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ABSTRACT 

The object of study of this paper is the asymptotic behaviour of sequences {M,},, , of square 

matrices with real or complex entries. Two decomposition theorems are treated. These give con- 

ditions under which a sequence of non-singular square matrices whose terms are block-diagonal 

(diagonal, respectively) matrices plus some perturbation term can be transformed into a sequence 

{F,;‘, MnFn),., whose terms are block-diagonal (diagonal) and where the sequence {FE}, >, con- 

verges to the identity. In the first section we introduce the concept of a matrix recurrence and some 

further notation. In $2 we present the first of the two decomposition theorems. As an application, we 

present, in $3, a generalization of the Theorem of Poincare-Perron for linear recurrences, and in 64 we 

prove a decomposition theorem for matrix sequences that are the sum of a sequence of diagonal mat- 

rices and some (small) perturbation term. In the final section we use the second decomposition 

theorem to derive a result concerning the solutions of matrix recurrences in case the matrices converge 

fast to some limit matrix. All our results are quantitative as well. 

1. PRELIMINARY CONCEPTS 

Let K be the field of real or complex numbers. In this paper we study sequences 

PGl>N (N E Z) of matrices in the set K kx k of k x k-matrices with entries in K 

that display a regular asymptotic behaviour. We call a sequence {M,}, 2 N con- 

vergent to A4 if for all i, j the entries (A4,)ij converge to some number Mij E K (for 

a matrix A E Kk,’ we let Au denote the entry in the i-th row and the j-th column 

(1 5 i 5 k, 1 < j < I)). The limit matrix A4 will also be denoted by lim M,. 

For M E Kk” we define the norm IlMll as the matrix norm induced by the 

Euclidian vector norm on K ‘: 

IIMII = yg l~w-4~ 
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In particular, we have that llMNl/ 5 /lMll . IlNll w h enever the multiplication is 

well-defined. 

A block-diagonal matrix is a matrix M E K: klk of the form 

Sl 0 

s2 
M= 

i ..I 0 ‘Sh 

where Si E Kkl,k’, C:= 1 ki = k. W e shall denote such matrices by M = 

diag(Si, S2, . . . , Sh). If some of the blocks are 1 x l-matrices, we just write their 

value: M = diag(ar, S2,. . . , Sh) if Si = (~1). 

We recall the concept of a Jordan canonical form. For convenience, we denote 

by Zk (or by Z, as well) the k x k identity matrix and by Jk the k x k-matrix such 

that (.Zk)ij = Si+i,j (1 < i, j < k). By R(4) we denote the 2 x 2 rotation matrix: 

For each matrix M E Rk>k there exists some matrix U E Rk3k such that 

U-’ MU = diag(Sr , S2, . . , Sh), where Si = Cyi Zk, + .Zk, for some (Yi E [w, Or 

Si = Cyi. diag(R(&), . . , R(4i)) + Ji for some ~ri E R, oi > 0, and +i E R 

(lIiIh).ForM~~“~amatrixU~~“~canbefoundsuchthatU-‘MU= 

diag(Si, . . , &) with Si = oi Zk, + Zk, for Qi E @. The matrices Up1 MU are 

called the (real and complex, respectively) Jordan canonical form of M. We call 

St,. . , sh the Jordan blocks. The Jordan canonical form is unique up to permu- 

tation of the Jordan blocks. 

We introduce some more notation: For A E K: k, k and z E K, z # 0, we define 

zA := eA”gz = [gO A (Alogz)’ 

for some branch of the logarithm. In this paper, we take z E R, z > 0 and 

log z E R. Note that for A a diagonal matrix, z A has a particularly simple form: it 

is a diagonal matrix with entries (z~)~~ = zAij (1 < i, j 5 k). 

By M we denote the set of functionsf : N + [W,O such that lim, _ w f(n) exists 

in R or is infinity, and such thatf(n)/f( m IS ) . b ounded either from above or from 

below for m, n E N, N 5 n 5 m. The subset MO c M consists of the functions 

f E M for which limn_m(f (n + 1)/f(n)) = 1, and M’ is the set of functions 

f E M” such that the functions f(X) X’ lie in M for all r E R. 

Finally, in asymptotic estimates we shall avail ourselves of the notations Q,, 

and -. Let N E 77 be fixed. If the series CT=“=, aj (aj E K) converges then 

Cc,,aj := CTn I ( _ 1, a. n > N and if it diverges, then CC,, aj := c;zh ai (n 2 N). 

If f ,g are sequences of numbers, vectors or matrices, we write f - g if 

f(n) -g(n) = 4lf @)I) or, iff (n) is a matrix, o( II f (n) 11) as n + 00. 
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Let Wnh2N (N E 4 b e a sequence of non-singular matrices in Kk,k. Con- 

sider the recurrence relation 

(1.1) M,,x,=x,+i (x,EKk,‘,n>N,I=lork). 

We call (1.1) the matrix recurrence induced by {LV,,}~ 2 N, and {xn}, k N a solution 

of (1.1). For 1 = k, we require that det x,, # 0. Clearly, the set of solutions of (1.1) 

(with I = 1) is a k-dimensional linear subspace of the vector space of sequences 

{%L>iv (a, E Kk) (with termwise addition and (scalar) multiplication). We 

identify two sequences if their terms are equal from a certain index on and we 

simply write {M,,}, {xn}, etc, without specifying the starting index. If the starting 

index matters, we usually take 1 or N, without further specification. 

2. A DECOMPOSITION THEOREM 

In this section we treat the first decomposition theorem for matrix sequences 

(or matrix recurrences). If we have a matrix recurrence whose defining matrices 

can be written as the sum of a block-diagonal matrix with two blocks, one of 

which is (constantly) of smaller ‘size’ than the other one, plus some perturbation 

matrix, then, if the perturbation matrix is small enough, another matrix recur- 

rence can be found whose defining matrices are block-diagonal, whereas its solu- 

tions {x,} correspond, in a 1-l manner, to solutions {yn} of the original matrix 

recurrence such that Ix, - y,,j = o(/x~/). The use of the theorem lies in the fact 

that the second matrix recurrence is of simpler form than the first one, whereas 

the solutions of the former correspond to solutions of the latter which are 

asymptotically equal. (Note that the solutions of a matrix recurrence whose de- 

fining matrices are diagonal, or even upper (or lower) triangular can be calculated 

in an exact manner, i.e. an explicit expression for them can be given in terms of the 

coefficients of the matrices). The theorem precises what we mean by the size of the 

matrix blocks and gives conditions on the size of the perturbations. Moreover, 

upper bounds are given for the normalized differences ( Ix, - y, I / Ix, I). 

Theorem 2.1. Let {M,} be a sequence of non-singular matrices in Kklk of theform 

where R E K’>’ and S E Kk-‘~k-’ are such that S,, is non-singular, and such that 

for somensequence {&;with 6, E [w, 6, > 0 (n E N) and C,“, 6, < CXI, 

(2.2 ) 0 < llRnll . IlS,-‘ll < 1 + 6, for all n 

(2.3) f? (1 - IFnIl . IISnulll) diverges, 
n=l 

and moreover 

(2.4) 
lim (lIpnIl + IIQnll) Ils~‘II = 0, 

n-03 1 + 4, - IlRnll . IlS,-‘ll 
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Then there exists a sequence { Fn} of non-singular matrices Fn E K k, k such that 

(2.5) F,-:, M,, Fn = diag(&,, 3,) 

wit,+ & n E K’>’ 3 E Kk-[>k-’ , n 3 

(2.6) Ilk - Kll + II& - Sll = o(Wnll) 

(2.7) limF,, = Z 

and, for each E > 0, 

(2.8) 
IlFn - III KE hgn llhll II%‘ll . Yil llfimll . IIS,-‘II m=ll 

n-l n-1 

+hgl (IlQhll +E IIW). Il%‘ll .I;+, llkll~ IV’,-‘Il. 

Further, ifthe matrices R, are non-singular, and 

(2.9) hc, (llf?ll + IlQhll) IlRi’ll +: lISAI 11~,111 

converges, then the second term on the right-hand side of (2.8) may be replaced by 

(2.10) hen (IIQ~~II + E Ilhll) llR~‘ll . “fi’ II&n/l llR,‘ll. wJ=n 

We prove the theorem in several steps. 

Lemma 2.2. Let A, B E KkYk be such that A is non-singular and IlBll < IlAP 11-l. 

Then A + B is non-singular and 

II@ +B)-‘II L ’ 
IHA-‘II-’ - IIBII 

Proof. Let x E Kk, x # 0. Then 

IV + 44 2 II4 - IPxll 2 (llA-lll-’ - IIBII) 1x1 > 0, 

hence A + B is invertible. Furthermore, 

max IKA+W’YI I4 1 

Y#O IYl = ?$‘o” I(A + B) XI ’ \\A-‘II-’ - llBl\ ’ 

Lemma 2.3. (a) Let {R,}, {&}, {Qn} b e as in Theorem 2.1 with { &} = { 0). Then, 

if{Xl> (Xl E K ‘Sk-1) satisJies the recurrence 

(2.11) XI+1 Sn = k-K + Qn, 
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then, fern > N 

n-1 
Iv-nil 5 IPNII I-I llhll Ik II 

h=N 

(2.12) 
n-1 n-1 

+ ,FN IIQd IITII .& ll~~ll IIXII 

n-1 

5 ilxNll n liRhil Ilsi’ll + Ey 1 !f$“;;!l II > 
h=N _ . I 

so that lim .+,X, =Ofo~eve~y~oZution{X,}of (2.11),(X, E K’,k-‘). 

(b) Furthermore, the recurrence 

(2.13) Y,+IR, = &Y, + Qn 

hasa solution {Y(‘)} Y(O) E Kk-‘,‘, with n In 

(2.14) II T?ll 5 ,; IIQrll IIT’ll j; IlRhll Il~,-‘I/~ n 

Proof. (a) Solving (2.11) explicitly, we find, for n 2 N, 

I 
xn = (K-1 ... RN)XN($_I ... ,!i’N)-l 

(2.15) n-1 

+ c (K-1 ... . RI+l)Q,(Sn-l ... . sl)-’ 
l=N 

from which (2.12) follows immediately, by llRhll IIS,-* II < 1 for all h > N. 

(b) Since the sum T,, := ZEN (A’[ ... . SN)-’ Q,(RI_~ . . . RN) conver- 

m by 

(2.16) 

I 

II 
5 (S/ ... 5’~)~~ Ql(R,_1 ... RN) 
l=p II 

IlQlll IIFII 
’ %t: 1 - llR,l]. Il~S,-~11 ,,=N 

“II’ llRhll ,ls-l,l 
h 

we may choose YN = -TN. Then 

Y, = -T, = -E (SI ... Sn)-l Qr(Rl- 1 ... R,) for n > N, 
l=n 

which yields (2.14) (take Yi”) = Yn). In particular, by (2.16), 

so lim,,, Y, co) = 0. 0 

Lemma 2.4. (a)Let {&I, GM, NJ, {QJ b easinTheorem2.1 with {&} = (0). 
Then the recurrence 

(2.17) X,,, = (R,X, + Qn)(& +f’Jn)-’ 
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has a solution {A’(‘)} X(O) E K”kp’, such that lim n 7 n n+cc X,“’ = 0 and, for any 

E > 0, 

n-1 n-1 

(2.18) IIT?II 5 I& (lIQ/ll + E IlfW . IIFII .,,=y+, llhll 11~~111 

for N > N(E). 
(b) Moreover, ifR,, is non-singular too for n E IV and the sum 

,rN (llpdl + IIQN . IIRI’II /;j; IIK’II llshll 

convergesforsome N E N, then (2.17) has a solution {X,“‘}, X,“’ E K”k-’ with 

(2.19) Il+“ll 5 /E, (IlQrll + E IIPrll) llR?ll . ji; IIKII IISII 

for n > N’(E). Znparticular, lim,,, X,“’ = 0 

Proof. (a) Without loss of generality we take E < 1. First of all we show 

that small solutions remain bounded. Put, for n E b4, r, = llRnll . IISn-'ll, 

Pn = ll~nll . IIX’II~ and q,, = llQnll IlS;‘ll. Let N(E) be such that qn + cpn < 
A( 1 - r,) for n 2 N(E). By (2.17) and Lemma 2.2, we have 

rn IIJGII + qa 
lK+1ll 5 1 _pn. Ilq 

provided that IlX,ll < l/pn. Hence, if for some N’ > N(E) we have IlXv,l/ 5 &, 

then IlXll 5 Jf E or all n > N! We can write (2.17) as 

(2.20) X7+1 S,, = R, X,, + (2n 

with& = Q,, - X,+1 P,, X,, for a fixed solution {Xn}. If N > N(E) and we choose 

{X(O)} such that X (‘) = 0 then we have IIXA’)I/ 5 fi for all n > N. Application 

of Lemma 2.3(a) toy2.20) iwith & instead of Q,J yields the desired result. 

(b) Put gn = llR,‘II . Il~nll, nn = llR;lll llPnll,andpn = llRn~‘ll . llQnll (n > N). 
Since C;“= N (“I + pl) gl_ 1 0~ converges, we may put 

ThenD,=a,D,+,+p,+&~,forn>Nandlim,,,D,=Osincea,r,>lfor 

all n. Let N’(E) > N be so large that D, Dn+l 5 E for N 2 N'(E). Then 
~~:=~,,+ET,,-T,,D,D,+~ >p,,and 

D ?I+1 = ,“;n % (n 2 N’(E)). 
n nn 

For n > N’(E) we define compact sets U, = {X E K’,kp’ : llXl/ < Dn} c K”k-’ 
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(with the topology induced by 11 II), and f or each h > N’(E) we choose solutions 

{Xjh’} of (2.17) with X,,‘h’ E uh. Then Xih’ E U,, for N’(E) 5 12 < h. For we have 

provided that 7r/r, [IX,‘?, II < 1. But if X,‘?, E U,+ 1, then 7r,, IlX,,‘$), II I 7rn D,+ 1 < 

riT, E/D, < 1. Thus, if Xi:‘, E U,,+ 1 for n > N’(E), we have 

IIX(h)ll 5 
unDn+~ +P, 

n 1 - ~,&+l 
5 D, 

so that _YJh’ E U,,. Since the U,, are compact sets, the sequence {Xi!,,,} has at 

least one limit point in U,+,, say XA+). Let {Xn}, , N,CEj be defined by (2.17). By 

continuity of (2.17), p, E U,,, hence ll~nil 5 D, for IZ > N’(E). q 

Proof of Theorem 2.1. We first suppose that (5,) = (0). By Lemma 2.4 the 

recurrence (2.17) has a solution {Xi’)} such that 1;‘)~ K’,k-‘, lim X,“’ = 0 and 

such that (2.18) holds. Moreover, if R, is non-singular, and the sum (2.9) con- 

verges for some E > 0, then, again by Lemma 2.4, (2.17) has a solution {X,“‘} for 

which (2.19) holds. Put 

Bn=(; f::) (n>N). 

Then IIBn - I(1 = /lX,‘“‘il and 

0 

P, x,‘O’ + s, 

Since B,,, A4, are invertible for n > N, so is B;i, A4, B,,. Further, since by Lemma 

2.2 we have 1 - IlR,, - X,‘?, P,ll [I(& +P,X,(“))-‘II 2 ;(I - liRnll IlS;‘II) for 

n large enough, say n 2 N, we may apply Lemma 2.3(b) to the recurrence 

Xz+ 1 (R, - x,:!$ P,) = (S,+P,X(“))X,+P n n 

and find that there is a solution {X,“‘}, 2 N, X,“’ E Kk-‘)‘, with 

Ilx,cl’ll 5 hg llphli Il(sh + ph x,(“))-lll 
n 

h - I 

x ,lln IlRm - J$;, pm11 ll(S, + Pm x(O))-‘II m 

for n > N, and lim X,“’ = 0. Define 

K=Bn.(Jlj a,) (n>N). 

Then F,, E Kk3k, Fa:, M, F,, = diag(R, - X,‘yi P,,, S,, + P,, Xn”‘) (n > N). It is 
now easy to check properties (2.5))(2.8) and (2.10). 
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Now consider the general case. Put b, = l-Ii_ t (1 + Sh). Further, put 

U,, = diag(b,Zl,Zk_,) (n E N).Thenlim,+, b, exists and is not zero. Moreover 

so we may apply Theorem 2.1 with {&} = (0) to {U,,-,! 1 M, U,,}, thus obtaining a 

sequence {F,,}, F,, E Kk,k such that 

with 11% - ZGll + 11% - &II = oWnll) and such that (2.7)-(2.10) hold for 

{Fn:, Un: 1 Al,, U,, p,,} and {F,,}. Finally, put F, = U, p,, U,-’ (n E N). Since U,, 

converges to some non-singular matrix U, we find that (2.5) to (2.10) hold for 

{K} and {&I. 0 

Remark 2.1. If, in Theorem 2.1, {&} = {0}, it follows from the proof that, in 

(2.8), <E can be replaced by 5, provided that n is large enough. 

Remark 2.2. If llR;‘ll = IIRnll-’ and IlS,-‘ll = IISnll-l foralln,wecantake(2.8) 

and (2.9) together, writing 

(2.21) 

IIF, - III G ,,En llf’d II%? II %I1 ll~mll 1113’,-‘II +lc; IlRmll IIS,-‘II 
)n=n 

X {E (IlQhll + E IIM) . IlSi’ll Ah, llK?ll llsmll}. 
n 

3. APPLICATION: SEPARATION OF EIGENVALUES WITH DISTINCT MODULI 

In this section we study converging sequences {M,} of square non-singular 

matrices. We show that a converging sequence {U,,} can be found with lim U,, 

non-singular and such that Unp2 1 AI,, U,, is a block-diagonal matrix with each of 

its blocks converging to some matrix whose eigenvalues have equal moduli. 

Moreover, the rate of convergence of { Un: 1 A4, Un} is about the same as the rate 

of convergence of {M,}. 

For a matrix M E K k, k , we denote by p(M) its special radius. 

Theorem 3.1. Let M E Kk,k be a matrix of the form A4 = diag(Ri, R2, . , RL) 

where Rj E K k~, k~ such that al eigenvalues of Rj have smaller mod& than those of Ri 
(1 < j < i < L). Letf E M” and {M,,} a sequence of matrices in Kk)k such that 

fornEMandl<i,j<L,and 

(3.1) ILK - MI1 = 4f (n)) (n + ml. 
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Then there exists a sequence {F,} of non-singular matrices in K k, k such that 

(3.2) F,-:, M,, F,, = diag(Ri,, Rzn,. , RL,,) 

withlimRj,=Rj(j= l,...,L), 

(3.3) l/Rjn - M,(“‘)l) = o(//M~ - Mll) (n + W) 

(3.4) limF,, = Z 

and 

(3.5) II& - III = o(f (n)) (n + m). 

Moreover, if x:=1 (l/f(n)) JIM, - Ml1 converges, then {Fn} can be found such 

that, in addition, 

converges. 

Lemma 3.2. Let M E Kk) k. There exists for each number E > 0 some invertible 

matrix A(E) E Kk,k such that ((A(e)-‘MA(e)(( 5 p(M) + E. 

Proof. Note that ifM = diag(Mi, . . , ML), then IlMll = max( I/Ml (I,. , llM~l[). 

Since a matrix U E Kk) k exists such that U-‘MU is in Jordan canonical form, it 

suffices to construct A(E) for the Jordan blocks of M. First consider a Jordan 

block of the form crI[ + Jt. Put 

(3.7) Et := diag(O, 1,2,. ,I - 1) E K’,! 

For z E K, z # 0, 

(ZE’ . J,. z-E$ = z’-‘(J&p-j = zi-j61+,,j, 

Hence 

(3.8) zE’ . J, z-El = z-‘J,. 

Thus, jl~-~‘(crIr + Jt) &“/I = IlcuIt + eJtl[ < /al + E. Now consider a Jordan block 

of the form j3. diag(R(cp), . , R(p)) + Jf. (Here we assume K = [w). Consider 

the (right-)Kronecker product Et/z @ I2. Since E/l2 @ 12 = diag(O ‘12, 1 .I2,. . . , 
((I/2) - 1) 12), it commutes with diag(R(cp), . , R(p)). Furthermore, by Jf = 

J112 @ I,, we have 

(3.9) zE~~z@Iz J,2 . z-Ei/,@b = z-l Jf. 

Hence, 

II&- Ef’12(p ’ diag(R(cp), . , R(y)) + J:) eEi@tzll 

5 IPI llR(~)ll + E = IPI + E> 

since R(p) is an orthogonal matrix. q 
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Proof of Theorem 3.1. We proceed by induction on L. First take L = 2. Put 

R := RI, S := Rz. Let p := p(R), y := p(S-‘)-‘. By assumption, y > p and we 

may choose some number E E R, 0 < E < (y - p)/6. By Lemma 3.2 there exist 

matrices U E Kkltkl and V E Kk2,k2 such that 

Put W = diag( U, V) and choose N E M so large that 

Observe that W -’ A4,, W =: &I,, can be written as 

with II&, - U-‘RUII < E, IIS, - V-‘S/II < E, llPnll < E, llQnll < E for n 2 N. 

Thus, by Lemma 2.2, llRnll < /? + 2~ and IlS,-‘II < l/(y - 2~) for it > N. Hence, 

and 

llRnll IlS,-'ll < 1 - 6 for some b > 0 (n > N), 

E (1 - IlRnll . IIK’II) = 00 
n=N 

lim Will + IIQAI) . Il~n~lII = 0. n+cx 

Applying Theorem 2.1 to {I@,,} we obtain a sequence {F,,},,>,,,, p,, E Kk,k, such _ 
that 

limF, = I 

p,,;‘t &i,, F,, = diag(&, &) 

and such that (2.6), (2.8) hold for {tin} and {I@,}, hence II& - Rnll + 
II& - Sll = OWnll) f or n --f 03. Put Ir, = WF,, W-l (n > N).Then 

lim F,, = I, F,;‘, A4, F,, = diag(&, 3,) 

with 

II& - Rl,ll + II% - &II = o(llM,, - Mll) (n + m). 
Put 

in = llf’ll . liCll> qn = IlQnll . IIKII, yn = II&II . IIS,-‘It 

for all n > N. Then 

r, -c I-6, Pn = O(llMI - WI), qn = O(llMn - M((). 

Furthermore, 
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and 
n-1 n-1 n-1 

for some number < < 1. So, by (2.8), and by j/pn - III N IIFn - Ill, we have 

1161 - 111 K ,*gU IlMh - MI1 <hpn + ;$ I/Mb - MI/ C”-h. 

We show that 

hgn f(h) Ch-” + 1s; f(h) Th = O(f(n)) (n + ml. 

Set A = max,,N f(n) and let N’ be so large that I(f(m + 1)/f(m)) - II < 

(1 - <)/2 for m > N! Choose IZ > N! Since <(3 - <)/2 < 1, 2</(1 + <) < 1 and 

<“/f(n) + 0 (n + 03), we obtain 

(n -+ XJ). By (3.1) this implies (3.5). Suppose that C,“, (l/f(n)) IlM, - MI1 

converges. Then 

$,,, f&{ $)I 
n-1 

Mh - MI1 ’ <h-n + ,gN IlMh - M/I cnph 

SE I. lp,fh _ MI\ 5 (qQ)h-n 

h=N’ f(h) n=N’ 

+f! L' ll"h -MII -,=i+, (&)n-h 
h=N’ f(h) 

l/l& -MI1 < CC 

so, C:zN (I/f@)) llFn -III converges and we have proved Theorem 3.1 in case 

L = 2. 

Now suppose L = LO > 2. We assume that the theorem holds for L < LO. We 

denote the matrix that is obtained from M, by omitting the first kl rows and col- 

umns by MA (n E F+J). Thus 

with lim R,!, = RI. By the theorem for L = 2 we can find a sequence of non- 

singular matrices {Fi} such that 

Pi’, 1)-1 M, Fi = dkdR1,, MI,) 
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with lim Mi’, = lim ML and lim RI, = lim R, and such that (3.3)-(3.6) hold for 

{M,} and {FL}. Applying the theorem for L = Lo - 1 yields a sequence {F,“} 

such that (F,‘: ,)-I M[,, F,” = diag(R2,, . . . , RL~) and such that (3.3)-(3.6) hold 

for {Mt’,} and {F,“}. (Note that since lj(F,‘+,)-’ M, Fi - MI1 - [IM, - MI1 by 

(3.3), the order of convergence of {Mi’,} is not essentially larger than the order of 

convergence of {M,}). Put 

F,, = Fi diag(Zk,, F,“) (n E N). 

It is not difficult to check that {Fn} satisfies the requirements. q 

Note that for any matrix A4 E K klk it is always possible to find a matrix 

U E Kk5k such that U -’ MU has the form prescribed in Theorem 3.1. Moreover, 

we can find U and RI,. , RL such that all eigenvalues of Rj have the same 

modulus (1 5 j < L). 

We apply Theorem 3.1 to matrix recurrences: 

Corollary 3.3. Let {M,} b e a sequence of non-singular matrices in K k, k with limit 

matrix M. Suppose that M has some eigenvalue cy E K with multiplicity 1 and 

such that I,0 # Ial for all other complex eigenvalues p of M, Then the matrix 

recurrence (1.1) induced by {M,} has a solution {xi”‘}, x,“’ E K”, such that 

(x(~)/Ix~(~‘I) -f = o(1) with f an eigenvector of M with eigenvalue a. Moreover, 

lynx:= 1 IlM, -‘Ml/ < 00 and: # 0, then {~~‘O’/CU~} converges. 

Proof. We can find a matrix U E Kk’ k such that U -’ MU = diag(cr, R) for some 

R E Kk-l,k-l. ByTheorem 3.1, there exists some sequence {F,}, Fn E K”,“, such 

that 

F,-‘, U-’ M, UF, = diag(a,, R,) 

with lim,,, (Y, = o, lim R, = R, lim F, = I. Further, if C,” 1 IlM,, - MIJ < 00, 

then C,“= 1 IQ, - cx < cc as well. So, the matrix recurrence induced by 

{Fn;, U-‘M,, UF,,} has some solution {yn”‘} with y,!“)/Iyio)I = X,,ei, where 

X, E K, IX,1 = 1 andet = (l,O,. . . , 0)' is the first unit vector in K k (n E N). Then 

{xn(“)}:={UF,y,(o)}isasolutionof(l.l)and (x~~)/Ix,$~)I) - (X,Uel/lUell) = o(1) 

and Uel is clearly an eigenvector of M with eigenvalue CL If (Y # 0 and 

C,“t Icy, - QI < oo, then 

Y,(O) n-1 ck![ 
-= 
an-1 ( > fJ - .el (n>l) 

I=1 Q 

and the product on the right-hand side converges. Then {xn(‘)cr -“} converges as 

well. 0 

Remark. If M E Kk,k has k distinct eigenvalues (~1,. . , ak with 1~1 I < 

Ia21 < ‘. . < IQkl, we have, by Corollary 3.3, that (1.1) has k solutions 

{x(‘)} {x(~)} such that Xc’ (9 x, /Ix~(~)I converges to an eigenvector of M with 

ei[envalulue’ oiy for certain numbers Xi) E K, IX:’ I = 1 (i = 1, . . , k). Clearly, 
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{xn”‘}, , {x;~‘} constitute a basis of solutions of (1.1). This is essentially the 

Poincare-Perron theorem for matrix recurrences (see e.g. [3], [4] (p. 3OOC313) [5], 

M.1 

4. SEQUENCES OF ALMOST-DIAGONAL MATRICES 

It appears useful to have a separate lemma for the case that the matrices A4, are 

almost diagonal, i.e. they can be written as the sum of some diagonal matrix and a 

perturbation matrix. We impose a few regularity conditions on the diagonal parts 

of M,,, which are often fulfilled in practice. 

Lemma 4.1. Let bl, . , bk be K-valued functions on integers such that 

Ibj(n)/b;(n)l - 1 is either non-negative or non-positive for all n E FV up to addition 

of a term di,j(n) where C,“= 1 ldf,j(n)I converges (1 5 i, j 5 k). Let { Dn} be such 

thatD,EKk’kandEF=, IIDnll/lbi( n )I convergesfor all i. Put B,, = diag(bt (n), , 

bk(n)) (n E N). Th ere exists a sequence {F,} 

(4.1) Fn:l(B, + D,)F, = B, (n E N) 

of matrices in K k, k such that 

In particular, lim F,, = I. 

For the proof of Lemma 4.1 we need an auxiliary result: 

Lemma 4.2. Let {m}, {a,,} be sequences of complex numbers such that both 

C,“=, Ix andCiL1 I&l converge. Then for every CY E C the recurrence 

(4.3) .Yn+l = (1 +rn)~~+& (n E N 

has a solution {y,(cu)} such that lim,,, yn = cy. Moreover, Iyn(0)l << CTzp=, I&l. 

Proof. Solving the recurrence (4.3) explicitly (compare Lemma 2.3) we obtain 

n-1 

Yn = n, (1 + rm). 
1 

n-1 

Yl + c hi fi (1 + YJ’ 
h=l /=I 1 

Since nzz 1 (1 + rm) converges to, say, /3 E C* and since the sum 

cr= 1 6h @=, (1 + Yl)-’ converges too, We may put 

m h 

Y1(cy) = ; - ,g, sh ,gl (1 + ‘Yl)-’ 

andlet {Y&)),~~ be a solution of (4.3). Then lim,, m yn(o) = cy and 

k(O)] 5 hgn lsh] ’ ,fj I1 f-Y’-’ +l hE Ishi. 0 
n n 
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Proof of Lemma 4.1. Since the lemma remains valid if we take {P-l (&+D,)P} 

instead of {II, + &} for any permutation matrix P, we may suppose that 

lMr)I 5 lb+1(n)I + 4( n 1 f or all n and i E { 1, . . , k - l}, with tii(n) non-negative 

real numbers such that C,“= 1 di( n ) converges for all i. We first look for a sequence 

of unipotent upper triangle matrices (i.e. with diagonal elements 1) {Fn(*)} such 

that 

((F,(:),)-’ (& + Dn) F,(l))ii = 0 for i < j 

where A;j denotes the entry in the i-th row and j-th column of the matrix A. We 

set J;j(n) = (Fj”)ii, 
F(l)).. Then 

bil(n) = (& + D,)ij and &ii(n) = ((F,,(:),)-’ (B, + Do). 

n ‘I’ 

(4.4a) C bih(n)jkj(n) + bij(n) = C &(n + 1) &j(n) if i < j 
hcj m>j 

(4.4b) C bih(n)fhj(n) + bij(n) = C f;m(n + 1) bmj(n) + bij(n) if i > j. 
hcj m>i 

Before choosing Ihj( II ) I as small as possible, we show that it can be chosen small. 

Set d(n) = Ci,j I(D,)jjl = llDnllt. Then C,“t (d(n)/lb;i(n)l) < 00 for all i. Set 

f(n) = maxi#j If;j(n)l and let N be so large that (d(n)/bjj(n)) < 2-k for n > N 

andj=l,...,k.Letf(n)~lforsomenLN.Weshowthatthenf(n+l)~l 

too. Suppose it has been shown that If;i(n + 1)l 5 1 forj = J + 1,. . , k and that 

Ibij(?Z) - bij(?Z)l 5 2k-i. d( it ori=J+l,...,k.Applying(4.4b)fori=Jand ) f 

j < J 5 k we obtain that 

IbJj(lZ) - ?)Ji(n)l 5 d(n) + mTJ Ibmj(fi) - h-j(n)I I d(n) 2k-J. 

Applying (4.4a) for j = J and i -C J we find 

IJJ(n + 1) &JJ(~)) I d(n) + mYIJ I&d(n) - Lr(n)l 5 d(n) . zkp J 

so that 

IjJn + 1)l < %) 2k-J < 1 
I~JJ(~)I - 

for i = 1,. . . , J - 1. So we find that, if If(~)1 5 1 for some n 2 N then If(~)1 5 1 

and Ibii(v) - &ii(V)1 5 d(v). 2k for all v > n. We may now apply Lemma 

2.4 t0 (4.h) with & = b,?(n), R, = bii(FZ), en = Ch<j,hfibih(n)fhj(n) - 

Cm>j AT?l(n + ‘) bMj(n)> and P,, = 0, whence there exists X,, =J;j(n) with (com- 

pare Remark 2.2) 

We now look for a sequence of unipotent lower triangular matrices {F/‘} such 
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that (F,Iyt))’ (&l,(n)) Fi2) IS a diagonal matrix for all n. If we set gij(n) = 

(Fi2))i, we get, using that gi;(n) = 1, 

(4.6) ’ - C bib(n) ghj(n) = gij(n + 1) bjj(n) for i >j. 
h=j 

If nz=, Ibjj(n)/bii(n) I = 0 and i > j, we may apply Lemma 2.3(b) to (4.6) with 

s, = &i;(n), R, = bjj(TZ), Qn = ci=j+l bih(n)ghj(n). Assuming that we know that 

Ighj(n)l 5 1 for y1 > N’ and h > i, we find that (4.6) has a solution { Yj”} = 

{g;j(n)} which tends to zero, so in particular igij(n)l < 1 for n > N” > N’ and 

On the other hand, if CrZN (Ib,y(n)/bii(n)I - 1) converges, then SO does 

C,“=N (lh,(n)/&ii(n?l - 1). Defining R,, S,,, Qn as above and assuming that 

j&(n)1 5 1 for h > i and n large enough, we have that C,“=v IQ,/R,) and 

C,“,v IWRn - 11 converge. Hence, by Lemma 4.2, the recurrence (4.6) has a 

solution {gij(n)} which tends to zero as n + CC and 

Igij(lZ)l < C _do 
(n) Ibjj(h)l 

from which (4.7) follows. Moreover, we see that the assumption that Ighj(n) I 5 1 

for h > i and n large enough is indeed consistent. Finally, since Ibi,/(n) - bij(n)l < 

d(n).2kfori,jE {l,...,k} we may find sequences of numbers {hi(n)} such that 

bii(n) hi(n) = hi(n + 1) bii(n) (i = 1,. . , k, IZ E FV) and lim,,, hi(n) = 1. In this 

case, again by Lemma 4.2, 

(4.8) 

Putting 

F, = Fjl) . Fd2) . diag(hi(n), . . , hk(n)) 

we find 

Fn:,(& + &,)F, = & 

and, combining (4.5), (4.7) and (4.8) we obtain 

from which (4.2) follows since II 11 and II II 1 are equivalent norms. q 

5. FAST CONVERGING SEQUENCES 

Again we consider converging sequences {M,,}, M,, E K k, k. Let L be the maxi- 

mum of the multiplicities of the zeros of the minimal polynomial of lim M,, =: M. 

We shall say that {M,} converges fast if the sum C,“i nL-l II&f, - MI1 
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converges. We show that in this case the solutions of the matrix recurrence (1.1) 

have a similar behaviour as the solutions of the matrix recurrence 

(5.1) Mx, = x,+1 (n E N) 

provided that M is non-singular. More precisely, the following result holds: 

Theorem 5.1. Suppose that thesequence {M,,}, M, E Kk’k, convergesfast tosome 

non-singular matrix M. Let f E M' such that C,“= 1 (l/f(n)) . nL- ’ /lM,, - MI1 

converges. Then there is a bijection between solutions {xi’)} of (1.1) and solutions 

{x”‘} of(5.1) such that n 

(54 Ix:‘) - xn(‘)l = IxjO)I o(f(n)). 

(Note that (5.2) is in fact a symmetric relation, since it implies that 

(5.3) Ixn(O) - xn(l)l = Ixj’)I . o(f(n)) 

holds as well). 

It is useful to make a few observations before proceeding to the proof of the 

theorem. 

Remark 5.1. Note that we may assume K = C. For if M, M,, x,“’ E R for all n 

and (5.2), (5.3) hold for some solution {xn(l)} of (5.1) then it also holds for 

{Re x,(‘)}, by 

IRe xj’) - xA”)I 5 /xn(‘) - xL’)I = Ixn(‘)l o(f(n)). 

Remark 5.2. (5.1) has a basis of solutions {M”el}, . . . , {Mnek} (where e, is 

the i-th unit vector in @“). If M = c& + Jk, 01 # 0, then M” = 

cy”.~~=, (j~i)N1-j.J~-l,sothat 

Hence, for any arbitrary non-trivial solution {xn}, we have x, = Xi M”el + . . + 

&M"ek,SO that 

(5.4) lxnl N IAil. IM”q 

where j is chosen such that Aj # 0 and Xi = 0 for j < i I_ k. If M = 

diag( Si , . . . , Sh) with Si , , . , Sk Jordan blocks, Si E Ck’lk’ and {xn} is a solution 

of (5.1) then there exist ui E Ckl (1 5 i 5 h) such that x, = (Si%i, . , S/&) 

(n E N), hence Ix,12 = ISi%i I2 + . + lS,“uh12 (n E N). Then, by (5.4) we have 

(5.5) 1~~1 N C. IM”ejl 

forsomecE [w>o, jE {l,..., k}. 
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Lemma 5.2. Let f E M, f # 0 and let {a,,} b e a sequence of non-negative real 

numbers such that ~~!, ak converges. Then 

(5.6) z a,f (h) = o(f (4). 
n 

Proof. First suppose that lim,, 3c f(n) = 0. Then Cr= 1 ah f (h) converges and 

f (h)/f (n) < A if h 2 n. Hence CC,, ahf (h) < A .f (n) &,, ah = o(f (n)), so that 
(5.6) holds. Further, if lim,, w f ( n ) exists and is not zero, the assertion is trivial. 

Finally, suppose that lim,,, f(n) = 00. If Cr=, uhf(h) converges, then 

&,, ahf (h) = o(l), so (5.6) h ld o s a fortiori. Suppose that cr= 1 ah f (h) diverges. 

Let A be such that f (h)/f (n) < A for h I n. We choose some number E > 0 and let 

N E N be so large that CCNj ah < E/A. Then, for n > N, 

n-1 N-l n-1 

hF, ahf (h) = /lg, ahf (h) + ,gN ahf (h) 

LA.f(N)Cah+~.f(n)<2~.f(n) 
(1) 

for n large enough. q 

Lemma 5.3. Let M, = (1 + (l/n))B + D, (n E N) for some diagonal matrix 

B E Rk3k and matrices D, E Kklk. Suppose there exists some f E M’ such that 

cFy, (l/f(h)) i/Dhll < co. Then there exists a sequence {F,} of non-singular mat- 

rices in K k, k such that 

(5.7) IIE - III = o(f (n)) 

and 

(5.8) M,F,,nB=F,,+~(n+l)B 

Proof. Put B,, = (1 + ( l/n))B. Applying Lemma 4.1 to {M,} = {B, + Dn} yields 

the result. (5.8) follows directly from (4.1). We show that (4.2) implies (5.7). The 

numbers hi(n) := (B,)jj are of the form hi(n) = (1 + (l/n))” for /3i E R 

(1 < i < k). Putgii(n) = nsi/ (bi(l)/(bj(l)) (1 5 i, j 5 k). SincegiJn)f (n) E M 

and CL 1 U/f(h)) lIDAl < co, Lemma 5.2 yields that 

z lIDAl .gij(h) = oh(n) .f (n)). 

Hence, 

GUI . z lIDhI gij(h) = o(f (n)) 
n 

for all 1 < i, j 5 k. •I 

Proof of Theorem 5.1. (a) We first assume that all eigenvalues of A4 have the 

same modulus. Since the assertions of the theorem remain valid if we multiply all 
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M,, and M by some constant c # 0, c independent of n, we may as well assume that 

all eigenvalues of M have modulus one. We may further assume that M is in 

Jordan canonical form, thus M = diag(St, . , Sh) with Si E Ckl,kl the Jordan 

blocks of M (1 < i 5 h). Put E = diag(&, , . , Ekh), with Ej (j E N) as in (3.7). 

We define the sequence { Gn} by G, = M” npE (n E N). By (3.8), for each X E N, 

cy E @ \ {0}, we have 

Hence, since G, is a block-diagonal matrix with blocks of the form S,? n -Ekn 

(n E N), we have that {Gn} converges to some matrix G such that Gej # 0 for 
1 < j I: k. Further, G;’ = nE . M-” and nh(crZx + JA)” = (all + .Z,Jn)” n Eh , 
so that 

IIGnp’ll = O(llnEll) = O(nL-‘). 

NOW, G;J I MG, = (1 + (l/n))E, with E some diagonal matrix, and 

IIG;~t(M,-M)G,II <<nLpl llMn-MII,so 

where C,“= 1 (l/f(n)) lIDnIl converges. By Lemma 5.3 there exists some sequence 

{F,}, F, E @k,k (n E N) such that 

and 
IIF, - III = o(f(n)) 

Put X,‘O’ = G, F, n E (n E PU). Then {X,“‘} is a k-dimensional solution of the 

matrix recurrence determined by {M,}. On the other hand, we have, for 

{X,“‘} := {G, nE}: 

MA’,(‘) = X,‘yl (n E FU). 

Thus, 

X(O) - Xjl) = G,(E;, - Z)nE n (n E N) 

so that for 1 I j I k 

I(xi”) - xn”‘) ejl K IIF, - III t lnE eil << IIF _ zII = o~f~n~~ 
lX,(‘)e.l J 

(Gejl. InEeJ( ’ 

since Gej # 0 for all 1 5 j 5 k. 
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For any arbitrary non-trivial solution {xi”‘} of (1.1) we have x,(O) = X,“’ u = 

X,(O)(Xi ei + . . . + & ek) for some tuple (xi,. . , &) # (0,. ,O). Then, by Re- 

mark 5.2, and taking into account the special form of M, we have 

I(Xn(O) - -KY’) UI << I(Jfn(O) - XT(‘)) ejl = o(f(n)l 

IX,“’ 2.i IX,(')ejl 

forsomejE{l,...,k}. 

(b) In the general case, by Theorem 3.1 we can find some matrix U E Cklk and 

some sequence {Fi} of matrices in Ck.k with C,“= 1 (l/f(n)) IIF: - 111 < co, such 

that 

(5.9) (Fi’, ,)-I U-'MnUF~ = diag(Mj’), . . , MJh)) (n E N) 

where M,(l), . . , Al,(“) are square matrices such that for each of them all of 

its eigenvalues have the same modulus and such that p(M,(l)) < < p(A4ih’) 

for n large enough. Then the theorem follows easily from (5.9) and the special 

case (a). 0 

The results obtained in this paper for sequences of matrices can be applied to 

linear recurrences as well. A more detailed account, in particular for second- 

order recurrences, is given in [l], [2], where also more references concerning this 

subject can be found. 
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