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Abstract

Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is
an important risk factor for metabolic diseases with significant familial aggregation. Previous
studies have identified two genetic loci for macronutrient intake, but incomplete coverage of
genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we
expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant
loci (P< 1 x 107%) associated with intake of any macronutrient in 91,114 European ancestry
participants. Four loci replicated and reached genome-wide significance in a combined meta-
analysis including 123,659 European descent participants, unraveling two novel loci; a common
variant in RARB locus for carbohydrate intake and a rare variant in DRAM!Z locus for protein
intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770
participants from the UK Biobank, all identified associations from the two-stage analysis were
confirmed except for DRAM!I. Identified loci might have implications in brain and adipose tissue
biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight
into biological functions related to macronutrient intake.

Introduction

Macronutrient intake refers to the proportion of calories consumed from carbohydrate, fat,
and protein dietary sources and is an important modifiable risk factor for prevalent diseases
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such as obesity, type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer [1]. The
relevance of macronutrient intake and dietary quality for disease prevention is reflected by
related goals across numerous public health guidelines such as the U.S. Department of
Health and Human Services’ 2015-2020 Dietary Guidelines for Americans [2-5].
Macronutrient intake, and eating behavior in general, is an excellent example of a complex
trait involving the simultaneous interplay among environmental, physiological, and genetic
factors [6]. Genetic analyses of eating behavior, including those in family studies, have
suggested that the familybased heritability of macronutrient intake ranges between 20-40%
[7]. This information has generated interest in pinpointing specific genetic loci that influence
macronutrient intake [7, 8].

Previous genome-wide association (GWA) study for macronutrient intake have identified
associations between a genetic variant mapping near the fibroblast growth factors 21 gene
(FGF21) [9]. The FGF21locus is associated with diets higher in carbohydrate and alcohol,
and lower in fat and protein [9, 10]. Functional characterization studies have linked this
locus with regulating food intake, macronutrient preference, and central reward pathways
[11]. Earlier GWA investigations have also provided evidence for the association between an
obesity and fat-mass associated locus (F70) with protein intake, where individuals carrying
the BMI-raising allele reported diets higher in protein [9, 12].

Investigations of other complex traits, where common genetic variants have been shown to
exert modest effects, suggest that attaining a larger sample size and improving genotyping
coverage may help identify novel associations [13-15]. Thus, to advance our understanding
of the genetic architecture of macronutrient intake, we conducted comprehensive GWA
meta-analyses for percentage of total energy intake from carbohydrate, fat, and protein using
1000 Genomes Project-based imputation (minor allele frequency (MAF) in the range of 0.5-
5% [14]) in 91,114 European ancestry participants representing 24 cohorts. We performed a
two-stage analysis where the suggestive loci from the discovery stage were subsequently
examined in a replication meta-analysis of 32,545 additional participants from five
independent epidemiologic cohorts. The significant loci from this combined analysis were
investigated in additional analysis of 144,770 participants of the UK Biobank. Finally, we
applied an array of complementary computational approaches to investigate potential
mechanistic functions of the novel loci associated with macronutrient intake.

Study populations

GWA included 91,114 European ancestry participants from 24 epidemiologic cohorts from
the CHARGE Consortium Nutrition Working Group (Supplemental Table S1). In silico
replication was conducted in 32,545 additional European ancestry participants from five
epidemiologic cohort studies. Participants in discovery and replication analyses for EPIC-
Norfolk and Fenland cohort studies did not overlap. Additional verification for replicated
genetic variants were conducted in association analyses of up to 144,770 European ancestry
participants with genetic and macronutrient intake information of the UK Biobank [16].
Participants provided written informed consent, and each cohort’s study protocol was
reviewed and approved by their respective institutional review board.
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Assessment of macronutrient intake

Assessment tools to estimate habitual dietary intake in the participating cohorts including
validated cohort-specific food frequency questionnaires (FFQ), diet history and diet records
(Supplemental Table S2). The FFQ used by each cohort was tailored to best capture the
dietary habits of the specific population under study. Based on the responses to each dietary
assessment tool and study-specific nutrient databases, habitual nutrient consumption was
estimated. Daily total energy intake was estimated from the sum of intakes of carbohydrate,
fat, protein, and alcohol. The present analysis focused on the percentage of total energy
intakes from carbohydrate, fat, and protein. Over-reporters and under-reporters were
excluded by standard cut-offs determined by each study cohort as part of quality control [9].

Genotyping

Genome-wide genotyping was conducted using Affymetrix or lllumina platforms. Each
study performed quality control for genotyped variants based on MAF, call rate, and
departure from Hardy-Weinberg Equilibrium (Supplemental Table S3). Phased haplotypes
from 1000G were used to impute ~38 million autosomal variants using a Hidden Markov
Model algorithm implemented in MACH/minimac [17, 18] or SHAPEIT/IMPUTE [19, 20].
Variants with low minor allele count (MAC < 20) and low imputation quality (<0.4) were
removed. The number of autosomal genetic variants analyzed in this study was ~11.8
million.

Statistical analysis

Discovery and replication meta-analysis—Study-specific GWA analyses were
conducted for each macronutrient using genotyped and imputed genotypes dosages
assuming an additive genetic model using continuous allelic dosage values between 0 and 2.
The basic model included age and sex for all studies, and study-specific covariates (e.g.,
study site) and population stratification principal components, where applicable. In a second
model, BMI was added to the covariates to decrease variance of the macronutrient
phenotypes and to account for genetic effects mediated through body composition. Since
each study estimate of macronutrient consumption are comparable, the results from each
study were combined in a fixed-effect meta-analysis with inverse variance weighting using
METAL (version—released 25 March 2011) software [21]. To address additional inflation
due to population stratification, the association results from individual studies as well as
meta-analyses were adjusted for genomic control. Following the meta-analysis, genetic
variants with low MAF (<0.5%) or those missing data from more than half the samples were
removed. Heterogeneity across studies was tested by using Cochran’s Q statistic and
quantified using the heterogeneity statistic, 22, and presented as %. Genome-wide
significance was considered at the standard genome-wide Bonferroni-corrected threshold of
P<5x 1078 given that we studied three partially correlated traits. In addition, we used
summary statistics from the discovery basic model GWA analyses to estimate single
nucleotide polymorphism (SNP)-based heritability of each macronutrient intake using LD
score regression (LDSC) [22].

To confirm the associations of loci from the GWA meta-analyses, an in silico replication of
12 variants with suggestive significance (P< 1 x 107%) was conducted in five independent
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epidemiologic cohort studies. We pursued replication of hits for the strongest corresponding
association from the discovery analysis (i.e., macronutrient and BMI-adjusted or unadjusted
model). Significant replication was considered at a Bonferroni-corrected threshold of
Pysided < 4.17 x 1073 (=0.05/12 loci). The results from the GWA results from the discovery
and replication cohort studies were combined using a fixed-effect inverse variance-weighted
meta-analysis using METAL software. For this combined analysis, genome-wide
significance was also considered at the genome-wide Bonferroni-corrected threshold of P<
5 x 1078, In addition, we performed follow-up analyses of the replicated genetic variants in
the UK Biobank in unrelated subjects of white British ancestry with dietary data using
PLINK [23] linear regression and an additive genetic model adjusted for age, sex, 10 PCs,
genotyping array, and BMI (if warranted) to determine SNP effects on macronutrient intake.
Similarly, we performed meta-analyses including the combined analysis (discovery and
replication epidemiologic cohorts) and the UK Biobank.

Biological insights—To determine whether any of our identified genetic variants might
be tagging potentially functional variants, we identified all variants within 1 Mb window and
in LD (/2 0.8) with our replicated-index variants. We then annotated all identified tagging
variants using ANNOVAR [24]. To predict functional elements likely to be phenotypically
relevant we used LINSIGHT, a computational method that combines a generalized linear
model for functional genomic data with a probabilistic model of molecular evolution [25].
Next, we aimed to identify a set of 99% credible causal variants for the lead independent
variants at novel loci using PAINTOR, a probabilistic framework that integrates association
strength with genomic functional annotation data to improve accuracy in selecting plausible
causal variants for functional validation [26]. We used regional association plots to define
the locus boundaries in each region comprising the lead genetic variant. We identified the
outermost variants from the set of variants in /2> 0.4 with the lead genetic variant. We set
the maximal number of causal genetic variants in each region to three. Next, we conducted
colocalization of genetic variants in regions encompassing the newly associated lead variants
based on regional plots with expression quantitative trait loci (eQTL) using genotype-tissue
expression (GTEX) database [27]. Finally, we used public available data from an atlas of the
human long non-coding RNAs (IncRNAs), a comprehensive atlas with substantially
improved gene models that integrates new data from gene expression, evolutionary
conservation and genetic studies models allowing to better assess the diversity and
functionality of these RNAs [28].

Cross-phenotype associations and causal inference analysis—To understand the
pathways which new loci might be related to macronutrient intake, we examined the
associations of the two new and two known macronutrient intake regions with a wide range
of risk factors, molecular traits and clinical disorders, using Phenoscanner [29], which
encompasses 137 genotype-phenotype datasets from the NHGRI-EBI GWAS catalog and
other databases. We set a Bonferroni-corrected threshold for significance at A< 3.6 x 1074
(=0.05/137 phenotypes). Since the top hit at DRAMI was only available for inflammatory
diseases in Phenoscanner, we looked for association with other metabolic traits in the T2D
Knowledge Portal and set a nominal p-value for significance [30]. We also used LD score
regression [31] to estimate the genetic correlations between macronutrient intake and a range

Mol Psychiatry. Author manuscript; available in PMC 2019 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Merino et al.

Page 5

of disease outcomes and intermediate traits relating to food choice and eating behaviors
(psychiatric traits, eating disorders, and used years of education as a surrogate for
socioeconomic status) and cardiometabolic traits (BMI, glycemic traits, T2D, blood lipids,
and coronary artery disease). Bidirectional Mendelian randomization (MR) was
subsequently used to examine causality between traits found to have a significant genetic
correlation. In MR analyses, our genetic instrument comprised of genetic variants associated
with the proportion of protein intake that achieved genomewide significance in the combined
discovery + replication + UK Biobank meta-analyses. The genetic proxy for protein intake
thus included the FGF21 locus. Since the same FGFZ21 genetic variant is a genetic proxy for
fat and carbohydrate intake, we additionally evaluated whether the genetic effect on fat or
carbohydrate intake raised BMI. BMI effect sizes were extracted from the largest published
GWA meta-analysis for BMI of predominantly European ancestry participants [32], and
supplemented with data from additional UK Biobank participants. We performed fixed-
effect inverse variance-weighted meta-analysis [33], median and weighted median [34], and
MR Egger approaches where we identified potential pleiotropy.

Data availability

Results

Summary statistics of all analyses are available in dbGaP (accession number phs000930).

Discovery GWA meta-analyses of percentage of total energy intake from carbohydrate, fat,
and protein were conducted with participants from 124 epidemiologic cohort studies of the
CHARGE Consortium. General characteristics of participating cohort studies are presented
in Supplemental Table S4. Mean macronutrient intake distribution was 48.5% =+ 8.4, 32.1%
+ 6.7, and 17.8% = 3.6 for carbohydrate, fat and protein intake, respectively, and was
consistent with earlier estimates of macronutrient intake distribution [9, 12] including those
from population-based survey studies [35]. Figure 1 represents a schematic of the study
design and main findings.

Discovery GWA meta-analysis

In discovery analyses, we tested the association of ~11.8 million genetic variants (MAF >
0.5%, imputation quality >0.4) in 91,114 participants of European ancestry with
macronutrient intake. Twelve independent loci, three at genome-wide significance (P<5 x
1078) and nine at subgenome wide significance (P < 1 x 107%), showed associations with
macronutrient intake either with or without BMI adjustment (Table 1; Supplemental Figure
S1; Supplemental Figure S2). Estimated genetic effects sizes per each copy of the minor
allele are detailed in Table 1 and Supplemental Table S5. Estimated SNP-based heritability
was 3.9, 3.3, and 3.2% for carbohydrate, fat, and protein, respectively.

Replication meta-analysis

In silico replication was conducted for the set of 12 independent loci identified in the
discovery meta-analyses. Replication included 32,545 additional participants of European
ancestry from five epidemiologic cohort studies.

Mol Psychiatry. Author manuscript; available in PMC 2019 December 01.
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The distribution of macronutrient intake in the replication studies was consistent with the
discovery studies (Supplemental Table S4). In total, four independent loci including two
novel hits in Retinoic Acid Receptor Beta (RARB) locus, and DNA Damage Regulated
Autophagy Modulator 1, (DRAMZI) locus, and two previously known (FGF21 and FTO)
were confirmed in the subsequent two-stage replication of discovery findings (Table 2;
Supplemental Table S6). Specifically, we replicated the association between rs7619139 in
RARB locus and higher carbohydrate intake (8= 0.20% per each copy of the minor allele,
SE =0.052, Preplication = 4.0 x 1079), achieving genomewide significance in the combined
meta-analysis including GWA results from the discovery and replication cohort studies (8=
0.20%, SE = 0.031, Peombined = 4.13 x 10711) (Table 2). Similarly, the association between
rs77694286 in DRAM!I locus and higher protein intake was significant in the replication
analysis (8= 0.55% per each copy of the minor allele, SE = 0.194, Prepiication = 2 % 1073) and
also achieved genome-wide significance in the combined metaanalysis (8= 0.56%, SE =
0.092, Peombined = 1.90 x 1079). In addition, we confirmed the previously reported
associations between the FGF21 locus (rs838133) and intake for all macronutrients, and the
FTOlocus (rs1421085) and higher protein intake (Table 2).

UK Biobank analysis

In analysis of the UK Biobank, three of the four loci achieved the Bonferroni-corrected
threshold for significance. We noted similar effect sizes and directionality for RARB locus
and higher carbohydrate intake (8= 0.17% per each copy of the minor allele, SE = 0.049, P=
4.60 x 1074). The association between FGF21 and FTO loci and macronutrient intake was
also confirmed with effect sizes similar to the combined analyses (Table 2). We were unable
to confirm the association between the lead DRAM!I signal and higher protein intake in the
UK Biobank (8=-0.17% per each copy of the minor allele, SE = 0.12, P = 0.16) or any other
genetic variants in LD with the lead signal (results not shown). A meta-analysis including
discovery cohorts, replication cohorts and the UK Biobank (7= 268,429) showed consistent
evidence for RARB, FTO, and FGFZ21 loci (Table 2). The DRAM!I association with protein
intake in this meta-analysis showed significant evidence of substantial heterogeneity (/2 =
91%) likely a result of the 1% MAF.

Biological insights

Figure 2 summarizes biological insights for the two variants identified for macronutrient
intake. The lead genetic variant in RARB locus (rs7619139) is located in a INCRNA
(AC133680.1), while the lead DRAM!1 signal (rs77694286) is an intronic variant in DRAM!1
gene. Using ANNOVAR, we did not find evidence for coding variants close to (<1Mb) and
in linkage disequilibrium (LD) (72> 0.8) with our two index variants. We next applied
LINSIGHT and showed that the lead variant at RARB locus is a highly constrained variant
(median LINSIGHT score of 0.958), indicating a 95.8% probability of fithess consequences
due to mutations at this nucleotide site (Supplemental Figure S3). No evidence of a
constrained variant was detected for the DRAM!I signal.

To identify 99% credible sets of causal variants for each lead variant at the novel loci, we
identified the outermost variants from the set of variants in /2> 0.4 with the lead variant
using regional association plots to define the locus boundaries. The 99% credible sets
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included 102 and 127 variants for the RARB and DRAM!I loci, respectively. The lead
variant at RARB was the best-ranked variant in the region (posterior probability = 0.99 and
Z-score = 4.63). The variant is annotated as a functional variant with a high CADD score
[Combined Annotation Dependent Depletion (CADD) score = 21.1], a score that integrates
multiple annotations into one metric by contrasting variants that survived natural selection
with simulated mutations [36], and was predicted to be deleterious (Supplemental Figure
4A). For DRAMI, the GWA signal as well as two other variants (rs58512731 and
rs78927281) in perfect LD with the lead variant are the most likely causal variants in the
region. These variants lie in super-enhancers of DRAM!I (super-enhancer 32592)
(Supplemental Figure 4B). In an eQTL analysis of regions encompassing the newly
associated lead variants, we did not detect any significant eQTL for RARB within the high
LD window. However, the allele associated with higher protein intake in DRAM!I region
was associated with lower expression of DRAMI in several tissues including subcutaneous
adipose tissue (P=5.1 x 1078), artery (P= 2.9 x 1077), esophagus (P = 6.5 x 10710), [eft
ventricle (P= 1.6 x 1078), skin (P= 5.6 x 1078) and tibial nerve (P=3.1 x 1078)
(Supplemental Table S7). Finally, we integrated data from the Atlas of the Human IncRNAs
to gain insights from the lead GWA hit at RARB locus lying in the IncRNA AC133680.1.
We observed that the IncRNA is differentially expressed in several brain regions [the
strongest being in the caudate nucleus (39.3 fold-change increase), and plays a role in H1-
neuronal progenitor cells differentiation (3.7 fold-change increase, false discovery rate
(FDR) at 5% P = 1.03 x 1073), as well as cardiomyocyte (5.5 fold-change increase, FDR at
5% P = 3.87 x 107%), and melanocyte differentiation (2.9 fold-change increase, FDR at 5% P
=3.22 x 1073)] (Supplemental Table S8, Supplemental Figure S5).

Cross-phenotype associations of significant loci

To investigate the clinical importance of the macronutrient intake loci, we examined the
associations of the identified loci with a range of disease risk factors, molecular traits, and
clinical disorders. The RARB rs7619139 T-allele associated with higher carbohydrate intake
was also associated with lower BMI (8=-0.019, SE = 0.004, P= 3.32 x 1076) (Supplemental
Table S9). The DRAM1 rs77694286 G-allele associated with higher protein intake displayed
significant association with higher T2D risk (OR = 1.89, (95%CI: 1.36-2.54); P=0.019).
Associations for the FGF21 and FTO loci are also listed in Supplemental Table S9.

Genetic correlation and causal inference analysis

We examined the genetic correlation between macronutrient intake and a range of disease
outcomes and intermediate traits using LDSC. We found an inverse genetic correlation
between the intake of carbohydrate and fat (r=-0.78; P < 0.001), carbohydrate and protein
(r=-0.33; £<0.001), but not fat and protein. (Supplemental Figure S6). We found a
moderate concordant genetic correlation between protein intake and BMI (7,=0.23, P = 4 x
10 -4 ; Supplemental Figure S6). Also, we found an inverse genetic correlation between
dietary fat intake and years of education (7;=-0.24, P = 5 x 10~4; Supplemental Figure S6).
Upon identifying a significant genetic correlation between higher protein intake and higher
BMI, we used a bi-directional MR approach to investigate whether genetically driven
protein intake has a causal role for BMI and vice versa. We found that genetically raised
protein intake (per 1% of total energy intake) was associated with higher BMI (8= 0.09
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kg/m2, SE = 0.03, P=6.92 x 1074) (Table 3). Given that the lead variant at FGF21 was
associated with all three macronutrients, it is possible that any one of the macronutrients
might genetically raise BMI. Conversely, we also noted that genetically determined higher
BMI increased the amount of protein intake, but not carbohydrate or fat intake (Table 3). A
one standard deviation (1-SD) increase in BMI due to a 93-variant polygenic risk score
(excluding FTO) was associated with 0.58% higher protein intake (SE = 0.08, P = 9.88 x
10713) (Table 3, Supplemental Figure S7).

Discussion

In this study including data from up to 91,114 participants from European ancestry, we
identified 12 suggestively significant loci (P< 1 x 1075) associated with macronutrient
intake including four genome-wide significant loci in combined meta-analysis from
discovery and replication cohort studies. Meta-analysis including up to 123,659 individuals
supported a novel common variant in RARB locus associated with 0.20% higher
carbohydrate intake, a novel rare variant in the DRAMZI locus (MAF = 1% associated with
0.55% higher protein intake, and corroborated previous findings between FGF21 with higher
carbohydrate intake and lower fat and protein intake, and £70 with higher protein intake [9,
12]. In additional analysis of 144,770 participants from the UK Biobank, all identified
associations from the two-stage analysis were confirmed except for DRAMI, which
warrants further investigation given its 1% MAF. The identified loci are predicted to be
relevant regulatory regions mainly functional in brain and subcutaneous adipose tissues. The
clinical translation of these variants is supported by the associations with obesity related-
traits.

Suboptimal diets represent a major driving force behind escalating obesity epidemic
worldwide and their associated risk of T2D, CVD, and cancer [37]. Ecologic studies suggest
that increasing intake of carbohydrates, especially added sugars, is most strongly linked to
these trends [38, 39]. The present analysis suggests that a regulatory common genetic variant
in the RARB locus, situated in the INcRNA AC133680.1, is associated with increased
carbohydrate intake. The RARB locus has been identified as a novel obesity locus in a
recent GWA meta-analysis for BMI [32]. Fine-mapping confirmed that the identified variant
in this study, in high LD with the BMI reported variant (rs6804842, LD = 0.89), is likely to
be the causal variant in the region. We showed that the identified variant is differentially
expressed in several brain regions, where the strongest association was seen for caudate
nucleus (39.3 fold-change increase). In humans, ingestion of high-density and palatable
food, such as added sugar foods, has been shown to release dopamine in the caudate and
putamen regions [40]. Still, the potential functional overlap between the InNcRNA
AC133680.1 and other relevant genes in the region supports further explorations of
biological implications. Our findings may serve as preliminary evidence for the design and
implementation of in vitro and in vivo experimentations investigating how this genetic
variant might contribute to food selection in humans. In this regard, the identification and
characterization of relevant macronutrient intake genes, such as FGF21, has contributed
evidence that help create the framework to develop an FGF21 analogue that has been shown
to suppress sugar intake, sweet taste preference, and decrease central reward pathways when
administered in monkeys with obesity and humans with obesity and T2D [11].
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In this study, we used 1000G imputation reference panel which allowed us to identify a rare
variant in DRAM!I locus for the association with protein intake. DRAMI encodes the DNA
damage regulated autophagy modulator, a lysosomal protein that is required for induction of
autophagy by the p53 pathway [41]. Through genetic fine mapping, we showed that the
GWA hit is the most likely causal variant in the region together with other two variants in
perfect LD with the lead variant. These variants lie in a super-enhancer region of DRAM1
(super-enhancer 32,592), and the protein increasing G-allele in rs77694286 is associated
with higher T2D risk and lower expression of DRAM!I in subcutaneous adipose tissue. The
association between DRAM!Z and protein intake was not verified in additional analysis of
144,770 subjects from the UK Biobank. A potential explanation for the lack of confirmation
of the DRAM findings in the UK Biobank may be due the MAF of this variant. Therefore,
our observation linking DRAMI with protein intake requires further evaluation.

In our discovery analysis, worth noting is a novel genome-wide signal in the ABO locus for
protein intake that did not replicate in subsequent analyses. This variant is in perfect LD
with an intronic genetic polymorphism in the ABO gene (rs651007) and associates with a
host of cardiometabolic traits including higher fasting glucose levels and moderate increases
in T2D risk [42]. A recent study has also identified that the minor allele at this
polymorphism significantly interacts with higher dietary fat intake to exacerbate BMI [43].
Pending replication of the interaction observation and the present ABO association with
protein intake, these observations may be utilized for future studies to better understand the
genetic architecture of macronutrient intake and related metabolic outcomes.

The observation of a moderate concordant genetic correlation between protein intake and
BMI, but not other obesity-related traits, suggests that genetic effects of higher protein
intake are shared with greater BMI genome-wide. First, we observed reasonably clear
evidence to support causality for BMI with protein intake. However, since our GWA were
with and without adjustment for BMI, we cannot exclude the potential for BMI-related bias
(i.e. reporting bias in those who are overweight or obese) to account for our current MR
observations [44]. A previous report highlighted that the F70 locus was associated with
higher protein intake [45], a finding we now extend to other BMI-raising alleles, suggest
that higher BMI is associated with higher reported protein intake not specific to the effect of
FTO (Supplemental Figure S6). Second, for our MR analysis, the lead variant at FGF21
associated with percentage of energy intake from protein was also associated with
percentage of energy from carbohydrate and fat intake, therefore we cannot ascribe causality
between one specific macronutrient group with BMI or whether this reflects substitution of
macronutrients as a proportion of total energy intake. A meta-analysis of randomized
controlled trials demonstrated that diets with any macronutrient composition result in weight
loss [46]. However, given that the current macronutrient intake genetic predisposition is
limited to a few number of variants, future research using more genetically increased
macronutrient consumption is needed to confirm these findings.

In the U.S., dietary factors are estimated to account for >650,000 deaths per year and 14% of
all disability-adjusted life-years lost [47]. The nutritional shift towards increased
consumption of ultra-processed foods has been a consequence of globalization and rapid
economic development during the last few decades [48]. Family-based heritability estimates
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for macronutrient intake ranges between 20-40 %, whereas SNP-based heritability reported
previously [9] and here indicate more modest heritability estimates. Although the small
estimates indicate environmental variation plays a major role in explaining the remainder of
the trait, genes still have a role in explaining a significant proportion of macronutrient intake
heritability. Our analysis indicates shared genetic correlations across macronutrients,
particularly carbohydrate with both fat and protein. Understanding the biological basis of
dietary intake can help guide future studies and shape public health initiatives. Our results
may be used to assess dietary pattern recommendations based on genetic risk profile, or may
be used by recall-by-genotype studies to evaluate whether a dietary pattern tailored to an
individual’s genetic risk will lead to more desirable health outcomes. Nevertheless, there are
several challenges in identifying and validating genetic associations for macronutrient intake
worth noting. Variability in dietary intake across geographical locations, error in dietary
assessment, differences in allele frequencies across studies, imperfect imputation within
studies, and ancestry-specific LD patterns may hinder discovery and replication of genetic
associations and could potentially induce false positive findings. In addition, noting the
variability in dietary habits across populations and the use of dissimilar dietary assessment
tools across studies is particularly relevant for meta-analyses of lifestyle traits [49].
Although the present investigation was limited to individuals of European ancestry for the
purpose of reducing ancestry-specific LD patterns, we cannot account for differences in
other intrinsic factors across studies. In addition, the present findings require further
validation in individuals of other ancestries. Finally, because we studied three partially
correlated traits, we set the p-value for statistical significance at the genome-wide
Bonferroni-corrected threshold of 2< 5 x 1078, and whether a more stringent threshold is
more appropriate for partially correlated traits is unclear.

In summary, our results provide compelling novel evidence of the genetic architecture of
macronutrient intake and contribute biological insights relating dietary intake to the central
nervous system and adipose tissue biology. Our findings add to the current understanding of
macronutrient intake and are hypothesis-generating for future studies.
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Schematic of the study design and main findings
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Fig. 2.

Bi%logical insight of the two replicated variants in CHARGE. Data generated from an array
of complementary approaches including genetic fine-mapping, epigenetic regulation and
expression data to investigate the biological relevant of novel variants. Through genetic fine
mapping, we showed that the lead variant at RARB locus associated with CHO intake was
the best-ranked variant in the region. This variant is placed in a INCRNA, is a highly
constrained variant and predicted to be deleterious. We showed that the InNCRNA gene is
differently expressed in several brain regions and is involved in neuronal progenitor cells
differentiation. For DRAM!, the GWA hit is predicted to be the most likely causal variant in
the region and lie in a superenhancer of DRAMI (super-enhancer 32592). Gene-tissue
expression showed that the allele associated with higher protein intake was associated with
lower expression (rank normalized expression) of DRAMI in subcutaneous adipose tissue
(AJA; Homozygote reference, n= 359. G/A; Heterozygote, n= 29, G/G; Homozygote
alternate, 7= 1). The clinical transcendence of the two identified loci in CHARGE is
supported by the association with obesity-related traits. DRAMI findings did not replicate
when using data from the UK Biobank data alone
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