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Gold nanorods are extensively used for single-molecule fluorescence enhancement as they are easy
to synthesize, bio-compatible, and provide high light confinement at their nanometer-sized tips. The
current way to estimate fluorescence enhancement relies on binned time traces or on fluorescence
correlation spectroscopy. We report on novel ways to extract the enhancement factor in a single-
molecule enhancement experiment, avoiding the arbitrary selection of one or a few high-intensity
burst(s). These new estimates for the enhancement factor make use of the whole distribution of intensity
bursts or of the interphoton delay distribution, which avoids the arbitrary binning of the fluorescence
intensity time traces. We present experimental results on the bi-dimensional case, experimentally
achieved using a lipid bilayer to support the diffusion of fluorophores. We support our findings with
histograms of fluorescence bursts and with an analytical derivation of the interphoton delay distribution
of (nearly) immobilized emitters from the fluorescence intensity profile. Published by AIP Publishing.
https://doi.org/10.1063/1.5023171

I. INTRODUCTION

Single quantum emitters such as fluorophores, quantum
dots, color centers, and fluorescent proteins have become pow-
erful tools for modern science since they provide nanometer-
sized probes that can be used to extract information about the
local environment,1,2 oxidation state of molecules,3 and prox-
imity of other emitters using Förster resonance energy transfer
(FRET).4–6 These unique advantages are joined to those of
non-invasive optical methods.

Fluorescence enhancement by plasmonic nanostructures
has been successfully used in the past to increase the signal
from weak emitters7–9 even in living cells.10 In a nutshell, flu-
orescence enhancement by metallic nanoparticles refers to a
considerable increase in the rate of detected photons whenever
a (often weakly) fluorescent molecule is placed in the vicinity
of the nanoparticle. Enhancement heavily relies on the surface
plasmon resonance of the nanoparticle, which often lies in
the optical spectral range. When excited at this resonance fre-
quency, the nanoparticles can concentrate optical fields in tiny
volumes, the so-called “hot spots,” providing a sub-diffraction
working volume that can be exploited to extend the power-
ful technique fluorescence correlation spectroscopy (FCS) to
micromolar concentrations.11–15 Notably, this approach was
also used to study molecular diffusion in the membrane of a
living cell.16 Fluorescence enhancement also provides a way
to extend the powerful tools of single-molecule spectroscopy
to weakly emitting species.

Regardless of the origin of the fluorescence photons, a
usual approach is to record the arrival time of each individual
photon in the so-called time-correlated single-photon count-
ing (TCSPC) approach in a time-tagged time-resolved (TTTR)

a)Electronic mail: orrit@physics.leidenuniv.nl

configuration.17,18 Thanks to the high-speed electronics and
pulsed excitation sources available commercially, the abso-
lute arrival times (also called macrotimes) can be determined
with picosecond accuracy and, with the proper synchroniza-
tion to the excitation source, the “nanotimes”19 can be also
determined. The nanotime is usually used to obtain the life-
time histogram, which can be used to gain insight into the
underlying mechanism of the emission. For example, in the
case of fluorescence, the radiative and non-radiative rates
can be accessed experimentally with a measurement of the
lifetime if the quantum yield is known.20 The output of a
TTTR experiment can be represented as a classical function of
time,21

I(t) =
∑

i

δ(t − ti), (1)

where δ(t) is the usual Dirac function and ti is the absolute
arrival time for each detected photon in the experiment (mea-
sured relative to the start of the experiment, the macrotime).
We shall call this function unbinned time trace.

In spite of the high temporal resolution provided by
such experiments, the usual way to characterize the emis-
sion of quantum emitters is to display the time trace of the
number of detected photons in a certain integration time (or
binning time) and to complement this with a histogram of
detected photon counts per time bin. Such a characterization
inherently introduces an arbitrary parameter, the binning or
integration time, that may bias the obtained distribution.21

Alternatively, correlation functions can be calculated from
the unbinned time trace to exhibit the characteristic time
of a process of interest, such as the diffusion22,23 or rota-
tion24 characteristic times of molecules in solution as well as
other molecular properties even at single-molecule level.25,26

This approach can provide estimates of the enhancement fac-
tor, but is very sensitive to background corrections.27,28 The
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common practice to determine fluorescence enhancement is to
screen the time trace for the strongest fluorescence burst(s),
corresponding to unlikely event(s) that a molecule occu-
pies the best position in the hot spot of the plasmonic near
field for a long enough time. This procedure, often nick-
named “cherry-picking,” depends on the binning time, on the
diffusion constant, and on the stochastic character of each
molecule’s trajectory. There is no warranty that waiting for
longer times, or binning at higher resolution, would not lead
to larger enhancement factors. Therefore, there is a press-
ing need for less arbitrary ways to quantify the enhancement
factor.

Here, we focus on the use of a less common quantity,
the interphoton delay distribution p(τ), to characterize the
emission of quantum emitters and to extract reliable infor-
mation about an emitting system avoiding the introduction
of any arbitrary binning time. The interphoton delay distri-
bution expresses the delay distribution between consecutive
photons: after each photon detection, the probability density
to observe the next photon at a time τ is p(τ) (p(τ) ≥ 0).29

Experimentally, it can be obtained by simply plotting a his-
togram of the time differences between successively detected
photons.

In this paper, we present a model to relate the inter-
photon delay distribution to the spatial distribution of flu-
orescence intensity delivered by a single quantum emitter
in the limit of slow diffusion. We show that p(τ) encodes
information about the intensity distribution inside the vol-
ume accessible to diffusers. We will illustrate this point with
single-molecule fluorescence in a bi-dimensional case both
with a Gaussian beam shape and with addition of a power-law
model of enhanced fluorescence by a gold nanorod. Further-
more, we propose to use the interphoton delay distribution to
estimate the enhancement factor in fluorescence enhancement
experiments, avoiding arbitrary parameters such as a binning
time.

This paper is organized as follows. First we present a
theoretical derivation of the interphoton delay distribution in
Sec. II. In Sec. III, we compare the experimental and the-
oretical results in the simple case of an emitter switching
between two intensity levels. Then, in Sec. IV, we move to the
more complex case of two-dimensional diffusion of molecules
under excitation by a Gaussian beam, where our model cap-
tures the essence of the process. In Sec. V, we present a
simplified model for the enhancement from a single nanopar-
ticle, using the interphoton delay distribution to characterize
the phenomena. Finally, in Sec. VI we analyze experimen-
tal data and compare enhancement factors obtained by the
“cherry-picking” procedure and the other estimates provided
by the interphoton delay histogram and by a statistical burst
analysis.

II. THEORETICAL FRAMEWORK

We seek to relate the interphoton delay distribution in a
fluorescence experiment with the spatial distribution of inten-
sities used to excite the fluorescent molecules. The interphoton
delay distribution defined above is represented by the proba-
bility density function p(τ). Thus the probability of detecting

the next photon between times τ and τ + dτ is p(τ)dτ and the
normalization condition holds: ∫

∞
0 p(τ)dτ = 1.

Let us start from the simplest case of a constant detected
intensity w (in counts per second). Such a signal gives
rise to exponentially distributed interphoton delay times,
i.e.,

p(τ) = w exp(−wτ) . (2)

This is a direct consequence of the memory-free character of
the photon emission, which leads to a Poisson distribution of
the number of photons emitted per binning time and to an
exponential distribution of interphoton delays. We note that
this distribution can be obtained with a fluorescent molecule
excited at a constant intensity, for example, a fixed molecule
immobilized on a substrate.

Let us now consider the limit of very slow diffusion.
Variations in the local intensity seen by an individual emit-
ter are much slower than delays between photon detection
events so that there arises a distribution of intensities Q(w)
corresponding to various spatial configurations of emitters
in and around the excitation focal spot. Averaging over this
distribution of intensities gives rise to the interphoton delay
distribution p(τ) = ∫

∞
0 we−wτQ(w)dw, which corresponds to

over all possible intensities (rates) w and can be rewritten
as

p(τ) = −
d

dτ
L{Q}(τ) , (3)

where L{Q}(τ) = ∫
∞

0 e−wτQ(w)dw denotes the Laplace trans-
form30 of the function Q(w). If we seek the interphoton delay
distribution corresponding to the added signals of two sources
with intensity distributions P(w) and Q(w), we can use the
total intensity T (w) that can be calculated as the sum of a
combined probability of source 1 emitting at a rate x and
source 2 at a rate (w � x), i.e., by convoluting the two intensity
functions: T (w) = ∫ P(x)Q(w � x)dx. Using the convolution
theorem we can write the Laplace transform of the intensity
distribution as the product of the Laplace transforms of the two
distributions, from which we can deduce the interphoton delay
distribution.

Let us now consider as a source one point-like emitter
at position r, for example, a fluorescent molecule diffusing
around an optical intensity maximum. The detected inten-
sity will generally be a product of the position-dependent
local excitation intensity and of a position-dependent collec-
tion efficiency, with some molecular parameters involved in
the fluorescence process (absorption cross section, fluores-
cence quantum yield, etc.). We write the product of these
factors as a position-dependent fluorescence intensity profile
I(r).

At this point, we stress some important approximations
in our model. The first one is to neglect rotational diffusion
of the molecules, which is a good approximation if we study
times that are much longer than the rotational diffusion time.
For a typical dye molecule in water, the rotational time will
be on the nanosecond time scale, the translational time in the
focal volume about 100 µs,20 and the average delay between
detected photons ranges from 10 µs to 1 ms. The second impor-
tant approximation is to assume that translational diffusion is
slow compared to the photon detection rate, i.e., the molecules
are nearly fixed during the emission process. A complete
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theory relaxing these approximations would be much more
complicated and exceeds the scope of this work. Further, we
neglect such experimentally relevant phenomena as blinking
and photobleaching to limit the number of parameters in our
model.

Under the mentioned approximations, the photon dis-
tribution can be deduced from the intensity distribution.
Exploration of the diffusion volume V accessible to the
moving emitter gives rise to the following distribution of
intensities:

Q1(w) =
1
V

∫
V
δ (w − I(r)) d3r , (4)

where δ(x) represents the Dirac delta function. To calculate
the interphoton delay distribution using Eq. (3), we need the
Laplace transform of Q1(w),

L{Q1}(τ) = 1 − λ(τ), where

λ(τ) ≡
1
V

∫
V
{1 − exp[−I(r)τ]}d3r . (5)

Note that, for an intensity variation with a finite range around
the center, for example, due to Gaussian illumination and/or
collection, λ(τ) is a small quantity which tends to zero for a
large diffusion volume V.

We now consider the case of many (N) emitters with a
concentration C = N /V diffusing in a large volume. Using the
argument presented before for two emitters, the addition of one
emitter will modify the intensity distribution by convolution
with the one-emitter distribution function Q1(τ). Using the
convolution theorem for the Laplace transform, we can write
the Laplace transform for the N + 1 diffusers as

L {QN+1}(τ) = L {QN }(τ)L {Q1}(τ) , (6)

from which we deduce L {QN }(τ) = [L {Q1}(τ)]N . Now we
apply the statistical method of Stoneham31,32 by letting num-
ber and volume tend to infinity keeping the ratio constant to
match the concentration C, and obtain

ln [L {QN (w)}(τ)] = N ln [1 − λ(τ)] ≈ −CVλ(τ) . (7)

Therefore, using this result in Eq. (3) together with the
definition from Eq. (5), we find the histogram of interpho-
ton delays for a concentration C of emitters diffusing in a
fluorescence intensity profile described by I(r),

p(τ) = −
d

dτ

[
exp

(
−C

∫
V

(1 − exp [−τI(r)])d3r
)]

. (8)

This is a general result that allows us to calculate the
interphoton delay histogram for a solution with a concentra-
tion C of slowly freely diffusing objects in a fluorescence
intensity profile I(r). We note that the general result above
fulfills the normalization condition for p(τ), as required for
any probability density function.

The case of infinitely fast diffusion of the emitters is easily
obtained by letting the concentration C go to infinity and the
intensity I(r) vanish, while keeping their product, i.e., the total
brightness per unit volume, constant. It is easily seen that the
limit of Eq. (8) becomes a single exponential distribution with
an average intensity W,

W = C
∫

V
I(r)d3r . (9)

This result is easily interpreted: in the fast diffusing case,
each volume element contributes a constant intensity. Because
the total intensity is constant, there are no intensity fluctua-
tions and the distribution of delays is single-exponential. In
other words, deviations from an exponential distribution of
delays characterize fluctuations in the fluorescence intensity,
themselves related to fluctuations of the number of emitters
in the excitation volume. Just as in FCS, these fluctuations
become more and more important as the concentration is
lowered.

III. TWO-STATE EMITTER

In order to show that we can avoid the binning of our TTTR
data to extract valuable information about our experiment, we
studied the simple case of an emitter switching between two
fixed detected intensities. In such a scenario, and for slow
enough switching, the interphoton delay distribution will be
a bi-exponential function.

We experimentally access this situation by using fluo-
rescence enhancement by individual gold nanorods. In this
scenario, a 1000-fold intensity enhancement can be achieved
for weak dyes.8,9 However, this enhancement value depends
strongly on the position of the molecule in the nanoscale plas-
monic hot spot of the structure, where the enhanced field is
concentrated. Additionally, there is a competition between the
emission enhancement and quenching effects, which become
dominant at distances shorter than a few nm.9 Henceforth,
we neglect quenching effects altogether. Thus the challenge
in such experiments is to place the dye molecules in the
desired position to achieve high enhancement values. An
elegant solution to place the molecules in the desired posi-
tion is the technique called transient binding.33 Briefly, we
use two complementary single-stranded DNA sequences, one
attached to the surface of a gold nanorod and the other, dif-
fusing one, marked with a single Cy5 molecule (fluorescence
quantum yield 0.27). The strand attached to the gold sur-
face is called the docking strand, since it allows the com-
plementary strand to dock in one specific site and the latter
is called the imaging strand since it allows fluorescence
detection.

This experimental scheme is shown in Fig. 1. We immo-
bilized a gold nanorod on a glass surface and the imaging
strands diffuse freely in the buffer solution. When an imag-
ing strand diffuses close to the docking strand, the DNA can
hybridize, forming a temporary double strand DNA. In that
scenario, the single fluorescent label is placed in the plas-
monic hot spot of the nanorod and gets enhanced, giving a
higher signal than the other molecules in the detection volume.
This approach allows us to put a single dye in a well-defined
position in the near field of the nanorod for an exponentially
distributed time whose mean value can be controlled with the
length of the DNA and the environment conditions.34 Since
the dye molecule is fixed at a certain point in space, with
a fixed exciting intensity, we expect a fixed detected inten-
sity. The main advantage of this experimental approach is that
the hybridization is transient and after some time the DNA
will de-hybridize, freeing the docking site for another imag-
ing strand to come. As a result, photobleaching of the dye is
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FIG. 1. Transient binding experimental scheme. We used a home-made confocal microscope to excite and detect the imaging strand-Cy5 constructs in the
solution. The signal from the molecules in the solution is low, thus we enhance the fluorescence signal using immobilized gold nanorods (average size:
45 × 90 nm) on a glass surface. In order to experimentally access the same spatial position in the plasmonic hot spot, we use a transient binding technique with
a 15-base pair DNA as the docking strand and a 10-base pair complementary labeled DNA as the imaging strand. The docking strand is attached to the gold
nanorod surface using two thiol bonds.

not a limiting factor for the experiment, since the same point
in space can be probed multiple times with different single
molecules.

Figure 2 shows the experimental results on our two-
intensity system. On panel (a), on the top left, we show the
typical histogram of number of photons per bin time, char-
acterizing the binned fluorescence time trace of panel (b),
which shows the fluorescence time trace. The solid lines in
panel (a) are fits with two Poisson distributions. We attribute
the deviation from the experimental histogram to additional
experimental noise not included in the model. Two levels can
be clearly identified. The high-fluorescence level corresponds
to hybridized docking and imaging DNA strands so that a dye
molecule is immobilized in the hot spot, emitting enhanced flu-
orescence. After some seconds, the DNA de-hybridizes either
before or after bleaching of the dye, and the imaging strand
leaves the hot spot. In both cases, the signal has vanished.
The low-level signal corresponds to the luminescence of the
gold nanorod itself and to the background fluorescence of dif-
fusing and unenhanced molecules in the confocal volume.
This system thus fulfills our purpose by providing a stream
of detected photons with two well-defined intensity levels.

We would like to retrieve these two levels using the inter-
photon delay distribution by fitting a bi-exponential function.
Figure 2(c) shows the experimental curve and the fitting, from
which we extracted the two intensity levels marked in (a) and
(b) with dashed lines. These levels clearly reproduce the levels
evidenced by the binned time trace and intensity histograms,
but they were obtained without the need of any arbitrary bin
time.

The results in this simple case show how useful this type
of analysis can be, since we were able to extract useful infor-
mation from our experimental TTTR data without introducing
any arbitrary parameter.

IV. SLOW DIFFUSION IN A 2D GAUSSIAN
INTENSITY PROFILE

A more interesting scenario to use our analysis is the prob-
lem of two-dimensional diffusion of fluorescent molecules
in a Gaussian beam, described by an intensity function
I(r) = I0 exp [�r2/σ2], where (r, θ) are the normal polar coor-
dinates in the plane and σ represents the waist of the beam.
In this case, the intensity profile is bi-dimensional and only

FIG. 2. Fluorescence enhancement of single Cy5
molecules with transient binding. (a) Binned intensity
histogram (squares) with a fit with two Poisson distri-
butions (blue lines). (b) Binned fluorescence time trace
(bin time = 10 ms). From these two plots, two intensity
levels are clearly recognized: the high level corresponds
to the enhanced fluorescence signal of one Cy5 molecule
at a fixed position in the hot spot while the low level corre-
sponds to the intensity from gold nanorod luminescence
plus the contribution of all diffusing molecules (enhanced
and unenhanced) in the detection volume. (c) Interpho-
ton delay probability density function (PDF) obtained
from the TTTR measurements (empty dots) and a bi-
exponential fit, one for each intensity level. The retrieved
intensities from this fit are shown in green dashed lines
in (a) and (b), and coincide with the high and low flu-
orescence levels in the time trace. The inset shows the
residuals for the fit.



123334-5 Caldarola, Pradhan, and Orrit J. Chem. Phys. 148, 123334 (2018)

FIG. 3. Bidimensional molecular diffusion probed with a Gaussian beam. (a) Interphoton delay probability density function (PDF) for the case of high con-
centrations of molecules, with an average number of molecules 〈N〉 = 7.5 or 120 in the detection area A = πσ2 (corresponding to approximately 14 and 225
molecules/µm2, respectively). The circles are experimental values while the dashed lines are fits with the model from Eq. (10). (b) Interphoton delay probability
density function for the case of a low concentration of molecules, 〈N〉 = 0.5 (approximately 0.9 molecules/µm2). In this case, we find clear deviations from our
model of slow diffusion, possibly indicating averaging of number fluctuations by diffusion, and a more exponential-like decay. The insets show a scheme of
the experimental configuration of the lipid bi-layer on the glass surface with the typical dimensions involved (not to scale). In the bottom panel, we show the
residuals for the respective fits maintaining the color code.

depends on the distance to the center of the beam. We take a
concentration C of fluorescent molecules per unit area. Using
this intensity distribution in Eq. (8), we calculate the expected
interphoton delay distribution pG(τ) and find the integral
form

pG(τ) = −
d

dτ

[
exp

(
−Cσ2π

∫ 1

ε

(1 − exp [−τI0u])
du
u

)]
,

(10)
where ε ≡ exp

(
− R2

σ2

)
and R is the maximum radius accessi-

ble to the diffusing molecules (πR2 is the area of the sample).
Because of the smooth variation of the Gaussian beam, many
single-molecule bursts have the same maximum intensity.
Therefore, FCS provides a good estimate of single-molecule
brightness. The case of enhanced fluorescence discussed in
Sec. V is much more difficult to address by FCS.28

We studied the Gaussian case experimentally in a regular
confocal microscope by confining the diffusion of ATTO647N
dye molecules in a lipid bilayer, obtaining a two-dimensional
case and a reduced diffusion coefficient of D = 4.4 µm2 s�1,
as presented previously.27

We performed the experiment for high and low con-
centrations of molecules in the lipid bilayer and fitted
the experimental interphoton curves with pG(τ) from
Eq. (10) using the experimental value for the beam waist,
σ = 292 nm. Figure 3 shows the experimentally obtained
interphoton delay probability density function for high (a)
and low (b) concentrations along with the corresponding fits
using our theoretical result. We note that the higher the con-
centration, the more the delay distribution resembles a sin-
gle exponential. Indeed, a single exponential is expected in
the limit of extremely high concentrations, where fluctua-
tions ∆N of the number of molecules 〈N〉 in the Gaussian
area become negligible, leading to a constant detected inten-
sity and therefore to a single-exponential interphoton delay
distribution.

A closer look at the curves in Fig. 3 reveals that the case
of high concentration is well captured with our model while
the low-concentration case is not. This is a direct consequence
of the main approximation in our model that largely neglects
the effect of diffusion. Another phenomenon we have ignored
is photobleaching of the molecules in the laser beam. These
deviations from our model could thus be studied through the
interphoton delay distribution.

V. INTERPHOTON DELAY DISTRIBUTION
WITH FLUORESCENCE ENHANCEMENT

We now turn to the case of plasmonic enhancement by
an individual nanoparticle. The spatial distribution of fluores-
cence enhancement by a plasmonic structure is complex and
depends on many parameters. For simplicity’s sake, we model
this distribution as a spherically symmetric profile around a
spherical nanoparticle. The fluorescence intensity profile is
taken as the sum of a Gaussian confocal volume similar to that
of Sec. IV and of a near-field component modeled as a steeply
decaying power law of radius,

I(r) = W0

[
exp

(
−

r2

σ2

)
+ E

(
RNP

r

)α]
, r≥RNP, (11)

where W0 is the unenhanced intensity, σ is the width of the
Gaussian illumination, E is the maximum enhancement factor
at or close to the particle’s surface, and RNP is the nanoparticle
radius. The exponent α is a free parameter used to simulate
the short-range variation of the near field. For pure excita-
tion enhancement by an electrostatic dipole field α = 6, for
combined excitation and radiative enhancements of an elec-
trostatic dipole field, we would have α = 12. We note that
to recover the Gaussian case studied in Sec. IV, we need to
take RNP = 0. In order to obtain p(τ), we insert Eq. (11) into
Eq. (8) and numerically solve the integral for RNP = 25 nm.
Equation (11) is a phenomenological expression meant to
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FIG. 4. Simple model for plasmonic enhancement in two
dimensions. (a) Normalized radial intensity distributions
for Gaussian (blue dotted line) and near field model with
α = 3 (red dashed line), α = 6 (green dotted line), and α
= 12 (blue solid line). For all the cases, the unenhanced
intensity is W0 = 1.5 × 104 cps and for the enhanced
case we used RNP = 25 nm and E = 1000. (b) Interphoton
delay probability density function for the three cases pre-
sented in (a) for a mean number of molecules 〈N〉 = 10
in the Gaussian area. The symbols present the data from
the numerical evaluation of p(τ) and the solid lines are
fits with stretched exponentials. We intentionally reduced
the density of points for display. The inset shows the nor-
malized residuals from the fits. (c) Extracted β from the
stretched exponential fit as a function of the mean num-
ber of molecules in the Gaussian area. The color code is
maintained throughout the whole figure.

explore the effect of the near field. It completely ignores
quenching, polarization, and the complex spatial structure of
the near field.

Figure 4(a) shows the comparison of the spatial inten-
sity distribution for three different values of the exponent α
with the unenhanced case. With these intensity spatial distri-
butions, we calculated the interphoton delay distribution by
numerically solving the integral in Eq. (8). Note that the area
inside the nanoparticle is not accessible to the molecules so
the integration was carried for r ≥ RNP. The obtained distribu-
tions are shown in Fig. 4(b) for the case of 〈N〉 = 10 molecules
in the Gaussian area (A = πσ2). Clearly the distributions with
enhancement show more probability density at extremely short
interphoton times, corresponding to the high emission rates
produced by molecules occasionally entering the near-field
area with high enhanced intensities. These events correspond
to bright bursts in the fluorescence time trace. The lower the
concentration of molecules, the more seldom these events will
be, and the further away the delay distribution will be from a
single exponential.

In order to qualitatively compare the interphoton delay
distributions for the different cases, we decided to fit them
with stretched exponentials

f (τ) = A exp
[
−(λτ)β

]
(12)

to characterize the deviation of the interphoton delay distri-
bution from a single exponential. As we mentioned before,
in the case of very high molecular concentrations we expect
to recover β = 1, i.e., an exponential behavior, whereas large
number fluctuations will give rise to strong deviations from
single exponential and to a smaller stretching exponent. The
empiric fit function in Eq. (12) works reasonably well for
short times, but fails to reproduce the long-time tails of the
delay distribution. Therefore, we focus our analysis on the

short-time domain, which contains the most useful information
about plasmonic enhancement.

We fitted the calculated probability density functions for
different concentrations of molecules ranging from a very
diluted sample (1 molecule in the Gaussian area, 3 × 10�3 in
the near-field area) to an extremely high number of molecules
(106 in the Gaussian area, 3× 103 in the near field). Figure 4(c)
shows the obtained stretching exponent β as a function of
concentration and for the Gaussian beam and the enhanced
case with three different exponents α = 3, 6, and 12. In the
Gaussian case, we obtain an exponential behavior, charac-
terized with β = 1 only for 〈N〉 ≥ 100. This corresponds to
the situation when number fluctuations in the detection area
are negligible and thus a nearly constant detected intensity is
obtained.

To obtain a single-exponential interphoton delay distribu-
tion in the enhanced case, we should reach the high-density
regime mentioned above, but considering the near-field area.
Since the ratio of the near-field area ANF [considered as the
area that contains intensities higher than EW0 exp (�1)] and
the far-field area AFF = πσ2 is ANF

AFF
∼ 3 × 10−3, we roughly

expect a difference of 3 orders of magnitude in the number
of molecules needed to reach the single-exponential limit.
Indeed, this is what our curves show, where for the enhanced
case we approach β = 1 around 〈N〉 = 105.

From Fig. 4(c), we see that the stretching exponent steeply
decreases with concentration, as expected from the qualitative
discussion above. This effect is more pronounced for a steeper
decay of the fluorescence intensity profile, i.e., for larger values
of α. For very small concentrations, the stretched-exponential
fit becomes poor, and the associated beta values have been
omitted. We also note that the slope of the variation of β
with concentration is not very sensitive to the near-field decay
characterized by α [see Fig. 4(c)].
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VI. FLUORESCENCE TIME TRACES
WITH ENHANCEMENT BY A GOLD NANOROD

We now turn to results of an experiment with configu-
ration similar to the one presented in Sec. IV. A Gaussian
beam is focused on a single gold nanorod immobilized on a
glass substrate, and dye molecules diffuse in a lipid bi-layer
deposited on the same substrate, similar to Ref. 27. A fluores-
cence signal is produced whenever a dye molecule enters the
diffraction-limited Gaussian beam, and an enhanced fluores-
cence signal appears if the molecule then enters either of the
plasmonic hot spots around the tips of the gold nanorod. In
order to obtain the enhancement value, we need to compare
the detected intensity from a single-molecule enhancement
event with the unenhanced intensity detected using the same
experimental conditions, which was 100 kcps.27

Figure 5 presents the TTTR experimental data obtained
in such an experiment in different ways, for two different gold
nanorods. In the top panel, we have the bin-dependent time
traces and burst histograms (binning time 1 ms) while the lower
panel shows the “bin-free” interphoton delay histograms. If
we analyze the binned time traces in Figs. 5(a) and 5(c) and
the insets, we observe that they present a qualitatively simi-
lar behavior: there is a constant baseline intensity, long weak
bursts corresponding to molecules exploring the far field area
and occasionally intense but short bursts corresponding to dif-
fusion in the near-field area.27 The black crosses in the time
traces indicate the highest burst found in that trace, which leads
to “cherry picking” enhancements factors E(CP) = (4.5 ± 1.5)
and E(CP) = (2.3 ± 0.7).

Another useful way to characterize the experimental
enhancement is the histogram of binned intensities, as shown
in Figs. 5(b) and 5(d). These histograms show a rapidly decay-
ing tail where the characteristic decay intensity is larger for
the top nanorod, indicating stronger enhancement. The steep

decay of these histograms can be qualitatively understood by
recalling the spatial distribution of near-field intensity at reso-
nance, which is extremely high (around 300 times the incident
intensity) very close to the tips and decays rapidly with dis-
tance to the tips. Therefore, there is a low probability for a
diffusing molecule to reach this small area. For small dis-
tances, this probability density goes linearly with distance in
the bi-dimensional case and as the squared distance in the
three-dimensional case.

We analyzed the intensity distribution around a rod (25
× 47 nm2), calculated from a discrete-dipole approximation.9

In the 2D case, we found an approximate power law distribu-
tion with exponent 1.37. However, the tail of the experimental
distribution is exponential, as can be seen in Figs. 5(b) and
5(d). There are several possible sources for such a discrep-
ancy, such as the effect of photobleaching, the dead time of
the detectors, and possibly the role of diffusion during the
burst. Confirming the role of each of these effects would
require full numerical calculations, with an accurate descrip-
tion of these effects. However, this is a complex and compu-
tationally extensive problem that is out of the scope of this
paper.

Regardless of the reason for this deviation, we may empir-
ically estimate the maximum enhancement through the his-
togram. Note that stronger enhancement corresponds to a
broader histogram, with cutoff for larger photon number. If
we model the tail of the normalized histogram decay as a
single exponential P(N) = M exp (�N /N0), we can estimate
the maximum number of photons in the strongest burst by
solving P(Nc) = ε with ε = 1/Nbins, where Nbins is the total
number of bins in the time trace, here about 106. This esti-
mate roughly corresponds to a probability equal to unity of
observing such an intense burst in the time trace. We thus
obtain Nc = N0 ln (M/ε). For a typical value of M ∼ ×10�3,
we find 6.9N0. With this method we obtain E(H ) = (4.9 ± 0.2)

FIG. 5. Single-molecule fluorescence enhancement by
gold nanorods. The top panel shows the typical binned-
intensity plots while the bottom panel shows the bin-free
interphoton histograms. [(a) and (c)] 1 ms-binned fluo-
rescence intensity as a function of time for two individual
nanorods. The nanorod in (a) presents a higher enhance-
ment factor. The black cross in the plot indicates the
maximum recorded intensity. The insets show respec-
tive zooms around the maximum intensity bursts. [(b)
and (d)] Burst intensity histograms showing number of
photons per 1 ms-time bin for the traces in (a) and (c),
respectively. The dashed black lines are exponential fits
to the tail of the distributions. [(e) and (f)] Interphoton
delay probability distributions for the experimental traces
shown above. We also show a fit to the curves using a
stretched-exponential model. The curves in purple and
orange correspond to traces (c) and (a), respectively, and
this color code is maintained throughout the whole figure.
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and E(H ) = (2.40 ± 0.05) for the plotted data in Figs. 5(b)
and 5(d).

Enhancement factors could also be extracted from an FCS
analysis.27,28,35 However, this technique is very sensitive to
background corrections and the relation between enhancement
factor and correlation contrast is model-dependent.

We can also estimate the enhancement factor from the
interphoton delay histograms. These histograms are shown for
the same two nanorods in Figs. 5(e) and 5(f). Deviations from
single-exponentials are clearly seen. To characterize them, we
fit the histograms with a stretched exponential of time [see
Eq. (12)], which involves only three parameters, against four
for a bi-exponential decay. The maximum enhanced inten-
sity is deduced from the slope of the histogram at the shorter
measured interphoton time (200 ns) and provides another esti-
mate of the enhancement factor based on a statistical quantity.
Figures 5(e) and 5(f) show that larger enhancements corre-
spond to a larger deviation of the histogram from a single
exponential and to a larger slope at the smallest bin time of
the histogram. With this procedure, we obtained an enhance-
ment value of E(I ) = (4.3 ± 0.2) and E(I ) = (2.0 ± 0.1) for the
presented nanorods.

We now compare the maximum intensities and the associ-
ated enhancement factors obtained for five different nanorods,
for the whole 200 s-long time trace, and after splitting each
trace into 5 sub-traces of 40 s each. Figure 6 shows the exam-
ple of the binned time trace (a), burst histogram (b), and the

interphoton delay histogram (c) for the whole trace and for
each sub-trace.

The associated results for the different methods are cor-
related in Figs. 6(c) and 6(d). The different symbols cor-
respond to different nanorods and the colors refer to the
different sub-traces for each rod. In Fig. 6(d), we observe
an excellent correlation between the cherry-picking method
and the statistical method based on the burst intensity his-
tograms. Note that the same symbols are clustered together,
showing that the enhancement factor obtained using differ-
ent sub-traces with both methods lead to similar results. We
also correlated the results from the interphoton delay dis-
tribution with the burst intensity histograms in Fig. 6(e),
where a satisfactory correlation is found and the obtained
enhancement factors are consistent with both other methods.
However, the enhancement factors deduced from interpho-
ton delay distributions present more dispersion than the other
two.

Figure 6 confirms that the estimates of the enhancement
factor deduced by three very different methods (time trace,
burst histogram, and interphoton delays) are similar in value
and consistent with one another. The values deduced from
the cherry-picking procedure are surprisingly stable and reli-
able. They agree well with extrapolations of burst histograms
fitted with a single-exponential function, although the justifica-
tion for this analytical form is still missing. Unexpectedly, the
enhancement factor deduced from the interphoton histogram

FIG. 6. Comparison of the enhancement factors obtained with different methods. (a) Binned time traces split into five different sub-traces of 40 s each (bin-
ning time 100 µs). The crosses show the maximum number of counts per bin obtained in each sub-trace, used to calculate the “cherry-picking” enhancement
factor E(CP). At the top we show the length of the sub-traces and assign a number for reference. (b) Normalized burst histogram in number of photons per
bin obtained for each of the sub-traces presented in (a). We also show in dashed lines the exponential fits to the tail of the probability density. The burst
histogram for the total trace is plotted as well. (c) Interphoton delay distributions for the sub-traces and the total trace with their stretched-exponential
fits. (d) and (e) show scatter plots of enhancement factors E(CP), E(H), E(I) deduced by the three methods. The different symbols correspond to differ-
ent nanorods and the colors refer to the sub-traces used to obtain the enhancement factor. In black we show the results for the total trace. (d) Correlation
between E(CP) from cherry picking and E(H) from burst histogram, showing an excellent correlation with slope equal to unity (dashed black line). (e) Cor-
relation between E(I) from interphoton delay histograms and E(H) (the dotted line is a linear fit with slope 1). Here, we observe more dispersion of the
data.
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appears to be the most sensitive to statistical fluctuations. This
can be a consequence of fitting with a stretched exponen-
tial, which is an approximation. However, this method has
the unique advantage that it can be applied to the experimental
data directly, without any need for binning or other arbitrary
parameters.

VII. CONCLUSIONS

In this paper, we characterized single-molecule fluores-
cence traces obtained with a time-tagged time-resolved setup
in a variety of experimental conditions with the interphoton
delay distribution. This avoids the introduction of an arbitrary
binning time.

We presented a theoretical treatment for the case of nearly
static, slowly diffusing molecules that relates the interphoton
delay distribution to the spatial intensity distribution explored
by the molecules. With this model, we could reproduce the
simple case of switching between two states with different
intensities. We also explored the problem of molecules dif-
fusing in two dimensions in a Gaussian beam. Our nearly
static model works well at high concentrations, but shows
deviations at lower concentrations, which may arise from
diffusion or from other experimental deviations from the
model.

Furthermore, we used the interphoton delay distribution
to measure the fluorescence enhancement factor by individ-
ual gold nanorods. For our experimental traces with moderate
enhancements, we obtained enhancement factors that are con-
sistent with the accepted methods in the community with the
advantage of avoiding the introduction of any arbitrary param-
eter that may influence the results. In the future, we plan to
perform similar comparisons for the very large enhancement
factors obtained with weakly emitting dyes.
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