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Abstract 

Current preclinical drug testing does not predict some forms of adverse drug reactions in humans.   

Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell 

technology to generate human cells for screening for adverse effects of drugs in humans.  The 

advent of induced pluripotent stem cells means that it may ultimately be possible to develop 

personalised toxicology to determine inter-individual susceptibility to adverse drug reactions.  

However, the complexity of idiosyncratic drug-induced liver injury (DILI) means that no current 

single cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem 

cells, adequately emulates what is believed to occur during human DILI.  Nevertheless, a single cell 

model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in 

assessing potential chemical risk; furthermore understanding how to generate a relevant hepatocyte 

will also be critical to efforts to build complex multicellular models of the liver. Currently, 

hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature 

hepatocellular phenotype.  Therefore, we convened a number of experts from the areas of 

preclinical and clinical hepatotoxicity and safety assessment, from industry, academia and regulatory 

bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment, and 

to make recommendations for the way forward.  In this short review, we particularly discuss the 

importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally-

differentiated human counterparts using defined phenotyping, to make sure the cells are relevant 

and comparable between labs, and outline why this process is essential before the cells are 

introduced into chemical safety assessment. 

 

Prediction of adverse drug reactions in the liver: why it is important, limitations of current 

in vitro models and how stem cells may prove useful in drug screening 
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Adverse drug reactions (ADRs) are a significant clinical problem, resulting in considerable patient 

morbidity and mortality
(1)
 and thus represent a major financial burden on healthcare systems.  ADRs 

also represent a major challenge for the pharmaceutical industry leading to attrition of drugs in 

development and the withdrawal of drugs post-licensing
(2)

.  Amongst different forms of ADRs, the 

liver is particularly susceptible to drug toxicity; drug-induced liver injury (DILI) is the second highest 

cause of attrition and accounts for more than 50% of cases of acute liver failure
(3)

.   

The principal cause of these high attrition rates is the failure of current preclinical drug testing 

procedures to effectively predict idiosyncratic DILI in patients
(2)

.  This is true for in vitro models  and 

even for in vivo models - a recent study that related the  preclinical assessment of drugs with the 

occurrence of DILI in the clinic showed that between 38% (Medline database: 269 out of 710 

compounds) and 51% (EMEA database: 70 out of 137 compounds) of drugs that subsequently 

caused liver injury in patients were not predicted from animal studies
(4)

. Concerted worldwide 

efforts are therefore required to improve the assessment of hepatotoxic risk for new compounds.  In 

Europe, the SEURAT (http://www.seurat-1.eu/pages/cluster-projects/scrtox.php) and MIP-DILI 

(http://www.mip-dili.eu/) consortia, and in the US, DILIN (http://www.dilin.org/) and iSAEC 

(http://www.saeconsortium.org/) are attempting to address this issue.  The clinical manifestation of 

DILI indicates that it is a multi-dimensional and multi-faceted disease
(5)

. Indeed, the diagnosis of DILI 

is largely based upon exclusion criteria
(5)

.  Although the use of currently available cell lines and 

primary human hepatocyte models has been able to correctly classify a number of DILI compounds 

as hepatoxins
(6-9)

, idiosyncratic DILI is inherently difficult to model in the laboratory, and therefore 

highly unlikely to be predicted by simplistic screening strategies, often based on single-cell models 

involving cell lines.  Many approaches use liver-derived cancer cell lines, e.g. HepG2 and HepaRG, 

which may have value for identifying drugs lacking a propensity to cause idiosyncratic DILI (90-95% 

predictability), but perform less well for positive predictions (50-89%)
(9-11)

.  Metabolically-competent 

freshly-isolated, or cryopreserved human primary adult hepatocytes are still considered to be the 

gold-standard single cell model of DILI. Nevertheless, human hepatocytes are difficult to source, they 
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are also costly and functionally variable (reflecting variation in the human population), they undergo 

severe stress during the isolation process and, critically, they rapidly lose key functions when 

cultured in vitro.  Moreover, it is important to note that hepatocyte toxicity per se is not the sole 

cause of hepatotoxicity which, in the intact liver, may involve multiple different cell types including 

lymphocytes and macrophages.  Yet it is reasonable to assume from the work of several groups, over 

many years, that a metabolically-competent hepatocyte will be an essential component of any 

model of hepatotoxicity in vitro.  Thus, a robust and reproducible metabolically-competent 

hepatocyte-like cell derived from directly reprogrammed cells, or from pluripotent stem cells, would 

represent a major step forward for the development of a new generation of in vitro models.  

The imperatives of industry and academia are driven by different model requirements. The priority 

for industry is a cost-effective and scalable high-throughput screening model that has direct input 

into ‘go/no go’ decision making during drug development, whilst academic scientists are driven by 

the need to understand hepatic physiology and the mechanistic basis of DILI. Hepatocytes derived 

from stem cells can, however, be central to both of these objectives.  Whilst significant progress 

towards a functional hepatic phenotype has been made, it is clear that stem-cell-derived 

hepatocyte-like cells (SC-HLCs) still fall well short of recapitulating the full mature hepatocellular 

phenotype
(12-15)

.   

Because of the importance and likely impact of developments in this field, scientists with expertise in 

preclinical and clinical hepatotoxicityand complex and novel forms of in vitro cell culture, 

representing industry, academia and regulatory bodies, assembled at a workshop at the University 

of Liverpool, under the auspices of the European Partnership for Alternative Approaches to Animal 

Testing (EPAA) (http://ec.europa.eu/growth/sectors/chemicals/epaa/index_en.htm) and the MRC 

Centre for Drug Safety Science (https://www.liverpool.ac.uk/drug-safety/).  The purpose of the 

workshop was to specifically explore the application of stem cells in hepatotoxicity safety 

assessment, and to make recommendations for the way forward.  This workshop follows the 
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EPAA/NC3Rs (National Centre for the Replacement, Refinement and Reduction of Animals in 

Research) (https://www.nc3rs.org.uk/) “Stem Cells in Safety Testing Forum” workshop that took 

place in 2013, with a mandate to provide a platform for permanent dialogue between research 

groups, to share experiences, problems, successes and opportunities. 

Current challenges in the use of stem cell-derived hepatocytes in the safety assessment of 

new chemical entities   

It is clear from a large number of studies
(13, 14, 16-47)

 (see Table 1) that hepatocytes generated from 

stem cells are not currently sufficiently mature to emulate an adult primary human hepatocyte, and 

that these cells are probably closer in phenotype to a fetal hepatocyte
(12)

.   Many studies using SC-

HLCs purport to demonstrate a hepatocyte-like phenotype but do not actually incorporate a 

physiologically-relevant benchmark (e.g. freshly-isolated human hepatocytes) and a non-

physiologically-relevant benchmark (e.g. HepG2 cells);  in addition, often very few markers of the 

hepatic phenotype are used and  studies do not always employ quantitatively-relevant assays (e.g 

mass spectrometry).  Thus, inadequate benchmarking has hampered the field and there is likely 

significant value in identifying a common framework that might allow end users to readily interpret 

cell phenotype.   

Despite the challenges in generating mature hepatocytes, SC-HLCs have recently been shown to 

retain the cytochrome P450 (CYP) expression profile (specifically CYP2C9 and CYP2D6) of the donor 

hepatocyte
(48, 49)

, yielding metabolism-specific toxicity for CYP2C9 (benzbromarone) and CYP2D6 

(tamoxifen).  This is highly relevant as the CYPs are key enzymes of Phase I drug metabolism, that 

play a key role in the chemical functionalization and eventual elimination of drugs from the body, 

but which also can yield significant intracellular concentrations of chemically reactive metabolites, 

leading to cellular and tissue damage of the liver, and therefore DILI (for a  review of this area, see 

Park et al, 2011
(50)

). 
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The recent studies outlined above 
(48, 49)

 are particularly important as they suggest that modelling 

some forms of DILI (such as that elicited by benzbromarone or tamoxifen) using stem cell-derived 

hepatocytes may be possible, and that ultimately the challenges to generating a fully mature HLC 

will not always be insurmountable.  

We consider that there are at least three major challenges to producing mature, physiologically- and 

pharmacologically-relevant hepatocytes from stem cells: 

• Stem cell-derived hepatocytes must mimic several years of development in vivo. 

• Like primary hepatocytes, the stem cell-derived hepatocyte phenotype is unstable currently 

in culture
(51)

. 

• At the moment, it is difficult to emulate the complexity of the liver, with its unique blood 

supply and exposure to  relevant concentrations of intestinal products and nutrients in vitro. 

Development of three-dimensional culture systems that employ co-cultivation of all cell 

types found in the liver acinus is likely to be required if we are to recapitulate the liver in 

vitro
(51, 52)

. Following on from this, it is important to remember that a hepatocyte is not a 

single entity but varies functionally according to the hepatic zone in which it is located.  The 

consequence of this is that some hepatotoxins induce hepatocellular damage in a zone-

specific manner and this has not yet begun to be addressed meaningfully in the stem cell 

field, as we focus our attempts on improving basic functional maturity of the SC-derived 

cells, but it will need to be considered. 

Despite these challenges, there are many promising leads in development, e.g. the discovery of 

several small molecule inducers of the hepatic phenotype
(53)

, and the finding that microbial-derived 

secondary metabolites to which immature hepatocytes are likely to be exposed to post-partum may 

induce a significant increase in maturity.  A further paradigm comes from the exploitation of SC-HLCs 

for demonstration of efficacy; specifically, for the reversal of the hepatic alpha1-antitrypsin-deficient 
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phenotype, shown by Yusa et al
(54)

.  This study demonstrated restoration of alpha1-antitrypsin 

activity was possible on a “sufficiently” mature background, rather than one that was necessarily 

fully mature and identical to a freshly-isolated adult hepatocyte. Furthermore, a recent study by 

Ware et al
(55)

 suggests that DILI detection is possible using SC-HLCs in micopatterned co-cultures, in 

which cells mature to significant levels. It is worth remembering that the hepatocyte exhibits more 

individual functions (>500) than any of the other ~200 terminally differentiated cell types in the 

human body.  Therefore it is perhaps not surprising that this cell is amongst the most challenging to 

mature, and we should still continue to explore the utility of hepatocyte-like cells as prototypes 

rather than await the final “product”. 

Lessons learned from the use of stem cell-derived cardiomyocytes in detecting 

cardiotoxicity 

A parallel example, from which lessons can be learned, comes from the use of stem cells in the 

assessment of drug-induced cardiotoxicity – a primary cause of drug attrition. Cardiotoxicity, 

specifically QT prolongation, has already been successfully modelled using such cells
(56-58)

. In 

comparison, there is only very recent evidence that SC-HLCs are able to recapitulate hepatotoxic 

events
(49, 55)

.   The difference between successful application of cardiac models compared with 

hepatic models may reflect the relative specificity of some forms of drug-induced cardiotoxicity, in 

contrast with the rather pleiotropic and diverse manifestations of hepatotoxicity, at the molecular, 

cellular, and tissular level
(59)

.  Cardiotoxicity often arises due to drug-induced electrical perturbation 

of the cell interfering with its contractile function
(60)

. Here, the stem cell-cardiomyocyte model 

provides advantages over recombinant tumour models. Thus, the impact of drugs that cause simple 

single ion channel or complex multi-channel perturbation can be related to cardiomyocyte 

arrhythmias and abnormalities in contractility
(61)

. In hepatotoxicity, however, there are myriad 

factors required to recapitulate toxicity, especially idiosyncratic toxicity where the immune system is 
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also implicated. This is compounded by inter-individual variation in expression of xenobiotic 

metabolism and transporter proteins in addition to the chemistry of each drug. 

Whilst protocols to differentiate stem cells towards cardiomyocytes generate cells that are not fully 

mature
(61)

, these cells can recapitulate some facets of the cell phenotype required to produce 

specific forms of cardiotoxicity. This has prompted major international efforts to search for methods 

to further mature stem cell cardiomyocytes. Each incremental improvement made towards 

progressing the compliment of ion channels, regulatory pathways and structural proteins to the 

complete sets found in adult cells will dramatically increase the utility of stem cell cardiomyocytes. 

The demonstration that specific toxicological phenotypes can be mimicked by stem cell-derived 

cardiomyocytes allows the cell model to be considered “fit-for-purpose”. This raises the notion of 

using stem cell-derived hepatocytes that may be sufficiently mature for a specific toxicological 

assessment even though the cells may lack the full hepatic functionality with respect to drug 

metabolism, transporter expression etc. For example, where one or two cytochrome P450s (P450s), 

some relevant phase II enzymes, such as the glutathione transferases and UDP-glucuronyl 

transferases, and some Phase III proteins (influx and efflux transporters) are expressed at a set and 

reproducible % of a “typical” human hepatocyte, this cell may in some cases represent a significant 

and useful model in understanding specifically drug metabolism and possible metabolism-dependent 

toxicity.  

 

The Importance of Phenotypic Characterisation  

For the field to continue to move forward and develop liver cell models that are useful in prediction 

and mechanistic understanding of DILI, it is essential that the SC-HLCs are properly benchmarked 

against currently used and relevant human cells, especially fresh primary human hepatocytes and 

HepG2 cells (see Table 1 and Figure 1).  Moreover, the phenotype of the HLCs must be as 

reproducible as possible, and they should be fully characterised, particularly with reference to the 
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pharmacological phenotype (using a defined panel of training compounds).  It is also important that 

the cell model can provide a static point of reference that can be used to ascertain if real progress is 

being made. When assessing novel models of hepatotoxicity it is important to use functional assays 

employing quantitative mass spectrometry whenever possible, as this is now being routinely 

employed 
(48, 62, 63)

in order to determine the true phenotype of the model.  A global proteomic 

analysis however may be the most appropriate way to characterise the cells, as this would represent 

a broad visualisation of the physiological phenotype of the cells.  Similarity to freshly-isolated 

hepatocytes/tissue can be established through proteomics and targeted multiple- reaction-

monitoring (MRM)-based mass spectrometric analysis of key proteins, such as CYP450s, transporters 

and intracellular signalling molecules and metabolic and cellular uptake profiles determined. 

Developments in mass spectrometric technologies mean that it is now possible to analyse small 

panels of proteins (for example 10-20 transporters or P450s) using MRM, in order to quantify 

proteins per cell at an absolute level
(64)

.  This would ensure valid comparisons between currently 

used models and cells, as well as cells that are developed in the future. Given the inherent 

deficiencies in a transcriptomic-only approach, which are well-illustrated in a recent landmark paper 

reporting only a 39% correlation between mRNA and protein at a global level
(65)

, measuring mRNA 

levels is not recommended for cell characterisation purposes. 

As part of a comprehensive assessment of HLC phenotype, recent developments in the field of 

hepatocyte-selective translatable biomarkers (e.g. miR122
(66)

) might allow us to translate the 

response to chemicals between humans, model organisms and cells including SC-HLCs and it is likely 

that additional novel and selective biomarkers will be identified in the future using models such as 

SC-HLCs. This is an important area for industry which requires selective and translatable biomarkers 

of liver injury to monitor potentially hepatotoxic compounds in the clinic. 

The recently developed concepts of adverse outcome pathways and points of departure
(67) 

in the 

field of systems toxicology should also be considered in the context of phenotyping the response to 
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chemical exposure of hepatocyte-like cells that express relevant proteins and pathways.  To this end, 

cells expressing genetic reporters for key adaptive pathways such as Nrf2, PXR andNF-κB will be 

useful as a means for understanding the earliest events in the biological response to a drug
(68-70)

.  

However, it is imperative that we develop ways to bridge our findings from these molecular 

investigations to what actually occurs in DILI in humans –the development of novel bridging 

biomarkers that allow extrapolation from in vitro test system to man will be invaluable in this 

endeavour. Another important development in relation to hepatocyte genotype and phenotype in 

DILI is the derivation of SC-HLCs with specific polymorphisms relevant to drug toxicology. Of 

particular interest in this regard is the developing use of CRISPR technology in SC-HLCs to edit, for 

example, genes relevant to drug metabolism and toxicity thereby providing a wild type cell and an 

almost identical cell with an alteration in drug metabolism and toxicological responses, respectively. 

Finally, phenotypic characterisation may be assisted by a better understanding of the mechanisms 

contributing to de-differentiation or loss of phenotype.  Consideration of the cellular complexity of 

the liver and the functional sophistication of a hepatocyte makes it unsurprising that the 

maintenance of a fully functional hepatocyte in culture is difficult to achieve
(71)

. The cells have been 

removed from their neighbouring hepatocytes, disrupting their gap junctions and tight junctions 

which are important for their phenotype, as well as their juxtaposed non-parenchymal cells, which 

may also be responsible for the differentiated hepatocyte phenotype
(72, 73)

.  Dedifferentiation is not a 

unique process to the liver; when cardiomyocytes are cultured, they also lose some of their in vivo 

phenotype, e.g. the t-tubules are lost, glycogen is accumulated and chromatin becomes dispersed in 

vitro
(74)

.  However, the key difference between hepatocytes and myocytes is the importance of the 

metabolic phenotype with respect to drug toxicity, and it is this function – particularly the phase I 

CYP450 capacity – that is most rapidly and profoundly depleted
(71, 75)

  - and it is also this function, at 

a defined proportion of the activity present in human liver, that is essential in any in vitro model of a 

hepatocyte    
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One area of research that could have a significant impact on attempts to re-establish a functional 

hepatocyte from stem cells, is the investigation of the precise cellular mechanisms underlying the 

de-differentiation process that occurs in hepatocytes once they have been removed from the liver. 

Whilst the factors driving de-differentiation may not be identical to those that drive differentiation, 

it is likely that one or more pathways and processes uncovered through research into de-

differentiation will be amenable for testing in differentiation experiments.  If it is not understood 

how to maintain the dynamic and sophisticated machinery of a fully mature hepatocyte in vitro, it is 

likely to be difficult to capture the same phenotype in a stem cell-derived cell grown under similar 

conditions. 

 

Summary and recommendations  

• DILI is a complex, multi-dimensional disease, with variable phenotype between individuals, 

even for a single drug. There is essentially no ideal in vitro or in vivo model that recapitulates 

all of the potential features of this injury.  

• The aspiration of the field is a “perfect” mature hepatocyte as it exists in a liver - this has not 

yet been achieved.  Until it is, hepatocyte-like cells with known, quantifiable and  

reproducible proportions of the function of two widely-used standards, i.e. primary fresh 

human hepatocytes, and HepG2, will be valuable biological models to explore the 

physiological, pharmacological and toxicological response of hepatocytes to drug exposure. 

• These “immature” cells should be explored as models of chemical perturbation using genetic 

reporters and biomarkers, with continual effort to relate findings to human DILI. 

• Global proteomic analysis aligned with biological pathway analysis may be the most 

appropriate way to characterise HLCs – a small targeted panel of proteins will also help to 

compare cells for key proteins and functions using absolute quantitation by mass 

spectrometry.  Crucially, this will advance the field by avoiding over-reliance on a small panel 
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of liver proteins, such as albumin, that may not be representative of a fully mature and 

functioning liver cell. 

• It is likely that niche creation in vitro, deploying enhanced matrices
(13)

  and even 3D 

bioprinting
(76)

 , and incorporating other cell types such as endothelial cells
(76, 77)

  and Kupffer 

cells
(78)

  inter alia, will mature and support hepatocyte function. 

• A small panel of chemical benchmarks will be needed to probe the physiological, 

pharmacological and toxicological function of the cells, only once they have been properly 

phenotyped.  There is little point in exposing HLCs to chemicals chosen as hepatotoxins in 

man unless we fully characterise the cells. 
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Table 1. Summary of studies post-2007 of HLC-derivation from human pluripotent stem cells (adapted from Table 1 and Table 2, Kia et al
(13)

 with 

modification). Note the limited number of Phase 1 and 2 phenotyping markers generally employed in the characterization of the HLCs. 

Reference Method of stem cell differentiation  Differentiation efficiency 

% ALB +ve HLCs 

PHENOTYPING: Phase I and II enzyme activity 

Stem cell (cell line) Culture format Differentiation factors % ALB +ve HLCs  

(assay method) 

Enzyme (assay method) % hPH 

comparator 

Other comparators 

Cai et al., 2007
(14)

 hESC (H1, H9) Monolayer, EB 

formation 

AF V, AA, ITS, BMP2, FGF4, HGF, OSM, DEX 70 (ICC) CYP2B6 (Fluorescence) ND hESC  

Ek et al., 2007
(15)

 hESC (SA002, SA002.5, SA167) Monolayer Proprietary differentiation medium, FGF2  ND CYP1A1 (Fluorescence) 

CYP3A4 (Fluorescence) 

0 

0 

 ─ 

 ─ 

Söderdahl et al., 

2007
(16)

 

hESC (SA001, SA002, SA002.5, 

AS034, SA121, and SA167) 

Monolayer Proprietary differentiation medium, bFGF ND GST (Fluorescence) 80 HepG2  

Hay et al., 2008
(17)

; 

Godoy et al., 2015
(11)

; 

Cameron et al., 2015
(10)

 

hESC (H1, H9) Monolayer AA, Wnt3a 90 (ICC) CYP 1A2 (LC-MS-MS) 

CYP1A2 (Luminescence) 100             

CYP3A4 (Luminescence) 100 

24 hESC  

Shiraki et al., 2008
(18)

 hESC (Khes-1) Co-culture with 

M15 cell line 

AA, BMP4, bFGF, HGF, DMSO, DEX, Ly294002 9 (ICC) ND ─ ─ 

Agarwal et al.,2008
(19)

 hESC (WA01, WA09) Monolayer AA, FGF4, HGF, BSA, OSM, DEX 67.4 (ICC) ND ─ ─ 

Moore et al., 2009
(20)

 hESC (H1) Monolayer, EB 

formation 

AA, Wnt3a, HGF, OSM, DEX 72.8 (ICC) CYP 1A2 (Fluorescence) ND hESC-derived HLCs in culture 

 media of different components 

Basma et al., 2009
(21)

 hESC (H1) Monolayer, EB 

formation 

AA, FGF2, HGF, DMSO, DEX 55.5 (ICC) CYP1A (Fluorescence) 

CYP3A (LC-MS-MS) 

30 

90 

─ 

─ 

Song et al., 2009
(22)

 hESC (H1),  

hiPSC (hFb-derived 3U1, 3U2) 

Monolayer AF V, AA, ITS, BMP2, FGF4, OSM, 

DEX, KGF, B27 

60 (ICC) CYP2B6 (Fluorescence) ND hiPSC-derived versus hESC-

derived HLCs 

Duan et al., 2010
(23)

 hESC (H9) Monolayer AA, sodium butyrate, BMP2, 

BMP4, FGF4, HGF DMSO, B27 

75-90 (ICC, FACS) CYP1A2 (LC-MS-MS) 

CYP2C9 (LC-MS-MS) 

CYP2D6 (LC-MS-MS) 

CYP3A4 (LC-MS-MS) 

100 

60 

95 

90 

─ 

─ 

─ 

─ 

Synnergren et al., 

2010
(24)

 

hESC (SA002, SA167, SA461) Monolayer AA, ITS, FGF1, FGF2, BMP2, 

BMP4, HGF, OSM, DEX 

ND ND ─ ─ 

Touboul et al., 2010
(25)

 hESC (H9) Monolayer AA, BMP4,FGF2, FGF4, FGF10, 

HGF, EGF, retinoic acid, 

SB431542, Ly294002 

ND CYP3A (Bioluminescence) ND ─ 

Brolén et al., 2010
(26)

 hESC (SA001, SA002, SA002.5, 

SA167) 

Monolayer AA, BMP2, BMP4, FGF1, FGF2, 

HGF, OSM, DEX, Wnt3A 

ND CYP1A (LC-MS-MS) 

CYP2C (LC-MS-MS) 

CYP2A (LC-MS-MS) 

ND Spontaneously differentiated 

hESC-derived HLCs, HepG2 

Ghodsizadeh et al., 

2010
(27)

 

hiPSC (hFb-derived) EB formation AA, FGF2, HGF, DMSO, DEX 50 (FACS) CYP2B6 (Fluorescence) ND hiPSC 

Liu et al., 2010
(28)

 hESC (WA01, WA09),  

hiPSC (hPH-derived) 

Monolayer AA, FGF4, HGF, OSM, DEX ND CYP1A2 (Bioluminescence) 

CYP3A4 (Bioluminescence) 

ND ─ 

Si-Tayeb et al., 2010
(29)

 hESC (H9), hiPSC (hFb-

derived)  

Monolayer AA, BMP4, FGF2, OSM, B27 80 (FACS) ND ─ ─ 

Sullivan et al., 2010
(30)

 hiPSC (hFb-derived) Monolayer AA, HGF, Wnt3A, DMSO, OSM, 

hydrocortisone, tryptose 

phosphate broth, B27 

70-90 (ICC) CYP1A2 (Bioluminescence) 

CYP3A4 (Bioluminescence) 

ND ─ 
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Rashid et al., 2010
(31)

 hiPSC (hFb-derived) Monolayer AA, BMP4, FGF2, HGF, OSM, 

Ly294002, CHIR99021 (GSK-3 inhibitor) 

83 (FACS) CYP3A4 (Bioluminescence) ND hiPSC 

Zhang et al., 2011
(32)

 hESC (H9), hiPSC (hFb-

derived) 

Monolayer, EB 

formation 

AA, BMP2, FGF4, HGF, KGF, 

OSM, DEX 

60-80 (ICC, FACS) CYP3A4 (Bioluminescence) 0.32 hESC-derived HLCs 

Bone et al., 2011
(33)

 hESC (Shef1, Shef3) Monolayer FGF4, HGF, OSM, DEX, 1 m 

(GSK-3 inhibitor) 

ND ND ─ ─ 

Yildirimman et al., 

2011
(34)

 

hESC (SA002) Monolayer Proprietary differentiation 

medium 

ND CYP1A2 (LC-MS-MS) 

CYP3A4 (LC-MS-MS) 

CYP2B6 (LC-MS-MS) 

CYP2C9 (LC-MS-MS) 

CYP2C19 (LC-MS-MS) 

50 

50 

10 

50 

50 

─ 

─ 

─ 

─ 

─ 

Chen et al., 2012
(35)

 hESC (H9), hiPSC (hFb-

derived, CFB46) 

Monolayer AA, ITS, HGF, Wnt3A, OSM, 

DMSO, DEX 

ND CYP3A4 (Bioluminescence) 100 hiPSC 

Cayo et al., 2012
(36)

 hiPSC (FH patient JD 

fibroblast-derived) 

Monolayer OCT4, SOX2, NANOG, LIN28 ND ND ─ ─ 

Schwartz et al., 2012
(37)

 hiPSC (hFb-derived) Monolayer AA, BMP4, FGF2, HGF, OSM 80 (ICC) ND ─ ─ 

Takayama et al., 

2012
(38)

 

hES (H9), hiPSC (hFb-derived, 

MCR5 & 201B7) 

Monolayer AA, SOX17, HEX, BMP4, FGF4, 

 LacZ, HNF4α, HGF, OSM,  DEX 

ND CYP3A4 (Fluorescence) 

CYP2C9 (Fluorescence) 

CYP1A2 (Fluorescence) 

100 

> 10 

< 1 

─ 

─ 

─ 

Choi et al., 2013
(39)

 hiPSC (derived from AAT 

deficient patients) 

Monolayer B27, AA, FGF4, HGF, OSM, DEX ND CYP3A4 (Bioluminescence) 

CYP2D6 (Bioluminescence) 

CYP2C19 (Bioluminescence) 

CYP1A2 (Bioluminescence) 

80 

70 

90 

90 

─ 

─ 

─ 

─ 

Ramasamy et al., 

2013
(40)

 

hESC (H1) Monolayer & 3D 

culture in 

Algimatrix plate 

AA, DMSO, HGF, OSM ND CYP3A4 (Bioluminescence) ND HepG2 

Gieseck et al., 2014
(41)

 hiPSC (hFb-derived) Monolayer, 3D-

single cell or 

Clump culture 

 in RAFT system  

AA, FGF2,BMP4, LY-294002, Hepatozyme-SFM  ND CYP3A4 for 2D Day 35 

(HPLC-MS) 

CYP3A4 for 3D Day 45 

(Bioluminescence) 

4 

25 

─ 

Jia et al., 2014
(42)

 hiPSC (from urine cells of HA 

patient) 

Monolayer, EB 

formation 

AA, FGF4, BMP2, HGF, KGF, OSM, DEX 64 (FACS) ND ─ ─ 

Avior et al., 2015
(43)

 hESC  (I3) Monolayer AA, B27, Wnt3A, HGF, DMSO, DEX, OSM, FGF2, 

LCA, MK4 

83 (FACS) CYP3A4, 1A2 (Fluorescence) 

CYP2E1, 2C9 (Fluorescence) 

30 

8 

HepG2, hESC without LCA/MK4 

Chien et al., 2015
(44)

 hiPSC (from dental pulp 

stromal cells) 

Co-culture with 

MEF, EB 

formation 

AF V, AA, FGF4, BMP2, HGF, KFG, OSM,  

DEX, B27, miR122 (delivered by PU-PEI in CHC) 

ND ND ─ ─ 

 

Abbreviations: AA, activin A; AF V, albumin fraction V; bFGF, human recombinant basic FGF; BMP, bone morphogenic protein; BSA, bovine serum albumin; 

CHC, carboxymethyl-hexanoyl chitosan; DEX, dexamethasone; DMSO, dimethyl sulfoxide; EGF, epidermal growth factor; FACS, fluorescence-activated cell 

sorting; FGF, fibroblast growth factor; GFP, green fluorescent protein; GSK, glycogen synthase kinase; Hepatozyme-SMF, hepatozyme serum free medium; 

HEX, hematopoietically-expressed homeobox protein; hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem cell; HLCs, hepatocyte-like 

cells; HGF, hepatocyte growth factor; HNF4alpha, hepatocyte nuclear factor 4 alpha; ICC, immunocytochemistry; ITS, insulin-transferrin-selenium; KGF, 
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keratinocyte growth factor; LacZ, beta-D-glactosidase; Ly294002, phosphoinositide 3-kinase inhibitor; miR122, microRNA 122; ND, not determined; OCT, 

octamer-binding transcription factor; OSM, oncostatin M; PU-PEI, biodegradable polyurethane-graft-short-branch polyethylenimine; qRT-PCR, quantitative 

real time polymerase chain reaction; SB431542, inhibitor for activin receptor-like kinase receptors ALK5, ALK4 and ALK7; SOX, sex determining region Y-box;  

Wnt3a, wingless-type MMTV integration site family, member 3a   
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