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CHAPTER 6

ANISOTROPIC DISTORTIONS IN HEXAGONAL
CRYSTALS AT FLUID INTERFACES

Abstract

Defects in colloidal crystals can be induced by a vacancy, interstitual, or by im-
purities and influence crystal properties such as the mechanical strength and ori-
entation of the crystal. We here investigated how elongated particles distort the
hexagonal order in a crystal of repulsive pMMA spheres at a fluid interface. The
impurities are dumbbells constructed from two pMMA spheres, with different
distances between the two spheres sDB. Our study revealed that the number of
nearest neighbors increased with sDB from six to eight spheres. We analyzed both
the orientation of the dumbbell with respect to the crystal orientation and the po-
sition of the surrounding spheres with respect to the dumbbell orientation. The
preferred orientation of the dumbbell depended on the lattice spacing and sDB.
In crystals with large lattice spacings no preferred orientation was observed. At
short lattice spacings dumbbells with seven and eight nearest neighbors preferen-
tially aligned parallel to the crystal orientation whereas at six nearest neighbors
a preferential orientation of 30◦ with the crystal orientation was measured. The
repulsive interaction of the dumbbell with the surrounding spheres restricted the
rotational motion of the dumbbell. Positional information of the surrounding
spheres showed that all dumbbells anisotropically distorted the hexagonal order
in the crystal and that the position of the neighboring spheres depended on the
orientation of the dumbbell. Dumbbells with sDB = 1.03 ± 0.19 d, where d is the
diameter of the spheres, occupied one lattice site in the hexagonal crystal and
distorted the positional order of the neighboring spheres only locally. Dumbbells
with sDB = 1.27 ± 0.14 d were surrounded by seven nearest neighbors and dis-
torted the translational order in the crystal by the insertion of two semi-infinite
rows in the crystal. Dumbbells with sDB = 1.42 ± 0.17 d and eight nearest neigh-
bors occupied two lattice sites and the hexagonal crystal was distorted only lo-
cally.
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6.1. INTRODUCTION

6.1 Introduction

The presence of defects is inevitable in colloidal crystals. Defects distort the
structural order of colloids either locally by point defects such as vacancies
or interstitials resulting in disclinations and dislocations, or by larger defects
such as grain boundaries.158 These imperfections can influence the mechanical
strength of the crystal159, change the crystal growth direction160, enhance or
deteriorate photonic properties161,162 and induce melting163. The origin of a
defect can either be a particle not positioned at a lattice site resulting in a point
defect164, curvature of the substrate inducing topological defects37,165–168, or the
interference of impurities or dopants34.
Spherical impurities are observed to frustrate the crystal, inhibit crystal growth34

and influence the segregation of grain boundaries169. By doping a crystal
of spheres with dumbbells, consisting of two connected spheres, the dumb-
bells formed dislocation cages which influenced the dislocation dynamics.38,39

Whereas in crystals of spheres the dislocation motion is unrestricted, the steric
restriction of two connected spheres resulted in glassy dynamics. Anisotropic
impurities could therefore be promising dopants to tune mechanical or physical
properties of the crystal such as the crystallization dynamics and mechanical
strength. Additionally, the influence of anisotropic impurities on crystals is
relevant for understanding virus-capsid formation where anisotropically shaped
defects are observed in immature virus particles.170

We studied how hexagonal crystals of highly repulsive spheres were distorted
by dumbbell impurities of different dimensions. We formed colloidal crystals on
a flat interface between an aqueous and an organic phase, to investigate both the
structural order in the crystal as well as the dynamic behavior of the dumbbells
with confocal microscopy. The dumbbells distorted the hexagonal order of the
surrounding spheres anisotropically and the nature of the defects induced by
the impurities depended on the distance between the two spheres forming the
dumbbell, the orientation of the dumbbell and the degree of confinement at the
interface. We also show that the anisotropic landscape around the dumbbell
leads to a preferred dumbbell orientation at short lattice spacings.
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CHAPTER 6. ANISOTROPIC DISTORTIONS IN HEXAGONAL CRYSTALS AT FLUID INTERFACES

6.2 Experimental Methods

Materials

Methacrylic acid (MA, 99.8% extra pure, stabilized), Cyclohexyl bromide
(CHB, 99%, purified by filtering through activated alumina adsorbents), Glyc-
erol (99+%), N,N-Dimethylethanolamine (99%) and dodecane (mixture of iso-
mers) were purchased from Acros Organics. The cis-decahycronaphtalene
(cis-decalin, 99%), octyl mercaptan(≥98.5%), ethanol (96%), ethylene glycol
dimethacrylate (EGDM, 98%), methyl methacrylate (MM, 99%, contains≤30 ppm
MEHA as inhibitor), 2,2’-Azobis(2-methyl-propionitrile) (AIBN, ≥98%), N,N-
Dimethylformamide (≥99.8%) and rhodamine B isothiocyanate (RITC, mixed iso-
mers) were purchased from Sigma-Aldrich. Exxson mobil chemical kindly pro-
vided Exxsol D120 (≥98%) and 4-aminostyrene was purchased from Alfa Aesar.
For stabilization of the pMMA spheres a poly(12-hydrostearic acid) graft polymer
(PHS-g-pMMA, 45% solution in a 2:1 (w/w) ethyl acetate/butyl acetate mixture)
was synthesized.171,172 The water used was deionized using a Millipore Filtration
System (MilliQ Gradient A10), resulting in a resistivity of 18.2 MΩ·cm.

Methods

Synthesis of core-shell pMMA spheres pMMA spheres of 2.00 ± 0.05 µm in
diameter with a fluorescent core, a non-fluorescent shell (10 nm) and a crosslink
density of 2% wt were synthesized according to a dispersion polymerization
method developed R.P.A. Dullens et al.171 and adjusted by M.T. Elesser et al.172,173.

Preparation rhodamine aminostyrene To image the pMMA colloids with con-
focal microscopy rhodamine aminostyrene (RAS) was bound covalently to the
pMMA particles during synthesis. This dye was prepared by dissolving 73.25
mg RITC in 9.77 g DMF, followed by the addition of 75 µL 4-aminostyrene. Af-
ter 10 minutes of stirring the mixture was transferred to a 50 mL round bottom
flask and connected to a rotation evaporator (Buchi rotavapor R-210). The reac-
tion flask was placed in a preheated 40◦C waterbath and stirred at 30 rpm at a 45◦

angle. The solvent was gradually removed from the reaction mixture by main-
taining the pressure at 0.06 mbar for 3.5 days using an Edwards RV3 vacuum
pump. The purple solid product (RAS) was stored at -20◦C.

Preparation monomer solution To a 9.5 g solution of MM:MA (49:1) 0.0102 g of
RAS dissolved in 0.310 g acetone was added. This mixture was placed in the ul-
trasonic bath for several minutes and vortexed for 1h. Subsequently, the mixture
was filtrated using a 0.45 µm PTFE Whatman filter to remove undissolved dye,
yielding the filtrated monomer solution.
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6.2. EXPERIMENTAL METHODS

Synthesis fluorescent pMMA cores The synthesis was performed in a round
bottom reaction flask which was placed in a preheated oil bath (83◦C), connected
to a 16◦C cooler and brought under a nitrogen atmosphere. To the reaction flask
a mixture of 10.32 g of hexane:ExxsolD120 (2:1), the filtrated monomer solution,
0.103 g AIBN, 71.4 µL octyl mercaptan and 1.03 g PHS-g-pMMA was added un-
der magnetic stirring at 280 rpm. After six minutes a blue glow appeared in
the reaction mixture, indicating pMMA nuclei had formed. Immediately after
this observation a crosslink solution containing 3.32 g hexane:ExxsolD120 (2:1)
and 190 µL of EGDM was added gradually to the reaction mixture; 10 min at 20
µL/min followed by 28 min at 56 µL/min. After addition of the crosslink solu-
tion the reaction mixture was stirred for another 2h in the oil bath. The obtained
pMMA cores were washed and transferred to dodecane.
Covalent binding of the PHS-g-pMMA stabilizer molecules to the colloids was
achieved by a locking procedure. This procedure was also performed after the
shell formation. Covalent binding was achieved by transferring the pMMA col-
loids in dodecane to a round bottom flask which was placed in a preheated oil
bath (130◦C), connected to a 16◦C cooler and kept at a constant nitrogen atmo-
sphere. The dispersion was magnetically stirred at 280 rpm and when the tem-
perature of the dispersion reached 120◦C DMAE (0.2 wt% with respect to the
dispersion) was added. The reaction mixture was stirred for another 2h. The
resulting pMMA cores were 1.80 ± 0.06 µm in diameter (see Figure 6.1A).

Shell growth A non-fluorescent shell was grown around the fluorescent pMMA
cores to improve particle tracking in confocal microscopy images. The reaction
was performed in a round bottom flask placed in a preheated oil bath (83◦C), con-
nected to a 16◦C cooler while kept under nitrogen atmosphere. To this flask 8.42
g of pMMA cores in hexane:ExxsolD120 (1:1), 0.03368 g AIBN (2%wt with respect
to monomer) and 0.113 g octyl mercaptan (4%wt with respect to momomer) were
added while magnetically stirring at 300 rpm. After a few minutes of stirring a
mixture containing 3.11 g hexane:ExxsolD120 (1:1), 2.83 g MM:MA (49:1), 0.0707
g EGDM, 0.02836 g AIBN (0.4%wt with respect to total syringe volume), 0.014 g
octyl mercaptan and 0.014 g PHS-g-pMMA was slowly added over the course of
30 min at 273 µL/min. After addition the reaction was stirred for another hour in
the oil bath before cooling down. The procedure to covalently bind the stabilizer
molecules to the particles was repeated and the obtained core-shell particles were
2.00 ± 0.05 µm in diameter (Figure 6.1B and 6.1C).

Setup for a flat fluid interface A flat interface between two liquids was formed
using a specially designed interface setup (Figure 6.2). The details of this setup
are based on the design of the interface cell of Aveyard et al.174 and have been
further developed by D. ten Napel et al.175. Here, a aluminum-Teflon ring was
inserted into a glass holder, the outer ring. Since aqueous solvents have a high
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A) B)

2 μm 2 μm 10 μm

C)

FIGURE 6.1: SEM micrographs of A) fluorescent pMMA cores of 1.80 ± 0.06 µm in diameter
and B) pMMA core-shell particles of 2.00 ± 0.05 µm in diameter. C) Confocal microscopy
image of the pMMA core-shell particles.

affinity for aluminum and organic solvents for Teflon, the interface between the
two solvents aligned with the Teflon-aluminum transition in the ring. By ad-
justing the volumes of the two liquids a flat interface could be created at this
transition. In our setup the outside of the ring consisted of aluminum, whereas
the inside had an aluminum and a Teflon part. Small aluminum legs allowed the
adjustment of the height of the aqueous liquid inside the ring. The aluminum-
Teflon interface inside the ring was positioned at 1 mm from the bottom of the
glass coverslip. To image the interface with confocal microscopy an 60x magnifi-
cation objective (NA = 0.70), with a working distance of 2.6 - 1.8 mm was used.
An illustration of the interface cell and a cross section of the setup are shown in
Figure 6.2A and B, respectively.
To form a flat fluid interface 1 mL of glycerol:water (85:15 w/w) was added to
the glass holder, followed by the placement of the aluminum-Teflon ring. An-
other 0.3-0.4 mL of glycerol:water (85:15 w/w) was added until the aluminum
part on the inside of the ring was completely wetted. On top of the aqueous
layer 0.3-0.4 mL of CHB:cis-decalin (70:30 w/w) was deposited forming a flat in-
terface between the two liquid phases. Finally, 40 µL of a 0.08-0.20 wt% pMMA
colloid dispersion in CHB:cis-decalin (70:30 w/w) was gently added on top of
the organic layer. The setup was covered with a glass cover which was sealed
with grease (Apiezon grease M) to close the system and avoid evaporation. The
sample was imaged one to three days after preparation to allow the interface to
saturate with particles.

Imaging and analysis The synthesized pMMA particles were imaged using a
FEI nanoSEM scanning electron microscope (SEM) at 80 kV. The diameter of the
pMMA cores and core-shell particles was determined by measuring the circum-
ference of >100 particles in SEM micrographs with ImageJ.
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FIGURE 6.2: A) Illustration of the interface cell used to form a flat interface between an
aqueous and an organic liquid. B) Cross section of the interface setup. The aqueous liquid
has affinity for the aluminum part of the ring, while the organic liquid has affinity for the
Teflon part. The interface will therefore be pinned at the transition between these two
materials on the inside of the ring forming a flat interface. The interface is positioned at
1 mm from the bottom of the coverslip and the system is closed by a glass cover to avoid
evaporation of the solvents.

The ordering of pMMA colloids at the flat interfaces was studied using a Nikon
Eclipse Ti microscope. The microscope was equipped with an A1R confocal scan
head and a CFI S Plan Fluor ELWD 60x C with a working distance of 2.6 - 1.8 mm
and NA = 0.70. The RAS dyed cores of the pMMA spheres were excited with a
laser wavelength of 561 nm and detected at 625 nm.
The coordinates and centers of mass of the particles in confocal images were de-
termined using a Python implementation of the Crocker and Grier algorithm,
TrackPy.176,177 The anisotropic impurities were analyzed using a different imple-
mentation of this algoritm that accounts for the bias due to overlapping particle
signals.178 The crystal orientation α was measured manually by connecting the
centers of mass of at least ten spheres along a crystal axis.

6.3 Results and Discussion

6.3.1 Ordering of repulsive spheres at a flat fluid interface

To determine the effect of anisotropic particles on a crystal of repulsive spheres
at a fluid interface, we first analyzed the ordering of merely spheres. To exclude
curvature effects on the motion and positioning of the particles in the crystal a
special interface cell was used to yield a flat interface between CHB:cis-decalin
(70:30 w/w) and glycerol:water (85:15 w/w) (see Figure 6.2). pMMA spheres of
2.00 ± 0.05 µm in diameter were dispersed in the organic liquid which was de-
posited on top of the aqueous phase. After an equilibration time of one to three
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FIGURE 6.3: Ordering of repulsive pMMA spheres at a flat fluid interface. A) Confocal
microscopy image of pMMA spheres of 2.00 ± 0.05 µm in diameter d bound to the inter-
face between an CHB:cis-decalin (70:30 w/w) and a glycerol:water (85:15 w/w) phase. B)
Voronoi diagram showing that all particles in (A) have six nearest neighbors and no discli-
nations are formed. C) The hexagonal bond order parameter, |ψ6|, has values close to 1
for all particles, indicating that the spheres are ordered on an hexagonal lattice. D) The
radial distribution function (g(r)) of the spheres collected from 1800 measurements in one
minute. The peaks at large radial distances indicate that the hexagonal order ranges to
distances of 7s, where s is the average lattice spacing in the crystal, s = 2.73d. The peak at
1s originates from the six NNs of the spheres. E) The trajectories that the colloids in (A)
travelled in one minute (1800 measurements). The motion of the spheres is confined to a
single lattice site in the crystal. F) The mean square displacement (MSD) of the spheres
levels off at 20 s at 0.15 µm2 confirming that the translational motion of the particles is
restricted.

days spheres were observed both at the interface as well as in the upper organic
phase. The non-adsorbed particles diffused in three dimensions, while the inter-
facially bound pMMA spheres moved in the two dimensions of the interfacial
plane only. Interparticle distances of several times the diameter of the spheres
were observed, induced by the strong Coulomb repulsions between the charged
particles. The average interparticle distance between the spheres in bulk was at
least two times larger compared to the interfacially bound spheres. This effect
has been attributed to the presence of mirror charges originating from ions in the
aqueous phase that screen the charge of the interfacially bound pMMA spheres,
resulting in an additional Coulomb attraction30,179,180.
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The interfacially bound pMMA spheres positioned in a regular hexagonal pattern
(see Figure 6.3A). The Voronoi diagram of this pattern shows that all particles are
surrounded by six nearest neighbors (NNs), see Figure 6.3B. The local structural
ordering of the crystal was analyzed by calculating the hexagonal bond order
parameter ψ6, which is defined as:

ψ6,j =
1
N

N

∑
k=1

e6iθjk , (6.1)

where N refers to the number of nearest neighbors of particle j and θ jk is the an-
gle between a fixed reference axis and the vector between particle j and neighbor
particle k. The absolute value of ψ6 is an indication of the local hexagonal crys-
tallinity and ranges from 0 to 1, with |ψ6|=1 for perfect hexagonal symmetry.
The spheres at the fluid interface have |ψ6|-values close to 1 indicating that the
spheres arrange on a hexagonal lattice, see Figure 6.3C.
Positional information was obtained from the radial distibution function, which
is defined as:

g(r) = ρ·2πrdr (6.2)

where ρ is the average particle density in a 2πr shell with shell thickness dr at
a distance r from the center of mass (COM) of the particles. The g(r) shown in
Figure 6.3D is constructed from the particle positions extracted from 1800 mea-
surements collected over one minute. Peaks in g(r) are observed up to a distance
r of at least seven times the average interparticle distance s between the spheres.
Although the spheres are free to diffuse at the interface, the trajectories of the
spheres (Figure 6.3E) display that this translational motion is restricted to a lat-
tice site. This is confirmed by the mean square displacement (MSD) of the spheres
over time, Figure 6.3F, where the MSD levels off around 20 s at 0.15 µm2. The de-
gree of confinement is determined by the range of the repulsive and attractive
Coulomb forces and depends on the colloid density at the interface.174,181

6.3.2 Impurities at a flat fluid interface

Besides individual spheres, impurities were also found at the fluid interface. We
classified these impurities into three different classes. The first class includes
spherical objects with sizes significantly smaller (Figure 6.4A) or larger (Figure
6.4B) than the diameter, d, of the particles. These objects are side products formed
during the synthesis of the pMMA spheres. The effect of the large spherical im-
purities on the crystal growth of colloidal spheres was studied by Villeneuve et al.
who found that impurities induce the formation of grain boundaries and inhibit
crystal growth.34 The second type of impurities are circular patterns of spheres
with short interparticle distances (Figure 6.4C). These spherical shells are cross-
sections of likely aqueous droplets stabilized by colloids in the organic phase
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A) B) C)

10 μm

z = 0 μm z = 3.35 μm z = 6.70 μm

20 μm

D)

FIGURE 6.4: Confocal microscopy images of spherical and circular impurities observed
at an organic-aqueous fluid interface. Spherical particles with a diameter significantly
smaller (A) or larger (B) than the average diameter of the spheres. C) Circular structures
of particles with short interparticle distances. These patterns are cross-sections of droplets
stabilized by pMMA spheres in the organic phase as shown in (D), where z corresponds
to the height of the plane in the third dimension with z=0 µm at the interface.

A) C) D)B)

10 μm

FIGURE 6.5: Confocal microscopy images of anisotropic impurities observed in the two-
dimensional crystal of hexagonally ordered repulsive pMMA spheres at the fluid interface.
C-F) Anisotropic defects assembled by several spheres such as; chain-like structures(C),
dumbbells(D), triangles(E) and squares(F).

(Figure 6.4D). The number of these defects increased with time and temperature,
probably due to evaporation and condensation within the interface cell.
In this study we are mostly interested in the third class of impurities; anisotropic
mesostructures formed by the assembly of individual spheres with interparticle
distances « s. Dumbbell shapes were formed by two spheres (Figure 6.5A), but
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6.3. RESULTS AND DISCUSSION

different shapes were observed for clusters constructed by three or more particles.
For clusters of three particles chain-like structures (Figure 6.5B) were found as
well as well-defined triangles (Figure 6.5C). Also for larger clusters compact, such
as the square for four spheres (Figure 6.5D), as well as elongated shapes were
observed. Similar anisotropically shaped clusters were observed of polystyrene
spheres at water-air interfaces182,183 and of pMMA spheres in bulk after centrifu-
gation184 and at aqueous-organic interfaces185.
The interaction of pMMA spheres at an aqueous-organic interface was described
by Leunissen et al.28 and Kelleher et al..179,181 They showed that the net interac-
tion between pMMA spheres bound to an aqueous-organic interface is the sum of
Coulomb repulsions originating from the spheres’ surface charge and Coulomb
attractions due to interaction of the particles with the mirror charges of the neigh-
boring spheres.28,179,181 Since high wetting angles of the pMMA colloids with the
aqueous phase were measured, the system could be described by spheres with
charge q arranged on a conducting medium, which is the aqueous phase. This
results in a dipolar force between pairs of interfacially bound spheres with pair-
wise additive interactions. The net interaction of two such particles can therefore
be approximated by a pair potential of the form181,

U(r) ' A
r3 , (6.3)

where A = p2/8πε, with ε the dielectric constant of the oil and p = qd the magni-
tude of the electric dipole moment of the particles and r the interparticle distance.
Interestingly, this interaction profile does not allow the formation of the observed
mesostructures with much shorter interparticle distances. Other phenomena or
additional interfacial forces have to play a role. In the next section we analyse
interfacially bound dumbbells and use these findings to speculate on the origin
of the anisotropic impurities.

6.3.3 Interfacially bound dumbbells

To study the effect of the anisotropy of impurities on the hexagonal order of
spheres, we analyzed the distortion induced by elongated dumbbell shapes. The
interfacially bound dumbbells were characterized by their position at the inter-
face and their dimensions. Over 95% of the dumbbells aligned with their long
axis parallel to the interfacial plane. We expected preferential wetting of the par-
ticles by the organic liquid, since Kelleher et al. measured contact angles close to
180◦ for pMMA spheres at an interface between aqueous 70 wt% glycerol solu-
tion (10 mM NaCl) and an organic phase consisting of CHB, hexane, and dode-
cane (5:3:2 v/v). Nevertheless, we observed that the motion of the anisotropic
particles was restricted to the two dimensions of the interfacial plane, confirming
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FIGURE 6.6: The intradumbbell distance (sDB) and the number of nearest neighbors (NNs)
of interfacially bound dumbbells. The diameter of the spheres, d = 2.00 ± 0.05 µm. A)
sDB of dumbbells with six, seven or eight NNs. The number of NNs increases with the
distance between the two spheres of the dumbbell. sDB was determined for >225 different
dumbbells. B) sDB of individual dumbbells with six, seven or eight NNs, calculated from
> 3100 measurements collected over several minutes. The pixelsize is 0.07-0.10d. Since the
standard deviations measured in sDB are close to the pixelsize, sDB is essentially constant
for individual dumbbells. C) Illustration of a dumbbell at an organic-aqueous interface
formed by a small aqueous droplet connecting two spheres.

that the colloids were interfacially bound. In our analysis, dumbbells with their
long axis aligned parallel to interfacial plane were examined only.
We found that the distance between the two spheres forming the dumbbell, which
we from here on refer to as the intradumbbell distance sDB, differed per particle.
Furthermore, dumbbells with six, seven or eight NNs were observed. Analysis
of sDB and the number of NNs of >225 dumbbells revealed a relation between
the two, where the number of NNs increased with increasing sDB (Figure 6.6A).
Figure 6.6B shows sDB of individual dumbbells with six, seven or eight NNs from
at least 3100 measurements collected in several minutes. sDB deviates at max 0.1d
from the average sDB value, which is similar to the pixelsize and likely caused by
a tracking error. We therefore assume that sDB is fixed for each dumbbell.
These findings allow us to speculate on the origin of the formation of dumbbells
and larger structures at an organic-aqueous interface. It was suggested that resid-
ual van der Waals forces between the spheres could cause attraction.185 If van der
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6 NNs 7 NNs 8 NNs

10 μm

A1)

A2)

B1) C1)

B2) C2)

C3)B3)A3)

FIGURE 6.7: Dislocations induced by dumbbells with six, seven and eight NNs. Confocal
microscopy images of dumbbells with six (A1), seven (B1) and eight (C1) NNs. In B1) the
line dislocation is visualized with by the yellow lines. Corresponding Voronoi diagrams
of the microscopy images in A1-C1. The dumbbell is considered as one particle in A2-C2
and as two individual spheres in A3-C3. The Voronoi cells are colored according to the
coordination number, zi, of the colloids; purple for zi=5, grey for zi=6, magenta for zi=7
and turquoise for zi=8. A dumbbell with six NNs substitutes one lattice position in the
hexagonal crystal without the formation of dislocations (A2 and A3). At seven NNs a five-
and-seven disclination pair is formed resulting in the insertion of two semi-infinite rows
in the hexagonal crystal (B2 and B3). At eight NNs the dumbbell substitutes two lattice
sites in the hexagonal crystal.

Waals forces between the spheres would induce the formation of dumbbells, sDB
would approximately be equal to the diameter of the spheres. Since we found
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FIGURE 6.8: Radial distribution functions of crystals around typical dumbbells with A)
six, B) seven and C) eight neighbors with the COM of the dumbbell at r=0. Constructed
from at least 3100 measurements collected over several minutes.

differences in sDB much larger than the polydispersity of the spheres, residual
van der Waals forces do not explain the formation of the clusters. Distortions of
the interface induced by surface roughness could also induce attraction186, but it
is unlikely that this would result in dumbbells with different sDB. A plausible ex-
planation is the interference of interfacial contaminations183. Since we observed
larger droplets covered with spheres, it is likely that smaller droplets are also
present at the interface. Impurities with sizes close to or smaller than the diffrac-
tion limit of optical microscopy, such as droplets or nanobubbles187–189, could
connect spheres to form larger structures, as illustrated in Figure 6.6C. This ex-
planation is also in agreement with the fixed sDB for individual dumbbells, but
deviating values for sDB of different dumbbells.

Confocal microscopy images of typical interfacially bound dumbbells with six,
seven or eight NNs are shown in Figure 6.7A1, 6.7B1 and 6.7C1, respectively. By
performing Voronoi tesselations on these images the disclinations and disloca-
tions induced by the different dumbbells were visualized. We show two Voronoi
diagrams: one where the dumbbell is treated as a single particle and one where
the dumbbell is viewed as two individual spheres.
When the dumbbell is viewed as one particle, the Voronoi diagram of a typi-
cal dumbbell with six NNs shows that all particles have the same coordination
number, zi=6 (Figure 6.7A2). The Voronoi diagram obtained when the dumb-
bell is taken as two individual spheres reveals a dislocation pair, with zi=5 at the
spheres forming the dumbbell and zi=7 at two of the NNs (Figure 6.7A3). This
indicates that the dumbbell substitutes a single lattice site in the hexagonal crys-
tal without long-range distortions of the orientational and translational order. A
five-and-seven coordinated disclination pair is introduced for the dumbbell with
seven NNs, see Figure 6.7B2 and B3. The isolated dislocation distorts the trans-
lational order in the hexagonal crystal by the insertion of two semi-infinite rows
in the crystal, as illustrated by the yellow lines in the corresponding confocal im-
age in Figure 6.7B1. At eight NNs a zi=8 is located at the dumbbell and two of
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the NNs have zi=5, which is an unusual dislocation (Figure 6.7C2). The Voronoi
diagram of the two separate spheres reveals that the dumbbell substitutes two
lattice positions in the hexagonal crystal, without long-ranged distortions of the
crystal (Figure 6.7C3). We expect that the number of lattice sites in the hexagonal
crystal occupied by elongated impurites will increase with the length of the par-
ticle. For large sDB dumbbells will act as separate spheres, but linear impurities
constructed by more than two spheres, such as chains, could provide this infor-
mation.

Positional information of the spheres surrounding the dumbbell was obtained
from g(r) with the COM of the dumbbell as origin. Peaks in g(r) are observed
to a distance r of at least seven times the lattice spacing s for dumbbells with
six, seven as well as eight NNs, see Figure 6.8. This indicates that local order
is maintained for the spheres around the dumbbells. Interestingly, the shape of
the radial distribution function strongly depends on the number of NNs. The ra-
dial distribution function of the dumbbell with six NNs (Figure 6.8A) is largely
in agreement with g(r) obtained for spheres indicating that overall the hexago-
nal order of the crystal was conserved (Figure 6.3D). Only small differences are
found in the width and position of the peaks. For example, the peak of the NNs,
at r = 1s for spheres, is broader and slightly shifted to a larger distance r. At
seven NNs the location of the peaks in the g(r) (Figure 6.8B) deviate from g(r) of
spheres. Whereas all NNs are positioned at r = 1s for spheres, the seven NNs are
observed at different distances r from the dumbbell, resulting in a partly splitted
peak around r=1s. At eight NNs the peak at r = 1s has splitted completely into
two separate peaks (Figure 6.8C). These findings denote that the distortion of the
hexagonal order by dumbbells depends on the length of the dumbbell, sDB. In the
next sections we took the anisotropy of the dumbbell in our analysis into account
to investigate the dynamics of dumbbells with six, seven and eight NNs and their
effect on the surrounding crystal, separately.

6.3.4 Dumbbell orientation and crystal distortion

Analysis approach

To study the effect of dumbbell impurities on a hexagonal crystal, the anisotropy
of the dumbbell has to be accounted for. We measured both the orientation of the
dumbbell with respect to the crystal orientation and the position of the surround-
ing spheres with respect to the dumbbell orientation. On a two-dimensional
hexagonal lattice different axes of reflection symmetry are present. In Figure 6.9A
we illustrated the crystal orientation axes which make angles with ~a1 of 0, π/3
and 2π/3 (green lines) or π/6, π/2 and 5π/6 (dotted purple lines). We defined
the dumbbell orientation as the angle β, between the long dumbbell axis and the
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FIGURE 6.9: Illustration of the parameters used to determine the orientation of dumbbells
with respect to the crystal orientation and the position of the spheres in the surrounding
crystal with respect to the dumbbell. A) Different axes of reflection symmetry are present
on a two-dimensional hexagonal lattice. The dumbbell orientation was defined as the
angle β between the dumbbell axis and the crystal orientation axes in green. The six-fold
symmetry in an hexagonal crystal allowed us to mirror all data of β into the range βε[0◦,
30◦]. Additionally, the average interparticle distance between the spheres in the crystal,
s, was also included in the analysis. B) The position of the spheres was described by the
distance r between the COM of the sphere and the COM of the dumbbell and the angle ϑ
between the dumbbell axis and the vector of the COM of the dumbbell to the COM of the
sphere.

crystal orientation axis in green (Figure 6.9A). A preference for a certain value of
β would indicate an anisotropic energy landscape. The degree of confinement
of the dumbbell also depends on the average lattice spacing s in the hexagonal
crystal and the dimensions of the dumbbell and we therefore investigated.
To determine how dumbbells distort the hexagonal order in the crystal, we mea-
sured the position of the surrounding spheres with respect to the dumbbell axis.
The position of spheres was defined by the radial distance r between the COM
of the dumbbell and the COM of the sphere, and the angle ϑ between the vector
from the dumbbell to the sphere and the dumbbell axis (Figure 6.9B). Spheres or-
dered on a perfect hexagonal lattice have equal interparticle distances, and angles
of 60◦ between the vectors with their six NNs. If dumbbell impurities distort the
hexagonal order of the surrounding spheres, the neighboring spheres will posi-
tion at different values of r as a function of ϑ at a given dumbbell orientation β.
These parameters are therefore required to determine the distortion of the hexag-
onal order by dumbbells.

Dumbbell orientation in crystals with different lattice spacings

The orientation of dumbbells in crystals with different lattice spacings s was mea-
sured to determine the influence of particle confinement on the motion and po-
sition of the dumbbells. Trajectories of dumbbells with six NNs, travelled over
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FIGURE 6.10: Trajectories and preferred orientation of individual dumbbells with six NNs
in crystals with different s. (A1-A4) s = 8.59± 2.39d (300 measurements in 15 minutes), (B1-
B4) s = 3.34 ± 0.18d (4500 measurements in 15 minutes), and (C1-C4) s = 2.57 ± 0.13d (360
measurements in 6 minutes). A1-C1) Trajectories of dumbbells and surrounding spheres.
At decreasing s the particles are increasingly confined to a lattice position. A2-C2) Proba-
bility density plots, P(r), of the position of the dumbbells. At s = 8.59± 2.39d the dumbbell
rotated without restrictions and only slight restrictions in the translational motion were
observed. At s = 3.34 ± 0.18d, the translational motion of the dumbbell was restricted to
one lattice site, but full dumbbell rotation was still allowed. At s = 2.57 ± 0.13d both the
translation and rotation of the dumbbell were resticted. A3-C3) The probability for the
dumbbell to orient at a certain value of β, P(β), where we combined all data to βε[0◦, 60◦].
A4-C4) The confinement energy U(β) corresponding to P(β). In a highly fluidic crystal, s
= 8.59 ± 2.39d, no preferred dumbbell orientation was observed. At s = 3.34 ± 0.18d P(β)
was largest at β = 30◦ corresponding to an confinement energy of -1.1 kBT. Highly con-
fined dumbbells, s = 2.57 ± 0.13d, preferentially oriented at β = 30◦ with an confinement
energy of -3.5 kBT.
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several minutes in crystals with s = 8.59 ± 2.39d, s = 3.34 ± 0.18d and s = 2.57
± 0.13d, are shown in Figure 6.10A1, 6.10B1 and 6.10C1, respectively. The area
covered by the dumbbell and the surrounding spheres decreased drastically with
decreasing s. The probability density plot of the position of the dumbbell, P(r), in
a crystal with s = 8.59 ± 2.39d shows that the confinement of the dumbbell in the
crystal was low with no restrictions in the rotational motion and some restrictions
in the translational motion (Figure 6.10A2). At s = 3.34 ± 0.18d the dumbbell was
confined to a lattice position, but full rotation around the COM of the dumbbell
was still observed (Figure 6.10B2). At s = 2.57 ± 0.13d the confinement of the par-
ticles increased further leading to large restrictions in both the translational and
rotational motion of the dumbbell (Figure 6.10C2).
Due to the anisotropy of the dumbbell we expected that restrictions in the rota-
tional motion would lead to a preference for a certain orientation of the dumbbell
with respect to the crystal. We measured the dumbbell orientation, defined by β
(Figure 6.9A), for individual dumbbells over time in crystals with different s. At s
= 8.59 ± 2.39d the crystal was highly fluidic and the probability for the dumbbell
to orient at a certain value of β, P(β), was uniform for all β (Figure 6.10A3). By
decreasing s to 3.34 ± 0.18d a non-uniform distribution in P(β) was measured
with the highest probability at β = 30◦ and the lowest at β = 0◦ and 60◦ (Figure
6.10B3). In crystals with s = 2.57 ± 0.13d the preference for β = 30◦ became even
more significant (Figure 6.10C3).

Using P(β) we calculated the confinement potential of the dumbbells, U(β), via
the Boltzmann distribution:

U(β) = U0 − kBTlnP(β) (6.4)

where kB is the Boltzmann constant and T the temperature. The energy U is de-
termined with respect to a reference value U0, which we set at the maximum
measured value of U. In Figure 6.10A4-C4 the energy profiles calculated from the
probability functions in Figure 6.10A3-C3 are shown, respectively. At large s, 8.59
± 2.39d, the confinement energy was independent of β. In more dense crystals, s
= 3.34 ± 0.18d an energy difference of -1.1 kBT is observed between β = 30◦ and β
= 0◦ or 60◦. The confinement energy increased to -3.5 kBT when the lattice spac-
ing in the crystal was increased to s = 2.57 ± 0.13d.

Besides analysing individual dumbbells in time we also determined P(β) from
an ensemble of different dumbbells with six NNs. Analysis of 150 confocal mi-
croscopy images of different dumbbells with six NNs in crystals with s = 3.59
± 0.29d, showed no significant preference for β (Figure 6.11A). In more compact
crystals with s = 2.64 ± 0.09d, a preferred orientation of β = 15◦-30◦ was observed
from analysis of 100 different dumbbells (Figure 6.11B). These results are in agree-
ment with the measurements of individual dumbbells, where a preference for β
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= 30◦ was found as short s.

Our results show that dumbbells with six NNs become more confined to β = 30◦

with decreasing lattice spacing s due to restrictions in the rotational motion. This
can be understood by examining the energy landscape around the dumbbell in
the hexagonal crystal of spheres. We plotted the energy landscape using the pair
potential of individual spheres assuming pairwise additivity, see Equation 6.3. To
calculate the pair potential the particle charge q is required. For pMMA spheres
of 2.6 µm in diameter dispersed in CHB:hexane:dodecane (5:3:2 v/v) Kelleher et
al. measured a charge of 530-590e, with e as the elementary charge.179 Using elec-
trophoresis, Leunissen et al. measured a charge of 450e for pMMA colloids of 2.16
µm in diameter in density-matched CHB:cis-decalin.28 Since our colloids are syn-
thesized according to the same synthetic method173 and a comparable interface
was used, we assumed similar values for q. The dielectric constant of our organic
phase, CHB:cis-decalin (70:30 w/w), is 5.6.
We plotted the potential energy, U(r), for a dumbbell particle and six hexagonally
ordered spheres. The energy profile around the dumbbell is anisotropic as ex-
pected, see Figure 6.12A. Although the energy profile of the individual spheres is
isotropic, the potential energy landscape created by the six particles is anisotropic
(Figure 6.12B). At equal distance r from the center particle the potential energy is
lowest in the direction in between the spheres and highest in the direction of the
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FIGURE 6.11: Dumbbell orientations of an ensemble of dumbbells with six NNs in crys-
tals with different lattice spacing s obtained from confocal microscopy images. β was
measured as the angle between the dumbbell axis and the crystal orientation axis closest
to the dumbbell axis, therefore βε[0◦, 30◦]. Due to symmetry in the hexagonal crystal we
expect the values for βε[0◦, 30◦] to be symmetric to βε[60◦, 30◦], respectively. The proba-
bility to find a dumbbell with a certain value of β, P(β), in crystals with A) s = 3.59 ± 0.29d,
where no significant preference in β is observed from analysis of 150 different dumbbells,
and at B) s = 2.64 ± 0.09d, where dumbbells preferably oriented at β-values of 15◦-30◦. 100
different dumbbells were analyzed.
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FIGURE 6.12: Potential energy profile around A) a dumbbell and B) six hexagonally or-
dered spheres. C) Due to the anisotropic energy profile around the dumbbell and inside
the hexagon, it is energetically favorable for the dumbbell to orient at β = 30◦.

spheres. Since the dumbbell has an anisotropic interaction itself, the dumbbell
experiences the least repulsion at β = 30◦, see Figure 6.12C.

Crystal distortion by dumbbells with six NNs

At short lattice spacings the energy landscape around dumbbells with six NNs
is not uniform, which leads to a preferred orientation of the dumbbell. In turn,
the anisotropy of the dumbbell would also affect the position of the surroundig
spheres in the hexagonal crystal. Although no dislocations were formed by dumb-
bells with sDB = 1.03 ± 0.19d and six NNs, small differences were observed in the
position and width of the peaks in g(r) for a dumbbell with six NNs in a crys-
tal with s = 3.34 ± 0.18d (Figure 6.8A), compared to g(r) for hexagonally ordered
spheres (Figure 6.3D). This indicates that dumbbells with six NNs in crystals with
short lattice spacings change the hexagonal order in the crystal locally. To inves-
tigate whether the distance r at which the neighboring spheres were positioned
was related to the anisotropy of the dumbbell, we included the angle between
the dumbbell axis and the vector of the dumbbell to any neighboring sphere, ϑ,
in our analysis (see Figure 6.9B).
We identified and quantified any anisotropic distortion of the crystal by plotting
g(r) for restricted angular ranges of ϑ, by defining a restricted angular radial dis-
tribution function:

gϑ(r) = ρϑ·δρrdr, (6.5)

where ρϑ is the average particle density in the angular range [ϑ± δϑ
2 ] in a ρϑ·δρrdr

area. We plotted gϑ(r) separatly for ϑ = 0◦, 15◦, 30◦....360◦ ± δϑ
2 , with δϑ = 15◦,

covering the complete radial distribution in 24 intervals of 15◦. In Figure 6.13 four
gϑ(r) graphs are shown, containing positional information of spheres surround-
ing the dumbbell at angles ϑε[0◦ , 90◦], [90◦, 180◦], [180◦, 270◦] and [270◦, 360◦],
respectively. The four gϑ(r)-plots show peaks at similar distances r, pointing to
symmetric behavior of the spheres in the four quadrants around the dumbbell
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FIGURE 6.13: Restricted angular radial distribution function, gϑ(r), of a dumbbell with six
NNs in a crystal with s = 3.34 ± 0.18d, where d is the diameter of the spheres. gϑ(r) was
obtained from 4500 measurements collected over 15 minutes with r = 0 at the COM of a
dumbbell. Four gϑ(r) graphs are shown with positional data of spheres at ϑε[0◦, 90◦], [90◦,
180◦], [180◦, 270◦] and [270◦, 360◦], respectively. Peaks in the four graphs are observed at
similar distances r, pointing to symmetric behavior of the spheres in the four quadrants
around the dumbbell.
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FIGURE 6.14: Anisotropic crystal distortion by dumbbells with six NNs. A) The averaged
gϑ(r), ḡϑ(r), obtained by combining all positional data of the spheres into the range ϑε[0◦ ,
90◦]. The distance r at which a neighboring sphere is positioned decreases with increasing
ϑ. ϑ is related to the dumbbell orientation β, for example the NNs position at B) ϑ ' 0◦ and
60◦ for β = 0◦ and at C) ϑ ' 30◦ and 90◦ for β = 30◦. D) Comparison of the observed peak
positions to the expected peak positions for neighboring spheres in an hexagonal crystal,
rhex = 1.00, 1.73, 2.00, 2.64, 3.00 and 3.60s. For the NNs of the dumbbell deviations of -1
to +10% were measured compared to rhex. For the next NNs deviations of -1 to +6% were
found and the differences decrease further with r. Compared to rhex = 3.60s differences of 1
or 2% were found, indicating that the hexagonal order in the crystal had almost completely
restored. Therefore, the hexagonal order was only locally anisotropically distorted and
dumbbells with six NNs occupied one lattice position in the hexgonal crystal.
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(Figure 6.9B).
This four-fold symmetry allowed us to combine and average the data into an
effective angular range of ϑε[0◦ , 90◦]. From this effective angular range we cal-
culated an averaged ḡϑ(r) (see Figure 6.14A). A relation between ϑ and r can be
observed, where the distance r at which a nearest neighbor is located decreases
with increasing ϑ. NNs at ϑ = 90◦ were positioned closer to the COM of the
dumbbell compared to NNs positioned in line with the dumbbell axis at ϑ = 0◦,
resulting in an anisotropic distortion of the hexagonal order locally around the
dumbbell.
Interestingly, the first peak for all values of ϑ slightly shifts around r = 1s, which
indicates that the dumbbell rotated in time affecting the position of the surround-
ing spheres in turn. The effect of β on ϑ is illustrated in Figure 6.14B and 6.14C by
overlaying the position of the spheres found in confocal microscopy images with
a schematic of ϑ, corresponding to the colors used in the Figure 6.14A. When the
dumbbell is aligned with the crystal orientation, β = 0◦, the NNs position at ϑ
' 0◦ and 60◦ (Figure 6.14B). For a dumbbell oriented at β = 30◦ the six NNs are
located at ϑ ' 30◦ and 90◦ (Figure 6.14C).

Voronoi tesselations indicated that dumbbells with six NNs occupied one lat-
tice site in the hexagonal crystal (see Figure 6.7A2 and 6.7A3). To quantify the
anisotropic distortion of the hexagonal crystal we therefore compared the posi-
tion of the neighboring spheres to expected values for neighborings spheres in
an hexagonal crystal with lattice spacing s, rhex = 1.00, 1.73, 2.00, 2.64, 3.00, 3.46
and 3.60s (Figure 6.14D). The NNs around the dumbbell were positioned at r =
0.99s to 1.10s, with the shortest distance r for spheres at ϑ = 90◦ and the largest
distance r for spheres at ϑ = 0◦. These distances deviate by -1 to +10% from the
expected value, rhex = 1s, for NNs in a hexagonal crystal. The full width at half
maximum of the peaks wDB originating from the NNs is similar for all ϑ-values,
indicating that all NNs had similar freedom of motion. In the hexagonal crystal,
neighboring spheres in the second ring are expected at rhex = 1.73 and 2.00s. The
second NNs of the dumbbell located at distances r deviating by -1 to +6% from
the expected values for the hexagonal crystal. The differences in the position of
the neighboring spheres decreased with increasing distance r. Compared to rhex
= 3.60s small deviations, 1 to +2%, were observed which indicates that the hexag-
onal order had almost completely restored. This means that dumbbells with six
NNs occupy one lattice position in the crystal and distort the hexagonal order
only locally.

Crystal distortion by dumbbells with seven NNs

Dumbbells with sDB = 1.27 ± 0.14d were typically surrounded by seven NNs,
which introduced an isolated dislocation characterized by the insertion of two
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β = 0o β = 15o β = 35oβ = 30o β = 51o

FIGURE 6.15: Confocal microscopy images of a dumbbell with seven NNs rotating in a
crystal with s = 2.67± 0.17d. At β = 0◦ the dumbbell is aligned with the crystal orientation.
Rotation of the dumbbell to β = 15◦ resulted in the displacement of the four NNs on the
line dislocation side of the dumbbell. Rotation to β=30◦ and subsequently 35◦ induced the
displacement of all particles. Although not observed at this lattice spacing, it is expected
that at β = 51◦ a similar situation to β = 0◦ will occur, since 360/7=51◦.

semi-infinite rows in the hexagonal crystal (see Figure 6.6B1). Isolated disloca-
tions change the translational order in the long range and the orientational order
locally. The dumbbell orientation was therefore determined with respect to the
crystal orientation measured at sigficant distance from the dumbbell.
The introduction of two halfrows in the crystal lead to an asymmetry in the
surrounding crystal between the two sides of the dumbbell axis. Confocal mi-
croscopy images of a rotating dumbbell with seven NNs at different points in
time are shown in Figure 6.15. In contrast to dumbbells with six and eight NNs,
the crystal orientation is not a symmetry axis for the neighboring spheres, as can
be observed at β = 0◦. When the dumbbell rotated to β = 15◦ the NNs on the side
of the dumbbell axis with the line dislocations were observed to change position.
Upon further rotation to β = 30◦ and 35◦ the other NNs also slightly changed
position to adapt to the orientation of the dumbbell. At β = 51◦ we expect a situ-
ation equal to β = 0◦, since 360/7 = 51. Rotation to β = 51◦ was not observed for
this dumbbell, which points to an energy barrier at this lattice spacing, s = 2.67 ±
0.17d, that restricted the rotational motion of the dumbbell.

For a dumbbell with seven NNs in a crystal with s = 2.22 ± 0.11d restrictions in
both the translational and rotational motion were observed from the trajectories
of the particles and the probability density plot of the position of the dumbbell
P(r) (Figure 6.16A). The strongly confined dumbbell oriented at -22◦ < β < 22◦

only (see Figure 6.16B) and preferentially aligned parallel to the crystal orienta-
tion axis, β = 0◦. The confinement potential of the dumbbell U(β), calculated
using P(β), showed a confinement energy of -5 kBT at β = 0◦ (Figure 6.16C).
Analysis of 34 individual dumbbells with seven NNs yielded a similar result; an
average β-value of 6.5 ± 4.7◦.
To explain why dumbbells with seven NNs preferably align parallel to the crystal
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FIGURE 6.16: Trajectories and preferred orientation of a dumbbell with seven NNs in a
crystal with s = 2.22± 0.11d, obtained from 3162 measurements collected in 6.4 minutes. A)
The trajectories (top) of a dumbbell with seven NNs and the surrounding spheres and the
probability density plot of the position of the dumbbell P(r) (bottom). The dumbbell was
largely confined in the crystal and the translational and rotational motion were restricted.
B) P(β), dumbbell orientations of -22◦ < β < 22◦ were measured with the highest probabilty
at β = 0◦. C) The confinement potential U(β) calculated from P(β) shows a confinement
energy of -5kBT at β = 0◦.

orientation, we refer to the behavior of isolated dislocations in hexagonal crystals.
An isolated dislocation directs parallel to the Burgers vector originating from the
two halfrows inserted in the crystal.190 The Burgers vector can be determined
by drawing a closed circuit, a Burgers circuit, around a fixed point in a crystal.
A Burgers circuit around a dumbbell with seven NNs is drawn in Figure 6.17A.
By applying the same circuit to an hexagonal crystal of spheres the circuit is not
closed and the Burgers vector is the vector connecting the start and finish point
of the circuit (Figure 6.17B). This vector is directed parallel to the crystal orienta-
tion and always perpendicular to an isolated dislocation, as shown in the Voronoi

108



CHAPTER 6. ANISOTROPIC DISTORTIONS IN HEXAGONAL CRYSTALS AT FLUID INTERFACES

A)

Burgers vector

B) C)

Burgers circuit

FIGURE 6.17: The Burgers circuit and Burgers vector in a hexagonal crystal with an iso-
lated dislocation originating from a dumbbell with seven NNs. A) A closed Burgers circuit
drawn (dotted line) around the dumbbell. The two inserted semi-infinite rows are indi-
cated by the yellow lines. B) The Burgers circuit of (A) applied to a hexagonal crystal of
spheres. The circuit is closed by the Burgers vector which connects the start and finish
point of the Burgers circuit. The direction of the Burgers vector is equal to the crystal
orientation. C) Voronoi diagram of a dumbbell with seven NNs with the Burgers vector
illustrated perpendicular to the isolated dislocation.

diagram of the dumbbell in Figure 6.17C. Dumbbells with seven NNs therefore
preferably orient at β = 0◦.

To analyse the position of the neighboring spheres we calculated gϑ(r) for a
dumbbell with seven NNs in a crystal with s = 2.33 ± 0.12d. gϑ(r) was plot-
ted separately for ϑε[0◦, 180◦] and ϑε[180◦, 360◦], see Figure 6.18A. On one side
of the dumbbell axis, ϑε[0◦, 180◦], strong peaks of NNs were observed at ϑ = 0, 45,
105 and 165 ± 7.5◦ (top graph in Figure 6.18A). Depending on the orientation of
the dumbbell the nearest neighbor located at ϑ = 165 ± 7.5◦ could also be found
at ϑ = 180 ± 7.5◦. On the other side of the dumbbell axis, ϑε[180◦, 360◦], the NNs
positioned at ϑ = 210, 270, 315 and 360 ± 7.5◦ (bottom graph in Figure 6.18A).
The location of the NNs is illustrated in the top left of the graphs. Peaks in gϑ(r)
of NNs positioned at other ϑ-values were small or absent, which again points to
the restrictions in the rotational freedom of the dumbbell.
The full width at half maximum of the peaks in gϑ(r) originating from the NNs,
wNNs, was similar for most NNs (Figure 6.18B). wNNs of the nearest neighbor at
ϑ = 210◦ was largest which is in agreement with qualitative observations for a
dumbbell rotating in time, see Figure 6.15. The NNs were located at distances r
= 0.86s to 1.17s, which is a difference of 36%. The NNs at ϑ = 105◦ and 270◦ were
positioned at r = 0.86s and 0.89s, respectively, while the NNs at ϑ = 0, 165, 210
and 315 ± 7.5◦ were found at distances r ranging from 1.11s to 1.17s. Only the
nearest neighbor located at ϑ = 45◦ was positioned at the expected lattice position
for NNs in a hexagonal crystal, r = 1.02s. These findings explain the semi-splitted
peak observed in the g(r) for the NNs of a dumbbell with seven NNs shown
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FIGURE 6.18: Positional information of spheres surrounding a typical dumbbell with
seven NNs in a hexagonal crystal with s = 2.33 ± 0.12d calculated from 5440 measure-
ments collected over three minutes. A) Restricted angular radial distribution functions
gϑ(r) covering both sides of the dumbbell axis, ϑε[0◦, 180◦] (top) and ϑε[180◦, 360◦] (bot-
tom). No symmetry is observed in the position of the surrounding spheres. B) The full
width at half maximum of peaks in gϑ(r) originating from the NNs, wNNs, is largest for
the nearest neighbor positioned at ϑ = 210◦. The distance r at which the NNs position
deviates from r = 0.86s to 1.17s. C) Confocal microscopy image of a dumbbell with seven
NNs and an illustration of the ϑ-values of the spheres surrounding the dumbbell.

in Figure 6.8B. A confocal microscopy image of a dumbbell with seven NNs is
shown in Figure 6.18 with the positions of the spheres overlaying an illustration
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FIGURE 6.19: Trajectories and preffered orientation of a typical dumbbell with eight NNs
in a crystal with s = 3.20 ± 0.15d calculated from 7090 measurments collected in two min-
utes. A) Trajectories of the dumbbell and the surrounding spheres (top) and the proba-
bility density plot of the position of the dumbbell P(r) (bottom). Both the translational
and rotational motion of the dumbbell were restricted. The limited translational motion
was directed perpendicular or parallel to the crystal orientation axis, resulting in a cross-
profile in P(r). B) P(β), dumbbell orientations of -22◦ < β < 22◦ were measured where the
dumbbell preferentially oriented parallel to the crystal orientation axis, at β = 0◦. C) The
confinement potential U(β) calculated from P(β) shows a strong confinement energy of -7
kBT at β = 0◦.

of the ϑ-values of the neighboring spheres to visualize the asymmetry in the crys-
tal around a dumbbell with seven NNs.

Crystal distortion by dumbbells with eight NNs

Dumbbells with large intradumbbell distances, sDB = 1.42 ± 0.17d, were often
surrounded by eight NNs. We analysed the orientation of a typical dumbbell
with eight NNs in a crystal with s = 3.20± 0.15d. The trajectories of the dumbbell
and the surrounding spheres travelled over several minutes show that the parti-

111



6.3. RESULTS AND DISCUSSION

100

104

103

102

101U
(r

) 
in

 k
B
T

A) B)

sDB = 1.4 d

FIGURE 6.20: The potential energy landscape A) of eight neighboring spheres on two
hexagonal lattice positions and B) around a dumbbell with sDB = 1.4d occupying two lat-
tice sites.

cles were confined to their lattice position in the crystal (Figure 6.19A top). In the
probability density plot of the position of the dumbbell, P(r), the limited trans-
lational motion of the dumbbell was only directed parallel and perpendicular to
the crystal orientation axis (Figure 6.19A bottom).
Analysis of the dumbbell orientation revealed that the dumbbell oriented at -22◦

< β < 22◦, with a high probability to orient parallel to the crystal orientation, at
β = 0◦, see Figure 6.19B. The confinement potential calculated from P(β) shows
strong confinement of the dumbbell at β = 0◦ with a confinement energy of -7
kBT (Figure 6.19C). Rotation of the dumbbell likely requires large distortions in
the surrounding crystal, which is energetically unfavorable. Similar results were
obtained by analysis of single confocal microscopy images of 22 different dumb-
bells with eight NNs, β = 3.6 ± 2.5◦.

In g(r) of a dumbbell with eight NNs two separate peaks were observed around r
= 1s, which points to large differences in the distance r at which the eight NNs are
positioned (Figure 6.8). To include the anisotropy of the dumbbell in our analysis
we calculated the gϑ(r) of a typical dumbbell with eight NNs, for ϑε[0◦, 90◦], [90◦,
180◦], [180◦, 270◦] and [270◦, 360◦], separately (see Figure 6.21). The four gϑ(r)
graphs show peaks at similar positions and this symmetric behavior in the po-
sition of the spheres allowed us to combine and average the positional data into
an effective angular range of ϑε[0◦, 90◦]. In the resulting ḡϑ(r) large differences
were observed in the peak positions of the NNs (see Figure 6.22A). The peaks
originating from NNs located at ϑ = 75◦ and 90◦ were completely separated from
the peaks originating from NNs at ϑ = 0◦ to 60◦. The distance r at which the NNs
at ϑ = 45◦ and 0◦ were positioned differ by 29% and 45%, respectively, from the
distance r where the NNs at ϑ = 90◦ were found. This explains the presence of the
two peaks around r = 1s in the g(r) for a dumbbell with eight NNs (Figure 6.8).
A confocal microscopy image of a dumbbell with eight NNs is shown in Figure
6.22B with an illustration of the ϑ-values of the surrounding spheres. Voronoi
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FIGURE 6.21: Restricted angular radial distribution functions gϑ(r) of a typical dumbbell
with eight NNs in a crystal with s = 3.20± 0.15d, obtained from 7090 measurements in two
minutes. The four gϑ(r) graphs contain positional information of spheres surrounding the
dumbbell at ϑε[0◦, 90◦], [90◦, 180◦], [180◦, 270◦] and [270◦, 360◦], respectively. Peaks are
observed at similar distances r in the four graphs, pointing to symmetric behavior of the
spheres in the four quadrants around the dumbbell.
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FIGURE 6.22: Crystal distortion by dumbbells with eight NNs. A) ḡϑ(r) of a dumbbell
with eight NNs with all positional data of the surrounding spheres projected to ϑε[0◦,
90◦]. The distance r at which the spheres positioned largely depended on ϑ and the NNs
were predominantly located at ϑ = 0◦, 45◦ and 90◦. B) Confocal microscopy image of a
dumbbell oriented at β = 0◦ with an illustration of the ϑ-values of the surrounding spheres.
C) Illustration of an hexagonal crystal where the dumbbell occupies two lattice positions.
D) Comparison of the positions of spheres around the dumbbell to the positions expected
around a sphere occupying two lattice sites in a hexagonal crystal. The positions of the
NNs around the dumbbell differed by -9 to +8% from the expected positions, r = 0.87s,
1.33s and 1.50s. In the second row of neighboring spheres, NNs2, deviations of -2 to -4%
were found. In the third ring of neighboring spheres, NNs3, deviations of -1 and -2 %
were measured, indicating that the hexagonal order has almost completely restored at this
distance. Dumbbells with eight NNs occupy two lattice sites in the hexagonal crystal and
distort the order only locally. The full width half maximum of the peaks originating from
the neighboring spheres around the dumbbell, wNNs, wNNs2 and wNNs3, decreased with
increasing ϑ.
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diagrams indicated that dumbbells with eight NNs occupied two lattice sites in
a hexagonal crystal (Figure 6.7C2, 6.7C3 and 6.22C). We therefore compared the
positions of the neighboring spheres with the expected lattice positions of the
neighbors of a sphere occupying two lattice sites (Figure 6.22D). Since in ḡϑ(r) the
peaks at ϑ = 0◦, 45◦ and 90◦ were most pronounced, we only compared the posi-
tions of neighboring spheres at these ϑ-values. The full width half maximum of
the peaks originating from the neighboring spheres around the dumbbell, wNNs,
wNNs2 and wNNs3, decreased with increasing ϑ. This indicates that the confine-
ment of the surrounding spheres decreased with increasing ϑ. For the NNs dif-
ferences of -9 to +8% in the distance r at which the spheres were located were
observed compared to the values expected. The deviations quickly decreased
with increasing distance r. In the third row of NNs, NNs3, differences of only -1
and -2% were measured compared to the expected values which indicated that
the hexagonal order had almost completely restored. Dumbbells with eight NNs
evidently occupied two lattice sites in the hexagonal crystal and distort the crystal
only locally.

6.4 Further Discussion

We showed that dumbbells with sDB-values close to the diameter of the particles
were surrounded by six NNs and that the number of NNs increased to seven and
eight with the intradumbbell distance sDB. All dumbbells distorted the hexago-
nal order of the surrounding spheres, either locally or over long distances. The
preferred orientation of the dumbbells with respect to the crystal orientation de-
pended on the number of NNs and the lattice spacing s. At short lattice spacings
dumbbells with six NNs favored β = 30◦, whereas dumbbells with seven or eight
NNs preferentially oriented at β = 0◦. The energy cost for the dumbbell to rotate
in the crystal increased with sDB and with increasing confinement. Dumbbells
with six NNs have relatively more rotational freedom compared to dumbbells
with seven or eight NNs at similar lattice spacings. The surroundings of dumb-
bells with six NNs are highly symmetric, while an strongly anisotropic environ-
ment was observed for dumbbells with seven and eight NNs. The energy cost for
rotation is therefore larger for dumbbells with seven and eight NNs compared to
dumbbells with six NNs.

Since dumbbells distort the hexagonal order is it likely that pairs of dumbbells
interact at short distances. In Figure 6.23A-C confocal microscopy images are
shown of dumbbells as NNs. Two dumbbells with short sDB aligned parallel,
were observed to occupy two lattice sites in the crystal (Figure 6.23A). Three lat-
tice sites were occupied by two dumbells aligned parallel, but in sequence (Figure
6.23B). Dumbbells could also align perpedicular as illustrated in Figure 6.23C.
The preferred situation probably depends on the lattice spacing s and sDB of
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FIGURE 6.23: Orientations of neighboring dumbbells (A-C) and dumbbells separated by
one crystal row (D-F). The dumbbells oriented parallel or perpendicular. Two neighboring
dumbbells could occupy two (A) or three (B) lattice positions in the hexagonal crystal
depending on their orientation with respect to each other and sDB.

the dumbbells. Similar orientations were also observed for dumbbells separated
by one crystal row of particles, Figure 6.23D-F. Further research on neighbor-
ing dumbbells should provide information on the interaction between dumbbells
and their effect on the hexagonal order in the crystal. Investigation of the effect of
other anisotropic impurities such as chains, triangular and square shapes (Figure
6.5) on the hexagonal order could also provide additional information.

6.5 Conclusions

We studied how repulsive pMMA spheres and anisotropic impurities arranged at
a flat fluid interface between a glycerol:water (85:15) and CHB:cis-decalin (70:30)
phase. Spheres ordered on a hexagonal lattice where their motion was restricted
to one lattice site at short lattice spacings. At the fluid interface three types of
impurities were observed in the crystal: (1) spherical objects significantly smaller
or larger with respect to the particle diameter, (2) colloid stabilized droplets of the
aqueous phase in the organic phase and (3) anisotropic clusters of spheres. Anal-
ysis of anisotropic clusters formed by two spheres, dumbbells, showed that the
distance between the two spheres, the intradumbbell distance sDB, differed per
dumbbell. As sDB increased the number of nearest neighbors also increased from
six to a maximum of eight. We speculated that the formation of the anisotropic
clusters originated from small aqueous droplets between the spheres forming the
dumbbell.
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The orientation of the dumbbells with respect to the hexagonal crystal depended
on sDB and the lattice spacing. At short lattice spacings the rotational and trans-
lation motion of the dumbbells was restricted and a preferred orientation of the
dumbbell axis with respect to the crystal orientation was found. Dumbbells with
six nearest neighbors preferably oriented at 30◦ with respect to the crystal di-
rection and occupied one lattice site in the hexagonal crystal. The position of
the surrounding spheres depended on the dumbbell orientation and the hexag-
onal order was locally anisotropically distorted. Dumbbells with seven nearest
neighbors distorted the translational order in the crystal over long ranges by the
introduction of an isolation dislocation and preferably oriented parallel to the
crystal orientation. At larger sDB dumbbells were surrounded by eight nearest
neighbors occupying two lattice sites in the hexagonal crystal. The rotational mo-
tion of these dumbbells was strongly restricted and the dumbbells preferentially
oriented in line with the crystal orientation. The confinement potential of the
dumbbells and the surrounding spheres showed confinement energies up to -7
kBT. The anisotropic energy landscape around the dumbbells originated from
the repulsion between the two spheres forming the dumbbell and the surround-
ing spheres in the crystal.
Our results emphasize that the distortion of anisotropic impurities differ from
isotropic impurities, which will likely also affect the physical properties of col-
loidal crystals. We therefore encourage future studies on the affect of anisotropic
impurities on crystals.
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