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CHAPTER FOUR

HISTOGRAM-BASED
STANDARDIZATION OF

INTRAVASCULAR OPTICAL
COHERENCE TOMOGRAPHY
IMAGES ACQUIRED FROM

DIFFERENT IMAGING SYSTEMS

Abstract — Intravascular optical coherence tomography is widely used for
analysis of the coronary artery disease. Its high spatial resolution allows for
visualization of arterial tissue components in detail. There are different systems
on the market, each of which produces data characterized by its own intensity
range and distribution. This limits the comparison of the results, especially when
intensity values are used. In order to overcome the difference in the intensity
range and distribution, we developed an intensity mapping framework to match
intensities based on an exact histogram matching technique. Experiments were
performed with aligned data from systems of the two major vendors, St.Jude and
Terumo. A leave-one-out cross validation was used to compare the global and local
schemes for the determination of the target histograms. Our results show that: 1)
The intensities can be matched well with good generalization, and 2) Even though
the local scheme marginally outperforms the global scheme, the latter is better
suited for practical usage.

This chapter is based a submitted manuscript: S. Liu, O. Dzyubachyk, J. Eggermont, S. Nakatani,
B. P. F. Lelieveldt, and J. Dijkstra, Histogram-Based Standardization of Intravascular
Optical Coherence Tomography Images Acquired from Different Imaging Systems, Med.
Phys., Accepted for publication.
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4.1 Introduction
Cardiovascular diseases (CVDs) are the leading cause of death worldwide [31].
Introduction of intravascular optical coherence tomography (IVOCT) has largely
advanced understanding and treatment of one of the most common CVDs, the
coronary artery disease [5, 14, 8, 15]. Design of IVOCT enables visualization of
superficial tissue structures of the arteries with resolution as high as 5–10 µm.
The wavelength of its light source is around 1300 nm, which permits a relatively
deep penetration into the vessel wall. The intravascular term indicates that the
images are acquired from the inside of the blood vessel. For current commercial
systems, this is achieved by inserting a catheter into the coronary artery,
pushing away the blood by injecting a flush media and pulling it back through
the lesion location. The catheter has been designed to emit near-infrared light
towards the artery wall and to receive the back-propagated light. The received
light is recorded as a one-dimensional signal (A-line) containing the
back-propagated intensities ordered by ascending distances to the catheter. By
rotating the catheter tip with a constant speed, two-dimensional images can be
generated. Centering at the catheter, each cross-sectional image contains about
500 A-lines from different directions. These A-lines are recorded as a raw image
in polar coordinates, as shown in Fig. 4.1(b,e), or transformed into the Cartesian
coordinates, as shown in Fig. 4.1(c,f). As the catheter is pulled back at a
constant speed using a motorized pullback device, a stack of images, referred to
as a pullback is acquired.

The use of IVOCT in clinical studies increases exponentially [15]. Because of
its high resolution, IVOCT contributed to confirmation of pathological findings
on progression of (neo)atherosclerosis by visualizing morphologies like intimal
erosion, fibrous plaque, calcified nodule, lipid pool, macrophages distribution,
intraluminal thrombus, etc. [95, 4, 96, 97, 98, 99, 100]. Attracted by the
conspicuous clinical prospects, many efforts were paid to detection and
characterization of IVOCT morphologies, such as fibrous, lipid-rich and calcified
plaques [18], macrophages distributions [95], thrombus [101], side-branches
[102, 103], struts [104, 105, 44] and struts embedding [106] with image
intensities, and/or optical parameters [28, 40]. However, diversity of IVOCT
data can limit comparison of the results, especially when intensity values are
used. In particular, there is no consented standard for the imaging range,
unlike e.g. in computed tomography (CT), meaning that IVOCT images
generated with different commercially available systems are typically
characterized by different intensity ranges. The most commonly used
commercial systems are Illumien Optis from St. Jude Medical (St. Paul, MN,
USA), which saves the raw data in a 16-bit format, and Lunawave from Terumo
(Tokyo, Japan), which saves the raw data in a 8-bit format.

As a concrete example, the Cartesian images from these two systems are
shown in Fig. 4.1(c,f), and their polar counterparts are shown in Fig. 4.1(b,e).
Images were acquired shortly after each other during the same intervention at
the same location inside an artery of one patient. The histograms of the
corresponding regions on the IVOCT images acquired by the two systems
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indicate different intensity ranges within the same tissue type. Furthermore,
different shape of these histograms suggests that relationship of intensities
between these two systems is not simply linear. In fact, an exponential
relationship has been observed in our previous work [88].

Figure 4.1: Histograms (a) of regions delineated in St.Jude polar (b) and
Cartesian (c) images. Histograms (d) of regions delineated in Terumo polar (e)
and Cartesian (f) images. Side-branches and lesions were used as landmarks to
find the corresponding locations in St.Jude and Terumo images. Regions were
separated according to their morphological appearance and visible borders and
are correspondingly delineated in the polar images. Delineated regions on both
polar and Cartesian images and the corresponding histogram bars are shown
using the same colors.

Most OCT studies used the same type of IVOCT system to guarantee high
reproducibility. On the other hand, doing so limits the scope of developed
applications: when the same method is applied to data from another vendor
that has different intensity distribution, repeated validation is required. To
improve efficiency of development, images need to be standardized across
devices. Only few papers on this topic have been published in the IVOCT field,
whereas several papers on increasing the comparability of ophthalmological
OCT images were published. In particular, a normalization approach was
proposed for comparing images from two vendors [107]. This approach involves
three steps: density scaling and sampling, noise reduction, and amplitude
normalization. It was later improved by integrating virtual averaging [108].
This A-line normalization approach was shown to reduce the measurement
difference [109] and the appearance disparity [110].
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In this work, we explore the possibility of converting the data between
different OCT systems and propose a matching scheme with good generalization
and minimal loss of detail. Our pretrained algorithm can also be used for
intensity matching when the target data is not given. By doing this, when a
method developed for data acquired with system-A needs to be evaluated with
data acquired with system-B, we can modify the data from system-B to follow
the intensity distribution of system-A, such that the method can be tested on
the data from system-B with minimum modification. Such data conversion is
referred to as the histogram modification [111, 112, 113, 114]. The basic
histogram matching theory has been proposed in the work of Hummel et
al. [111]. Since then, this study has been widely used as the fundamental theory
in image modification studies at the histogram level. Later, the exact histogram
specification (EHS) was proposed as a successful discrete solution to the model
in practice [112, 113, 114]. This approach was used to produce comparable
measurements in ophthalmological OCT images generated with low signal
strength to that generated with high signal strength [115] and to compensate
light attenuation in confocal microscopy [116].

Our main goal in this paper is to propose a framework for matching
intensities in OCT images from different vendors using EHS. A straightforward
approach would be to match intensities per pullback. We compare this global
scheme to a local scheme that takes the local intensity variations into the
consideration. All the analysis is conducted with raw polar images, whereas the
Cartesian images are only used for the visualization of results. The in
vivo patient data used in this study is unique in the sense that both St.Jude and
Terumo pullbacks were specially acquired for this study. More elaborate
explanation of this is provided further in the manuscript.

The paper is structured as follows. For better understanding of the
underlying principles and terminology, we explain both the model and the EHS
in Section 4.2. In Section 4.3, the data and its processing are described, the
distance measures are introduced, and the matching schemes are proposed and
validated. Results are reported and discussed in Section 4.4 to Section 4.6.
Finally, in Section 4.7 we draw the conclusions.

4.2 Theory and terminology

Each 2-D image can be represented as a matrix I(x, y), which is the discrete
subsample of a bounded surface function f(x, y), where
{(x, y) | 0 6 x 6 N, 0 6 y 6M}. The intensity function f(x, y) follows a
distribution function Pf (t) that indicates the chance of f(x, y) being less or
equal than t. Given two images fs ∼ Pfs(zs) and ft ∼ Pft(zt), the goal of
histogram transformation is to search for a mapping T such that composition
T ◦ fs ∼ Pft(zt). In this work, fs and ft are referred to as the source and the
target image, respectively. This search has been formulated by Hummel et al.
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[111] as an optimization problem:

T̂ = arg min
T

a2∫
a1

[
pT◦fs(z)− pft(z)

]2
dz, (4.1)

where [a1, a2] defines the range of image intensities. Here pX(z) is the probability
density function (pdf ) of image X, which is the derivative of the distribution
function PX(z), and z is intensity level.

A unique monotonic solution of this model was given in [111]:

T̃ (zs) = P−1
ft

(Pfs(zs)) , pfs(zs) > 0, for ∀zs. (4.2)

In practice, pX in both source and target spaces is usually estimated as the
normalized histogram vector: pX =

{
pi |

∑
pi = 1, i ∈ {0, ..., 2L0 − 1}

}
, where L0

denotes the maximum gray level of the images, pi denotes the frequency of the
image intensity corresponding to the interval [zi, zi+1). Conventionally, the
interval is referred to as a bin; {zi} are the bin edges; the average of every two
adjacent bin edges ci = (zi + zi+1)/2 is the bin center, and pi is the bin value. We
define the bin edges for the ith bin as [ci − 0.5, ci + 0.5) in this work.

To ensure that the distribution function PX is monotonically increasing, the
following approximation is used:

Pj =
cj − zj
zj+1 − zj

pj +

j−1∑
i=0

pi. (4.3)

This approximation is equivalent to interpolating Pj(z) for z ∈ [zj , zj+1) with a
piecewise-linear function, the slope of which is pj and the intercept is

∑j−1
i=0 pi.

Using this monotonic approximation, T̃ can be estimated with Eq. 4.2. However,
this estimation only shifts bins centers, and splitting of bins is not possible.
This becomes especially problematic when the source and the target images are
within different intensity range, such as e.g. transforming 8-bit images to 16-bit
images or the other way around. Since the bins cannot be split, information can
only be retained based on the image that is represented by less bins. Attempts
have been made to include local information [111] (local mean, entropy, etc.)
into the objective function as a “context-aware” term, but doing so introduces
more parameters, and the transformed images tend to be blurred.

The aforementioned issues can be overcome by a technique called exact
histogram specification (EHS) [113, 114, 112]. In the following, we will use the
previously introduced notations. For an image of size M × N × P with gray
values in {0, 1, ..., 2L0 − 1}, the histogram divides M ×N × P pixels into 2L0 bins.
The fundamental idea behind EHS is to strictly order all the pixels, such that
the ordered pixels can be divided according to any given target histogram. This
usually cannot be done by using intensities only, thus auxiliary information
needs to be introduced.

Local means and wavelet coefficients have been reported to be successful
source of auxiliary information for achieving strict ordering [113, 114]. In a
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more recent study [112], a moderately improved performance in nature images
has been reported with a proposed auxiliary term involving three
hyper-parameters. Compared to the other two aforementioned approaches,
local-means approach better copes with noise and involves no
hyper-parameters, thus it is chosen in this study as the noise level of OCT
images is known to be high.

Considering the intensity at each pixel as the first scale of the local mean,
for each pixel i we calculate a vector of multi-scale local means with increasing
window size µ = [µ1(i), µ2(i), ..., µK(i)], K being the number of scales.
Consequently, all the pixels in the image can be ordered lexicographically with a
relational operator defined as:{

i ≺ j | µ`(i) = µ`(j) ∀`<`0 , µ`0(i) < µ`0(j)
}
. (4.4)

As result of using this approach, pixels in one image are expected to be ordered
strictly by using just a few scales. It was observed that K = 6 scales are usually
enough to arrange all the pixels in a strictly ascending order [113]. Once the
strict ordering is achieved, the pixels can be easily grouped again following the
histogram defined in the target image.

In practice, the EHS is often used to estimate the target image(s) given the
source image(s) and the target histogram. In our case, however, the target
histogram is unknown and should first be defined using a group of matched
source and target images. Thus our task is two-fold: 1) To estimate the target
histogram(s) from the matched images, and 2) To apply the estimated
histogram(s) to a new source image. The following section describes our method
in full detail.

4.3 Materials and methodology
As it was previously elaborated, the key step for using EHS is to define the target
histogram.

4.3.1 Global and Local matching schemes
To determine the target histogram, the most straightforward approach is to use
the overall histogram generated with all the images. However, using the global
histogram as a reference might result in information loss as some of the less
represented tissue structures might get overshadowed in the global histogram.
Using local histograms might help resolving this issue.

Therefore, we introduce a Global scheme and a Local scheme for
determination of the target histogram. For applying the Local scheme, each
pullback is split into smaller sections (our pullback alignment and splitting
algorithm is described in the following section). For providing a formal
definition, we denote the database of matched histogram pairs as
H = {(Hk

1 , H
k
2 ) | k = 1, NH}, where Hk

1 denotes the histogram of kth section in
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the original space (e.g. St.Jude), Hk
2 denotes its counterpart in the target space

(e.g. Terumo), and NH is the size of the database.
For matching a given image with histogram H∗1 , the Global scheme uses one

overall histogram as the target histogram, i.e.:

HG
2 =

NH∑
k=1

Hk
2 . (4.5)

The Local scheme determines the target histogram for each section as the second
component of the database entry whose first component is the most similar toH∗1 .

HL
2 = H

argmink=1,NH
d(H∗

1 ,H
k
1 )

2 . (4.6)

Here d(Hi, Hj) denotes dissimilarity between two histograms Hi and Hj . The
remainder of this section describes creation of the histogram database and
introduces the dissimilarity measures.

4.3.2 Data description and alignment
In our case, the target histogram is estimated using a dataset of matched
images. As the final goal of this study is to transform OCT images both from
intensity space of St.Jude system (St.Jude space) to that of Terumo system
(Terumo space) and the other way around, the target histograms in both
St.Jude and Terumo spaces need to be determined. To achieve this, eight in
vivo pullbacks were acquired from left anterior descending artery (LAD) of two
different patients, marked as A and B. The data acquisition strictly followed
the clinical guideline of Sakurabashi Watanabe Hospital (Osaka, Japan), and
the analysts from Leiden University Medical Center (Leiden, The Netherlands)
were blinded from all patients’ information. For each patient, IVOCT pullbacks
from the same vessel segment were acquired shortly after each other with
St.Jude and Terumo systems, before and after the stent implanting procedure.
As a result, four pairs of corresponding St.Jude–Terumo pullbacks were made
available for the study. The St.Jude pullbacks were acquired at a pullback speed
of 36 mm in 180 frames per second with a frame interval of 0.2 mm, and the
Terumo pullbacks were acquired at a pullback speed of 40 mm in 158 frames
per second with a frame interval of 0.25 mm. Raw polar images as provided by
the vendors are used in this study. St.Jude images are 16-bit “linear” with a
transversal pixel size of 0.0050 mm, and Terumo images are 8-bit “log-like”
compressed with a transversal pixel size of 0.0049 mm.

Due to different distal and proximal locations in two corresponding
pullbacks, images within overlapping part of the vessel should be matched. We
determine the start and the end frames of overlapping part by searching for
identical side-branches that are closest to the proximal and the distal parts of
the pullbacks. Since we primarily aim at analyzing the tissue region, images
with stent struts points are excluded (more elaborate discussion about this is
provided in Section 4.6).
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Figure 4.2: The landmarks for aligning the pullbacks.

Compared to the histogram of the entire overlapping part of pullbacks,
histograms of smaller sections may preserve more local structural information.
Therefore, we further split the overlapping part into small sections using key
frames defined by two main types of anatomical landmarks (as shown in
Fig. 4.2): the side-branches and the tissue types with identical patterns, e.g.
culprit lesion visible in Fig. 4.1(c,f). For the post-stenting pullbacks, the
proximal and distal edges of the stent struts are also considered to be crucial
landmarks. Key frames were identified independently by two experienced
IVOCT readers, using QCU-CMS (Quantitative Coronary Ultrasound—Clinical
Measurement Systems; Leiden University Medical Center, Leiden, The
Netherlands), which is the research version of QIVUS (Quantitative
IntraVascular UltraSound; Medis, Leiden, The Netherlands). Only landmarks
with consensus were selected.

Even though the catheter is pulled back with a uniform speed, the number
of frames within a certain section can be affected by the heartbeat cycle, slight
bending of the artery, interaction between the catheter and the artery wall, and
so on. Due to this effect, finer splitting or frame-to-frame matching is not possible
without introducing an interpolation error.

Table 4.1 gives an overview of the aligned data. Patient-A had no stent
planted beforehand, while Patient-B did have one. Hence, the number of frames
without stent struts in Patient-B is smaller than in Patient-A. Overall, the
pullbacks were aligned with twenty-three key frames. Within these frames,
regions of clinical interest (ROI) were delineated based on their appearance and
visible borders according to the consensus [8]; see Fig.4.1. In total, we have
eighteen corresponding pairs of sections and thirty-eight ROIs. After
correspondence between the sections had been established, the database of
matched histogram pairs was generated using foreground regions bounded by
the lumen border and 1 mm behind. This corresponds to the depth of 200 pixels
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Table 4.1: Data description

Patient Treatment St.Jude Terumo Landmark Section ROI
PLa(mm) Allb Maxb Minb PLa(mm) Allb Maxb Minb

A Pre-stenting 108 507 80 10 168 389 88 9 14 13 32
Post-stenting 108 69 52 17 147 53 41 12 4 2 4

B Pre-stenting 75 40 21 19 152 33 19 14 3 2 1
Post-stenting 75 12 12 12 111 10 10 10 2 1 1

Total 628 80 10 485 88 9 23 18 38

ROI Adventitia Calcification Fibrous IMLc Lipid Neointima Total
No. 4 11 10 4 3 6 38
aPL: total length of the entire pullback
bAll, Max, and Min: the total, maximal, and the minimal numbers of frames in the aligned sections
cIML: intima-media layer

in St.Jude polar image and 204 pixels in Terumo polar image. The lumen border
is detected by the QCU-CMS software in an automated manner.

4.3.3 Dissimilarity between histograms
The Euclidean and the Kolmogorov-Smirnov distances are used for comparing
two histograms. They are first used in the analysis of the local variations and,
after that, for evaluation of matching schemes.

For calculating the distances, the histograms are normalized to obtain the
probability density functions (pdf ’s) and the corresponding cumulative density
functions (cdf ’s). The Euclidean distance for measuring dissimilarity between
two pdf ’s p and q is defined as:

dx2(p, q) = (p− q) · (p− q)′, (4.7)

the discrete approximation of which is equivalent to the objective function in
Eq. 4.1. The Kolmogorov-Smirnov distance measures dissimilarity between the
distribution functions (also known as cdf ’s) P and Q:

dKS(P ,Q) = max
i
|Pi −Qi|. (4.8)

4.3.4 Validation
Leave-one-out validation is used to compare the Global and Local schemes. One
of the four pullback pairs is left out in turn, and the target histogram is
determined with the other three. Consequently, the intensities of the left-out
pullback are matched. As part of each leave-one-out experiment, median
intensities within each ROI are compared in both target and matched images.
The target and matched median values are shown in the scatter plot and
compared in the Bland-Altman plot. The scatter plot can show whether two
groups of data are linearly related and how much the trend line deviates from
the diagonal line, which is the ideal case indicating that two groups of data
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match perfectly. The Bland-Altman plot shows the average versus the difference
of each two compared values, which reveals the difference of two groups of data
more explicitly. The mean and the standard deviation values of the difference
are also called the systematic difference and the random error. With a properly
low random error, the closer the systematic difference to zero level is, the more
likely that two groups of data are originating from the same distribution. For
reference, also the key frames are matched using the target histograms
extracted directly from their corresponding aligned frames.

Figure 4.3: The distances between all the histograms in the database for St.Jude
(left) and Terumo (right) spaces. All the distances were multiplied by a factor of
100 for presentation purposes. In each distance map, dx2 and dKS are shown in
the lower and upper triangles, respectively.

Figure 4.4: Linear regression of distances of all the histograms in our database
for St.Jude and Terumo.
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Figure 4.5: The aligned and trained probability and the cumulative probability
distributions for leaving the 1st (a), the 2nd (b), the 3rd (c) and the 4th (d)
pullback out. Target profiles for both St.Jude (S→T) and Terumo (T→S) images
are shown. For the latter case, the x-axis is shown in the logarithm scale (ln) for
the sake of better visualization.

4.4 Results

We calculated the distances between all the histograms in two spaces.
Figure 4.3 gives a general overview of all the dissimilarities. In the scatter plot
of distances in Fig. 4.4, we observed a linear trend and further performed the
regression analysis. The statistical results show that the dissimilarities in two
spaces are correlated significantly with p<0.005. This validates the assumption
and supports the Local matching scheme.
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Figure 4.6: The bar chart of
the distances for leave-one-out
experiment for matching St.Jude to
Terumo (S→T) space and Terumo
to St.Jude (T→S) space. ‘Pb’ =
‘pullback’.

Results of the leave-one-out
validation for both St.Jude-to-Terumo
(S→T) and Terumo-to-St.Jude
(T→S) images are reported
in Figs. 4.5, 4.6 and summarized
in Table 4.2. For a section containing
70 images, generating the histograms
takes 10 seconds. For the Local scheme,
the time for searching in our database
of 34 histograms using our Matlab
(MathWorks, R2016a with Statistics
and Machine Learning Toolbox)
implementation is 1.25 seconds.
Figure 4.5 shows the estimated
target probability profile (normalized
histogram) together with that
determined by the aligned data (in red
color; will be further referred to as the
aligned histogram). The corresponding
cumulative probability plots are shown
as well. Both dx2 and dKS are shown as
bar charts in Fig. 4.6, and the numbers
are reported in Table 4.2. The distances

between matched and reference distributions for both Global and Local schemes
are low and robust; see Fig. 4.6 and Table 4.2. The average distance of all four
validation experiments (Aver in Table 4.2) indicates that, in general, the Local
scheme outperforms the Global scheme.

Table 4.2: Results of leave-one-out cross validation

S→T T→S
Pb1 Pb2 Pb3 Pb4 Avera Pb1 Pb2 Pb3 Pb4 Avera

dx2
Global .0248 .0135 .0381 .0241 .0251 .0058 .0046 .0110 .0090 .0076
Local .0192 .0141 .0231 .0091 .0164 .0069 .0053 .0042 .0049 .0053

dKS
Global .0994 .0593 .1398 .0711 .0924 .0252 .0179 .0303 .0273 .0252
Local .1022 .0724 .1110 .0347 .0801 .0276 .0137 .0246 .0183 .0210

a The average performance of all the four leave-one-out experiments.

Scatter plots and Bland-Altman plots of the median intensities within ROIs
are shown in Fig. 4.7. When comparing intensities in St.Jude space, an
increasing trend is observed in the absolute systematic error; see
Fig. 4.7(b,e,h,k). Following the conventional statistical procedure for
Bland-Altman analysis [117], the St.Jude intensities were compared in the
logarithm scale; see Fig. 4.7(c,f,i,l). Without an obvious trend in Terumo space,
the intensities are compared in the linear space; see Fig. 4.7(a,d,g,j).

For the reference matching between the corresponding key frames, the
systematic differences are −4.50 for S→T and 0.15 for T→S; see Fig. 4.7(a,c).
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This difference is the most likely to be caused by the selection of data and is
independent of the scheme used. Using this intrinsic systematic difference as a
reference, the absolute systematic differences yielded by the Local scheme are
relatively small: 9.67 (S→T) and 0.07 (T→S) for dx2, 7.92 (S→T) and 0.06 (T→S)
for dKS , compared to the Global scheme: 10.26 (S→T), 0.12 (T→S). Taking into
consideration the described intrinsic difference, the Local scheme yields
absolute values closer to zero for both S→T and T→S matching. All
comparisons in Bland-Altman analysis suggest that the Local scheme
outperforms the Global scheme for EHS-based intensity transformation in
IVOCT images between St.Jude and Terumo systems. The images matched with
the target histogram determined by the Global scheme are shown in Fig. 4.8.
The matched images, see Fig. 4.8(e–h,m–p), and the corresponding aligned
images, see Fig. 4.8(a–d,i–l), show comparable intensity levels in both St.Jude
and Terumo spaces.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

Figure 4.8: Images matched using the Global scheme. Raw St.Jude images (a–d)
were mapped to the Terumo intensity space (e–h). Raw Terumo images (i–l) were
mapped to the St.Jude intensity space (m–p). For visualization, St.Jude images
are shown in its conventional golden color scheme.
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Figure 4.9: Bland-Altman plot of the comparison between estimated attenuation
coefficients in ROI’s in (matched/original) Terumo images and in corresponding
ROI’s in St.Jude images. (a) Attenuation values were estimated directly using
original Terumo images. (b) The values were estimated using the Terumo images
matched to St.Jude intensity space. Here ‘Std’ stands for ‘standard deviation’.

4.5 Comparing attenuation coefficient values
One of the post-processing steps in IVOCT data analysis is estimation of the
attenuation coefficients, which are defined as the distinction rate of light
passing through a volume of tissue with a unit of µm−1. It is considered to be a
key feature for identification of different tissue types in the arterial wall. In our
previous work [118], we reported the depth-resolved (DR) estimation using
St.Jude images. However, applying this estimation directly to Terumo images
results in values in different range. Therefore, we applied this estimation
approach to the matched Terumo images (in St.Jude range) to validate the
assumption that proposed matching scheme facilitates generalization of the
attenuation estimation algorithm developed for St.Jude data to Terumo images.
The results described above show comparable performance for both schemes.
We further illustrate performance of the Global scheme for the estimation of
attenuation coefficient using the DR method.

The attenuation was estimated both in the matched and original Terumo
images. The median values within ROIs were compared to those estimated using
St.Jude images. The paired t-test at 5% significance level was used with a null
hypothesis that the mean difference between two sets is zero.

Figure 4.9 shows the Bland-Alman plots of the comparison of median
attenuation coefficient in ROIs in (matched/original) Terumo images and in
corresponding ROIs in St.Jude images. In the plot presented in Fig. 4.9a,
original Terumo images were directly used for the estimation. Comparing to
those estimated using the corresponding St.Jude images, the points are not
evenly distributed around the zero-line, and both systematic difference and the
range of random error are high. Paired t-test indicates that the mean difference
is significantly different from zero with p < 0.001, and the 95% confidence
interval (CI) is [0.74,1.42]. In Fig. 4.9b, the matched Terumo images were used
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for the estimation. In this case, the difference with the values estimated using
the St.Jude images is much smaller, which is indicated by lower systematic
difference and random error range, and the points are more randomly
distributed around the zero-line. For this case, paired t-test gives p = 0.320 with
a 95% CI of [-0.10,0.30].

4.6 Discussion
Clinical significance of IVOCT structures has been reported extensively in
clinical research. The use of IVOCT for the analysis of CADs grows
exponentially. For more efficient analysis with minimum manual intervention,
automated methods for tissue quantification, characterization, and
classification are needed. However, lack of standardized image intensities can
increase the difficulty of designing algorithms or restrict the possibility of
generalization of algorithms developed for one specific imaging system.
Therefore, standardizing image intensity is a crucial processing step to speed up
the development and validation of methods for intravascular tissue analysis.

This study aims at exploring a proper scheme to match IVOCT image
intensities with the local-mean EHS technique. In our case, the most essential
step is to determine the target histogram. Preliminary statistical analysis
suggests that distances in both spaces are significantly correlated. Based on
this analysis, we propose a Local matching scheme and compare it with the
Global scheme. Target histograms determined with both schemes turned out to
be successful in matching IVOCT intensities at relatively low cost. In this, Local
scheme marginally outperforms the Global scheme, which is in line with the
results of our preliminary statistical analysis. Moreover, the attenuation
estimation experiment presented in Section 4.5 illustrates benefits of using the
Global scheme in practice by showing that it, in particular, largely improves the
compatibility of the estimated attenuation coefficient across vendors.

Significant variation in the histograms of different sections is caused by
many reasons, the difference in tissue composition being the major factor. As it
has been reported in [8], tissue types are mainly visually assessed by
recognizing bright speckle, presence of following shadow, sharpness of border,
etc. Quantitative results confirm that these image structures yield variations in
the histogram. Our previous study [90] demonstrated that image intensities can
also be affected by position of the catheter. This effect can cause large variation
in distances and thus can explain the low R2 in the reported statistical analysis.

The Bland-Altman analysis shows a systematic difference in median
intensities within selected regions of interest, even when the exact histogram is
specified using the matched key frames. This intrinsic variation may be caused
by many factors, such as the data alignment bias, intrinsic difference in systems
for data acquisition, etc. Although this difference is relatively low, it should be
accounted for in future applications of this method.

For clinical application, both schemes can also be easily embedded as an
independent function for automated intensity standardization. For the global
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scheme, the target histogram needs to be saved within the program. During
calculation, this target histogram is loaded and used in EHS. For the local
scheme, the database of histogram pairs needs to be saved. During calculation,
the target histogram needs to be searched in the database and then it is used in
EHS. Furthermore, the proposed experimental setup is not limited to the two
considered IVOCT systems and can be used to standardize image intensities
between other OCT systems or even for other modalities, e.g. MRI. Matching
images to St.Jude or Terumo images can also further speed up the validation of
newly developed IVOCT systems. As long as the order of intensities of different
structures in both systems is consistent, strict ordering can be applied to insure
that the exact histogram can be specified.

In this work we developed and presented a framework for minimizing
intensity variation between two different IVOCT systems. At the same time,
there might be variations caused by differences between systems from the same
vendor, differences between catheters for the same imaging machine, and even
differences in the pullbacks acquired using the same hardware and catheter.
Since the images were calibrated by design during the acquisition, we expect
these variations to be small.

Bare metal stents (BMS) were implanted in two out of the four pullbacks
used in this particular study. Due to their high light reflectance, the BMS struts
appear on the images as saturated bright spots with dark shadows behind
them. They disturb the intensity distribution. Since this work mainly focused
on matching images of the arterial tissue, images with stent struts were
deliberately excluded from the analysis.

4.6.1 Limitation
The data used in this study is specially generated for construction of this
intensity matching framework. Performing (virtually) simultaneous acquisition
with two IVOCT systems is not done in clinical practice. Therefore, the amount
of data used in this study is limited, which is a major limitation of this work.
However, this data is unique and more representative for the analysis on
intensity matching than ex vivo and animal data. Furthermore, results of
leave-one-out validation show reasonable robustness through pullbacks and
patients. At the same time, we acknowledge that extending the histogram
database might potentially improve the histogram matching as using a larger
database will most likely lead to more reliable estimation of the target
histograms for both Global and Local schemes.

4.6.2 Future work
This histogram matching scheme will be used for standardization of IVOCT
image intensities as a crucial first step for further quantification. Our future
work will focus on comparing the outcome of existing quantification methods,
such as attenuation estimation, quantification of the degradation of
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bio-resolvable struts and differentiation of neointima, to data acquired by
different IVOCT systems.

Once the matching framework is extensively validated, this approach can be
routinely used as a pre-processing step for data standardization. The
standardized images can be used for development of universal algorithms for
segmentation (of e.g. fibrous cap of TCFAs) or tissue analysis (e.g. for
estimation of attenuation coefficients).

In this study, we did not include the stented segments of the pullbacks due
to the high reflectance of the metallic struts. However, for future work the
database could be extended with the stented segments of the pullbacks by
excluding individual strut points and their shadows from the images (rather
than excluding the entire frame).

4.7 Conclusion
In this work, we presented our contribution to the construction of an intensity
standardization framework for IVOCT images. We further contribute to the
validation of two proposed schemes in the framework with data acquired by two
of the most commonly used IVOCT systems in clinical research. Both local and
global schemes are robust and produce accurate intensity matching. While local
scheme performs marginally better than the global scheme, it requires a
predefined histogram data set and is more time-consuming. Thus, for offline
standardization of the images, the local scheme should be preferred for being
more accurate. For online standardization or when another system is involved,
the global scheme can be used as a simple and nearly-as-accurate alternative.


