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Phonon interferometry for measuring quantum decoherence
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Experimental observation of the decoherence of macroscopic objects is of fundamental importance to the study
of quantum collapse models and the quantum to classical transition. Optomechanics is a promising field for the
study of such models because of its fine control and readout of mechanical motion. Nevertheless, it is challenging
to monitor a mechanical superposition state for long enough to investigate this transition. We present a scheme for
entangling two mechanical resonators in spatial superposition states such that all quantum information is stored
in the mechanical resonators. The scheme is general and applies to any optomechanical system with multiple
mechanical modes. By analytic and numeric modeling, we show that the scheme is resilient to experimental
imperfections such as incomplete precooling, faulty postselection, and inefficient optomechanical coupling. This
proposed procedure overcomes limitations of previously proposed schemes that have so far hindered the study of
macroscopic quantum dynamics.
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I. INTRODUCTION

The transition between quantum and classical regimes,
particularly in massive systems, is still largely unexplored. The
fields of opto- and electromechanics have emerged as effective
tools for controlling and measuring the quantum motion of
mechanical resonators [1]. In recent years macroscopic me-
chanical resonators have been developed with exceptionally-
high-quality factors [2–4]. At the same time devices with
a single-photon strong cooperativity [5–7] are enabling ma-
nipulation of optomechanical systems at the single quantum
level [8–10]. Large mechanical resonators are proposed to
undergo a number of unconventional decoherence mechanisms
[11–14]. One promising technique for testing decoherence
is to produce a spatial superposition state of one of these
resonators, but this requires a controlling interaction with some
other quantum system. We investigate a method for entangling
two mechanical resonances and harnessing the advantageous
capabilities of each resonator to study decoherence.

There are many proposed methods of producing a su-
perposition state in an opto- or electromechanical system,
all of which require the introduction of some nonlinearity.
Examples of this include electromechanical systems coupled
to a superconducting qubit [8,9,15] and optomechanical sys-
tems interacting with a single photon sent through a beam
splitter [16]. However, the latter scheme is unfeasible with
almost all current optomechanical systems, because it requires
single-photon strong coupling [16]. This requirement can be
circumvented by postselection [17] or displacement [18], but
these experiments are limited by the need for long storage
of photons, which is lossy, and the requirement that cavity
photons predominantly couple to a single mechanical mode.
Here we propose a method to eliminate these constraints by
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entangling two mechanical modes optomechanically to avoid
the losses and decoherence in optical and electrical systems.

Methods to generate optomechanical entanglement be-
tween multiple mechanical devices have been investigated ex-
tensively [19–25]. To generate a superposition, an interaction
with two mechanical resonators is required [26,27]. So far
demonstrations of entanglement in optomechanical systems
have used elements with similar structure and frequency
[28–30]. Flayac and Savona suggested that single-photon
projection measurements could generate an entangled superpo-
sition state between two resonators of similar frequency [27].
We propose a scheme which entangles resonators of different
frequencies so that it is easy to manipulate one resonator and
to use the other (possibly more massive) resonator for tests of
quantum mechanics.

II. EXPERIMENTAL SCHEME

We consider an optomechanical system with one optical
cavity and two mechanical resonators: an interaction resonator
(resonator 1) and a quantum test mass resonator (resonator 2).
The Hamiltonian for the system is the standard optomechanics
Hamiltonian for multiple resonators [1]

Ĥ0 = h̄ωcâ
†â +

∑
j=1,2

h̄ωj b̂
†
j b̂j + h̄gj â

†â(b̂†j + b̂j ), (1)

where ωc and â, and ωj and b̂j are the frequencies and bosonic
ladder operators of the cavity and resonator j , respectively, and
gj are the single-photon optomechanical coupling rates. The
system is sideband resolved, with ωj � κ the optical cavity
linewidth. In Fig. 1 the optomechanical setup is shown. A laser
is modulated to generate control pulses, for instance, by a series
of acousto-optic modulators. The pulses are sent into the cavity
and are filtered out of the light exiting the cavity so that only
the remaining resonant light is incident on a single-photon
detector.
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FIG. 1. Proposed experimental setup. Two mechanical resonators
are optomechanically coupled to an optical cavity. Here we show a
membrane and a trampoline resonator with a mirror, but the procedure
could be used for any two mechanical resonators coupled via an
optical cavity field. A continuous-wave laser is sent to an optical
pulse generation setup, which produces pulses of varying frequency,
duration, and intensity. The light enters the optomechanical cavity and
subsequently the reflected light is filtered to remove the control pulses.
The filtered signal contains the single photons used for heralding and
readout, which are measured with a superconducting single-photon
detector (SSPD).

Figure 2 illustrates the method we propose to study deco-
herence. First both mechanical modes must be cooled close
to the ground state using standard sideband cooling with two
long laser pulses red detuned from the cavity resonance by ω1

and ω2 [31–33]. Next we excite resonator 1 to its first excited
state using a weak pulse and projection measurement [34]. We
perform a Mach-Zehnder-type interference experiment on this
initial state. To generate a beam-splitter interaction between the
mechanical resonators, we apply a two-laser pulse, resulting
in an entangled state |ψ〉 = 1√

2
[|1〉1 |0〉2 + i |0〉1 |1〉2]. The

system now evolves freely for a time τ , possibly decohering

FIG. 2. The four control pulses sent into the optomechanical cav-
ity to execute the experiment. The pulses are (i) cooling to the ground
state, (ii) excitation to a coherent state, followed by postselection
of the first excited state, (iii) a mechanical-mechanical interaction
with J t = π/2, and (iv) readout of a resonator. On the bottom, the
equivalent optics experiment is shown with the corresponding steps.
The grayed out detector is the optional addition of a readout pulse for
resonator 2.

during that interval. The frequency difference between the
resonators causes the state |ψ〉 to pick up a phase difference
of (ω2 − ω1)τ . A second mechanical-mechanical interaction
rotates the system to sin[(ω2 − ω1)τ/2] |1〉1 |0〉2 + cos[(ω2 −
ω1)τ/2] |0〉1 |1〉2 if the system did not decohere. Finally, a laser
pulse red detuned by ω1 is used to swap the mechanical state
of resonator 1 with that of the cavity and read it out with a
photodetector.

We will now examine the steps in more detail, starting with
the heralded generation of a single-phonon mechanical Fock
state [34], which has already been used to produce single-
phonon Fock states with reasonably high fidelity [10,35].
Here we will review the process briefly, including some of
the imperfections in the generated state. A weak pulse of
light, blue detuned in frequency by ω1, is sent into the cavity,
creating an effective interaction described by the Hamiltonian
H(ii) = h̄

√
ncavg1(âb̂1 + â†b̂†1), where ncav is the number of

photons in the cavity from the laser pulse. This generates an
entangled state between the cavity and resonator 1, |ψ〉 =
1/

√
2(|0〉c |0〉1 + √

p |1〉c |1〉1 + p |2〉c |2〉1), where p � 1 is
the excitation probability. The light leaks out of the cavity
and passes through a filter to isolate the resonant light from
the blue-detuned pulse. By detecting a single photon, the
mechanical resonator is projected onto |1〉1, a single-phonon
Fock state. Because of the limited detection efficiency of cavity
photons η and the dead time of the detector, higher number
states will be mistaken as single photons, so the probability p

must be kept small to avoid inclusion of these states. Control
pulse photons which leak through the filter and detector dark
counts will incoherently add in |0〉1 to the single-phonon
Fock state. Using a good filter and superconducting single-
photon detectors avoids the inclusion of the ground state [10].
Taken together these steps produce, with probability ηp, a
heralded single-phonon Fock state and we can proceed to the
interference experiment.

Exchange of quantum states is the essence of the inter-
ference experiment. In recent years there have been many
demonstrations of opto- and electromechanically controlled
coherent coupling between mechanical resonators [36–42].
All of these could be used to create an effective beam-splitter
interaction between two mechanical resonators. We will use the
swapping method proposed by Buchmann and Stamper-Kurn
[43] (and experimentally demonstrated in [44]) because it is
quite general and couples resonators with a large frequency
separation, which is important for the individual readout of
each resonator. Two pulses of light, red detuned and separated
by ω2 − ω1, are sent into the cavity. These pulses each
exchange excitations between one mechanical resonator and
the cavity mode, resulting in a net swapping interaction with
rate J between the two resonators: H(iii) = h̄J (b̂†1b̂2 + b̂1b̂

†
2).

This interaction can be used for both beam-splitter interactions
in the proposed experiment.

Finally, the readout for the system consists of a pulse of
light, red detuned in frequency by ω1. The readout interac-
tion H(iv) = h̄

√
ncavg1(â†b̂1 + âb̂

†
1) exchanges excitations of

resonator 1 with photons on resonance in the cavity. The
anti-Stokes photons from the cavity are filtered and sent to
a superconducting single-photon detector to determine the
phonon occupation of resonator 1 with a collection efficiency
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of η. Because of the difference in frequency of the two
resonators, the measured phonon occupation of resonator 1
after the second mechanical-mechanical interaction oscillates
as a function of the delay time τ at the frequency ω2 − ω1.
However, if decoherence occurs during free evolution, the
visibility of the oscillations will decrease. These features in
the readout enable a simultaneous comparison of the coherent
evolution, decoherence, and thermalization of the system.

III. EXPECTED RESULTS

First we model the experiment analytically. We assume that
in step (ii) of Fig. 2 a perfect entangled state is generated,
but that the off-diagonal elements of the density matrix decay
exponentially with a decoherence time τd . The environment
heats resonator 2, adding incoherently to the mechanical state.
As an approximation, we assume that the state thermalizes
from its average initial value of 1/2 to the thermal occupation
of the environment nenv. The average readout R on the
superconducting single-photon detector (SSPD) in step (iv)
after many trials is the sum of the two effects

〈ndec〉2 = 1

2
− cos[(ω2 − ω1)τ ]e−τ/τd

2
, (2a)

〈nth〉2 =
(

nenv − 1

2

)
(1 − e−τ/τth ), (2b)

R = η(〈ndec〉2 + 〈nth〉2), (2c)

where nenv = kBTenv/h̄ω2 is the thermal occupation of the
environment at temperature Tenv and τth is the thermalization
time constant. Three key features are visible in the readout
signal: an oscillation at ω2-ω1, which is evidence of coherence;
an exponential decay of the coherent signal; and an exponential
increase in the phonon number as the system thermalizes.

We verify Eq. (2) by performing a numerical simulation
of the interaction between a mechanical resonator and its
environment in the quantum master equation formalism. We
assume that one resonator, the test mass resonator, has a much
greater interaction rate γ with the environment, dominating the
decoherence effects. Environmentally induced decoherence
can be modeled as an interaction with a bath of harmonic
oscillators, leading to the master equation [45,46]

ρ̇ = i

h̄
[ρ,Ĥ0] − D

h̄2 [x̂,[x̂,ρ]] − iγ

h̄
[x̂,{p̂,ρ}], (3)

where x̂ and p̂ are the position and momentum operators
for resonator 2 and D = 2mγkBTenv is the phonon diffusion
constant. The numerical results are shown in Fig. 3 and are in
excellent agreement with Eq. (2).

We now discuss the experimental feasibility of this scheme
with currently available technologies. We numerically simulate
density matrices with the phonon states of each resonator as
basis states (details in Appendix A). The initial visibility of
the oscillations between the two resonators is a direct measure
of the entanglement generation, and the decay of the visibility
is the essential result of the experiment. Although the limit
would depend on the exact experimental implementation, we
estimate that the experiment would likely require an initial
visibility greater than 10%. First we consider imperfections
in step (i), cooling to the ground state. Figure 4(a) shows the
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FIG. 3. Expected results of a decoherence measurement with
two entangled resonators in which one interacts with a thermal
environment. The red (blue) indicates the readout of resonator 1 (2).
Dotted lines are the limits set by the analytical model. Three effects are
visible: coherent oscillations due to the frequency difference between
the resonators, a decay of that coherence due to environmentally
induced decoherence, and thermalization with the environment. The
parameters for this plot are ω1 = 2 GHz, 
ω = 30 kHz, γ = 2 kHz,
Tenv = 0.1 K, and η = 0.01.

visibility achieved with a nonzero thermal phonon occupation.
This occupation must be below about 0.7 for the experiment
to be feasible.

Next we consider step (ii), the postselection of a single-
phonon state. By changing the pulse strength, the probability
p of an excitation can be adjusted. Dark counts on the single-
photon counter during the postselection will skew the produced
state. Figure 4(b) shows the visibility as a function of p and
dark count rate. There is a large region of parameter space
with good visibility, and experiments are already well within
this region (purple star) [35].

Finally, in step (iii), the optomechanical beam splitter
nominally only causes an interaction between the two me-
chanical resonators. However, the beams used to produce the
interaction also have heating and cooling effects. In Fig. 4(c)
the visibility as a function of cooling rate Jc and heating rate
Jh is shown. Again, experimental demonstrations of this type
of beam-splitter interaction are already sufficient to produce
an interference experiment [44]. In Fig. 5 we show numerical
simulations of decoherence and thermalization that include
experimental imperfections and an initial visibility of 30%. All
of the qualitative features of Fig. 3 are still easily discernible,
indicating that the experiment should be feasible with these
or even slightly worse parameters. There is a large area of
experimentally achievable parameter space in all dimensions
with visibility greater than 10%.

IV. TIMING CONSIDERATIONS

A number of experimental factors such as timing also
play a critical role in the feasibility of the experiment. The
probability of a successful postselection is ηp, and given this
successful postselection the probability of measuring the result
on the detector is η. Therefore, the experiment must be run
1/η2p ∼ 106 times to expect a single detection event. For many
experimental implementations this is impossible, because it
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FIG. 4. Effects of several experimental imperfections on the resulting interference experiment, using the initial visibility as a metric.
(a) The two resonators are only cooled to a phonon occupancy of nth in step (i). (b) The detector has a dark count probability of ξ tr for different
probabilities of excitation, p in step (ii). (c) Step (iii) also induces an optical cooling rate Jc and an optical heating rate Jh in addition to the
mechanical-mechanical coupling J . The grayed out regions indicate regimes in which the dominant behavior is not the desired entangled state.
The purple stars indicate parameters already achieved in experiments in (b) Ref. [35] and (c) Ref. [44]. The unvaried parameters for these plot
are nth = 0.01, p = 0.01, ξ tr = 10−6, η = 0.01, and Jc = Jh = 0.

would take years to build up enough detection events. However,
if there is no heralding of a single photon in step (ii), there is
no reason to continue the experiment. If we only continue to
step (iii) after a successful postselection the time T required is

T = nanp

(
t12(1 − ηp)

η2p
+ ttotηp

η

)
≈ nanp

t12

η2p
, (4)

where t12 and ttot are the time required for steps (i) and (ii)
and for the total experiment, respectively, and na and np are
the number of averages and the number of points. In general,
step (iii) and τ should dominate the experiment time, so this
would drastically reduce the total experiment time. For a high-
frequency resonator with approximately gigahertz frequency,
reasonable parameters might be na = 1000, np = 30, η =
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FIG. 5. Expected results of a decoherence measurement with im-
perfections present and an initial visibility of 30%. The parameters for
this plot are the same as for Fig. 3 with additional imperfections nth =
0.4, p = 0.1, and Jc = Jh = 0. Despite the limited initial visibility, all
three effects are still visible: coherent oscillations due to the frequency
difference between the resonators, a decay of that coherence due to
environmentally induced decoherence, and thermalization with the
environment. We estimate that the experimental limit on the initial
visibility is around 10%.

0.01, p = 0.01, and t12 = 1 μs, leading to an experiment time
of about 8 h. For lower-frequency resonators, t12 might be
closer to 100 μs, leading to an experiment time of about 35
days. The number of averages needed depends inversely on η,
so T ∼ 1/η3, and the experiment can be drastically sped up by
increasing η.

Many experiments which are proposed for testing novel
decoherence mechanisms are in the lower-frequency range.
These experiments have the difficulty that their thermal envi-
ronment contains more thermal quanta. In order to measure the
full thermalization in addition to the decoherence, we must be
able to count ηnenv photons. If an SSPD has a relatively short
dead time (∼100 ns) compared to the leakage time from the
cavity and filter (∼50 μs) it may be possible to observe more
than one photon. In general, however, the experiment should
be constrained to η � 1/nenv. For low-frequency resonators
η may need to be artificially lowered. If this is the case,
we suggest different detectors for step (ii) and step (iv) with
different optical paths. If step (ii) has high efficiency η1 and
step (iv) has low efficiency η2 the experiment time only slows
down to T ≈ nanpt12/η1η2p and it is possible to count higher
phonon numbers with a reasonable increase in experiment
time.

V. EXPERIMENTAL IMPLEMENTATIONS

This scheme can be performed with any two mechanical
resonators coupled to an optical cavity. Here we will discuss
three potential experimental setups, with an emphasis on using
the technique to access decoherence information in large
mass systems. One possible system is a Fabry-Pérot cavity
with two trampoline resonators: one with a distributed Bragg
reflector (DBR) and one without. This system has already been
constructed [44]. The two resonators have frequencies in the
hundreds of kilohertz range, masses of 40 ng and 150 ng, and
single-photon cooperativities of 0.0002 and 0.0001, respec-
tively. The authors suggest methods for lowering optical and
mechanical damping, which would improve the single-photon
cooperativities to 0.2 and 0.01. The scheme presented here
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enables single-phonon control of the massive DBR device
despite its relatively small single-photon cooperativity.

Another possible system would be a membrane in the
middle at one end of a Fabry-Pérot cavity and a cloud of atoms
trapped in the harmonic potential of the standing wave in the
cavity at the other end. The optomechanical coupling enables
the direct coupling between the ∼zg cloud of atoms and the
∼100-ng membrane. Clouds of atoms and membranes have al-
ready been coupled between different cavities [47,48] and this
scheme could be modified to use that interaction for step (iii).
One could also imagine making a cavity with a bulk acoustic
wave resonator coupled to a small high-frequency membrane.
These modes can have exceptionally-high-Q factors and large
mode mass [2].

VI. DISCUSSION

There are a number of distinct advantages of the method
proposed here. First, the readout of phonon occupation natu-
rally lends itself to studying thermalization and decoherence
together in the same system and on the same time scale. This
has never been observed before in mechanical resonators. A
thorough understanding of the mechanics of thermalization
and decoherence is necessary in order to verify that unknown
faster decoherence processes can be attributed to new physics.
Second, this experiment can easily be compartmentalized into
the four constituent steps and each one tested individually.
This would make it easier to build up to the final experiment
with confidence in the results. In particular, one could obtain
interference results from two resonators in a classical state, so
it is essential to demonstrate that the procedure is performed
with a single phonon. Finally, this scheme can use mechanical
resonators with different frequencies and masses, so large
systems with relatively small optomechanical coupling rates
can be studied.

VII. CONCLUSION

We have proposed a scheme to entangle two mechanical res-
onators with a shared single phonon. Using interferometry and
phonon counting, we could simultaneously measure decoher-
ence and thermalization of a macroscopic mechanical mode.
The methods proposed are quite general and can be applied to
any sideband-resolved two-mode opto- or electromechanical
system. Furthermore, the scheme is resilient to experimental
imperfections in its constituent steps. This technique could
greatly expand our understanding of the quantum to classical
transition in mechanical systems.
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FIG. 6. Density matrix representation of decoherence and ther-
malization. Each matrix is plotted during step (iii) after a delay
time τ of (a) 0 ms, (b) 190 ms, (c) 950 ms, and (d) 3.8 s. The
states labeled 1–22 in the figure correspond to the basis states
{00,01, . . . ,09,010,10,11, . . . ,19,110}. The relevant parameters are
ω2 = 10 GHz, γ = 1 Hz, and Tenv = 0.2 K.

APPENDIX A: NUMERICAL METHODS

In the main text we investigated two main problems. The
first is the interaction of a mechanical entangled state with the
bath of one resonator. We use a numerical differential equation
solver to solve the master equation (3) with density matrices.
After some algebraic manipulation, this can be rewritten as a
set of differential equations

ρ =
∞∑

p,q,r,s=0

apqrs(t) |pr〉 〈qs| , (A1)

[x̂,[x̂, |r〉2 〈s|2]] =
∑
k,l

�klrs |k〉2 〈l|2 , (A2)

[x̂,{p̂, |r〉2 〈s|2}] =
∑
k,l


klrs |k〉2 〈l|2 , (A3)

ȧpqrs(t) = −i[ω1(p − q) + ω2(r − s)]apqrs(t)

− D

h̄2

∞∑
k,l=0

�rsklapqkl(t)

− iγ

h̄

∞∑
k,l=0


rsklapqkl(t). (A4)

The commutation relationships in the equations lead to a
number of overlap integrals between the number states, which
can be evaluated and plugged in to create numerically solvable
equations. To solve for the dynamics of this system we use a
density matrix with basis states {00,01, . . . ,0n,10,11, . . . ,1n},
where n is a number much larger than nenv. Figure 6 shows
the results of the simulations for n = 10 at four different
times before the second swapping pulse. Two main effects
are observable in the evolution of the density matrix. First, the
population of the density matrix spreads out along the diagonal
of each of the four quadrants. Second, the nondiagonal matrix
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FIG. 7. Visibility as a function of detuning. Grayed out regions
have too high Jc or Jh to run the experiment. The value of J depends
on the exact experimental parameters, so it is normalized to the highest
value. The parameters are ω2/ω1 = 2, ω1/κ = 10, nth = 0.01, p =
0.01, ξ tr = 10−6, and η = 0.01.

elements decay away. These effects match with the expected
behavior for thermalization and decoherence.

We also need to simulate a mechanical-mechanical π/2
pulse. Because it is equivalent to a beam splitter, the ef-
fect on the two modes is the same. Here we expand
the density matrix to have basis states {00,01, . . . ,0n,10,

11, . . . ,1n,n0,n1, . . . ,nn}. The beam-splitter interaction con-
serves energy, so it can be represented as an n2×n2 transfor-
mation matrix, which recombines the elements of common
phonon number. The transformation matrix SBS for the three
lowest-energy levels with basis states {00,01,10,02,11,20} is

SBS =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1/

√
2 −1/

√
2 0 0 0

0 1/
√

2 1/
√

2 0 0 0
0 0 0 1/2 −1/

√
2 1/2

0 0 0 −1/2 0 1/2
0 0 0 1/2 1/

√
2 1/2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A5)

After the beam-splitter interaction the density matrix ρ ′ is
ST

BSρSBS . The combination of these two techniques lets us
fully model how the ideal state interacts with its thermal
environment.

The other problem we investigate is how various experi-
mental imperfections can impact the initial visibility of the
experiment. For this we use density matrices with basis states
going up to n = 3. To model imperfect cooling in step (i) we
start with a thermal state of both resonators. The modeling
of step (ii) is a little more complex. A successful postselection
means that one phonon has been added to resonator 1. However,
with probability p, the phonon occupation should be incre-
mented by 2, with probability p2 by 3, and so on. Conversely,

if there is a dark count or leaked pulse photon (probability
ξ tr ) the phonon occupation should remain the same. Finally,
we implement the beam splitter, step (iii), in the same way as
above. We add in an additional cooling pulse with a probability
Jc/J of removing a phonon from one of the resonators and a
heating pulse with a probability Jh/J of adding a phonon to
a resonator. The cooling matrix transformation Sc with basis
states {00,01,02,10,11,12,20,21,22} is

Sc =
(

1 − Jc

J

)
I + Jc

J

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0 0 0
0 0

√
2 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 1 0

√
2 0 0

0 0 0 0 0
√

2 0
√

2 0
0 0 0 0 0 0 0 0

√
2

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

√
2

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A6)

The heating matrix transformation is ST
c . All of these imperfec-

tions are combined to determine their impact on the proposed
experiment.

APPENDIX B: ADDITIONAL EXPERIMENTAL
CONSIDERATIONS

The first additional consideration relates to the pulses used
in the experiment. It is possible to perform the experiment with
simple square-shaped pulses. However, it is more efficient to
use an exponentially shaped pulse, resulting in a more even
interaction time [49]. We suggest using pulses of that shape,
as is performed in [35]. In particular, it is crucial that the area
under the readout pulse

∫ ∞
0 ncav(t)g1dt is π/2 to fully read out

the phonon occupation of resonator 1.
We also consider the most effective detuning of the two

laser beams for performing a π/2 pulse. The two-laser tone
exchange method relies on exchanging the state of each
mechanical resonator with that of the cavity. This is fastest
if the two laser beams are red detuned to ω1 and ω2. However,
at this detuning quantum information leaks out of the cavity,
leading to large values of Jc and Jh. In Fig. 7 we examine the
effects of the average detuning 
 of these two laser beams.
Ideally, the two beams should be quite far detuned from the
cavity, but there is a tradeoff between efficient exchange and the
exchange rate J , shown in red [44]. The best detuning depends
on experimental parameters such as sideband resolution and
frequency of the resonators.
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