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Abstract

Background: To test whether transforming the planned procedure duration into a 
summation of the average historical durations for each surgical phase (i.e. reference data) 
provides a reliable estimation of the actual procedure duration and to describe the basic 
technical components of an automated real-time procedural progress monitoring system. 

Methods: Historical operating procedure data were obtained from all OR procedures that 
were performed at the Leiden University Medical Center between May 2011 and December 
2012. Reference data for the anesthesia induction and surgical preparation (Tpreparation) and 
anesthesia emergence phase (Temergence) specific to each surgeon were computed based on 
procedures performed in 2011. The transformed procedure duration (TDORA) was computed by 
adding Tpreparation and Temergence to the planned procedure duration (Tplanned) and corrected with 
the historical deviation specific to each surgeon (i.e. the Digital Operating Room Assistance 
(DORA) model). The reliability of the DORA model was tested by simulating the effect of TDORA 
on procedures performed in 2012.

Results: Reference data were computed based on 3,515 procedures performed in 2011. 
TDORA was computed for 6,712 procedures performed in 2012. Compared to Tplanned, TDORA was 
significantly more accurate (41 ± 49 versus 8 ± 47 minutes too short, p < .001).

Conclusions: Transforming the planned procedure duration into a summation of historical 
durations specific to each surgical phase results in a more accurate estimation of the actual 
procedure duration. Combining this approach with a system that is able to perform real-time 
phase detection of the operative procedure will enable dynamic prediction of the remaining 
duration of the surgical procedure. 
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Introduction

The adage “what happens in the operating room, stays in the operating room” was applicable 
until the end of the 20th century in terms of legal perspectives [1]. Nowadays, it is still 
applicable in terms of procedural progress monitoring. The operating room (OR) acts as a 
‘black box’: patient, surgeon and OR staff enter the room at a certain point in time to perform 
an intended procedure and all come out when the procedure that they actually performed 
is finished [2]. Usually, the performed procedure goes as planned and approximately within 
the scheduled time. However, quite often procedures do not go as initially foreseen and 
take up either less but usually more time [3]. OR managers are still limited in their ability 
to monitor the progress of the procedure. For example, they can only call the OR or be 
physically present in the OR (creating a disturbance and sterility hazard), or peer through 
the small OR-window and/or look up some specific time notes (e.g. ‘first incision’) that are 
manually entered into the electronic patient record (EPR) (provided that this has been done 
immediately and correctly) [4].

Because the OR is one of the most expensive facilities of the hospital, it is important to 
optimize OR occupancy by accurate preoperative scheduling and thorough monitoring of 
the procedural progress [5]. Furthermore, in terms of process management, the complete 
perioperative process consists of multiple parts besides the procedure itself. Therefore, 
optimized OR efficiency also affects, for example, the patient ward, hospital transport, the 
holding unit, OR cleaning services, recovery unit and vice versa [5, 6]. Furthermore, optimizing 
OR occupancy decreases the number of procedures that have to be rescheduled to another 
day resulting in higher patient satisfaction and lower costs [7].

Currently, operative procedural progress monitoring in the OR resembles traffic control 
in the mid-20th century [8]. Without speedometers or real-time traffic information, the 
estimated time of arrival (ETA) was purely based on experience. Nowadays, by using the 
global positioning system, combined with both real-time and historical traffic data and 
the behavior of the driver, the ETA is very accurate and, moreover, real-time adjusted if 
unexpected events occur.

To facilitate a more modern procedural progress monitoring system for the OR, multiple 
methods have been described to divide the procedure into different phases by identifying 
unique ‘landmarks’. The passing of these landmarks indicates the procedural progress. 
Table 8.1 shows a summary of the most useful methods. Guédon et al. used radiofrequency 
identification (RFID) to track the location of patients within the OR complex [9]. The patients’ 
vital signs are also easily obtainable predictors of OR occupancy [10]. More detailed 
information on the procedural progress can be provided by continuous image analysis [4]. 
Bhatia et al. described several consecutive phases that are generic for every procedure: an 
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empty OR bed, a patient on the OR bed, a patient covered in blue drapes (as start of the 
surgery phase), removal of the blue drapes (directly after last stitch) and an empty OR bed 
again. These four general states were detected with 99% accuracy. Additionally, Guédon 
et al. used the activation pattern of the electrosurgical device to predict ‘if it was time to 
prepare the next patient’; optimally this is done 25 minutes before the last suture [11]. 
Furthermore, Dergachyova et al. have proven that automatic real-time segmentation and 
recognition of the surgical workflow is feasible [12]. Their combination of sensors and video 
analysis detected intraoperative surgical phases with a reliability of 91%. Last but not least, 
task recognition on laparoscopic video is rapidly advancing, allowing for accurate surgical 
phase recognition [13-15].

Presumably, the combination of the above-mentioned sensor methods will provide an 
automated and reliable real-time identification of the current phase within the surgical 
procedure. By linking this output to historical information on the duration of the procedure 
beyond this phase, the remaining duration of the procedure can be estimated. This estimation 
based on real-time data is the crucial parameter necessary to transform OR scheduling from 
a static to a dynamic process [6].

The aim of this study was to test whether transforming the planned procedure duration into 
a summation of historical durations for each surgical phase provides a reliable estimation of 
the actual procedure duration. Additionally, the basic technical components of an automated 
real-time procedural progress monitoring system are described.  

Table 8.1 Methods to determine procedural progress

Method Sensor ‘Landmark’ during procedure

Patient identification RFID Position of patient on OR-complex / 
OR-occupancy 9

Anesthesia vital signs Pulse oximetry / 
Electrocardiography

OR-occupancy 10

Double bed state Image analysis OR-occupancy 4

Blue drape on/off Image analysis Surgery phase 4

Activation pattern of electrosurgical 
device

Audio analysis 20–30 minutes before end surgery 
phase 11

Segmentation & recognition of 
surgical workflow

Low-level sensors & 
video analysis

Intra-operative surgical phases 12

Task recognition during laparoscopy Video analysis Intra-operative surgical phases 13-15

RFID = radiofrequency identification; OR = Operating room.
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Materials and methods

Historical operating procedure data were collected from all OR procedures that were 
performed by all surgical specialties at the Leiden University Medical Center, Leiden, the 
Netherlands between May 2011 and December 2012. All data were anonymously withdrawn 
from the EPR system and therefore are exempt from patient consent. Relevant perioperative 
phases were defined as shown in Figure 8.1. All stated timestamps had to be manually entered 
into the EPR during the operative process (see Figure 8.1).

Average historical duration of the surgical phases between the timestamps “patient on OR”, 
“start surgery”, “end surgery”, and “patient leaving OR” were obtained to compute reference 
data. Thereby estimations for the average duration of the preparation phase (Tpreparation) 
(i.e. anesthesia induction and surgical preparation combined), surgery phase (Tsurgery), 
and anesthesia emergence phase (Temergence) were acquired. Thus, the planned procedure 
duration is not a fixed time length, but a summation of these three phases marked by the 
four timestamps that are applicable to every procedure (underlined in Figure 8.1).

Figure 8.1 Schematic representation of the perioperative process.
DORA = Digital Operating Room Assistance.

Location: Ward WardRecoveryHolding Operating Room

Timestamps:

Preparation
(Tpreparation)

Duration (T):
Surgery
(Tsurgery)

Procedure
(Tplanned or TDORA)

Anesthesia

Obtaining reference data

Operating procedure data were obtained from procedures performed between May and 
December 2011. Per surgeon and per specialty, Tpreparation and Temergence were computed. Tsurgery 
is obviously preoperatively estimated by the surgeon. However, at present, this estimation 
is used as the planned procedure duration (Tplanned). Therefore, in order to correct for any 
consistent underestimation or overestimation of the surgeon, the average difference 
between Tplanned and Tsurgery (i.e. deviation) was computed. This computation was stratified 
into categories: Tplanned <60 minutes; 60–119 minutes; 120–180 minutes; and >180 minutes. To 
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allow transforming of Tplanned in case no reference data for that specific surgeon was available, 
reference data specific to each specialty were also computed.

Surgeons with ≤3 procedures per category were excluded. Similarly, prior to computation 
of the reference data, outliers were excluded (i.e. duration preparation phase <5 minutes or 
>105 minutes; duration anesthesia emergence phase 0 or >90 minutes; difference between 
planned and actual surgical duration <-90 minutes or >90 minutes, standard deviation (SD) 
of the average preparation phase >20 minutes or SD of the mean difference between planned 
and actual surgical duration >45 minutes).

TDORA was computed by a model that was called “Digital Operating Room Assistance” (DORA). 
In this model, Tpreparation and Temergence were added to Tplanned and corrected for the deviation 
specific to the surgeon (stratified per ‘planned procedure duration’-category). If no reference 
data for that specific surgeon were available, reference data for this surgeon’s specific 
specialty were used.

Validation of the DORA model

The reliability of the DORA model was tested by simulating the effect of transforming Tplanned. 
This simulation was based on procedures performed between January and December 2012. 
Tplanned and TDORA were compared for individual procedures and for a series of procedures 
that were planned consecutively in a specific OR on a specific day (i.e. an OR session). Only 
sessions with ≥2 procedures and planned during the daytime (between 8:00am and 3:30pm) 
were simulated. The applied duration for OR cleaning between two procedures (i.e. turnover 
time) was 20 minutes.

Statistical analysis

Pivot tables in Microsoft Excel® 2010 were used for analysis and simulation. For statistical 
analysis, SPSS 23 statistical software was used. A paired samples T-test was used to compare 
differences between historical data and DORA. A p < .05 was considered statistically significant 
and a 95% confidence interval (CI) of the difference was provided.
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Results

Obtaining reference data

Between May and December 2011 13,082 procedures were performed, of which the EPR of 
3,515 procedures contained all data necessary to compute the reference data for all three 
phases. Incomplete operating procedure data were due to missing or invalid time stamps, 
most likely caused by incorrect manual data entry in the EPR system.

Validation of the DORA model

Between January and December 2012, 20,556 procedures were performed, of which the 
EPR of 6,712 procedures contained all data necessary to compute TDORA and subsequently 
test its validity. The following were reason for exclusion: incomplete or invalid time stamps 
(n = 7,515); combined surgical procedures (n = 5,255); planned duration >300 minutes and 
emergency procedures outside office hours (n = 897); and missing reference data (n = 177).

Tplanned was 88 ± 55 (average ± SD) minutes and Tactual was 129 ± 84 minutes (average difference 
41 ± 49 minutes too short). Tsurgery was 81 ± 70 minutes. TDORA was 121 ± 62 minutes (average 
difference with Tactual 8 ± 47 minutes too short). Compared to Tplanned, TDORA was significantly 
more accurate (average difference 32.7 minutes, 95% CI 33.1–32.3, p < .001) (Table 8.2).

A total of 421 sessions (in total consisting of N = 1,312 procedures) were simulated. Mean 
actual turnover time was 21 minutes. Of all 421 sessions, 54% (N = 229 sessions) actually 
ended past 3:30pm. Based on the simulated durations of DORA, the overtime of 35% (n 
= 148 sessions was predicted, which means 65% (148 of 229 sessions) could have been 
anticipated. The overtime of the remaining 19% (n = 81 sessions) would not have been 
predicted preoperatively by DORA. Furthermore, DORA predicted incorrectly that 43 sessions 
would end past 3:30pm (10%, average overtime by DORA 49±41minutes; whereas actual end 
time of the sessions was on average 2:51pm ± 31 minutes).

Basic technical components of an automated real-time procedural progress 
monitoring system

Based on the results outlined above, the approach of the DORA model is a feasible basis for 
an automated real-time procedural progress monitoring system. This approach has to be 
implemented in a technical system that facilitates generic and reliable phase detection during 
any surgical procedure. Such systems have been described in the literature [4, 9, 11, 16].
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Figure 8.2 provides a schematic outline of the basic technical components. A ceiling-mounted 
dome IP-camera, a microphone, and a RFID reader are examples of readily available sensors 
able to deliver relevant and reliable information from the OR. Algorithm-1 analyzes this raw 
sensor information and provides a binary output for registry in the ‘current data’ database. 
This algorithm replaces the manual entry of the timestamps, as shown in Figure 8.1. Since 
this algorithm directly analyzes the raw sensor information (e.g. it is constantly checking for 
the presence/absence of blue surgical drapes [4], ‘listening’ to the specific frequency of the 
coagulation device [11], etc.), no data are stored and privacy concerns are not an issue. See 
Figure 8.3 for an example of the binary output of these sensors that allow the algorithm to 
identify the current phase within the surgical procedure.

On a server, Algorithm-2 uses the reference data combined with the current data – consisting 
of general information from the EPR system (patient name, type of procedure, OR suite etc.) 
complemented with the timestamps – to compute the remaining time of the procedure. The 
remaining procedure duration is computed by subtracting the procedural progress from TDORA. 
For example, a surgeon usually plans 120 minutes for a laparoscopic hysterectomy procedure. 
Including the Tpreparation (e.g. 15 minutes) and Temergence (e.g. 10 minutes) in total TDORA becomes 

Table 8.2 Average procedure and phase durations (in minutes) of the procedures performed in 2012 
(N = 6,712)

Average ± SD Min – Max

Procedure duration:
Tplanned 88 ± 55 5 – 280
Tactual 129 ± 84 8 – 830
TDORA 121 ± 62 12 – 331

Actual phase duration:
Tpreparation 36 ± 18 2 – 177
Tsurgery 81 ± 70 1 – 733
Temergence 12 ± 10 0 – 137

Reference data:
Tpreparation 31 ± 10 5 – 71
Temergence 11 ± 3 3 – 25
Deviation 10 ± 10 -24 – 70

SD = standard deviation; Tplanned = originally planned procedure duration (estimation by surgeon); Tactual = 
actual procedure duration; TDORA = transformed planned procedure duration based on Digital Operating 
Room Assistance (DORA) model (average Tpreparation and Temergence are added to Tplanned and corrected for the 
average historical deviation); Tpreparation = duration of anesthesia induction and surgical preparation combined; 
Tsurgery = duration of surgery; Temergence = duration of anesthesia emergence; Reference data = Average historical 
duration of the surgical phases; Deviation = historical diff erence between Tplanned and Tactual in order to correct 
for any consistent underestimation or overestimation of the surgeon.
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Figure 8.3 Example of the binary output of the diff erent sensors allowing the algorithm to identify 
the current phase within the surgical procedure.
Emerg. = Anesthesia emergence phase; RFID = Radiofrequency identification (detecting OR-occupancy by 
patient / personnel / devices); EPR = Electronic patient record system.

CAM

MIC

RFID

Visual output (user-specific)

EPR

Historical 
data

Algorithm-2

Sw
itc

h

Server

Algorithm-1

OR

Current data

PC

Figure 8.2 Schematic outline of the basic components required for an automated real-time proce-
dural progress monitoring system.
OR = Operating room; CAM = IP-Camera (detecting patient on OR-bed / blue drapes etc.); RFID = 
Radiofrequency identification (detecting OR-occupancy by patient / personnel / devices); MIC = (Wireless) 
microphone (detecting electrocoagulation device activity); PC = Personal computer (containing Algorithm-1 
that transforms sensor data real-time into timestamps); EPR = Electronic patient record system; Current 
data = Database containing all necessary information about the current operative procedures in the OR-
complex (withdrawn from EPR) supplemented with the timestamps entered by Algorithm-1; Historical data 
= Phase specific reference data (surgeon & specialty specific); Server = Computer allowing the storage of 
the databases and containing Algorithm-2 that computes the transformed planned procedure duration and 
real-time adjusted remaining procedure duration. A visual output (user-specific) of all relevant information 
is made.

SurgeryPreparation Emerg.

Patient identification RFID

Patient on OR table Image

Patient vital signs EPR

Surgical blue drapes Image

Coagulation device Audio

Phase segmentation Video

Device detection RFID
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145 minutes. However, in this case the uterus needs to be morcellated and therefore the 
surgeon adds 30 minutes to Tplanned. At the start of this laparoscopic hysterectomy procedure 
the remaining procedure duration is 175 minutes. And at the start of the surgical phase the 
remaining procedure duration generally will be 160 minutes (175–15). However, in case of 
delay during the anesthesia preparation, from the minute this takes longer than Tpreparation 
the model will start adjusting the time that the procedure will end.

Discussion

The DORA model shows that transforming the planned procedure duration into a summation 
of historical durations specific to each surgical phase results in a reliable estimation of the 
actual procedure duration. Furthermore, the basic technical components required to perform 
real-time phase detection of the operative procedure have been highlighted. Combining 
these two features into one system will facilitate real-time prediction of the remaining 
duration of the procedure.

By transforming the planned procedure duration using historical deviation specific to the 
surgeon or his/her specialty and adding time for preparation and anesthesia emergence, 
the DORA model was able to show a significant reduction in the mean difference between 
the planned and actual duration of surgical procedures (8 ± 47 minutes). However, the SD 
of this difference (meaning 68% of the procedure durations are accurate within a window 
of 1.5 hours) is still high. No clinically relevant decline in this SD could be obtained by 
alterations to the DORA model. Additionally, in one in five sessions (19%) the overtime would 
not have been predicted by the DORA model either, resulting in procedure cancellations 
and overtime for OR personnel. We hypothesize this is due to the unpredictability that is 
intrinsic to surgery. Consequently, since the cause of this difference between the planned 
and the actual procedure duration cannot be prevented, this limitation can only be ‘treated 
symptomatically’. This highlights the urgency to implement automated real-time procedural 
progress monitoring.

Procedural progress monitoring in the OR is still in its infancy. By showing the real-time 
adjusted remaining duration of a procedure, all participants involved in the perioperative 
process are able to plan their activities and react to ad hoc changes in the OR schedule 
immediately [6]. This could provide a boost in efficiency regarding workflow in the patient 
ward, holding department, hospital transport, OR cleaning services, surgeon for the next 
procedure, etc.

Based on the DORA model, every procedure can be divided into phases. Using a technical 
system, as described, every phase can be real-time identified and compared to the 
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historical duration, thereby allowing a dynamic estimation of the remaining procedure 
duration. Although more detailed surgical phase segmentation and identification is not yet 
incorporated, implementing the presented system would already be a major first step forward 
in automated procedural progress monitoring. To obtain more precise information on the 
procedural progress, large databases should be created containing all kinds of operative 
information (e.g. anesthesia machine settings, usage pattern of electrocoagulation and other 
devices, etc.). Additionally, analysis of the video image is a promising option to automatically 
detect surgical phases [4, 12-14, 17]. Based on this method, Malpani et al. were able to detect 
surgical phases with an accuracy of 74% in a series of robotic hysterectomies [18]. The 
integration of more advanced big data analysis and surgical phase detection by video will 
allow segmentation within the surgical phase of the procedure. This will be an important 
improvement, since unforeseen factors during the surgery phase are the main cause of the 
large standard deviation in the estimated procedure duration [6, 19].

Multiple methods of predicting the remaining intervention duration have been described 
in the literature. Based on a surgical process model, Franke et al. were able to provide an 
accurate estimation of the remaining procedure duration (mean absolute error between 
13 and 29 minutes) [6]. However, they needed a human observer to record surgical tasks. 
Tran et al. were able to perform phase segmentation based on automatic surgical workflow 
analysis from video images [17]. They were able to divide the laparoscopic cholecystectomy 
procedure into phases of 12.8 minutes on average, thereby potentially allowing more precise 
monitoring of the progress. Although these phases were appropriately determined in 84% of 
the time, their model was only applicable to a single type of procedure that was simulated 
in a laboratory setting.

The strength of our approach is that it can be applied to every surgical procedure. Furthermore, 
reference data (based on procedures performed in 2011) proved to be valid in a simulation 
of procedures performed in the next year. However, this is still a rigid way of obtaining 
reference data. In future models, reference data could be based on a number of the most 
recent procedures instead of the average from the previous year. This will ensure that the 
reference data are constantly kept up to date. Another advantage of this approach is that it 
allows the surgeon to take patient and procedure characteristics into account while planning 
the initial duration of the surgical phase. Afterwards, to correct for historical underestimation 
or overestimation, the surgeon-specific deviation is applied. This method of preoperative 
planning of the procedure duration is supported by prior research [20, 21]. Similarly, Travis 
et al. demonstrated excellent predictions by orthopedic and plastic surgeons and an average 
underestimation of 35 minutes by anesthetists, thereby highlighting the potential differences 
between specialties and the importance of taking ‘anesthesia time’ into account [22].
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The power of large data registries and big data analysis has been recognized before [23]. 
Although a major limitation of the present study was the amount of missing data in our 
historical data, due to the high number of procedures (N = 3,515 & N = 6,712) and the fact that 
the reference data could be validated, the results support the assumption that the missing 
data did not have a significant influence on the accuracy of the estimation. Currently, in our 
hospital, fourteen time stamps need to be manually entered into the EPR system during the 
complete perioperative process (Figure 8.1). This obviously causes delayed, incorrect and 
missing data. Automation of the entry of these (and other) timestamps would ensure more 
accurate and more precise reference data. Consequently, this will result in an even better 
estimation of the remaining procedure duration. Entering accurate and meaningful data into 
the EPR – without repetitive chart review or the need to enter data manually – supports the 
ultimate goal of having clinical support tools that provide real-time information about the 
patients, their outcomes, and the quality of care that is being delivered [23].

In conclusion, the implementation of automated procedural progress monitoring to predict 
the remaining procedure duration will facilitate a transition from static to dynamic OR 
scheduling. This will make the next generation of ORs truly intelligent and would support all 
participants involved in the perioperative process to better plan their tasks instead of acting 
in a reactive manner, thereby enhancing patient safety [12].
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