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Chapter 2

Reduced-rank hazard regression

Abstract

The Cox proportional hazards model is the most common method to ana-

lyze survival data. However, the proportional hazards assumption might not

hold. The natural extension of the Cox model is to introduce time varying

effects of the covariates. For some covariates such as (surgical)treatment non-

proportionality could be expected beforehand. For some other covariates the

non-proportionality only becomes apparent if the follow-up is long enough.

It is often observed that all covariates show similarly decaying effects over

time. Such behavior could be explained by the popular (Gamma-) frailty

model. However, the (marginal) effects of covariates in frailty models are

not easy to interpret. In this Chapter we propose the reduced-rank model

for time varying effects of covariates. Starting point is a Cox model with p
covariates and time varying effects modeled by q time functions (constant

included), leading to a p × q structure matrix that contains the regression

coefficients for all covariate by time function interactions. By reducing the

rank of this structure matrix a whole range of models is introduced, from the

very flexible full rank model (identical to a Cox model with time varying ef-

fects) to the very rigid rank one model that mimics the structure of a gamma

frailty model, but is easier to interpret. We illustrate these models with an

application to ovarian cancer patients.

2.1 Introduction

For the last 30 years the field of survival analysis has been dominated by the Cox
Proportional Hazards (PH) model [24]. The term proportional hazards refers
to the fact that covariates have a multiplicative effect on the hazard, implying
that the ratio of the hazards for different individuals is constant over time.
For some covariates such as (surgical)treatment non-proportionality could be
expected beforehand. For some other covariates the non-proportionality only
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Reduced-rank hazard regression

becomes apparent if the follow-up is long enough.
A large number of researchers have worked on generalizations of the PH

model. Cox proposed to include an interaction term of the covariates with time
as a test for proportionality [24]. Other approaches include a class of dynamic
models which use sequential analysis based on a factorization of the likelihood
over the time intervals (Gammerman [33]), varying coefficients model, which
allow the coefficient of a covariate to vary depending on time or on the value
of another covariate (Hastie and Tibshirani [43]), adaptive models that allow
stepwise selection of variables and their possibly non linear or time varying
effects (Kooperberg, Stone and Truong [58]), smoothed time varying coefficients
based on a penalized likelihood (Verweij and van Houwelingen [103]) and many
more.

All the above generalizations deal with the problem of non-proportionality
but they can be difficult to estimate. The number of free regression parameters
can get quite large if many covariates are included with flexible time varying
effects. The number of free parameters could be reduced by taking into ac-
count mechanisms that can lead to non-proportional hazards such as frailty
models. The latter can be thought to arise from omitted covariates or from
latent variables as “cured/not-cured”.

A simple frailty model leads to a (marginal) model in which all covariates
show similarly decaying effects over time ( a good introduction on frailty models
can be found in Aalen [1], [3]). The slightly more complicated cure model allows
to model the relation between covariates and frailty as well. The drawback of
frailty models is that the effects of the covariates in the marginal models are
not additive any more, which makes the models harder to interpret.

As an alternative we propose the use of reduced-rank models in survival
analysis. By introducing a structure matrix in a Cox model with many co-
variates and time varying effects that contains the regression coefficients for all
covariate by time function interactions, we can reduce the rank of the model
and thus the number of parameters needed to be estimated. The reduced-rank
models run from the very flexible full rank model (identical to a Cox model
with time varying effects) to the very rigid rank one model that mimics the
structure of a gamma frailty model, but is easier to interpret.

The Chapter is organized as follows: In Section 2.2 we start with the basic
notation ways to handle non-proportional hazards and the marginal gamma
frailty/Burr model . Subsection 2.2.3 provides an introduction to the general
idea of reduced-rank regression, followed by the specific reduced-rank theory
for modelling survival data with time varying effects. The theory will then be
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2.2. Time varying effects and frailty models

applied to a data set of ovarian cancer patients in Section 2.3. We will discuss
the results and compare the models. The Chapter closes with a discussion.

2.2 Time varying effects and frailty models

Let t denote time until the event of interest, X a row vector of covariates of
dimension p and β a p-vector of covariate coefficients (β1, ..., βp)′. The Cox
model is defined as:

h(t|X) = h0(t) exp(Xβ) (2.1)

where h(t|X) is the hazard at time t for individual with covariate vector X and
h0 is an unspecified non-negative function of time called the baseline hazard.
The model assumes that the hazard ratio between two subjects with fixed
covariates is constant and that is why it is also known as proportional hazards
model. When the assumption of proportionality does not hold, alternative
models have to be considered.

Cox model with time varying effects of the covariates

For simple categorical covariates apparent non-proportionality of the effects
can be handled by stratification. However, this is impossible for continuous co-
variates and impractical for a large number of categorical covariates. To model
non-proportional hazards we follow the line of Cox, who proposed to include an
interaction term of the covariates with a time function f (t) or several interac-
tions with more than one time function. He considered simple transformations
of time, such as log(time), time2,

√
time. In that case the assumption of pro-

portionality is relaxed by introducing one single function to describe the time
varying effect.

More generally, we can construct more complex models by choosing a set of
q“base functions”( f1(t), f2(t), ..., fq(t)) such as polynomials or splines [40]. The
time varying effect of covariate Xi can then be described as βi(t) = θi1 f1(t) +
... + θip fp(t). The choice of time functions, as well as the number is arbitrary
and may depend on the functional form of the data or the nature of the problem.
To assure that this model also contains the basic PH-model, the constant is
one of the basis time functions or is contained in the linear subspace spanned
by the time functions. We will come back to an appropriate choice of the
time-functions later on.

Let F(t) be the row vector containing the time functions, that is F(t) =
( f1(t), f2(t), ..., fq(t)). Let Θp×q be the matrix of coefficients whose j-th column
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Reduced-rank hazard regression

consists of the unknown regression coefficients for the interaction between the
covariates and the j-th time function. The non-proportional Cox model can
then be written as

h(t|X) = h0(t) exp (XΘF′(t)) (2.2)

The parameters can be estimated by software for time dependent covariates
by considering the p× q time dependent covariates Xi f j(t). The estimation of
this model can be unstable, especially when there are many covariates present
and many interactions with time functions. In the latter case there are too many
parameters to estimate, and a dimension reduction method as introduced in
this Chapter could be very useful.

Frailty models

Frailty models help us to understand how non-proportional hazards may arise
and lead to very parsimonious extensions of the simple Cox model and a way of
testing for the presence of non-proportionality. One of the most commonly used
frailty model is the Gamma frailty, where the random frailty effect Z is assumed
to follow a Γ(1/ξ, 1/ξ) distribution with mean = 1 and variance = ξ. Since
the random effect Z is not observable at the individual level we can consider
the model at the population level, or marginal model, which can be viewed as
the “averaged” hazard function for individuals with same covariate values and
corresponds to what can actually be observed. The marginal hazard is:

h(t|X) =
h0(t) exp(Xβ)

{1 + ξ exp(Xβ)H0(t)} (2.3)

This model can be seen as a model with time varying effects of the covariates,
which are assumed to behave in the same way throughout the follow up period,
with ξH0(t) a factor to describe the time dependent pattern. In this model,
the baseline hazard is connected to the estimation of β, which makes the model
hard to fit. Moreover, the time varying effects are difficult to interpret, because
the effects of the covariates in the marginal model are not additive anymore.

The general behavior of the gamma-frailty model was the inspiration to
formulate the reduced-rank regression models for survival analysis that will be
introduced in the next section.
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2.2. Time varying effects and frailty models

Reduced-rank regression

Anderson [10] was the first to apply reduced-rank methods to multivariate
linear regression. Consider a multivariate linear regression model with a p-
dimensional predictor x and a q-dimensional outcome y. The linear model
could be written as

y = a + xΘ + ε

Here, a is a row vector of unknown constants, x and y are row vectors for the
independent and responses variables, respectively, and Θp×q is a matrix whose
columns are the unknown regression coefficients for each response and ε is the
row vector of errors with E(ε) = 0. We call Θ the structure matrix. To avoid
the problem of estimating a large number of parameters and over-fitting the
data, Anderson proposed to put a rank = r restriction on the structure matrix,
that can be written as Θ = BΓ′, with B a p× r matrix and Γ a q× r matrix. In
that way the number of parameters needed to be estimated could be reduced,
resulting in a more stable and parsimonious model, depending on the rank r.

Anderson’s idea can be used to reduce the dimension of a general Cox
model. As discussed earlier a model with time varying effects of the covariates
can be described by the structure matrix Θ that contains the coefficients for
the covariates and their interactions with the time functions. The structure
matrix could be factorized in different ways, resulting in a matrix of lower rank
r. Consider B a p× r matrix and Γ a q× r matrix of coefficients, that factorize
the Θ matrix as Θ = BΓ′. The rank r model is written

h(t|X) = h0(t) exp(XBΓ′F′(t))

or alternatively

h(t|X) = h0(t) exp {
r

∑
k=1

(Xβk)(F(t)γk)} (2.4)

with βk the kth column of B and γk the kth column of Γ. In this model
F(t)γk, k = 1, .., r is a set of r linear combinations of the time functions and
Xβk, k = 1, .., r a set of r linear combinations of the covariates. Depending on
the data and the nature of the problem the researcher can choose the rank
of the model, with maximum rank r =min(p, q). The model is over-specified
with r(p + q) parameters and the number of free parameters is r(p + q − r).
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Reduced-rank hazard regression

When Θ = BΓ′ is of full rank, no special structure is imposed and the model
is identical to the Cox non-proportional model. When the rank equals one,
there are close similarities to the marginal frailty model. A rank = 1 model is
an extension of the simple proportional hazards model, where there is just one
linear combination of time functions Fγ to describe the time varying effects of
the covariates, which acts in a common way for all the covariates. Note that
this is similar to the approximation of a Gamma frailty model. It can be shown
that the marginal hazard of a frailty model is similar to a Cox model with time-
varying effects of the covariates, in which there is one factor ξH0(ti) to describe
the time dependency of the model. The main difference between the gamma-
frailty model and the rank = 1 model is that the function that regulates the
time-dependency is linked to the base-line hazard in the gamma-frailty model
and is totally free in the rank = 1 model.

Estimation

Consider information on n individuals with p covariates that formulate the
Xn×p covariate matrix. Xj is the row vector of covariates for individual j. Let
D be the total number of event time points with t1 < t2 < ... < tD. Let Fi be
the row vector of time functions at time point ti.

The reduced-rank model can be fitted with standard software for Cox re-
gression with time varying effects. The partial log likelihood is given as

pl(β, γ) =
D

∑
i=1

r

∑
k=1

(X(i)βk)(Fiγk)−
D

∑
i=1

ln[ ∑
j∈Ri

exp{
r

∑
k=1

(Xjβk)(Fiγk)}] (2.5)

where X(i) is the covariate vector of a person with event at time ti, and Ri is the
set of individuals at risk at time ti. We start the estimation procedure giving
initial values for the r vectors βk. For instance for β1, the values from a simple
Cox model could be used, and when the rank of the model is greater than one a
random perturbation of the initial estimate of β1 can be used for the other β′s.
Then estimating the γk’s, with the β’s fixed, is actually estimating the q × r
coefficients in a model with time varying effects as the interactions between
the linear combinations Xjβk, k = 1, ..., r and the time functions f1(t), .., fq(t).
The next step is the estimation of β’s, where there are p× r interactions of the
covariates and (Fiγk), k = 1, ..., r. The process then alternates between the two
steps until the partial likelihood stabilizes.

As usual, an estimate of the baseline hazard function can obtained from the
Breslow estimator.
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2.2. Time varying effects and frailty models

This iterative procedure does not yield the full information matrix of the
β and γ parameters. The appendix describes how the information matrix
can be obtained. Since the reduced-rank is over-specified, the information
matrix is singular. A generalized inverse matrix should be used to obtain the
variance-covariance matrix of estimable parameters of interest. We use the
Moore-Penrose but any generalized inverse would do.

The standard errors of the coefficients B and Γ can not be estimated, since
B and Γ are not identifiable. The delta method can be used to find standard
errors and draw confidence bands for estimable (linear) functions of B and Γ,
like the coefficients of Θ and the time varying effects of all covariates. Details
can be found at the appendix.

As one referee pointed out, some restrictions could be imposed to the esti-
mation algorithm in order to make the parameters more easily interpretable.
The interpretation is linked to the choice of time functions to be discussed in
the next subsection.

Choice of rank and time functions

To determine the optimal rank, one could follow a forward-type algorithm,
beginning with a rank one model and moving on by increasing the rank. The
final choice could be based on the Akaikes information criterion. (It is well-
known that the χ2 distribution does not apply when testing the rank of the
structure matrix).

Another problem to consider is the choice of time functions. There is a
series of papers dealing with modelling strategies and time varying effects. The
approach of dynamic modelling by Berger, Schäfer and Ulm [13] extended
for reduced- ranks, could provide a strategy for deciding both the rank and
the time functions of the model. Another choice could be to model the time-
dependency of the covariates by the use of splines, which can be simple or more
sophisticated to reveal more complex relationships.

The simplest strategy would be to divide the time axis in a number of
intervals and to take the indicator functions of those intervals as basic functions.
A straight forward extension is take a set of B-splines with the interior knots at
convenient positions. In order that the B-functions be estimable, the intervals
between the knots should contain enough events. This strategy allows the time
functions to be very flexible and lets the model (based on the choice of the
rank) to reveal the appropriate functional form of the time varying pattern.

In any choice of time functions though, we impose the condition that f1(0) =
1 (the simplest choice is f1(t) ≡ 1 ) and fk(0) = 0 for k = 2, 3, ..., so one could
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Table 2.1: Definitions of variables and patients frequencies

Xk 0 1 2 3 4

Karnofsky 100 90 80 70 < 70
n 137 108 47 46 20

X f 0 1

Figo III IV

n 262 96

Xd 0 1 2 3 4

Diameter Micro < 1 1-2 2-5 > 5
n 29 67 49 68 145

see the effect of the covariates easily at the start of the follow up period. If one
imposes the condition that Γ11 = 1 and Γ1j = 0 for j = 2, .., r, the first column
of B gives the effects of the covariates at time t = 0. These values can easily
be compared with the estimates coming from other models, such as the simple
Cox model and the gamma frailty model. These restrictions do not resolve the
identifiability problems, but further restrictions become quite artificial.

2.3 Application to ovarian cancer patients

The data consist of survival data of 358 patients with advanced ovarian cancer
originally analyzed by Verweij and van Houwelingen [104]. We have informa-
tion on three covariates, the diameter of the residual tumor after the operation
(coded as 0 up to 4, from small to big) the Karnofsky performance status that
measures the patients ability on a scale from 0 to 100 (coded as 0 for value 100,
up to 4 for Karnofsky less than 70) and the Figo index which expresses the site
of the metastases as III or IV (coded as 0 for Figo=III and 1 for Figo=IV). The
median follow up was 24.5 months (1 up to 91) and 266 patients died during
the study period. The covariates were treated as linear, following the original
analysis of Verweij and van Houwelingen, since their effects are nearly linear.
A summary of the data can be found in table A.1.

We fitted a proportional hazards model to the data with estimated coeffi-
cients β̂Diam = 0.200 (se = 0.050), β̂Figo = 0.542 (se = 0.135) and β̂Karn = 0.172
(se = 0.053) with a partial log-likelihood of -1382.62 on 3 degrees of freedom.
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2.3. Application to ovarian cancer patients

A visual test of proportionality was proposed by Grambsch and Therneau
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Figure 2.1: Test of proportionality based on scaled Schoenfeld residuals along
with a spline smooth with 90% confidence intervals for karn variable.

[39] based on scaled Schoenfeld residuals. They suggested plotting Schoenfeld
residuals + Cox model estimate versus time, or some function of time, as a
method of visualizing the nature and extent of non-proportional hazards. In
figures 2.1, 2.2 and 2.3 we present the plot of the scaled residuals versus time
along with a spline smooth and 90% confidence intervals around it, for each
covariate. The time varying effect of the Karnofsky status can be seen. The fit
suggests that a low score increases the risk of an event early in time, however,
the effect diminishes over time and it goes to 0 after approximately 350 days
(figure 2.1). The variable Figo does not show much of a time varying pattern
- the smooth spline is more or less constant-, which is also the case for the tu-
mor diameter. The overall likelihood ratio test had a p-value 0.021 indicating
departure from proportionality. The test for Karnofsky gave a p-value 0.0071,
Figo 0.947 and tumor diameter 0.57.

In our analysis B-splines were used to model the time varying behavior of
the covariates. We used second degree splines with the time axis divided into
5 intervals, with four interior knots placed at the end of of the first, second,
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Reduced-rank hazard regression

third and fourth year, and the boundary knots at time 0 and at the time of the
last event occurred. The B-spline functions are defined in such a way that at
t = 0 all the B-spline functions are zero. In the F-matrix, the first function is
the constant and the columns 2 to 7 correspond with the six B-spline functions.
Since there are only 20 events in the last interval, the last of the six B-splines
might be hard to estimate.
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Figure 2.2: Test of proportionality based on scaled Schoenfeld residuals along
with a spline smooth with 90% confidence intervals for figo variable.

The Cox model with unrestricted time varying effects was estimated with
21 degrees of freedom and had a partial likelihood of -1365.54. The estimated
coefficients are of little interest because they depend very much on the choice
of the time functions. The model could be best understood from the plot
of the time varying effects of all covariates, which are shown in figure 2.4.
The Karnofsky effect follows the pattern suggested by the smoothed scaled
Schoenfeld residuals, and drops to 0 after approximately 250 days. On the
other hand, the effect of tumor staging (Figo) has big fluctuations as it drops
during the first year and then rises again for time up to 1000 days but then
drops rapidly again until the last days of the time period, resulting to an
irrational pattern that could be due to data overfitting. Confidence intervals
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Figure 2.3: Test of proportionality based on scaled Schoenfeld residuals along
with a spline smooth with 90% confidence intervals for diam variable.

around the estimated curves were very wide during the last days of follow up
(data not shown). The effect of Diameter has smaller fluctuations and the
pattern indicates that the effect does not vary much over time. Note the wild
behavior of all three curves after the 4rth year (1500 days), where the number
of events is small, and the behavior of spline functions tend to be erratic near
the boundaries.

In a rank 2 model there are a total of 16 parameters to estimate. The Θ
matrix is parametrized as BΓ′ with B3×2 and Γ7×2. The partial likelihood is -
1368.19. The resulting model is very similar to the full rank model, as indicated
by Figure 2.5, although the behavior of Figo looks a bit smoother, as well as the
behavior of all three covariates at the end of follow up. Staging of the cancer
drops its effect rapidly at the start of the follow up, but does not reach 0 until
3 years have elapsed, were the number of patients at risk is smaller and the fit
is less reliable. The effect of Karnofsky status drops again to 0 after 250 days,
indicating an effect consistent with medical knowledge, as one would expect
that the Karnofsky performance at the time of diagnosis would be important
at a first period but then it would wash away with time.
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Figure 2.4: Estimated effects of the covariates over time, for the full rank model

The more parsimonious rank 1 model was fitted with partial likelihood -
1373.80 on 9 degrees of freedom. In figure 2.6 we see that the effects of Karnof-
sky and Diameter are very similar, because the time functions are forced to
be proportional, and the differences are due to the β’s, which in a simple Cox
model were also similar.

From Table 2.2 we learn that the rank=1 model performs best according
to the AIC criterion. That is in line with our observation that the full rank
and the rank=2 model show some clear signs of over-fitting. This is partly
related to our choice of time functions in the F-matrix. We will come back
to that in the discussion. Fitting a model with Karnofsky as the only time
varying covariate and the rest fixed resulted in a log-likelihood of -1370.79, on
9 degrees of freedom. Although this model seems better in terms of the AIC it
is more data driven than the rank=1 model.

We also fitted a gamma frailty model to the data. With the inclusion of
a random effect the estimates of the coefficients become larger. We assume
a random parameter following a gamma distribution which gave a significant
variance 1.11 and estimates β̂Diam = 0.340, β̂Figo = 0.782 and β̂Karn = 0.326.
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Figure 2.5: Estimated effects of the covariates over time, for rank=2 model

Table 2.2: Partial log-likelihoods of the models along with the degrees of free-
dom and the Akaike information criterion AIC

log-lik df AIC

Cox PH -1382.26 3 -1385.26

frailty -1379.20 ? ?

r=1 -1373.80 9 -1382.80

r=2 -1368.19 16 -1384.19

r=3 -1365.54 21 -1386.54

The pseudo-partial likelihood, which is estimated in S-plus software as the log-
partial likelihood with the frailty terms integrated out, was -1379.2. Since the
partial likelihood also involves the cumulative baseline hazard H0(t) as can
be seen from formula (4), it is unclear what the degrees of freedom are and,
therefore, AIC cannot be computed and the gamma frailty cannot be compared
to the other models on this criterion.
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Figure 2.6: Estimated effects of the covariates over time, for rank=1 model

Under the gamma frailty model there is no such thing as a simple additive
time varying effect of a specific covariate. In the marginal model of formula (4)
there is implicit time varying interaction between the covariates. Therefore,
it is not easy to compare the gamma frailty model with additive time varying
effects models. An elaboration is given in the next subsection.

Comparison between the different models

In order to compare the different models we consider the two groups of best
and worst prognosis according to the simple Cox model. The best prognosis
group contains 17 patients with all covariate at the lowest values, that is 0 for
all, and the worst prognosis contains the 8 patients with the highest values for
all covariates (Karnofsky =4, Figo= 1 and Diameter =4).

The graphs are presented in Figures 2.7 and 2.8. Observe that the different
models give very similar graphs for both groups. Apparently, the models com-
pletely agree which are the good prognosis and bad prognosis patients. The
shape of the survival curves differ slightly between the models. The gamma
frailty slightly deviates from the time varying effects models. In Section 2.2
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2.4. Discussion

we expressed the expectation that the rank=1 model and the gamma frailty
would be very similar. That is contradicted by the findings of our example.
The rank=1 model does not bridge the gap between the full rank model and
the gamma frailty model.
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Figure 2.7: Survival for low risk patients under the rank=1, rank=2, full rank
and frailty model

2.4 Discussion

We have introduced a family of reduced-rank models in the context of survival
data, as a simple device to model time varying effects. Depending on the
rank of the structure matrix, reduced-rank models can offer a whole range of
models, from the very flexible full rank model to the rigid rank one model,
which resembles the structure of a gamma frailty model.

We illustrated, using a small data set, how the different choices of ranks
affect the fit of the model, and how they perform compared to a gamma frailty
and a full rank model. The covariates in the application where treated as
continuous, with the assumption that the time varying effect of all outcomes
are identical. We proposed a reduction of the number of free parameters, and
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Figure 2.8: Survival for high risk patients under the rank=1, rank=2, full rank
and frailty model

choose a rank=1 as the best model according to AIC.
The rank=1 model turns out to be best model from the AIC point of view

because it is much more parsimonious than the full model or the rank=2 model.
Parsimony could also be achieved by reducing the dimension of the time func-
tion space or by penalizing the time varying effects for each covariate as in
Verweij and Van Houwelingen [103]. There is no clear-cut answer to what is
the best strategy. Nevertheless, using data based functions to model effects of
time-varying covariates has downfalls. In our example it might be best to let
one covariate, namely Karnofsky, have a time-varying effect and keep the other
effects fixed. The choice of Karnofsky is clearly data driven. In data sets with
more (or categorical) covariates it might be less clear-cut which covariates show
time-varying effects and which not.

The choice of time functions based on residual plots may result in small
p-values but also guarantees over fitting, and breaks the assumption that the
model should be specified independently of the data values actually realized.
Thus, letting the rank of the model decide for the functional form of the effects
could be a useful approach. In any case, reduced-rank models that assume
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2.4. Discussion

similarities between time varying patterns could be one useful way to reduce
the number of parameters and to fight over-fitting.

If the fitted model is of rank r > 1 rotations and bi-plots like in factor-
analysis might be helpful to find groups of covariates which show similar pat-
terns over time.

We believe that reduced-rank models should be considered when modelling
time varying data, not only for their flexibility but also for their simplicity. The
estimation is still done via a Newton-Raphson algorithm, which is a familiar and
easy technique, as opposed to the more complicated EM algorithm that is used
for estimation of frailty models. Fitting can be done using standard software,
although the authors intend to publish an R routine for fitting reduced-rank
models more efficiently.

Albeit our reduced-rank model was inspired by the gamma frailty model
and it has the same flavor of simultaneously converging hazards, the resulting
survival curves are different. Understanding this phenomenon and trying to
find other parsimonious models that are close to the gamma frailty model is
the topic of current research at our department.
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Reduced-rank hazard regression

Appendix

The data is based on a sample of size n. We assume that censoring is not
informative and that given Xj the event and censoring time for the jth patient
are independent. Also, assume that there are no ties between the event times.
Let t1 < t2 < ... < tD denote the ordered event times and X(i) the covariate
vector associated with the individual whose failure time is ti. Define the risk
set at time ti, Ri, as the set of all individuals who are still under study at time
just prior to ti, F is the D × q matrix of time functions with Fi the vector of
time functions at time i. The rank r model, with maximum rank r ≤ min(p, q)
is

h(ti|Xj) = h0(ti) exp (
r

∑
k=1

(Xjβk)(Fiγk)) (2.6)

The partial likelihood is defined as

L(β, γ) =
D

∏
i=1

exp{∑r
k=1(X(i)βk)(Fiγk)}

∑j∈Ri
exp{∑r

k=1(Xjβk)(Fiγk)}
(2.7)

and pl = log L The first derivative of the partial log-likelihood with respect to
β gives the scores

U(βk) =
∂pl(β, γ)

∂βk
=

D

∑
i=1

(Fiγk)[X(i) − X̄(i)]
′ (2.8)

where

X̄(i) =
∑j∈Ri

Xj exp{∑r
l=1(Xjβl)(Fiγl)}

∑j∈Ri
exp {∑r

l=1(Xjβl)(Fiγl)}
(2.9)

and the γ scores are

U(γk) =
∂pl(β, γ)

∂γk
=

D

∑
i=1

([X(i) − X̄(i)]βkF′i ) (2.10)

The Hessian matrix is

H =



∂2 pl
∂βk∂βl

. . . ∂2 pl
∂βk∂γl

. . .
...

. . .
...

. . .
∂2 pl

∂γk∂βl
. . . ∂2 pl

∂γk∂γl
. . .

...
. . .

...
. . .
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2.4. Discussion

where

∂2 pl(β, γ)
∂βk∂βl

= −
D

∑
i=1

(Fiγk)(Fiγl)Covi (2.11)

∂2 pl(β, γ)
∂γk∂γl

= −
D

∑
i=1

(β′kCoviβl)(F′i Fi) (2.12)

When (k 6= l)

∂2 pl(β, γ)
∂βk∂γl

= −
D

∑
i=1

(Fiγk)(Coviβl)Fi (2.13)

and when (k=l)

∂2 pl(β, γ)
∂βk∂γl

=
D

∑
i=1

(X(i) − X̄(i))
′Fi −

D

∑
i=1

(Fiγk)(Coviβl)Fi (2.14)

with

Covi =
∑j∈Ri

X′
jXj exp{∑r

i (Xjβk)(Fiγk)}
∑j∈Ri

exp{∑r
i (Xjβk)(Fiγk}

− X̄′
(i)X̄(i) (2.15)

The Hessian matrix is not invertible. However standard errors for estimable
functions can be obtained by using a generalized inverse of H. To get confidence
bands around the time varying effects of the estimates we use the delta method.
For a specific covariate X1 the time varying effect is estimated by: ŷ1(t) =
∑r

k=1 X1βk(∑
q
l=1 γlk fl(t)). The variance of ŷ1(t) is given by:

var(ŷ1(t)) = DH−1D′

where the first term in the right hand side of the equation is a row vector with
the derivatives of ŷ1(t) with respect to β and γ,

D =
(

∂ŷ1(t)
∂β11

, . . . ,
∂ŷ1(t)
∂βpr

,
∂ŷ1(t)
∂γ11

, . . . ,
∂ŷ1(t)
∂γqr

)
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