

Forward and reverse genetics strategies for improving oncolytic reoviruses

Dautzenberg, I.J.C.

Citation

Dautzenberg, I. J. C. (2018, June 14). Forward and reverse genetics strategies for improving oncolytic reoviruses. Retrieved from https://hdl.handle.net/1887/62736

Version: Not Applicable (or Unknown)

License: License agreement concerning inclusion of doctoral thesis in the

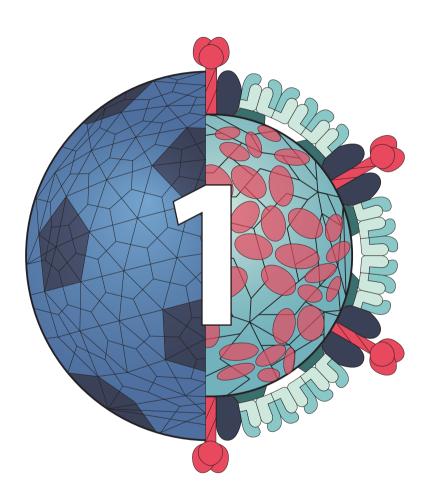
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/62736

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden



The handle http://hdl.handle.net/1887/62736 holds various files of this Leiden University dissertation

Author: Dautzenberg, Iris

Title: Forward and reverse genetics strategies for improving oncolytic reoviruses

Date: 2018-06-14

INTRODUCTION

TABLE OF CONTENTS CHAPTER 1

Part I General introduction

1.1 General introduction1.1.1 Outline of the thesis

Part II Genetic modification in mammalian orthoreovirus

1.2.1 Introduction

1.2.2 Forward-genetics in orthoreoviruses

1.2.3 Reovirus/cell interactions

1.2.4 Reverse-genetics in orthoreoviruses

1.2.5 Reovirus as an oncolytic agent

1.2.6 Conclusions

PART I

GENERAL INTRODUCTION

1.1 GENERAL INTRODUCTION

Worldwide, almost 40% of people will be diagnosed with cancer at some point during life¹. Although the five-year survival rate for the most common cancer types has been improving since 1975¹, cancer is the second leading cause of death globally². Taken together, the disease causes a massive physical and mental burden for the patients and their relatives and has a significant societal impact². These facts necessitate improved and new strategies to combat cancer.

Oncolytic viruses are among the most promising emerging anti-cancer agents. A variety of wild-type or genetically-modified viruses has been tested in the clinic^{3,4} and in 2015 the first oncolytic virus was approved in the US, Europe and Australia for treatment of advanced stage melanoma, thereby establishing oncolytic viruses as a new category of cancer therapeutics⁵.

While the approval of an oncolytic virus as an anti-cancer drug has been a recent development, the concept of exploiting viruses as ammunition in the battle against cancer has intrigued scientists for more than a century⁶. Already in the nineteenth century it was observed that cancer patients can go into (partial) remission when suffering from an infectious disease^{7,8}. The uncovering of the particular nature of viruses and their visualisation by electron microscopy in the first half of the twentieth century encouraged scientists to study viruses, including mumps⁹, adenovirus¹⁰, West Nile¹¹, and hepatitis B¹², as anti-cancer agents in clinical trials⁶. Although complete tumour regression was observed occasionally⁹, generally these virotherapies lacked efficacy. Moreover, regulatory barriers were tightened due to severe side effects and combined with the emerging success of chemotherapy, this resulted in a drastic decrease of the number of clinical trials involving oncolytic viruses in the 1970 and 1980s⁶.

During this bleak era in oncolytic virotherapy, another virus was discovered to cause lysis in tumour cells; the mammalian orthoreovirus. While the virus generally does not lead to significant disease in humans, it was observed that transformed cell lines exhibit sensitivity to mammalian orthoreovirus type 2 Jones (T2J) and 3 Dearing (T3D), while normal diploid cells appeared resistant^{13,14}. In later studies, predominantly reovirus T3D was used as oncolytic agent and this virus appeared highly potent against cancer cells, making it the archetype oncolytic reovirus^{15,16}.

Oncolytic virus therapy reappeared on the therapeutic horizon with the advent of recombinant DNA technology, and the prospects of using genetic modification to improve safety by attenuating the candidate viruses and by increasing tumour cell specificity. In addition, viruses could be made more powerful e.g. by inserting a transgene with therapeutic value¹⁷. This culminated into the first clinical trials with a

genetically modified adenovirus in 1996 and also reaffirmed the interest in the wild-type, unmodified oncolytic reovirus¹⁵. To date the wild-type reovirus T3D has been examined as single agent or in combination with chemo- or radiotherapy in more than 30 clinical trials against various cancer types¹⁸. These cancer types include glioblastoma, head- and neck cancer, melanoma, lung cancer and prostate cancer¹⁹. In these studies reovirus demonstrated to be safe for the patient and in some patients anti-tumour efficacy has been observed.

With increased understanding on mechanisms responsible for virus-mediated killing of cancer cells, also several barriers were identified that hamper the anti-tumour efficacy of reovirus and oncolytic viruses in general^{3,19}. Anti-viral immune responses, the scarcity or inaccessibility of the virus receptor on the tumour cells, and physical barriers formed by the stromal component of tumours are examples of obstacles that an oncolytic virus must overcome before being able to infect and eliminate a tumour²⁰.

To overcome these hurdles, modifications can be introduced to the viral genome. In general two strategies are employed to improve the therapeutic potential of oncolytic viruses: (I) Forward-genetics, in which desired/aberrant phenotypes are isolated prior to identification of the alterations in the genome responsible for the phenotype, and (II) Reverse genetics or rational design of modifications to the virus genome. Both approaches are used for the research described in this thesis. A forward-genetics strategy was employed (called bioselection or natural selection) to select for a mutant reovirus with improved cancer-killing capacity (chapter 3). Due to the absence of proofreading activity in the reovirus' RNA-dependent RNA polymerase (RdRp), the intrinsic mutation rate in reoviruses is high, leading to a rapid adaptation of the virus to host cells and a natural selection for virus mutants that are favourably adapted to the host cell. Reverse genetics strategies are described in chapter 2 and chapter 5, which involve rational modifications on respectively adenovirus, to target the virus to cancer-specific surface antigens, and reovirus, to introduce heterologous transgenes in the genome that could facilitate viral imaging or improve therapeutic efficacy. As a result of reovirus' complex genomic architecture, which consists of a ten-segmented double-stranded RNA genome, the use of reverse genetics on reovirus is highly challenging. Our successful incorporation of a transgene in the reovirus genome (chapter 5)21 provides novel opportunities and demonstrates conceptual proof on reverse genetic approaches for reovirus modification.

The work described in this thesis mainly focuses on the intracellular delivery of reovirus in tumour cells and three-dimensional tumour spheroids (chapter 4) and the improvement hereof using both bioselection and rational design strategies (chapter 3,

5 and 6). Other chapters describe the improved transduction of tumour cells using a genetically modified human adenovirus type 5 (chapter 2) and the role of the cellular autophagy machinery on reovirus infection (chapter 7).

1.1.1 Outline of the thesis

Chapter 1 provides a brief introduction on oncolytic viruses, with a particular focus on reoviruses (which are the protagonist entities in this thesis). Besides basic information on reovirus' structure and biology, also genetic modification strategies and mechanisms of viral oncolysis, with the activated Ras status of transformed cells as key player, are described.

Chapter 2 describes the improved transduction of tumour cells by human adenovirus type 5. Similar to reovirus, adenovirus has great potential as oncolytic agent, which is illustrated by the approval of the genetically modified adenovirus type H101 for the treatment of nasopharyneal carcinoma in combination with chemotherapy by the China's State Food and Drug Administration in 2005. This made adenovirus the first oncolytic virus to be approved by a regulatory agency⁴. Adenovirus was first isolated in the 1950s from adenoid tissue and currently more than 50 human serotypes of adenovirus are identified²². In oncolytic virotherapy predominantly adenovirus type 5 of subgroup species C is used. Adenovirus has a linear dsDNA genome of 30-40 kb, packaged into a icosahedral shaped protein capsid of 60-90 nm in diameter. Because of the genomic stability of the virus, the relative non-pathogenic behaviour in immunocompetent adults and the ability to infect a wide range of cells, adenovirus is not only an attractive oncolytic agent, but has also proven to be a suitable vehicle for gene delivery. Adenovirus vectors in which adenoviral genes are replaced by therapeutic transgenes are currently in development to ameliorate various illnesses. Being mostly replication-deficient, these adenoviruses e.g. encode lethal genes for cell killing in tumours, display pathogenic antigens as viral vaccine, or have the purpose to repair cellular functions by gene correction^{22,23}. Adenoviruses are the most widely studied viruses for gene delivery and oncolytic virotherapy.

As for most oncolytic viruses, the poor transduction of tumour cells can be a bottleneck that hampers the anti-tumour efficacy of adenoviruses. This can be attributed, in part, to the low or heterogeneous expression of the primary receptor for adenovirus type 5, the coxsackie and adenovirus receptor (CAR). As adenovirus is relatively easy to genetically engineer, the transduction of tumour cells by the virus can be improved by retargeting of the virus. In this strategy a tumour-targeting ligand is introduced in one of the capsid proteins of adenovirus, thereby creating adenoviruses with a higher specificity for tumour-cells. **Chapter 2** describes the generation and evaluation of a

tumour-targeted adenovirus vector, which has a tumour-targeting ligand (HER2/ neu-binding ZH *affibody* molecule) fused to the minor capsid protein IX. The high-affinity binding between the protein IX-coupled ZH targeting ligand and its HER2/neu receptor may result in inadequate release of the virus from the targeted receptor in the endosome. To allow for intracellular release of the viral particle from the HER2/neu molecule, a cathepsin-cleavage site was introduced between the protein IX anchor and the ZH targeting ligand. This resulted in significantly enhanced transduction of tumour cells in two- and three-dimensional cell culture models as well as in a chorioallantoic membrane tumour model, as compared to the control adenovirus.

Chapter 3 describes the isolation of reoviruses with an expanded tropism after bioselection. The mutant viruses were generated by propagation of reovirus on a glioblastoma cell line that is negative for the cellular receptor for reovirus, the Junction Adhesion Molecule-A (JAM-A). The isolated mutants appeared capable of infecting various cancer cell types independent of JAM-A, whilst primary human fibroblasts remained insensitive. These so-called *jin* mutants hold mutations in the S1 segment of the virus which encodes for the virus attachment protein σ 1.

In **Chapter 4** it is demonstrated that infection of tumour cells by reovirus is not strictly dependent on the presence of JAM-A on the cell surface. While JAM-A-negative glioblastoma cells were resistant to reovirus under standard two-dimensional cell culture conditions, they became sensitive to reovirus infection when cells were grown as three-dimensional spheroids. This could be attributed to the enhanced secretion of cathepsin proteases by the three-dimensional cell cultures. It was hypothesized that these extracellular proteases convert intact reovirus virions into intermediate sub-viral particles (ISVPs), which are able to infect the spheroid cells independent of JAM-A. For tumours, extensive secretion of proteases into the tumour micro-environment has been described^{25,26}, as well as the entry of reoviruses into JAM-A negative glioblastoma tumours in mice²⁷. Accordingly, the tumour spheroid model appears to be a highly valuable *in vitro* model, as its protease secretion characteristics mimic the actual *in vivo* situation more faithfully than adherent two-dimensional cell cultures.

Chapter 5 describes the use of forward-genetics to generate a modified reovirus. The *jin-3* mutant, generated in chapter 3, harbours an amino acid substitution in the tail region of the σ 1 protein, enabling the virus to infect cells independent of JAM-A. This allows the replacement of the JAM-A-binding head domain of σ 1 by foreign sequences without exceeding the size of the S1 segment or compromising the transduction capacity of the virus. For that reason, the JAM-A-binding domain of the S1 segment was replaced with the coding sequence for the fluorescent protein iLOV. Correct production of the (truncated) σ 1 and iLOV proteins from the S1-iLOV sequence was established

by introducing a 'self-cleavage' element (porcine teschovirus-1 (P2A)) in between. The resulting virus remained replication competent, retained its oncolytic capacity and displayed iLOV fluorescence in both JAM-A positive and JAM-A negative cells.

Chapter 6 demonstrates proof-of-concept on using a non-oncolytic viral vector (baculovirus) as a tool for improved anti-tumour performance of oncolytic reovirus. The baculovirus *Autographa californica* multiple nucleopolyhedrovirus (AcMNPV), was previously shown to possess remarkable characteristics with potential for tumour therapy, that is, the ability to transduce a broad panel of mammalian cells and to penetrate through several cell layers into spheroids and tumours²⁸. To employ these characteristics of baculovirus in oncolytic virotherapy, we equipped baculovirus vectors with full-length JAM-A receptors to allow for the binding ('piggybacking') of reovirus particles. Hereby, biviral complexes were formed in which baculovirus and reovirus particles were coupled. In this biviral context, reovirus was able to infect, replicate in and kill glioblastoma cells, which were resistant to standard treatment with (single-particle format) reovirus. Moreover, in the presence of the baculovirus, reovirus showed deeper penetration and spread into glioblastoma tumour spheroids and increased spheroid cell death.

Chapter 7 describes a novel mechanism associated with reovirus infection; induction of macroautophagy. Autophagy is a highly conserved homeostatic process to degrade and recycle unnecessary cellular components. Autophagy can either combat or, on the contrary, facilitate viral infections. Many autophagy-related gene (Atg) products play a role in the autophagy process. We revealed, using mouse embryonic fibroblasts (MEFs) and glioblastoma cell lines, that reovirus induces autophagy, e.g. demonstrated by the appearance of double-membraned vesicles, an increase in acidic vesicles, conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3), p62 degradation and the formation of GFP-LC3 puncta in infected cells. Furthermore, the obtained results demonstrated that a productive reovirus infection is not strictly necessary, but strongly stimulates the induction of autophagy.

Chapter 8 provides a general discussion on the results described in this thesis and on the future perspectives of using reovirus as an oncolytic agent.

REFERENCES

- 1 National Cancer Institute, M., USA. https://www.cancer.gov/about-cancer/understanding/statistics (2017).
- 2 Organization, W. H. (2017).
- Fukuhara, H., Ino, Y. & Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. *Cancer Sci* **107**, 1373-1379, doi:10.1111/cas.13027 (2016).
- 4 Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. *Nat Rev Drug Discov* **14**, 642-662, doi:10.1038/nrd4663 (2015).
- 5 Andtbacka, R. H. *et al.* Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. *J Clin Oncol* **33**, 2780-2788, doi:10.1200/JCO.2014.58.3377 (2015).
- 6 Kelly, E. & Russell, S. J. History of oncolytic viruses: genesis to genetic engineering. *Mol Ther* **15**, 651-659, doi:10.1038/sj.mt.6300108 (2007).
- Dock, G. The influence of complicating diseases upon leukemia. *Am J Med Sci* **127**, 563-592 (1904).
- 8 Bierman, H. R. *et al.* Remissions in leukemia of childhood following acute infectious disease: staphylococcus and streptococcus, varicella, and feline panleukopenia. *Cancer* **6**, 591-605 (1953).
- 9 Asada, T. Treatment of Human Cancer with Mumps Virus. *Cancer* **34**, 1907-1928, doi:Doi 10.1002/1097-0142(197412)34:6<1907::Aid-Cncr2820340609>3.0.Co;2-4 (1974).
- 10 Georgiades, J., Zielinski, T., Cicholska, A. & Jordan, E. Research on the oncolytic effect of APC viruses in cancer of the cervix uteri; preliminary report. *Biul Inst Med Morsk Gdansk* 10, 49-57 (1959).
- 11 Southam, C. M. & Moore, A. E. Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus. *Cancer* **5**, 1025-1034 (1952).
- Hoster, H. A., Zanes, R. P., Jr. & Von Haam, E. Studies in Hodgkin's syndrome; the association of viral hepatitis and Hodgkin's disease; a preliminary report. *Cancer Res* **9**, 473-480 (1949).
- Duncan, M. R., Stanish, S. M. & Cox, D. C. Differential sensitivity of normal and transformed human cells to reovirus infection. *J Virol* **28**, 444-449 (1978).
- 14 Hashiro, G., Loh, P. C. & Yau, J. T. The preferential cytotoxicity of reovirus for certain transformed cell lines. *Arch Virol* **54**, 307-315 (1977).
- 15 Norman, K. L. & Lee, P. W. Reovirus as a novel oncolytic agent. *J Clin Invest* **105**, 1035-1038, doi:10.1172/JCI9871 (2000).
- Wilcox, M. E. *et al.* Reovirus as an oncolytic agent against experimental human malignant gliomas. *J Natl Cancer Inst* **93**, 903-912 (2001).
- 17 Martuza, R. L., Malick, A., Markert, J. M., Ruffner, K. L. & Coen, D. M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. *Science* **252**, 854-856 (1991).
- 18 http://www.oncolyticsbiotech.com/reolysin/clinical-trials/, 2017).

- 19 Gong, J., Sachdev, E., Mita, A. C. & Mita, M. M. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumour activity. *World J Methodol* **6**, 25-42, doi:10.5662/wjm.v6.i1.25 (2016).
- 20 Ferguson, M. S., Lemoine, N. R. & Wang, Y. Systemic delivery of oncolytic viruses: hopes and hurdles. *Adv Virol* **2012**, 805629, doi:10.1155/2012/805629 (2012).
- 21 Kobayashi, T. *et al.* A plasmid-based reverse genetics system for animal double-stranded RNA viruses. *Cell Host Microbe* **1**, 147-157, doi:10.1016/j.chom.2007.03.003 (2007).
- Volpers, C. & Kochanek, S. Adenoviral vectors for gene transfer and therapy. *J Gene Med* **6 Suppl 1**, S164-171, doi:10.1002/jgm.496 (2004).
- Toth, K., Dhar, D. & Wold, W. S. Oncolytic (replication-competent) adenoviruses as anticancer agents. *Expert Opin Biol Ther* **10**, 353-368, doi:10.1517/14712590903559822 (2010).
- 24 Campos, S. K. & Barry, M. A. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting. *Virology* **349**, 453-462, doi:10.1016/j.virol.2006.01.032 (2006).
- 25 Mason, S. D. & Joyce, J. A. Proteolytic networks in cancer. *Trends Cell Biol* 21, 228-237, doi:10.1016/j.tcb.2010.12.002 (2011).
- 26 Sloane, B. F. *et al.* Cathepsin B and tumour proteolysis: contribution of the tumour microenvironment. *Semin Cancer Biol* **15**, 149-157, doi:10.1016/j.semcancer.2004.08.001 (2005).
- Alain, T. *et al.* Proteolytic disassembly is a critical determinant for reovirus oncolysis. *Mol Ther* **15**, 1512-1521, doi:10.1038/sj.mt.6300207 (2007).
- Swift, S. L. *et al.* Evaluating baculovirus as a vector for human prostate cancer gene therapy. *PLoS One* **8**, e65557, doi:10.1371/journal.pone.0065557 (2013).

PART II

GENETIC MODIFICATION IN MAMMALIAN ORTHOREOVIRUSES

S.K. van den Hengel^{1,2}
I.J.C. Dautzenberg¹
D.J.M. van den Wollenberg¹
P.A.E. Sillevis Smitt²
and R.C. Hoeben¹

- ¹ Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- ² Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands

in *Reverse Genetics of RNA viruses; Applications and Perspectives*, Ch. 10, edited by A Bridgen, published by John Wiley & Sons, Ltd., 2013

1.2.1 Introduction

Mammalian reoviruses are members of the *orthoreovirus* genus of the family of *Reoviridae*. They were first isolated from the gastrointestinal and respiratory tracts of healthy and sick humans in the early 1950s¹. The name reovirus is an acronym of *Respiratory* and *Enteric Orphan virus*. The term 'orphan' is used to indicate that no serious disease is linked to this virus in humans, while a large proportion of the human population has been exposed to the virus and built neutralising immunity to reoviruses².³. The *orthoreoviruses* have a wide geographic distribution and are isolated from a broad range of mammals, birds and reptiles. Although in humans the mammalian *orthoreoviruses* are non-pathogenic, in newborn mice they can cause severe disease⁴. The capsid of the *orthoreovirus* is a non-enveloped icosahedral structure composed of outer and inner protein shell. In 1963, it was discovered that the genome consists of double-stranded RNA (dsRNA)⁵, and soon after it was found that the genome of mammalian *orthoreoviruses* consist of 10 distinct genome segments⁶.

1.2.1.1 Taxonomy

To date, three *orthoreovirus* species groups are recognised. In this chapter we will focus on the mammalian *orthoreoviruses*. In this species group three serotype strains of mammalian *orthoreoviruses* have been identified, with the type 1 Lang (T1L), type 2 Jones (T2J), type 3 Abney (T3A) and type 3 Dearing (T3D) as the prototypical representatives. The serotypes are classified according to their neutralisation by specific antibodies and by the classical hemagglutination inhibition assay^{7,8}. Genomic variation between the serotypes is found for all segments. The S1 segments, coding for the σ1 attachment protein, has the largest sequence divergence. The sequence variations can have biological consequences⁴. It was observed by reassortment studies between T1L and T3D that the S1 segments define the pathology. While the serotypes T1L and T3D both infect the central nervous system (CNS) in newborn mice, their routes of infection differ. T1L causes hydrocephalus by spreading hematogenously in the CNS by infecting ependymal cells. In contrast, T3D causes viral encephalitis by spreading via the neural routes in the CNS⁹.

Table 1.1 Overview of the genome segments, proteins and prototypes of the various ts mutants

	Segment			Protein	_			ts m	ts mutant	
	Total size (nt)	ORF (nt)		Size (aa)	Location	Group	Protoype	SSRNA	Phenotype Protein	dsRNA
	3854	19-3819	уз	1267	Core	۵	tsD357	-/+	+	ı
L2	3916	14-3880	УЗ	1289	Core	В	tsB352	+	+	+
F3	2901	14-3838	71	1275	Core	-	ts/138	<i>د</i> ٠	+	I
M	2304	14-221	µ2	736	Core	I	tsH11.2	++	I	I
M2	2203	30-2153	μ	708	Outer capsid	∢	tsA201	++	‡	+++
M3	2241	19-2181	μNSC	721 681	NS NS	ш	tsF556¹	+ +	‡	‡
S1	1516	13-1377; 71-430	σ1 σ1s	455 120	Outer capsid NS	_	ts/128	<i>د</i> ٠	٠.	<i>~</i> ٠
25	1331	19-1272	σ2	418	Core	U	tsC447	<i>د</i> ٠	٠.	I
23	1198	28-1125	σNS	366	SN	ш	tsE320	-/+	+	I
24	1196	33-1127	03	365	Outer capsid	g	tsG453	+	+	+
Note:	s - ee .srien-back - ud	T1.3pine onim	on extino	akv miltant: ++	(almost) as wild tyr	h- lace th	n 50% of wild 1	ool =/+.au/	Nate: hn - hasanaire: aa , amina acide: 1 Tantativa aabv murtant + 4 (almast) as wild tung. + ass than 50% of wild tung. + 1 ass than 10%, of wild tung ass than 10%	occ than 10%

Note: bp - base-pairs; aa - amino acids; ¹ Tentative, leaky mutant; ++ (almost) as wild type; + less than 50% of wild type; +/- less than 10% of wild type; - less than 1% of wild type.

1.2.1.2 Genome segments and their proteins

Structural proteins. The genome of the reovirus consists of 10 dsRNA segments with a total size of 23.5 kb. The segments are named according to their sizes⁶. There are three large segments (L1, L2 and L3) ranging in size from 3854 to 3916 nt, three medium segments (M1, M2 and M3) with sizes between 2206 to 2304 nt, and four small segments (S1, S2, S3 and S4) varying from 1196 to 1416 nt^{4,10}. Each segment encodes a single protein, with as a sole exception the S1 segment which encodes two proteins^{11,12}. The proteins are named and numbered according to their apparent molecular weight on SDS-PAGE. The names are derived from the Greek character of the segment it was translated from, the L segments code for the λ proteins, the M segments code for the μ proteins, and the S segments encode the σ proteins. The numbering of the proteins does not always correspond to the genome size of the segment from which they are transcribed⁴. An overview of the segments, and the proteins that they code for is provided in Table 1.1.

The non-enveloped icosahedral outer capsid is about 70 nm in diameter. The inner capsid or core structure is about 52 nm in diameter. Together, these capsids are composed of eight structural proteins. The five structural proteins forming the inner core structure are $\lambda 1, \lambda 2, \lambda 3, \mu 2$ and $\sigma 2$. The $\lambda 1$ protein is encoded by L3 segment and is a major structural protein of the inner capsid. This protein is involved in transcription. The $\lambda 2$ protein is translated from L2 RNA and forms the pentameric turrets of the core structure. During primary transcription this protein adds a methylated cap structure to nascent plus-strand RNA (see below). The $\lambda 3$ protein is encoded by L1 segment and functions as the RNA-dependent RNA polymerase (RdRp) and it transcribes the plus and the minus strands 13. The exact function and location of the $\mu 2$ protein which is encoded by the M1 segment in the core are still unknown. However, it has been suggested as a co-factor or second subunit of RdRp. The $\sigma 2$ protein, encoded by the S2 segment, is involved in the assembly of the core particles. This protein decorates the $\lambda 1$ shell (reviewed by 4,10).

The outer capsid is composed of three structural proteins. The two major outer capsid constituents are $\sigma 3$ and $\mu 1$ proteins. The third minor outer-capsid protein $\sigma 1$ forms the spikes at the vertices of the icosahedron and functions as the attachment protein. The $\sigma 3$ protein is encoded by the S4 segment and provides stability to the capsid and functions as a shield for $\mu 1$. Removal of $\sigma 3$ protein occurs through proteolytic cleavage upon entrance. The $\mu 1$ protein is encoded by the M2 segment and provides stability to the outer capsid. This protein is degenerated by proteolysis during viral entry to yield the $\mu 1N$ and $\mu 1C$ proteins. This is an important process during replication. Removal of $\sigma 3$ and cleavage of $\mu 1$ yield a partially uncoated particle, the so-called intermediate

subviral particles (ISVP). These ISVPs have the capacity to disrupt cellular membranes and may function in endosomal escape. Moreover, ISVPs generated *in vitro* by treatment of purified reovirus particles with chymotrypsin or *in-vivo* in the lumen or small intestines by proteases, yields particles that retain their infectivity, and can enter the cell independent of the presence of the canonical reovirus receptor Junction Adhesion Molecule A (JAM-A) (reviewed by^{4,10}).

Trimers of $\sigma 1$ proteins encoded by S1 segment form the spikes on the vertices of the icosahedral capsid (see representative figure¹⁴). The spike is anchored in the $\lambda 2$ protein turret. Through removal of $\sigma 1$ protein during virus entry, the $\lambda 2$ turrets undergo a conformational change and become active. The spikes contain a tail and a head domain. The protein spike interacts with cellular receptors. Initially a low-affinity interaction is established with sialic acid residues on the cell surface via interactions with the tail of the spike. Subsequently, high-affinity interactions can establish between the head domain of the spike and JAM-A. Subsequently, Arg-Gly-Asp (RGD) domains in the $\lambda 2$ protein bind $\beta 1$ -integrins on the cell surface and mediate particle entry by endocytosis^{15,16}.

Non-structural proteins. At least three non-structural proteins are generated during infection. The $\sigma 1NS$ is translated from the second open reading frame of the S1 mRNA. This is a non-essential protein which causes cell cycle arrest during infection^{11,12}. The second non-structural protein, σNS , is encoded by the S3 segment. This protein has a strong affinity with ssRNA¹⁷. It is suggested that it plays a role in the replication and the assembly of core particles¹⁸. Furthermore it associates with μNS and $\mu 2$ to form inclusion domains or viral factories.

The μ NS protein is encoded by the M3 segment. It is the third non-structural protein and associates with the viral mRNA shortly after transcription, and to viral cores, probably to anchor viral components needed for assembly or replication¹⁹⁻²². In addition, by proteolytic cleavage of μ NS μ NSC is generated. The precise function of this protein is unknown⁴.

1.2.1.3 Replication

Entry and uncoating. As for most RNA viruses, genome replication of reoviruses takes place in the cytoplasm, schematically represented in Plate 5b. Reoviruses are internalised into the endosomes. In the endosomes proteolysis facilitates the partial removal of the outer capsid. The uncoating process includes additional cleavage and removal of $\mu 1$ and $\sigma 3$. Subsequently, $\sigma 1$ molecules are detached from the particles. The activated particles escape from the endosomes by penetrating the endosomal membrane. Through removal of $\mu 1$ and $\sigma 1$ the $\lambda 3$ RNA-dependent RNA polymerase

(RdRp) is activated and initiates transcription, yielding full-length plus-strand RNA molecules. The conformational change of $\lambda 2$ pentamers, through removal of $\sigma 1$, turns them into channels for the release of plus-strand mRNA into the cytosol. In addition, the $\lambda 2$ turrets add a methylated cap structure to the 5′ end of the plus-strand RNAs²³-²5. On these transcripts the 3′ end remains non-poly-adenylated. The methylated cap structure (7-methyl guanosine triphosphate (m7G(5′)ppp)) is identical to the cap structures of cellular mRNAs and is therefore recognised by the host ribosomes and translated. Initially the four segments L1, M3, S3 and S4 are transcribed and translated which stimulates subsequent transcription and translation of all segments $^{9,26-28}$. At this stage in the replication cycle, translation of viral and host proteins occurs simultaneously.

The assembly of new particles occurs in newly formed non-membranous structures in the cytoplasm, the so-called viral factories. These may aid in shielding the viral processes from the host cell's components of the innate immune system. The plusstrand transcripts are incorporated into these new cores. Within the core-particles the minus-strand synthesis takes place to yield dsRNA^{18,29}. In the newly formed core particles, a secondary round of plus-strand synthesis initiates, yielding uncapped viral transcripts. The uncapped viral transcripts are translated very efficiently since the reoviruses employ a mechanism to modify the ribosomes in such a way that non-capped transcripts are preferentially translated. At this point the host cell protein synthesis is shut down. This mechanism ensures that the host cell's protein synthesising machinery is used for synthesis of viral proteins rather than for cellular proteins (reviewed by¹⁰). Lytic infection. Reoviruses normally cause a lytic infection in permissive host cells. The reovirus-induced cell death is independent of productive infection. Exposure of cells to UV-inactivated virus particles can still induce apoptosis. The primary determinants of reovirus induced-apoptosis are associated with the outer capsid protein µ1, although attachment of $\sigma 1$ to the cell surface strongly enhances the apoptotic signal. The cleavage of the µ1 protein during internalisation is essential for the induction of apoptosis. If the disassembly of the viral particles is blocked by monoclonal antibodies against σ 3 or μ 1, apoptosis is not initiated. Also monoclonal antibodies against σ 1 inhibit apoptosis; however the mechanism here is prevention of binding to the cells surface. Pro-apoptotic signals are generated by binding of the attachment protein to sialic acid and JAM-A. Reovirus mutants lacking the sialic acid binding capacity are still able to induce apoptosis albeit to a lesser extent^{9,30-32}.

1.2.1.4 Cis-acting sequences

Knowledge of the replicative cycle of reoviruses has been essential for the development of a reverse genetics system. The essential *cis*-acting sequences that reside in the genome segments need to be identified. Such sequences include the elements required for the initiation of plus and minus-strand synthesis, the sequences in the plus-strand RNA that function as segment-identity labels, and the sequences that are required for incorporating the plus strand RNA's into the newly formed cores. Also it is crucial to identify other constraints that may limit the incorporation of heterologous sequences in reovirus genome segments. In the following paragraphs we will describe the functional elements identified in reovirus genome segments.

Non-translated regions. The particle to infectious unit ratio of reoviruses is low³³, indicating that the assembly of new particles is effective and precise and the infection process is highly efficient. The encapsidation involves assembly of 8 structural proteins with one copy of each of the 10 segments. The precise assorting mechanism which directs one copy of each segment into the particle is not yet well understood. Sequences contained within the 130 nt at the 5' terminus serve as identity label for each of the segments^{34,35}. The termini of all segments contain relatively short (15–33 nt) non-translated region (NTR) with short (4–5 nt) identical sequences at the extreme ends. The 5' end of the plus-strand RNA starts with the tetranucleotide sequence GCUA- and the sequence at the 3' end is a pentanucleotide –UCAUC. No other sequence homology exists in the NTR regions of the segment termini^{29,36,37}.

Assortment of the segments. The first indications that the 5' and 3' ends of the segments are important for replication and assembly stem from work by Schlesinger *et al.*³⁸, and later by Zou *et al.*³⁹. In these studies deletion mutants were used. These deletion mutants were formed spontaneously when T3D was passaged at a high multiplicity of infection and contained deletions in the middle of the segments. The deleted segments were replicated and encapsidated in new particles although the presence of helper virus was required. It led to the hypothesis that sequences near the 3' end are necessary to function as promoter for the RdRp and that the termini are needed for the assembly of new particles^{38,39}.

By employing a reverse genetics system for inserting a chloramphenicol acetyl transferase (CAT) reporter gene in different genome segments (discussed below) more information on the required *cis*-acting sequences at the 5' and 3' ends was obtained⁴⁰. From three segments, for example, S2, M1 and L1, the regions which are important for assembly have been determined. The lengths of these regions were identified through varying the length of the 5' and 3' ends and measuring the CAT activity of the progeny virus. The lengths of the elements required for encapsidation correlated

with the lengths of the genome segments. L1 required the longest 5' and 3' regions (i.e. respectively 129 nt and 139 nt) while S2 needed the shortest regions, at the 5' end 96 nt and at the 3' end 98 nt. The M1 segment required at the 5' end 124 nt and 172 nt at the 3' end^{34,35}. These results indicate that the *cis*-acting sequences do not only encompass the non-translated regions, but extend into the coding regions of the segments. Furthermore, Roner *et al.*, in 2004 and 2006, demonstrated that the signals at the 5' end act independently from the signal at the 3' end. In the process the signals at the 5' end function as the segment-identity labels. This became apparent from the observation that chimeric segments, containing the 5' end of S2 or M1 and the 3' end of L1 are incorporated as S2 or M1 segments, not as a L1 segment^{29,41}.

1.2.1.5 Genome-size constraints

The genome of the mammalian reoviruses is packaged within the 52 nm inner core. In comparison to other RNA viruses, reoviruses have one of the most densely packaged genomes³⁵. Experiments of the group of Roner and colleagues indicate that the maximum amount of RNA that can be included into the core is almost reached. They showed with their reverse genetics system that upon increasing the length of L1 with 726 nt this segment was still incorporated. However, when creating chimeric segments with the 5' end of M1 or S2 and the 3' end of L1, and increasing the size of the resulting segments by 2307 nt or 2500 nt respectively, full incorporation of these segments was inhibited. The modified 5'- L1.CAT.3'-S2, 5'-M1.CAT.3'-S2 and 5'-S2.CAT.3'-L1 segments, in which the sizes were decreased by approximately 980 bp, were still packaged³⁵. These data suggest that there are limitations to the packaging capacity of reoviruses. Such limitations are important if one considers developing heterologous transgene-containing reoviruses.

1.2.2 Forward-genetics in orthoreoviruses

In forward-genetics studies aberrant phenotypes are isolated followed by the identification of the mutation responsible for this phenotype. Much of today's knowledge on reovirus genes and genome segments has been obtained from studies with this forward-genetics approach. One of the strategies used most commonly was the selection of temperature-sensitive mutants after chemical mutagenesis. This method was often used in combination with the use of reassortants. A third strategy discussed in this chapter is the selection of natural mutants.

1.2.2.1 Temperature-sensitive mutants

The initial isolation of many reovirus temperature sensitive (ts) mutants was after chemical mutagenesis of reovirus stocks. The mutated reoviruses were plated and propagated at a low permissive temperature (usually 32 °C), yielding virus which could efficiently replicate at this temperature. Subsequently, clones were isolated that exhibited an impaired growth at a higher temperature (often 39 °C was used).

With this strategy large series of mutants with aberrant phenotypes have been generated, and designated as *ts* mutants. These *ts* mutants were classified in complementation groups on the basis of the absence of complementation between pairs of *ts* mutants. Subsequently these complementation groups could be assigned to the different genome segments of the reovirus (reviewed by¹⁰). A summary of the different groups and the segments to which they have been mapped is provided in Table 1.1.

The phenotypes of these mutants have been instrumental in defining the roles of the individual viral proteins in the infectious pathways of the human reoviruses¹⁰.

1.2.2.2 Reassortants

In addition to *ts* mutants, reassortment strategies were applied. The reassortants can arise during co-infections of cells with two different *ts* mutants or between different *orthoreovirus* serotypes. Co-infection can lead to exchange of entire genome segments between the viruses. During co-infection, a reassorted genome can be detected in up to 15% of the progeny viruses⁴².

1.2.2.3 Natural selection/bioselection

A third forward-genetics strategy is the isolation of spontaneous mutants and naturally occurring reoviruses^{43,44}. The absence of proofreading in the reoviral RNA-dependent RNA polymerase (RdRp) leads to a high mutation rate⁴⁵. This leads to rapid adaptation of the reoviruses and the selective outgrowth of mutants that have favorably adapted to the host^{46,47}.

1.2.3 Reovirus/cell interactions

1.2.3.1 A key role of σ 1 in cell binding

Since the early 1960s it has been well established that Reovirus T3D, but not T1L, could haemagglutinate bovine erythrocytes⁴⁸. Reassortment studies identified σ 1 protein as the haemagglutinin. In these studies T1L x T3D reassortants were generated and by using serotype-specific σ 1 anti-sera it was demonstrated that the capacity to haemagglutinate the bovine erythrocytes was strictly correlated with the presence

of the σ 1 protein of T3D^{7,8,49,50}. Further studies using these reassortants and serotype specific sera pinpointed σ 1 also as the protein responsible for infection of permissive nucleated cells⁵¹.

1.2.3.2 Sialic acids

Attachment studies of the T3D virus to different cell types (erythrocytes, L cells, lymphocytes and murine erythroleukaemia (MEL) cells) made clear that haemagglutination (HA) in erythrocytes is caused by binding to terminal sialic acids of glycoproteins on the cell surface^{48,52-55}. Sialic acid is a generic term for the N- or O-substituted derivatives of neuraminic acid and also the name of the most common neuraminic acid, the terminal N-acetylneuraminic acid (NeuAc). With S1 reassorted viruses of T3D and T1L (reassortants T1L+S1-T3D (1HA3) and T3D+S1-T1L (3HA1)) it was demonstrated that reovirus attachment to sialylated oligosaccharides on glycoproteins was solely mediated by the σ 1 attachment protein⁵⁶.

The $\sigma1$ protein is present as a homo-trimer^{57,58} at the vertices of the viral particle. It has a distinct 'head' and 'tail' region^{59,60}. The domains that interact with cellular receptors have been identified. The knowledge of the interaction of the $\sigma1$ protein with cellular sialic acids was derived from studies employing reovirus T3D field isolates that differ in their capacity to agglutinate human and bovine erythrocytes and to bind sialic acids. Sequence analyses of the S1 genes of the different virus isolates revealed single point mutations that only cause weak haemagglutination and which are unable to bind sialic acids. These mutations all cluster in one region in the $\sigma1$ tail, residue 198-204, which demonstrated that not only the head but also the tail region of the spike is exposed on the capsid in such a way that it can interact with cellular receptors⁶¹.

The phenomenon that only T3D and 1HA3 and not T1L viruses could infect murine erythroleukemia (MEL) cells was exploited in studies that mapped the sialic-acid binding-domain of σ 1. The capacity of the viruses to infect MEL cells is strictly correlated with the viruses' capacity to haemagglutinate erythrocytes. This suggested sialylated proteins to be involved in MEL cell binding⁶². To further identify the receptor binding region of the σ 1 tail, reovirus type 3 field isolates which were unable to bind sialic acids were adapted by serial passaging to grow in MEL cells. Sequence analyses of these MEL adapted (MA) viruses revealed point mutations that were clustered near the residues 198-204 that had previously been identified as the sialic acid binding region of the σ 1 tail. These data demonstrated that this part of the tail of the spike is involved in sialic-acids binding⁴³.

Similarly, T3D reoviruses were selected for growth in the presence of a monoclonal antibody that inhibited hemagglutination. This selection yielded mutants that exhibit a strongly reduced neurovirulence upon inoculation of newborn mice⁴⁴. These data demonstrate the relative ease with which reovirus mutants can be obtained by conventional forward genetics strategies.

1.2.3.3 Junction Adhesion Molecule-A

Evidence that not only the fibrous tail of the $\sigma 1$ spike but also a domain in the head is involved in receptor binding has accumulated over the years^{43,62-67}. In 2001, Barton and colleagues identified Junction Adhesion Molecule (JAM) as the cellular receptor to which the $\sigma 1$ protein's head domain can attach. Additional binding-inhibition experiments with antibodies show that JAM directly binds to $\sigma 1$. Transient expression of JAM renders reovirus-resistant cells sensitive to infection⁶⁸. Furthermore, Campbell and colleagues defined that only JAM-A (also known as JAM-1) and not JAM-B or JAM-C can serve as a receptor for reovirus type 1, 2 and 3⁶⁹.

JAM is a 25kDa type I transmembrane protein with two extracellular Ig domains (D1 and D2) and a short cytoplasmic tail. The membrane distal extracellular domain (D1) forms a homodimer⁷⁰. The protein is concentrated at the apical region of intercellular tight junctions of epithelial and endothelial cells (for reviews, see⁷⁰⁻⁷²).

Structure-guided mutational analysis revealed three amino acids located in the D1 domain of IAM-A which are individually required to bind σ1. The amino acids Glu⁶¹ and Lys⁶³ participate in salt bridges with opposing amino acids and thereby have a role in stabilisation of the D1 dimer. The amino acid Leu⁷² is part of a hydrophobic interaction with a residue of the opposing dimer¹⁵. Since all amino acids required for binding o1 were located in the dimeric interface of the D1 domain, it was reasoned that σ 1 first disrupts the IAM-A dimer and then binds to the monomeric form of the D1 domain. Binding studies indeed showed that the binding affinity between σ1 and the monomeric form of the D1 domain is higher than between the JAM-A homodimers. In addition, using cryo-crystallography it was clearly demonstrated that only monomers of IAM-A were bound by $\sigma 1^{73}$. Insight in the amino acid residues important for binding JAM-A was obtained by using the helper-free reverse-genetics system (see below)⁷⁴. The engineered reoviruses with mutant forms of σ1 revealed that the JAM-A binding domain is located at the lower part of the head domain. Moreover, one reovirus o1 molecule can bind three JAM-A monomers⁷³. (Picture of JAM in¹⁵ and JAM-σ1 interaction in⁷³).

The knowledge of reovirus T3D binding to its cellular receptors culminated in a multistep binding model in which attachment protein $\sigma 1$ first engages sialic acids on the cell surface in a low-affinity interaction and subsequently binds JAM-A with high affinity^{74,75}. The virion is internalised via clathrin-mediated endocytosis upon interaction between $\beta 1$ integrins on the cell surface with the capsid protein $\lambda 2^{16}$. This has been suggested since $\lambda 2$ contains the integrin binding sequences Arg-Gly-Asp (RGD)¹⁶. Furthermore, $\beta 1$ integrins contain a cytoplasmic domain containing two Asn-Pro-any amino acid-Tyr (NPXY) motifs which are required for functional reovirus entry⁷⁶.

1.2.3.4 Persistent infection

Rather than causing a lytic infection, the T3D reovirus can establish a persistent infection. The initial observations stem from experimental infections of cultured human embryonic cells⁷⁷. Infectious virus could be recovered from the cultures after 9–12 passages without appearance of overt cytopathic effects.

Taber and colleagues (1976) isolated a culture of persistently infected CHO cells. In these cultures a large number of cells were infected, and the cultures produced reoviruses that were cytopathic for the parental CHO cell line⁷⁸. This suggests that the persistently infected cell lines adapted to resist the reovirus-induced cytopathic effects. Ahmed and co-workers (1981) demonstrated in an L-cell system that the persistently infected cells as well as the reoviruses propagated in the persistently infected cultures acquire changes and thus eventually differ from the parental virus and host cells. The L cells cured from the persistent infection had an increased resistance to *wild-type* T3D viruses, suggesting that the cells adapted by genetic or epigenetic mechanisms, leading to increased virus resistance⁷⁹. More recently it was demonstrated that persistently infected cells express reduced amounts of the cathepsins B and L, which are known to be involve in reovirus uncoating⁸⁰⁻⁸². These data suggest a co-evolution of host and virus to eventually reach a state of a stable but dynamic equilibrium.

Persistently infected L-cell cultures obtained after co-infections with T2J, which does not result in persistent infections, together with T3D, which is able to give persistent infections, yielded various hybrid recombinant mutants containing all the S4 segment of T3D. This suggested that sequences in this segment underlie the capacity of the virus to establish a latent infection⁸³. Via a similar approach the capacity of human reoviruses to inhibit host cell RNA and protein synthesis was also been mapped to the S4 segment⁸⁴. Taken together, these data imply that persistent infection can only exist if the host cells retain the capacity to synthesise proteins. Strong inhibition, as is the case upon infection with T2J, would be incompatible with such persistence. Furthermore, sequence analyses of the persistent infections demonstrated acquisition

of additional mutations in the S4 segment and an increased resistance to ammonium chloride, a weak base that inhibits the pH decrease in endosomes and lysosomes. This again suggests that the viruses adapted to selective pressure operating at the level of cell entry.

In addition to alterations in S4, sequence analyses of the viruses causing persistent infection also revealed mutations in the S1 segment, encoding the spike protein^{83,85-87}. The σ 1 protein is known to be involved in the induction of apoptosis in reovirus infected cells⁹. Isolation of an S1 attenuated reovirus mutant form from persistently infected cells, revealed that although virus replication was maintained the apoptotic potential was reduced. Sequence analysis revealed that the most significant mutation was a nonsense mutation which truncated the σ 1 protein, however it could not be ruled out that other mutations in S1 and S4 too are involved in this phenomenon⁸⁵. It would therefore be interesting to test whether the mutations found in the S1 segments of the persistently infected viruses affect the capacity of σ 1 to bind sialylated proteins and to induce apoptosis^{4,88}.

In the preceding sections the conventional forward-genetics strategies have been discussed as well as some of their applications. Although they have been instrumental for determining the functions of the different segments, these techniques have their limitations. No directed mutations can be introduced. Therefore, reverse genetics systems have been developed, facilitating not only new studies into the functions of individual reovirus proteins, as well as the development of new reoviruses for use as oncolytic agents.

1.2.4 Reverse-genetics in orthoreoviruses

So far development of reverse genetic systems for reoviruses has been notoriously difficult. Although in 1982 the cDNAs of all the genome segments had been cloned for the purpose of sequencing⁸⁹, the first reverse genetics system was only described in 1990⁹⁰. Genetically modified particles were generated with the aid of helper reoviruses. In 2007 the first helper-free system was described⁷⁴. To date, three different systems have been developed which have all their merits and weaknesses.

1.2.4.1 The infectious-RNA system

The first method for reverse genetics in reovirus T3D employs RNA transfections of all the 10 genome segments, a cell-free translation system, and helper reoviruses⁹⁰.

Active core structures, generated by *in vitro* disassembly of reoviral particles, were used for transcription of plus-strand RNAs *in vitro*. The RNA transcripts were translated using a rabbit reticulocyte lysates (RRL) system. While this step was not essential, it increased

the efficiency by 2–3 orders of magnitude. The newly translated viral proteins, together with dsRNA, and ssRNA, were introduced into mouse L fibroblasts by lipofection. Usage of only ssRNA or dsRNA in this mixture is possible but less efficient. A few hours later the helper virus, which can be either serotype 1 or serotype 2, is added to the cultures. Between 24 to 48 hours post infection, virus can be harvested. Either plaque purification, or the use of serotype-specific neutralising anti-sera, was required to eliminate the helper-viruses^{90,91}.

This technique was used to generate a compound ts mutant. Two ts mutants were chosen both of which contain a ts mutation albeit on different genome segments (genome segment M2 coding for $\mu 1$ and segment S2 encoding $\sigma 2$). These segments were jointly incorporated in progeny virions generating the compound double ts mutant. Creating these double ts mutant required removal of the corresponding wild-type segments from transfected RNA pool. This can be accomplished by sequence-specific degradation of the wild-type segments through addition of complementary oligonucleotides and RNase H treatment. This enzyme degrades the RNA-strand in complementary DNA/RNA duplexes. Analysis of the double mutant showed that the ts phenotype was enhanced compared to the parental single ts mutants. Furthermore, exposure of mice revealed that the double ts mutant was less pathogenic than the parental viruses, while protective neutralising immunity was still induced ts

Transgene-containing reoviruses. The first example of the introduction of a heterologous transgene gene in the reovirus genome was described by Roner and Joklik in 2001. To this end, the infectious RNA-system was used. In this experiment the S2 segment was replaced by an S2 segment modified to include the chloramphenicol acetyl transferase (CAT) gene, as a reporter. The coding sequence of the CAT gene is smaller than the coding sequence of σ 2 (753 nt versus 1331 nt, respectively), and its activity can be easily monitored in cell lysates⁴⁰.

The CAT gene was placed in-frame in the S2 open reading frame. The total lengths of the S2 sequences flanking the CAT gene were 198 nt at the 5' end and 284 nt at the 3' end. The modification inactivated the σ^2 open reading frame. Therefore all experiments were performed in helper cells that expressed an intact copy of S2 to transcomplement the missing σ^2 protein. To generate infectious virus with the modified S2 gene, the wild-type S2 was removed from viral RNA preparation by addition of an oligodeoxyribonucleotide complementary to the S2-transcript and RNase-H treatment. To provide the modified S2 transcripts, the capped S2-CAT RNA was generated by transcribing a cloned version of this S2-CAT segment by T7 RNA polymerase. After

removal of the wild-type S2 RNA and addition of capped S2-CAT RNA the mixture was lipofected into helper cells, yielding reoviruses carrying the CAT gene in their S2 segment.

This system was used to identify the regions that are essential for replication and packaging of the segments. These regions were mapped at the segment termini. In an experiment in which the CAT gene was inserted between the 5' terminal end of the L1 segment and 3' terminal of the S2 segment, the CAT containing segment was found to replace the L1 segment, but not the S2 segment. Similarly, a chimeric 5'-S2.CAT.L1-3' segment and a 5'-M1.CAT.L1-3' replace the S2 and M1 segments, respectively. These data indicate that the 5' terminus determines the segment identity in the segment assortment. Moreover the 5' and 3' termini act independently³⁵.

In similar studies, the size constraints were established for packaging and replication as discussed in genome-size constraints. These data show that although the size of the segments can be increased by inserting heterologous sequences, the capacity is limited³⁵.

The infectious-RNA method has been effectively used to engineer alterations in the reovirus genome. However, the method is technically demanding. The RNase H procedure is not fully efficient, resulting in the presence of residual RNA of the targeted segment, and appearance of viruses with wild-type segments. In addition, the requirement of helper viruses during the generation of the modified viruses is undesirable. The helper virus may yield the formation of reassortants between the 'helper' viruses and the generated virus, although the use of T2J as helper reduces the magnitude of the problem⁹¹. Despite these weaknesses, the results obtained with this system have been extremely informative.

1.2.4.2 The segment-replacement technique

Van den Wollenberg *et al.* recently described an alternative approach for generating genetically modified reoviruses. In an effort to modify the $\sigma 1$ spike, an S1 segment was generated encoding a $\sigma 1$ that harbours a C-terminal histidine-tag. The presence of this tag would allow particles to infect JAM-A-negative cells that express on their surface a single-chain antibody recognising the His-tag, as an artificial receptor⁹³.

This strategy was based on experiments by Rouault and Lemay⁹⁴. These authors expressed modified versions σ 1, μ 1, σ 3 and used these proteins to recoat reovirus ISVPs and cores *in vitro*⁹⁵⁻⁹⁷ to study reovirus capsid protein structures and functions. In a proof of principle study a foreign epitope, viz. a hexahistine tag, was added to the amino terminus of σ 3⁹⁴. For recoating, purified wild-type virions were treated with chymotrypsin to generate ISVPs. The ISVPs were incubated with cellular extracts that

contain mutant σ3 proteins. Free σ3 proteins were removed from the recoated ISVPs and by immunoblotting procedure the modified σ 3 on the recoated ISVPs could be detected. While this strategy can be used to introduce modified proteins in the capsid, the modification will not persist upon replication since the viral genome is not modified. Van den Wollenberg et al. produced particles with modified proteins incorporated in their capsid by propagating reoviruses on helper cell lines that synthesise modified reoviral proteins. These modified proteins would be incorporated in the capsid during replication of the reovirus. In a first series of experiments reoviruses were propagated on modified cells that express a S1 segment that included a His-tag at the carboxyl terminus of the σ1-encoding open reading frame. It was anticipated that the viruses harvested from these cells would carry the σ 1-His in their capsid, but would not carry the modified S1-His segment. However, the authors noted that propagation of wildtype reoviruses on cells expressing the σ1 His-encoding segment as a conventional RNA polymerase II transcript led to frequent replacement of the wild-type genome segment with the modified version. The resulting viruses could be serially passaged on JAM-Adeficient U118MG cells that were modified to express the single-chain Fv capable of binding a His-tag. Hence, this technique allowed the generation of reoviruses that are genetically retargeted. It also demonstrated that the C terminus of the σ 1 protein is a suitable location for the insertion of oligopeptide ligands and shows that it is possible to use genetic modification to retarget the infection of reoviruses⁹³.

The precise mechanism by which the modified segment is incorporated is still unclear. Two mechanisms could be envisaged. In a first mechanism, the RNA-polymerase II transcript that contains the modified S1 segment, associates with newly formed core particle despite the presence of the long 3' extension and a poly-A tail. In the core particle the minus-strand synthesis would start even with the 3' extension and poly-A tail. This would yield a partially double-stranded RNA copy of the polymerase II transcript. If this dsRNA copy serves as template for secondary plus-strand synthesis, new plus strands would be generated that harbour the modified σ 1 open reading frame, but are otherwise identical to the wild-type S1 segment. Alternatively, one could anticipate a mechanism that would involve RNA recombination or a template switch during replication of the reovirus genomes. Future studies will aim at resolving the mechanism for the replacement of genetic information.

The segment-replacement system is relatively straightforward, as it is based on the selective advantage for the modified $\sigma 1$ over the wild-type $\sigma 1$. The selection is essential for selectively expanding the viruses that have the wild-type genome segment replaced by the modified version. Unfortunately, this method is thwarted by the fact that, with a low frequency, mutants arise in these cultures that have the capacity to infect the

U118MG cells independent of JAM-A and the His-tag-specific scFV. This leads to the occurrence of replicating reoviruses that do not carry the desired mutation. Therefore, plaque purification and screening are important to characterise and purify the desired mutants.

1.2.4.3 A helper-free reverse-genetics systems

A fully helper-free system for reverse genetics was described by Kobayashi and colleagues. It employs 10 different plasmids, each containing a single cloned genome segment. The method starts with infection of susceptible cells with an attenuated vaccinia virus expressing the T7 RNA polymerase, and is followed by naked-DNA transfection of the 10 plasmids encoding each of the genome segments. The genome segments are inserted in the plasmid as full-length cDNA clones derived from the wild-type T3D. These cloned segments are inserted downstream of a bacteriophage T7 promoter. The 3' terminus of each cloned segment was fused to the hepatitis delta virus (HDV) ribozyme, which generates native 3' ends without poly-A tail by self-cleavage of the RNA transcript. The attenuated vaccinia virus is replication-deficient and serves to express the T7 RNA polymerase at high level. The supernatants of the transfected cultures were plaque assayed on L-cells and replication-competent viruses could be isolated. The method is robust and productive, viral infection could be established in approximately 1 in 105–106 cells transfected. This system was validated to confirm that a single amino acid change in σ 1 conferred resistance of σ 1 to trypsin cleavage, and that a single amino acid change in σ3 accelerates proteolytic disassembly of the reovirus. Furthermore, with this system the functional domains in µ1 responsible for the induction of reovirus apoptosis in host cells could be mapped^{31,98}. Introduction of the enhanced green fluorescent protein (eGFP) gene into the S4 segment demonstrated that the technology allowed the incorporation of heterologous transgenes into the reovirus genome. Since this virus lacks a normal S4 segment, the σ 3 encoded by S4 needs to be provided in trans. Therefore the T3D/S4-GFP virus could only be propagated in cells genetically modified to produce the σ 3 protein⁷⁴.

Taken together, these data show that this helper-free reverse genetics method can be used to generate viruses with single amino-acid changes as well as for generating viruses carrying heterologous transgenes.

The advantage in comparison of the two other systems is that there is no requirement for helper viruses. The system is easily amendable for the introduction of various kinds of mutations. However, the efficiency may need further improvement since it is estimated that about 1 in 10^5 – 10^6 transfected cells can establish viral progeny. As a first step in improvement, instead of inserting the genome segments in 10 separated

plasmids, the system has been amended to four plasmids including all the 10 segments. The genome segments are still independently flanked by the T7 promoter and the HDV ribozyme. Furthermore, instead of using the attenuated vaccinia virus, BHK cells stably expressing the T7 polymerase under control of cytomegalovirus promoter can be used, further simplifying the technology⁹⁹. With these improvements, the reverse genetics system is more effective in generating progeny virus.

1.2.4.4 Rotavirus

Rotaviruses are classified in a separate genus of the *Reoviridae*. Unlike the mammalian *orthoreoviruses*, the human rotaviruses are very pathogenic, causing severe diarrhoea, especially in young children¹⁰⁰. It is a major health problem, particularly in developing countries¹⁰¹. At this moment, attenuated live virus is used as vaccine¹⁰². The development of a reverse genetics system would allow us to gain more knowledge about the biology of rotaviruses.

Rotaviruses are very similar to the mammalian o*rthoreoviruses*. They contain 11 dsRNA genome segments encoding 13 proteins, and they have a non-enveloped three-layer icosahedral capsid structure¹⁰³. Although they resemble reovirus, the development of a reverse genetics system is even more difficult.

So far, attempts to generate a plasmid-based reverse genetics system have been unsuccessful. A first reverse-genetics system was described in 2006 by Komoto *et al.*¹⁰⁴ These authors managed to replace the spike-encoding segment of a human rotavirus by that of a simian homologue. The system employed resembles *the segment-replacement technique* described above, except the cDNA of the simian spike-encoding segment was flanked by a T7 promoter and the HDV ribozyme. Infection of a vaccinia virus vector expressing T7 polymerase was required to provide the T7 polymerase. Selection of the modified virus employed neutralising antibodies against the human spike-protein, selectively enriching the virus population for the viruses containing the simian spike-protein¹⁰⁴. So far this method relied on a high selective pressure for the modified rotavirus which limits the application of the technique.

More recently, Troupin *et al.* describe a modified version of the Komoto method to generate a recombinant rotavirus carrying an artificially rearranged rotavirus segment 7, coding for non-structural protein 3 (NSP3)¹⁰⁵. Their method is based on the observation that rearranged segments 7 and 11 are preferentially packaged¹⁰⁶. The usefulness of this system is under debate¹⁰⁷, since it requires extended passaging at a high multiplicity of infection to recover the recombinant virus.

The latest development in rotavirus reverse genetics is based on the method of Komoto *et al.* together with a dual selection mechanism¹⁰⁷. Trask *et al.* combined a *ts* mutation of non-structural protein 2 (NSP2), with RNAi-mediated degradation of NSP2 transcripts to select for a recombinant rotavirus evading both mechanisms, *ts* and RNAi degradation. Therefore, the recombinant segment 8 cDNA, coding for NSP2, was modified to contain silent mutations in the region targeted by the RNAi to avoid degradation. The combination of the *ts* helper virus with the RNAi-mediated selection significantly improved the recovery of the recombinant rotavirus. An analysis demonstrated that eight of eight rotavirus isolates contained the recombinant segment 8.

This 'two-hit' method may enhance the efficiency of recombinant virus recovery. One limitation of this system is the requirement for gene-specific RNAi, which may not be equally effective for all the 11 segments of the rotavirus.

So far, reverse genetic systems for the introduction of a foreign gene in rotaviruses have not been reported.

1.2.5 Reovirus as an oncolytic agent

The observation that reoviruses preferentially lyse transformed cells was first made in 1977 by Hashiro *et al.*¹⁰⁸. One year later Theiss and colleagues described the suppressing effects of reovirus infection on lung tumours in mice¹⁰⁹. There is a strong indication that the preferential lysis of transformed cells depends on the RAS status of these cells. In non-transformed cells, dsRNA activates the cell's defence mechanism by phosphorylation of the double-stranded RNA-dependent protein kinase (PKR). This inhibits translation of viral transcripts. If the RAS pathway is constitutively active, phosphorylation of PKR is inhibited, facilitating reovirus replication^{58,110}. Although that activated RAS status is important for oncolysis, it is not the sole determinant of cellular sensitivity to reovirus. Kranenburg and colleagues showed that the reovirus propagation and yields are not dependent on the RAS status, although the active RAS stimulated cell lysis^{111,112}. In other studies, cellular resistances to reovirus infection were correlated with cathepsin B and L activity. These enzymes were identified as important factors for the reovirus proteolytic disassembly^{80,113,114}.

The preference for transformed cells plus the absence of significant pathology in humans made reoviruses excellent candidates for oncolytic virus therapies. The Canadian company Oncolytics Biotech initiated several clinical trials with their lead product, Reolysin, which was based on the wild-type T3D strain. At this moment at least 24 clinical trials are active or completed in the UK, US, Canada, and Belgium. The indications comprise a range of cancer types, including prostate cancer, malignant gliomas, pancreatic cancer, lung cancer, and head and neck cancer¹¹⁵. Initially, the virus

was administered as mono-therapy but in more recent clinical trials reoviruses are combined with more conventional treatment modalities. In these studies no dose-limiting toxicity was reached, underscoring the safety of reovirus-based oncolytic virus therapy¹¹⁶. Despite anecdotal evidence of anti-tumour activity, the efficacy has been limited. Currently, several factors such as insufficient tumour penetration of the therapeutic virus, limited spread of the virus within the tumour cell mass, insufficient expression of the reovirus receptor JAM-A on tumour cells, and pre-existing humoural immunity, have been proffered to explain the limited tumour-cell transduction¹¹⁷. It is anticipated that technology to modify reovirus genomes by reverse genetics may aid the generation of new mutants that overcome these current limitations.

1.2.5.1 Optimising reovirus therapy

To overcome some of the bottlenecks, different options are being explored. An interesting approach to improve the delivery of reoviruses to tumours may involve the use of tumour-seeking cells as delivery vehicles. Several cell types (e.g. T-cells, dendritic cells, macrophages, mesenchymal stem cells) have the ability to migrate to tumours. If these cells are loaded with oncolytic viruses, they may release the virus in the tumour mass after migration. In addition, this approach may shield the virus from the neutralising immunity immune system¹¹⁸.

The scarcity of the reovirus receptor JAM-A on tumour cells may be overcome by modification of the attachment protein $\sigma 1$. Either bioselection of spontaneous mutants or the use of reverse genetics strategies can be employed. In the latter approach the lessons learned from generating Adenovirus-C mutants that by-pass the dependency of the adenovirus receptor, can be very helpful. Adenovirus-C is widely studied as an oncolytic virus. The attachment protein of adenovirus-C, fiber, recognises the Coxsackie and Adenovirus Receptor (CAR) receptor. Although the adenovirus fiber and the reovirus spike have no sequence similarity, their 3D structures are remarkably similar^{69,119}. In the adenovirus fiber protein, a wide variety of ligands have been inserted. Such ligands include single-chain Fv domains, single-chain T-cell receptors, so-called *affibody*TM molecules, and integrin-binding RGD motifs. This successfully changed the cellular tropism of the adenoviruses¹²⁰⁻¹²². It remains to be determined whether the same approach is equally effective in modifying the cellular tropism of reoviruses.

Not only the infection efficiency, but also the tumour -cell specificity of infection can be enhanced. To avoid the infection of non-target cells expressing JAM-A, the $\sigma 1$ protein can be modified to ablate its association with JAM-A. Viruses with reduced JAM-A binding have been isolated^{73,85}, these mutants were still viable and infected cells presumably via binding to sialic acid residues⁷³. The mutant with the truncated $\sigma 1$, isolated by Kim

and colleagues, still preferentially targeted tumour cells, however, it showed a reduced toxicity *in vivo*. Also exposure of naïve mice to this virus still resulted in the induction of neutralising immune response. Kobayashi and co-workers used their helper-free reverse-genetics system to generate a mutant which harbours a single amino acid change in the σ 1 protein which ablates the capacity to bind JAM-A⁷⁴. Such viruses may facilitate the development of more efficacious tumour-cell selective reoviruses for application as oncolytic agent.

1.2.6 Conclusion

To date, several reverse-genetics systems have been described for manipulation of mammalian orthoreovirus genomes. These systems have already proved their effectiveness and were used to reveal new viral functions and facilitated the introduction of modified genome segments. Nevertheless, the robustness of these techniques should be further improved to make them more widely applicable. Some of these systems require selection methods to enrich the mutant viruses. The developments of genetically modified variants should be accompanied by the parallel development of procedures to make the mutant reoviruses a safe pharmaceutical product. This requires manufacturing processes that prevent reversion of the mutants to wild-type viruses. To ensure that the mutations are retained during the prolonged passaging that is required for production of large clinical-grade batches, the production systems should be developed in parallel. Such systems must provide a continued positive-selection pressure for the presence of mutations or modifications. Only if the development of reverse genetics systems goes hand in hand with the development of dedicated production systems, can the new technology be employed to generate improved mammalian orthoreoviruses for clinical application.

REFERENCES

- 1 Joklik, W. K. Structure and function of the reovirus genome. *Microbiol Rev* **45**, 483-501 (1981).
- 2 Minuk, G. Y., Paul, R. W. & Lee, P. W. The prevalence of antibodies to reovirus type 3 in adults with idiopathic cholestatic liver disease. *J Med Virol* **16**, 55-60 (1985).
- 3 Minuk, G. Y. *et al.* Reovirus type 3 infection in patients with primary biliary cirrhosis and primary sclerosing cholangitis. *J Hepatol* **5**, 8-13 (1987).
- 4 Tyler, K. L. a. F., B.N. in *Field Virology* 1729-1745 (Lippincott, Williams and Wilkins, 2001).
- 5 Gomatos, P. J. & Tamm, I. The Secondary Structure of Reovirus Rna. *Proc Natl Acad Sci U S A* **49**, 707-714 (1963).
- 6 Shatkin, A. J., Sipe, J. D. & Loh, P. Separation of ten reovirus genome segments by polyacrylamide gel electrophoresis. *J Virol* **2**, 986-991 (1968).
- Weiner, H. L., Drayna, D., Averill, D. R., Jr. & Fields, B. N. Molecular basis of reovirus virulence: role of the S1 gene. *Proc Natl Acad Sci U S A* **74**, 5744-5748 (1977).
- 8 Weiner, H. L. & Fields, B. N. Neutralization of reovirus: the gene responsible for the neutralization antigen. *J Exp Med* **146**, 1305-1310 (1977).
- Tyler, K. L. *et al.* Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein sigma 1. *J Virol* **69**, 6972-6979 (1995).
- 10 Coombs, K. M. Reovirus structure and morphogenesis. *Curr Top Microbiol Immunol* **309**, 117-167 (2006).
- Jacobs, B. L. & Samuel, C. E. Biosynthesis of reovirus-specified polypeptides: the reovirus s1 mRNA encodes two primary translation products. *Virology* **143**, 63-74 (1985).
- 12 Sarkar, G. *et al.* Identification of a new polypeptide coded by reovirus gene S1. *J Virol* **54**, 720-725 (1985).
- 13 Starnes, M. C. & Joklik, W. K. Reovirus protein lambda 3 is a poly(C)-dependent poly(G) polymerase. *Virology* **193**, 356-366, doi:10.1006/viro.1993.1132 (1993).
- 14 ViralZone. Orthoreovirus, http://viralzone.expasy.org/105?outline=all_by_species (2011).
- 15 Guglielmi, K. M., Johnson, E. M., Stehle, T. & Dermody, T. S. Attachment and cell entry of mammalian orthoreovirus. *Curr Top Microbiol Immunol* **309**, 1-38 (2006).
- 16 Maginnis, M. S. *et al.* Beta1 integrin mediates internalization of mammalian reovirus. *J Virol* **80**, 2760-2770, doi:10.1128/JVI.80.6.2760-2770.2006 (2006).
- 17 Huismans, H. & Joklik, W. K. Reovirus-coded polypeptides in infected cells: isolation of two native monomeric polypeptides with affinity for single-stranded and double-stranded RNA, respectively. *Virology* **70**, 411-424 (1976).
- 18 Antczak, J. B. & Joklik, W. K. Reovirus genome segment assortment into progeny genomes studied by the use of monoclonal antibodies directed against reovirus proteins. *Virology* **187**, 760-776 (1992).
- 19 Becker, M. M., Peters, T. R. & Dermody, T. S. Reovirus sigma NS and mu NS proteins form cytoplasmic inclusion structures in the absence of viral infection. *J Virol* **77**, 5948-5963 (2003).

- 20 Broering, T. J., McCutcheon, A. M., Centonze, V. E. & Nibert, M. L. Reovirus nonstructural protein muNS binds to core particles but does not inhibit their transcription and capping activities. *J Virol* **74**, 5516-5524 (2000).
- 21 Kobayashi, T., Ooms, L. S., Chappell, J. D. & Dermody, T. S. Identification of functional domains in reovirus replication proteins muNS and mu2. *J Virol* **83**, 2892-2906, doi:10.1128/JVI.01495-08 (2009).
- Mora, M., Partin, K., Bhatia, M., Partin, J. & Carter, C. Association of reovirus proteins with the structural matrix of infected cells. *Virology* **159**, 265-277 (1987).
- 23 Chow, N. L. & Shatkin, A. J. Blocked and unblocked 5' termini in reovirus genome RNA. *J Virol* **15**, 1057-1064 (1975).
- Furuichi, Y., Muthukrishnan, S. & Shatkin, A. J. 5'-Terminal m-7G(5')ppp(5')G-m-p in vivo: identification in reovirus genome RNA. *Proc Natl Acad Sci U S A* **72**, 742-745 (1975).
- 25 Miura, K., Watanabe, K., Sugiura, M. & Shatkin, A. J. The 5'-terminal nucleotide sequences of the double-stranded RNA of human reovirus. *Proc Natl Acad Sci U S A* **71**, 3979-3983 (1974).
- Nonoyama, M., Millward, S. & Graham, A. F. Control of transcription of the reovirus genome. *Nucleic Acids Res* **1**, 373-385 (1974).
- 27 Spandidos, D. A., Krystal, G. & Graham, A. F. Regulated transcription of the genomes of defective virions and temperature-sensitive mutants of reovirus. *J Virol* **18**, 7-19 (1976).
- Watanabe, Y., Millward, S. & Graham, A. F. Regulation of transcription of the Reovirus genome. *J Mol Biol* **36**, 107-123 (1968).
- 29 Roner, M. R., Bassett, K. & Roehr, J. Identification of the 5' sequences required for incorporation of an engineered ssRNA into the Reovirus genome. *Virology* **329**, 348-360, doi:10.1016/j.virol.2004.08.026 (2004).
- 30 Connolly, J. L. & Dermody, T. S. Virion disassembly is required for apoptosis induced by reovirus. *J Virol* **76**, 1632-1641 (2002).
- Danthi, P. *et al.* Reovirus apoptosis and virulence are regulated by host cell membrane penetration efficiency. *J Virol* **82**, 161-172, doi:10.1128/JVI.01739-07 (2008).
- 32 Tyler, K. L. *et al.* Linkage between reovirus-induced apoptosis and inhibition of cellular DNA synthesis: role of the S1 and M2 genes. *J Virol* **70**, 7984-7991 (1996).
- 33 Spendlove, R. S., McClain, M. E. & Lennette, E. H. Enhancement of reovirus infectivity by extracellular removal or alteration of the virus capsid by proteolytic enzymes. *J Gen Virol* **8**, 83-94, doi:10.1099/0022-1317-8-2-83 (1970).
- Roner, M. R. & Steele, B. G. Localizing the reovirus packaging signals using an engineered m1 and s2 ssRNA. *Virology* **358**, 89-97, doi:10.1016/j.virol.2006.08.017 (2007).
- 35 Roner, M. R. & Steele, B. G. Features of the mammalian orthoreovirus 3 Dearing I1 single-stranded RNA that direct packaging and serotype restriction. *J Gen Virol* **88**, 3401-3412, doi:10.1099/vir.0.83209-0 (2007).
- Antczak, J. B., Chmelo, R., Pickup, D. J. & Joklik, W. K. Sequence at both termini of the 10 genes of reovirus serotype 3 (strain Dearing). *Virology* **121**, 307-319 (1982).
- Gaillard, R. K., Li, J. K., Keene, J. D. & Joklik, W. K. The sequence at the termini of four genes of the three reovirus serotypes. *Virology* **121**, 320-326 (1982).

- 38 Schlesinger, R. W. *et al.* The significance and nature of defective interfering viruses. *Bull Schweiz Akad Med Wiss* **33**, 229-242 (1977).
- 39 Zou, S. & Brown, E. G. Identification of sequence elements containing signals for replication and encapsidation of the reovirus M1 genome segment. *Virology* **186**, 377-388 (1992).
- 40 Roner, M. R. & Joklik, W. K. Reovirus reverse genetics: Incorporation of the CAT gene into the reovirus genome. *Proc Natl Acad Sci U S A* **98**, 8036-8041, doi:10.1073/pnas.131203198 (2001).
- 41 Roner, M. R. & Roehr, J. The 3' sequences required for incorporation of an engineered ssRNA into the Reovirus genome. *Virol* J 3, 1, doi:10.1186/1743-422X-3-1 (2006).
- 42 Joklik, W. K. Assembly of the reovirus genome. Curr Top Microbiol Immunol 233, 57-68 (1998).
- 43 Chappell, J. D., Gunn, V. L., Wetzel, J. D., Baer, G. S. & Dermody, T. S. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1. *J Virol* 71, 1834-1841 (1997).
- 44 Spriggs, D. R. & Fields, B. N. Attenuated reovirus type 3 strains generated by selection of haemagglutinin antigenic variants. *Nature* **297**, 68-70 (1982).
- 45 Steinhauer, D. A., Domingo, E. & Holland, J. J. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. *Gene* **122**, 281-288 (1992).
- Domingo, E. & Holland, J. J. RNA virus mutations and fitness for survival. *Annu Rev Microbiol* **51**, 151-178, doi:10.1146/annurev.micro.51.1.151 (1997).
- 47 Novella, I. S. *et al.* Exponential increases of RNA virus fitness during large population transmissions. *Proc Natl Acad Sci U S A* **92**, 5841-5844 (1995).
- 48 Gomatos, P. J. & Tamm, I. Reactive sites of reovirus type 3 and their interaction with receptor substances. *Virology* **17**, 455-461 (1962).
- Weiner, H. L., Ault, K. A. & Fields, B. N. Interaction of reovirus with cell surface receptors. I. Murine and human lymphocytes have a receptor for the hemagglutinin of reovirus type 3. *J Immunol* 124, 2143-2148 (1980).
- Weiner, H. L., Ramig, R. F., Mustoe, T. A. & Fields, B. N. Identification of the gene coding for the hemagglutinin of reovirus. *Virology* **86**, 581-584 (1978).
- Lee, P. W., Hayes, E. C. & Joklik, W. K. Protein sigma 1 is the reovirus cell attachment protein. *Virology* **108**, 156-163 (1981).
- 52 Armstrong, G. D., Paul, R. W. & Lee, P. W. Studies on reovirus receptors of L cells: virus binding characteristics and comparison with reovirus receptors of erythrocytes. *Virology* **138**, 37-48 (1984).
- 53 Co, M. S., Gaulton, G. N., Fields, B. N. & Greene, M. I. Isolation and biochemical characterization of the mammalian reovirus type 3 cell-surface receptor. *Proc Natl Acad Sci U S A* **82**, 1494-1498 (1985).
- Gentsch, J. R. & Pacitti, A. F. Effect of neuraminidase treatment of cells and effect of soluble glycoproteins on type 3 reovirus attachment to murine L cells. *J Virol* **56**, 356-364 (1985).
- Paul, R. W. & Lee, P. W. Glycophorin is the reovirus receptor on human erythrocytes. *Virology* **159**, 94-101 (1987).
- Pacitti, A. F. & Gentsch, J. R. Inhibition of reovirus type 3 binding to host cells by sialylated glycoproteins is mediated through the viral attachment protein. *J Virol* **61**, 1407-1415 (1987).

- 57 Leone, G. *et al.* The N-terminal heptad repeat region of reovirus cell attachment protein sigma 1 is responsible for sigma 1 oligomer stability and possesses intrinsic oligomerization function. *Virology* **182**, 336-345 (1991).
- 58 Strong, J. E., Leone, G., Duncan, R., Sharma, R. K. & Lee, P. W. Biochemical and biophysical characterization of the reovirus cell attachment protein sigma 1: evidence that it is a homotrimer. *Virology* **184**, 23-32 (1991).
- Bassel-Duby, R. *et al.* Sequence of reovirus haemagglutinin predicts a coiled-coil structure. *Nature* **315**, 421-423 (1985).
- Nibert, M. L., Dermody, T. S. & Fields, B. N. Structure of the reovirus cell-attachment protein: a model for the domain organization of sigma 1. *J Virol* **64**, 2976-2989 (1990).
- Dermody, T. S., Nibert, M. L., Bassel-Duby, R. & Fields, B. N. A sigma 1 region important for hemagglutination by serotype 3 reovirus strains. *J Virol* **64**, 5173-5176 (1990).
- 62 Rubin, D. H. *et al.* Binding of type 3 reovirus by a domain of the sigma 1 protein important for hemagglutination leads to infection of murine erythroleukemia cells. *J Clin Invest* **90**, 2536-2542, doi:10.1172/JCl116147 (1992).
- Duncan, R. *et al.* Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein. *Virology* **182**, 810-819 (1991).
- 64 Nagata, L., Masri, S. A., Pon, R. T. & Lee, P. W. Analysis of functional domains on reovirus cell attachment protein sigma 1 using cloned S1 gene deletion mutants. *Virology* **160**, 162-168 (1987).
- 65 Turner, D. L., Duncan, R. & Lee, P. W. Site-directed mutagenesis of the C-terminal portion of reovirus protein sigma 1: evidence for a conformation-dependent receptor binding domain. *Virology* **186**, 219-227 (1992).
- Weiner, H. L., Powers, M. L. & Fields, B. N. Absolute linkage of virulence and central nervous system cell tropism of reoviruses to viral hemagglutinin. *J Infect Dis* **141**, 609-616 (1980).
- 67 Williams, W. V. *et al.* Sequences of the cell-attachment sites of reovirus type 3 and its antiidiotypic/antireceptor antibody: modeling of their three-dimensional structures. *Proc Natl Acad Sci U S A* **85**, 6488-6492 (1988).
- 68 Barton, E. S. *et al.* Junction adhesion molecule is a receptor for reovirus. *Cell* **104**, 441-451 (2001).
- 69 Campbell, J. A. *et al.* Junctional adhesion molecule a serves as a receptor for prototype and field-isolate strains of mammalian reovirus. *J Virol* **79**, 7967-7978, doi:10.1128/JVI.79.13.7967-7978.2005 (2005).
- 70 Severson, E. A. & Parkos, C. A. Structural determinants of Junctional Adhesion Molecule A (JAM-A) function and mechanisms of intracellular signaling. *Curr Opin Cell Biol* 21, 701-707, doi:10.1016/j.ceb.2009.06.005 (2009).
- 71 Liu, Y. *et al.* Human junction adhesion molecule regulates tight junction resealing in epithelia. *J Cell Sci* **113 (Pt 13)**, 2363-2374 (2000).
- 72 Martin-Padura, I. *et al.* Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. *J Cell Biol* **142**, 117-127 (1998).

- 73 Kirchner, E., Guglielmi, K. M., Strauss, H. M., Dermody, T. S. & Stehle, T. Structure of reovirus sigma1 in complex with its receptor junctional adhesion molecule-A. *PLoS Pathog* **4**, e1000235, doi:10.1371/journal.ppat.1000235 (2008).
- 74 Kobayashi, T. *et al.* A plasmid-based reverse genetics system for animal double-stranded RNA viruses. *Cell Host Microbe* **1**, 147-157, doi:10.1016/j.chom.2007.03.003 (2007).
- 75 Danthi, P. *et al.* From touchdown to transcription: the reovirus cell entry pathway. *Curr Top Microbiol Immunol* **343**, 91-119, doi:10.1007/82 2010 32 (2010).
- Maginnis, M. S. *et al.* NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. *J Virol* **82**, 3181-3191, doi:10.1128/JVI.01612-07 (2008).
- 77 Bell, T. M. & Ross, M. G. Persistent latent infection of human embryonic cells with reovirus type 3. *Nature* **212**, 412-414 (1966).
- Taber, R., Alexander, V. & Whitford, W. Persistent reovirus infection of CHO cells resulting in virus resistance. *J Virol* **17**, 513-524 (1976).
- 79 Ahmed, R. & Fields, B. N. Reassortment of genome segments between reovirus defective interfering particles and infectious virus: construction of temperature-sensitive and attenuated viruses by rescue of mutations from DI particles. *Virology* **111**, 351-363 (1981).
- 80 Baer, G. S., Ebert, D. H., Chung, C. J., Erickson, A. H. & Dermody, T. S. Mutant cells selected during persistent reovirus infection do not express mature cathepsin L and do not support reovirus disassembly. *J Virol* **73**, 9532-9543 (1999).
- 81 Ebert, D. H., Deussing, J., Peters, C. & Dermody, T. S. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. *J Biol Chem* **277**, 24609-24617, doi:10.1074/ibc.M201107200 (2002).
- 82 Ebert, D. H., Kopecky-Bromberg, S. A. & Dermody, T. S. Cathepsin B Is Inhibited in Mutant Cells Selected during Persistent Reovirus Infection. *J Biol Chem* **279**, 3837-3851, doi:10.1074/ibc.M310048200 (2004).
- Ahmed, R. & Fields, B. N. Role of the S4 gene in the establishment of persistent reovirus infection in L cells. *Cell* **28**, 605-612 (1982).
- Sharpe, A. H. & Fields, B. N. Reovirus inhibition of cellular RNA and protein synthesis: role of the S4 gene. *Virology* **122**, 381-391 (1982).
- Kim, M. *et al.* Attenuated reovirus displays oncolysis with reduced host toxicity. *Br J Cancer* **104**, 290-299, doi:10.1038/sj.bjc.6606053 (2011).
- Wetzel, J. D. *et al.* Reovirus variants selected during persistent infections of L cells contain mutations in the viral S1 and S4 genes and are altered in viral disassembly. *J Virol* **71**, 1362-1369 (1997).
- 87 Wilson, G. J., Wetzel, J. D., Puryear, W., Bassel-Duby, R. & Dermody, T. S. Persistent reovirus infections of L cells select mutations in viral attachment protein sigma1 that alter oligomer stability. *J Virol* **70**, 6598-6606 (1996).
- 88 Connolly, J. L., Barton, E. S. & Dermody, T. S. Reovirus binding to cell surface sialic acid potentiates virus-induced apoptosis. *J Virol* **75**, 4029-4039, doi:10.1128/JVI.75.9.4029-4039.2001 (2001).

- 89 Cashdollar, L. W. *et al.* Cloning the double-stranded RNA genes of reovirus: sequence of the cloned S2 gene. *Proc Natl Acad Sci U S A* **79**, 7644-7648 (1982).
- 90 Roner, M. R., Sutphin, L. A. & Joklik, W. K. Reovirus RNA is infectious. *Virology* **179**, 845-852 (1990).
- 91 Joklik, W. K. & Roner, M. R. What reassorts when reovirus genome segments reassort? *J Biol Chem* **270**, 4181-4184 (1995).
- 92 Roner, M. R., Nepliouev, I., Sherry, B. & Joklik, W. K. Construction and characterization of a reovirus double temperature-sensitive mutant. *Proc Natl Acad Sci U S A* **94**, 6826-6830 (1997).
- 93 van den Wollenberg, D. J. *et al.* A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting. *Gene Ther* **15**, 1567-1578, doi:10.1038/gt.2008.118 (2008).
- 94 Rouault, E. & Lemay, G. Incorporation of epitope-tagged viral sigma3 proteins to reovirus virions. *Can J Microbiol* **49**, 407-417, doi:10.1139/w03-043 (2003).
- 95 Chandran, K. *et al.* In vitro recoating of reovirus cores with baculovirus-expressed outer-capsid proteins mu1 and sigma3. *J Virol* **73**, 3941-3950 (1999).
- 96 Chandran, K. *et al.* Complete in vitro assembly of the reovirus outer capsid produces highly infectious particles suitable for genetic studies of the receptor-binding protein. *J Virol* **75**, 5335-5342, doi:10.1128/JVI.75.11.5335-5342.2001 (2001).
- Jane-Valbuena, J. *et al.* Reovirus virion-like particles obtained by recoating infectious subvirion particles with baculovirus-expressed sigma3 protein: an approach for analyzing sigma3 functions during virus entry. *J Virol* **73**, 2963-2973 (1999).
- Danthi, P., Coffey, C. M., Parker, J. S., Abel, T. W. & Dermody, T. S. Independent regulation of reovirus membrane penetration and apoptosis by the mu1 phi domain. *PLoS Pathog* **4**, e1000248, doi:10.1371/journal.ppat.1000248 (2008).
- 99 Kobayashi, T., Ooms, L. S., Ikizler, M., Chappell, J. D. & Dermody, T. S. An improved reverse genetics system for mammalian orthoreoviruses. *Virology* **398**, 194-200, doi:10.1016/j. virol.2009.11.037 (2010).
- 100 Dennehy, P. H. Transmission of rotavirus and other enteric pathogens in the home. *Pediatr Infect Dis J* **19**, S103-105 (2000).
- 101 Simpson, E. *et al.* Use of formative research in developing a knowledge translation approach to rotavirus vaccine introduction in developing countries. *BMC Public Health* **7**, 281, doi:10.1186/1471-2458-7-281 (2007).
- 102 Bernstein, D. I. Rotavirus overview. *Pediatr Infect Dis J* **28**, S50-53, doi:10.1097/INF.0b013e3181967bee (2009).
- 103 Pesavento, J. B., Crawford, S. E., Estes, M. K. & Prasad, B. V. Rotavirus proteins: structure and assembly. *Curr Top Microbiol Immunol* **309**, 189-219 (2006).
- 104 Komoto, S., Sasaki, J. & Taniguchi, K. Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. *Proc Natl Acad Sci U S A* **103**, 4646-4651, doi:10.1073/pnas.0509385103 (2006).
- 105 Troupin, C. *et al.* Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. *J Virol* **84**, 6711-6719, doi:10.1128/JVI.00547-10 (2010).

- 106 Gault, E. *et al.* A human rotavirus with rearranged genes 7 and 11 encodes a modified NSP3 protein and suggests an additional mechanism for gene rearrangement. *J Virol* **75**, 7305-7314, doi:10.1128/JVI.75.16.7305-7314.2001 (2001).
- 107 Trask, S. D., Taraporewala, Z. F., Boehme, K. W., Dermody, T. S. & Patton, J. T. Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. *Proc Natl Acad Sci U S A* **107**, 18652-18657, doi:10.1073/pnas.1011948107 (2010).
- 108 Hashiro, G., Loh, P. C. & Yau, J. T. The preferential cytotoxicity of reovirus for certain transformed cell lines. *Arch Virol* **54**, 307-315 (1977).
- 109 Theiss, J. C., Stoner, G. D. & Kniazeff, A. J. Effect of reovirus infection on pulmonary tumour response to urethan in strain A mice. *J Natl Cancer Inst* **61**, 131-134 (1978).
- 110 Norman, K. L., Hirasawa, K., Yang, A. D., Shields, M. A. & Lee, P. W. Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. *Proc Natl Acad Sci U S A* **101**, 11099-11104, doi:10.1073/pnas.0404310101 (2004).
- 111 Smakman, N., van den Wollenberg, D. J., Borel Rinkes, I. H., Hoeben, R. C. & Kranenburg, O. Sensitization to apoptosis underlies KrasD12-dependent oncolysis of murine C26 colorectal carcinoma cells by reovirus T3D. *J Virol* 79, 14981-14985, doi:10.1128/JVI.79.23.14981-14985.2005 (2005).
- 112 Smakman, N. *et al.* Immunosuppression promotes reovirus therapy of colorectal liver metastases. *Cancer Gene Ther* **13**, 815-818, doi:10.1038/sj.cgt.7700949 (2006).
- 113 Kim, M. *et al.* Acquired resistance to reoviral oncolysis in Ras-transformed fibrosarcoma cells. *Oncogene* **26**, 4124-4134, doi:10.1038/sj.onc.1210189 (2007).
- 114 Alain, T. *et al.* Proteolytic disassembly is a critical determinant for reovirus oncolysis. *Mol Ther* **15**, 1512-1521, doi:10.1038/sj.mt.6300207 (2007).
- 115 Inc, O. B. Clinical trials. (2011).
- 116 Lal, R., Harris, D., Postel-Vinay, S. & de Bono, J. Reovirus: Rationale and clinical trial update. *Curr Opin Mol Ther* **11**, 532-539 (2009).
- 117 Van Den Wollenberg, D. J., Van Den Hengel, S. K., Dautzenberg, I. J., Kranenburg, O. & Hoeben, R. C. Modification of mammalian reoviruses for use as oncolytic agents. *Expert Opin Biol Ther* **9**, 1509-1520, doi:10.1517/14712590903307370 (2009).
- 118 Power, A. T. & Bell, J. C. Taming the Trojan horse: optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. *Gene Ther* **15**, 772-779, doi:10.1038/gt.2008.40 (2008).
- 119 Stehle, T. & Dermody, T. S. Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins. *Rev Med Virol* **13**, 123-132, doi:10.1002/rmv.379 (2003).
- 120 Arnberg, N. Adenovirus receptors: implications for tropism, treatment and targeting. *Rev Med Virol* **19**, 165-178, doi:10.1002/rmv.612 (2009).
- 121 Lindholm, L., Henning, P., Magnussen, M.K. Novel strategies in tailoring human adenoviruses into therapeutic cancer gene therapy vectors. *Future Virol* **3**, 45-59 (2008).
- 122 Waehler, R., Russell, S. J. & Curiel, D. T. Engineering targeted viral vectors for gene therapy. *Nat Rev Genet* **8**, 573-587, doi:10.1038/nrg2141 (2007).