. We fitted the model described in S-plus

on a Pentium M, 1.86GHz with 1024MB of memory in 13.89 seconds. It was
not possible to fit the same model using the standard survival package in R

since the memory requirements for the expansion and handling of the data set
exceeded the available computer memory.

We fitted all possible reduced-rank models in the data set of breast cancer
patients. The calls are given here:

attach(iaso)

Ft <- cbind(rep(1,nrow(iaso)),bs(time,knots=c(24,48,96),degree=2))

#creates matrix of time functions

fit <- coxvc(Surv(time,death)~age+mass+positive+grade+chemo+radio

+horm,Ft,rank=6)

Table 3.2 presents the five different models, from rank=1 up to full rank, along
with the partial likelihood, the number of free parameters, the Akaike’s Infor-
mation criterion and the time (in seconds) required to fit the models. According
to AIC, the best model is rank=3.

The rank 3 model has 30 free parameters to describe the time varying
effects of the covariates, compared with the full rank model that has 42. In
figure 3.2 the effects of the covariates under the rank=3 model and the full
rank model are illustrated. There are some small differences in the effects of
the chemotherapy variable, with its effect shrunk towards zero in the reduced-
rank model, as well as the effect of the hormonal treatment in the start of the

43

A fast routine for fitting Cox models with time varying effects

follow up period. However, the figure reveals that the time varying effects can
be described adequately with less parameters.

Following one of the referees suggestions we also fitted an approximation
to the full rank model. The 200 month time frame was converted into 33 six-
months interval. That way we used a coarser grid of break points, making the
stack and split approach work on a smaller data set. The result can be seen
in Figure 3.3. It can be seen that the approximation to the full model per-
forms reasonable for some covariates at the first few months but the differences
become more important as time passes by.

Survival of ovarian cancer patients

To compare the results of our routine with the standard coxph function we
analyzed data from a smaller study. The data set consists of 358 patients suf-
fering from ovarian cancer, originally analyzed by Verweij and van Houwelingen
[104], and it is included as the demonstration data set in the coxvc package. We
have information on three covariates measured at the start of the treatment,
the Karnofsky index, a categorical variable that measures the ability of the
patients (from 1 up to 4), Figo status, a variable denoting the stage according
to International Federation of Gynecology and Obstetrics, taking values 0 or 1,
and the diameter of the residual tumor after the surgery, measured into four
categories from small to larger.

For fitting a full rank model we used the following calls:

data(ova); attach(ova)

Ft <- cbind(rep(1,nrow(ova)),bs(time,df=3))

coxvc(Surv(time,death)~karn+diam+figo, Ft, rank=3, data=ova)

The model was fitted in 0.79 seconds and the results are given in table
(3.3). In order to fit a model with time varying effects of the covariates we
first had to expand the data to create the different risk sets using the function
expand.breakpoints created by Kathy Russel. The function is available on
the internet from the following url:
www.biostat.wustl.edu/archives/html/s-news/1998-11/msg00139.html.
The calls used to create the model follow:

breakpoints <- sort(unique(time))

ova.exp <- expand.breakpoints(ova,breakpoints, tevent="time",

status="death", index="x", Zvar=FALSE)

attach(ova.exp)

44

3.5. Applications

0 50 100 150 200

0
.0

0
0

.0
4

time in months

lo
g

R
R

age

0 50 100 150 200

−
0

.0
4

0
.0

2

time in months

lo
g

R
R

tumour

0 50 100 150 200

0
.0

0
0

.1
5

time in months
lo

g
R

R

LN+

0 50 100 150 200

0
.0

0
.4

0
.8

time in months

lo
g

R
R

grade

0 50 100 150 200

−
0

.5
0

.5

time in months

lo
g

R
R

chemo

0 50 100 150 200

−
1

.5
−

0
.5

time in months

lo
g

R
R

radio

0 50 100 150 200

−
2

.0
−

1
.0

time in months

lo
g

R
R

horm

Figure 3.2: Effects of the covariates through time under the rank=3 (dashed
line) and the full rank (solid line) model. Time in months.

45

A fast routine for fitting Cox models with time varying effects

0 50 100 150 200

−
0

.2
0

0
.0

0

time in months

lo
g

R
R

age

0 50 100 150 200

−
0

.0
4

0
.0

0

time in months

lo
g

R
R

tumour

0 50 100 150 200

0
.0

0
0

.1
5

time in months

lo
g

R
R

LN+

0 50 100 150 200

−
2

0
1

2

time in months

lo
g

R
R

grade

0 50 100 150 200

−
1

.0
0

.5
1

.5

time in months

lo
g

R
R

chemo

0 50 100 150 200

−
1

.5
0

.0

time in months

lo
g

R
R

radio

0 50 100 150 200

−
2

.0
−

1
.0

time in months

lo
g

R
R

horm

Figure 3.3: Effects of the covariates through time under the full rank model
(solid line) and the approximated model (dashed line). Time in months.

46

3.5. Applications

Table 3.3: Results from full rank model using the function coxvc in the ovarian
data set.

coef exp(coef) se(coef) z p

karn 0.5562 1.744 0.152 3.6538 0.00026
diam 0.1990 1.220 0.168 1.1857 0.24000
figo 0.5011 1.650 0.392 1.2784 0.20000
karn:f1(t) -1.3696 0.254 0.730 -1.8761 0.06100
diam:f1(t) 0.0426 1.044 0.696 0.0612 0.95000
figo:f1(t) 0.5433 1.722 1.797 0.3022 0.76000
karn:f2(t) 0.4969 1.644 1.396 0.3559 0.72000
diam:f2(t) 0.4651 1.592 1.072 0.4337 0.66000
figo:f2(t) -2.2802 0.102 3.201 -0.7122 0.48000
karn:f3(t) -1.6764 0.187 2.150 -0.7796 0.44000
diam:f3(t) -1.5500 0.212 1.546 -1.0029 0.32000
figo:f3(t) 3.4807 32.482 4.358 0.7987 0.42000

Ftt <- cbind(rep(1,nrow(ova.exp)), bs(Tstop,df=3))

coxph(Surv(Tstart,Tstop,death)~karn:Ftt+diam:Ftt+figo:Ftt,

data=ova.exp)

To expand the data set 1.14 seconds were needed, and 1.42 seconds for fitting
the model on the expanded data. The results from the model are almost iden-
tical to the ones given in table (3.3), with only small differences in the third
decimal digit of the z values in some of the covariates. Overall, our procedure
fitted the model even in a small data set faster than coxph with very similar
results.

Simulated data

To test the speed of the algorithm we simulated survival data of different size. In
each case, two covariates were created, one dichotomous and one continuous (X1
and X2). The follow up time was simulated from an exponential distribution
with rate equal to exp(β1X1 + β2X2) with β1 = 1 and β2 = 0.5. We assumed
that there were no censored cases.

Following the classical R approach we first had to expand the simulated data

47

A fast routine for fitting Cox models with time varying effects

Table 3.4: Time of estimation (in seconds) for simulated data sets of size n
using the new algorithm (coxvc), coxph command in R and proc phreg in
SAS. Time to fit coxph also includes the time to create an expanded data set
using expand.breakpoints function.(-) Not enough memory to fit the model.

n coxvc R coxph SAS phreg
100 0.15 0.16 0.15
250 0.54 1.34 0.20
500 1.06 9.41 0.39
750 1.93 19.98 1.03

1000 3.32 48.76 2.98
1500 6.94 165.80 6.09
2000 11.24 - 9.50
3000 23.74 - 18.93
5000 44.22 - 318.29

10000 156.83 - 784.23

set and then fit the model using the following code:

breakpoints <- sort(unique(time))

dat.exp <- expand.breakpoints(sim.data,breakpoints,index="id",

status=death,tevent="time", Zvar=FALSE)

fit <- coxph(Surv(Tstart,Tstop,death)~ x1+x2+x1:Tstop+x2:Tstop,

data=dat.exp)

Using our package coxvc we fitted the model on the original data set as follows:

Ft <- cbind(rep(1,nrow(sim.data)),time)

fit <- coxvc(Surv(time,death)~x1+x2,Ft,rank=2,data=sim.data)

while in SAS we used proc phreg to fit the model. Table 3.4 illustrates the times
for fitting full rank models on different sizes of data using the new approach
versus the standard coxph command from survival package in R (which is
based on an S-plus library written by T. Therneau [91] and translated into a
package by T. Lumley [64]) and SAS [83] proc phreg.

For a small data set of 100 cases and using our proposed coxvc command,
0.15 seconds were needed to estimate the model, while for a data set of 10000

48

3.6. Discussion

cases with no censoring, the procedure required 156.83 seconds (less than 3
minutes) to give the result. In the case of coxph, the time that was required to
expand the data set -using the function expand.breakpoints- is also included
in the table. Since the data set has to be expanded, S-plus fails to fit models
with number of events that exceed 1500. On the other hand, SAS is quicker
than our algorithm in small data sets, but as the number of events increases
the routine becomes slower.

3.6 Discussion

We have presented a simple yet very efficient algorithm for fitting Cox models
with time dependent effects of the covariates. The main merit of our function is
that it works directly on the original data set allowing for time varying models
to be fitted on a large number of cases. With respect to estimation time, the
routine is equivalent to proc phreg used in SAS when applied to small data sets,
but performs better as the number of cases increases, and much faster than the
routine used in S-plus and R. In simulated examples the computational time
was decreased by orders of magnitude, and our routine was able to fit models
on large data, where SAS was slower and R failed due to memory problems.

One of the referees raised a concern about the precision of our routine
since we use different methods for inverting matrices. In our experience so far
with the presented examples and the simulated data sets, the results are very
similar in the cases where we could compare our method with the standard
coxph function. We have also distributed our package among colleagues for
testing and use and none of them reported any problems. The package was
also tested on later versions of R and it works without any problems.

49

