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1. Introduction

1.1. Human interaction with Pleistocene palaeoenvironments

The Quaternary is the most recent epoch in Earth’s history and has been characterised by substantial 
climatic and environmental changes, the evolution of humans in Africa and their subsequent colonisation 
of most terrestrial landscapes. Successive cycles of global cooling and warmer interglacial phases 
are the core feature of the Quaternary climate and had major impact on the palaeoenvironments of 
terrestrial landscapes and thus the habitats of hominin populations occupying these landscapes (Klein, 
2009; Lowe and Walker, 2015).

The Pleistocene is a geological period representing the earlier phase of the Quaternary that lasted 
from about 2.6 millions of years ago (Ma) to the onset of the most recent interglacial, the Holocene 
(~11.7 thousands of years ago (ka)) (Cohen and Gibbard, 2011). The substantial oscillations of global 
climate during Pleistocene times were mainly driven by periodic variations in the Earth’s main orbital 
parameters – precession, obliquity and eccentricity – and their interaction with global oceanic and 
atmospheric circulations (Emiliani and Geiss, 1959; Hays et al., 1976; Milankovitch, 1920; Paillard, 1998). 
Climatic stages can be detected through variations in the content of oxygen-18 (18O) over oxygen-16 
(16O) in marine sediment records with enrichments in 18O representing cold glacial periods - when large 
amounts of water from the oceans became locked in ice sheets – and 18O depletion reflecting warmer 
temperatures with decreased ice volumes during interglacial phases (Fig. 1.1.1, odd numbers represent 
interglacial events) (Shackleton, 1975, 1987).

Expansions and contractions of the Earth’s ice sheets and glaciers influenced the rise and fall of global 
sea-levels (Fig. 1.1.1) and, at a more regional scale, water volume and shape of limnic and fluvial 
systems. Global cooling during glacial phases was associated with increasing aridification across most 
terrestrial landscapes with declined precipitation being mostly a consequence of reduced evaporation 
from the colder oceans (Bigg, 1995). 

On the African continent, large rainforest areas became grassland or savanna, while grassland and 
savannah regions turned into desert (deMenocal, 1995; Sarnthein, 1978). The reduced vegetation 
cover in turn fostered wind erosion (deflation) and thus the expansion of semi-arid and arid landscapes 
in these regions (Darkoh, 1998). Around the Miocene/Pliocene boundary, arid conditions coupled with 
aeolian sand accumulation lead to the formation of the Saharan desert (Micheels et al., 2009; Schuster 
et al., 2006), which has since then served as a biogeographical barrier between sub-Saharan and North 
Africa (Lahr, 2010). It was only during the relatively short-termed periods of enhanced humidity in the 
Pleistocene – the ‘green Sahara’ events – that subtropical savannah landscapes expanded, enabling 
human habitation and crossings of the desert (e.g. Larrosaña, 2012; Trauth et al., 2009; Whiting Blome 
et al., 2012).
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Fig. 1.1.1 Quaternary hominin evolution (after Antón et al., 2014), marine oxygen isotope record after Lisiecki and Raymo 
(2005) illustrating past glacial cycles and record of global sea-level fluctuations (Miller et al., 2005) with a special emphasis 
on the last 1 Ma, which are of particular relevance for this thesis. Highlighted are Out of Africa human dispersal events; 
yellow triangles represent the timing of the first early human settlements in the Maghreb and Europe.

There is a general consensus that the genus Homo evolved in Africa sometime between 2.5 and 2 Ma 
ago (Fig. 1.1.1) and then started to disperse within and out of the continent (Klein, 2009). Most of what 
is known about the emergence of early Homo comes from the East African Rift Valley (e.g. Delagnes 
and Roche, 2005; Partridge et al., 1995; Quade et al., 2004). Less well understood are, however, the 
exact timing and the routes human populations took throughout the Pleistocene to extent their range 
to the far southern and northern margins of Africa (Klein, 1994; Maslin et al., 2014; Raynal et al., 1995) 
and from the latter further into Eurasia (Klein, 2009). 

In recent years, the archaeological and palaeoenvironmental record of the western Mediterranean – 
comprising north-western Africa and southern Iberia - has gain considerable importance in the study 
of human evolution (Finlayson et al., 2006; Garcea, 2012; Hublin et al., 2017). The Strait of Gibraltar has 
been argued by some authors to represent a potential hominin dispersal route from Africa into Europe 
in the Early Pleistocene at times of when the Mediterranean sea-level was significantly lowered (Alimen, 
1975; Gibert et al., 2016; Sharon, 2011). Further interest in the north-western African archaeological 
sites has arisen in part because of evidence for an early appearance of behavioural modernity which 
may be linked to the dispersal of anatomically modern humans (AMH) from Africa (d’Errico et al., 2009; 
Klein, 2008; McBrearty and Brooks, 2000). And the south of the Iberian Peninsula, finally, has been 
interpreted as an ecological refugium for late Neanderthals before they eventually became extinct in 
the Late Pleistocene (d’Errico and Sánchez Goñi, 2003; Zilhão, 2006).

The key to understand human dispersal across and their interaction with palaeolandscapes are reliable 
chronologies of geological and archaeological archives which provide the framework for reconstructing 
the history of environmental change and human occupation patterns. Caves can safely store complex 
sedimentary records over millennia by providing permanent protection from sub-aerial weathering 
and erosion (Sasowsky and Mylroie, 2007). As they concurrently offer natural shelter, caves also 
often act as focus for Pleistocene human activity traceable in the stratigraphical sequences in form 
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of artefact concentration, fire features, faunal and human remains. The preservation of disparate 
sources of chronological, behavioural and environmental evidence in close proximity makes such 
Palaeolithic cave sequences optimal archives to successfully reconstruct not only environmental and 
human population responses to climatic change, but also their mutual interactions throughout the 
Pleistocene (e.g. Barton et al., 2009; Belmaker and Hovers, 2011; Pirson et al., 2012). Quaternary dating 
methods enable determination of absolute ages for a variety of different materials that can be found at 
Palaeolithic cave sites such as bones, charcoal, heated artefacts, sediments and speleothems. Optically 
stimulated luminescence dating is widely applicable in such contexts, as it provides reliable estimates 
of the time elapsed since sediments were last exposed to sunlight.

In this dissertation, the potential of sand-sized quartz grains as luminescence chronometer to reliably 
establish the timing of sediment deposition and human occupation at Palaeolithic cave sites in the 
western Mediterranean is investigated. With this new chronological evidence, this thesis aims to 
contribute to an improved understanding of the significance of the region in the study of human 
evolution and dispersal within and out of the African continent that took place under the variable 
climatic conditions over the course of the Pleistocene.

1.2. The western Mediterranean perspective on human evolution

Humans evolved over Quaternary timescales, but the link between hominin evolution and climatic 
conditions remains unclear. In the past, the emergence of the genus Homo has often been linked 
global cooling and the subsequent increase of aridity coupled with a progressive expansion of open, 
grassland habitats on the African continent during the Quaternary (Cerling, 1992; Cerling et al., 
2011). This hypothesis was, however, questioned by recent archaeological discoveries - including new 
hominin fossil evidence (e.g. Berger et al., 2010; Lordkipanidze et al., 2013) – and current synthesis of 
palaeoenvironmental proxies, i.e. aeolian dust, lake, faunal, stable isotopic and volcanologic records 
(deMenocal, 2004; Trauth et al., 2009). These evidences suggest that intentional developments of 
new behavioural patterns and toolkits in early Homo could have emerged in response to dynamic 
environments characterised by fluctuating moisture and aridity, shifting resource regimes and spatial 
heterogeneity on the African continent between ~2.5 and 1.5 Ma ago (Antón et al., 2014; Bobe and 
Behrensmeyer, 2004; Potts, 2012).

Irrespective of the reasons or factors eventually leading to the evolutionary success of the human 
lineage while other coexisting species became extinct, archaeological and palaeoanthropological 
evidence from the Caucasus show that hominin groups started to settle ‘Out of Africa’ - and reached 
the edge of south-eastern Europe - by minimally 1.85 Ma ago (Ferring et al., 2011). The opening of 
a corridor for hominin dispersal from East Africa into Eurasia has often been linked with the end 
of the humid period at the onset of the Pleistocene (2.6 - 2.0 Ma) (Prat, 2016), during which mean 
annual temperatures and precipitation rates in the Mediterranean region were substantially higher 
compared to present-day conditions (Klotz et al., 2006; Leroy et al., 2011). Out of Africa events during 
the Pleistocene were sporadic and multidirectional (Antón et al., 2014; Garcea, 2016) and according 
to Prat (2016) “did not occur on a once-off basis, but as many discontinuous occupations, over more 
or less distant areas and at times with episodes of turning back”. Similar to the persisting debate why 
people initiated these dispersals from Africa - and the role of climatic and environmental changes or 
social factors in the process – it remains unclear where on the African continent human groups settled 
that contributed to the different migration waves, which routes they took and why (e.g. Garcea, 2012; 
Lahr, 2010), and whether hominin settlements in Europe during the Early Pleistocene were continuous 
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or discontinuous (e.g. Bermúdez de Castro et al., 2016; Dennell, 2003). 

This thesis focusses on the western Mediterranean, a region of potentially high strategic importance 
for hominin dispersals out of Africa as well as for a late survival of Neanderthal populations on the 
European continent. With its exceptional archaeological and palaeoenvironmental record, the western 
Mediterranean is a key region to understand the possible role of north-western African populations in 
the colonisation of the European continent throughout the Pleistocene and Neanderthal displacement 
in southern Iberia. Of particular relevance to this work are two migration periods: The first European 
peopling during the Early Pleistocene (~1.6 - 0.8 Ma) and the dispersal of anatomically modern humans 
from Africa between 130 ka and 40 ka which lead to the eventual extinction of the indigenous Homo 
neanderthalensis in Eurasia (Fig. 1.1.1) (e.g. Garcea, 2016; Mellars, 2004; Prat, 2016; Villa and Roebroeks, 
2014).

1.2.1. Out of Africa 1 and the early colonisation of Europe

While the earliest stone artefacts are known to occur ~3.3 Ma in Lomekwi 3, Kenya, in eastern Africa 
(Harmand et al., 2015), evidence for early human settlements in the Maghreb (defined here as Morocco, 
Algeria, Tunisia and western Libya) are not documented before ~1.7 Ma at Ain Hanech and El-Kherba, 
Algeria (Figs. 1.1.1 and 1.2.1; Parés et al., 2014; Sahnouni et al., 2002) and coincide with a period of 
increased aridity on the African continent (deMenocal, 1995, 2004). Although these early Maghrebian 
dates are not undisputed (Geraads et al., 2004), first hominin migrations into North Africa can be safely 
placed in a time period between 2.5 Ma and 1.2 Ma (Geraads and Amani, 1998; Raynal et al., 2001). 
The earliest archaeological sites discovered in the Levant and Europe are ‘Ubeidiya, Israel (~1.5 Ma, 
Martínez-Navarro et al., 2009), Pirro Nord, northern Italy (1.3 - 1.6 Ma, Arzarello et al., 2012) and Orce, 
Iberia (~1.4 Ma, Toro-Moyano et al., 2013), respectively (Figs. 1.1.1 and 1.2.1).

Fig. 1.2.1 Bathymetrical map of the western Mediterranean showing the present-day and the potential palaeo-coastlines 
during MIS 22, when sea-level was lowered by ~100 m (modified after EMODnet, 2017). Indicated are the locations of Lower 
Palaeolithic sites from the area mentioned in the text.
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Although Early Pleistocene records of human settlements in Europe are sparse and the absolute dating 
of those sites highly challenging, current scientific evidence (i.e. from Dmanisi, Georgia (Ferring et 
al., 2011)) suggest a first colonisation of the continent by hominin populations coming from the east 
(Carbonell et al., 2008; Toro-Moyano et al., 2013). Researchers, however, strongly disagree about 
the continuity/discontinuity of those early human populations in Europe during the Early-Middle 
Pleistocene climatic transition (Clark et al., 2006) between 1.2 Ma and 0.7 Ma, when global climatic 
systems underwent major changes due to the establishment of large ice sheets in the northern 
hemisphere that covered major parts of the European landmass (Head and Gibbard, 2005; Maslin 
and Brierley, 2015; Ruddiman et al., 1989). Climate changes are likely to have caused a decrease in 
human population sizes with repeated episodes of local extinctions and periods of prolonged isolation 
in climatically favoured refugia, such as the Balkans, the Italian Peninsula and Iberia (e.g. Arribas and 
Palmqvist, 1999; Bermúdez de Castro et al., 2016; Dennell et al., 2011). 

Directly related to this debate, is the similarly controversial question over the emergence of the Acheulian 
technocomplex in Europe – a distinctive stone tool industry mainly characterised by the production of 
bifaces (handaxes and cleavers) (Sharon, 2007) - which is placed by chronological evidence to roughly 
the same period of time, between ~1.0 Ma and 0.7 Ma (Sharon and Barsky, 2016). Central focus of 
this discussion is whether the European biface assemblages were i) a local European development or 
whether they originated outside of Europe ii) to the east in Asia or the Levant, or iii) to the south in 
Africa (e.g. Carbonell et al., 2016; Dennell et al., 2011). As sites yielding pre-Acheulian lithic assemblages 
in Europe are extremely rare, there is no solid scientific evidence supporting the local development 
theory (Sharon and Barsky, 2016). While the hypothesis of an eastern origin of the European Acheulian 
is primarily based on the finds from Caucasian sites (Amirkhanov et al., 2014; Gabunia et al., 2000; 
Lyubin and Belyaeva, 2006), more recent studies reinforce the potential significance of Northern Africa 
and suggest that the Acheulian in Europe may have originated through the straits of Gibraltar at times 
when the Mediterranean sea-level was significantly lowered i.e. during Marine Isotope Stage (MIS) 22 
at ~0.9 Ma (Figs. 1.1.1 and 1.2.1; e.g. Alimen, 1975; Santonja et al., 2016; Sharon, 2011).

The strait of Gibraltar is currently ~14.5 km wide and according to Arribas and Palmqvist (1999) a 
sea-level drop of approximately 300 m would be required to close it, while a decreased sea-level 
of 100 m – as can be assumed for MIS 22 – would only narrow it (Fig. 1.2.1). Tectonic uplift during 
Quaternary times as evidenced by a sequence of raised shorelines in Gibraltar (Rodríguez-Vidal et al., 
2004) has been used to emphasise that even the lowest Early Pleistocene sea-level lowstand would 
have had hardly any effect on the extent of the central channel of the Strait of Gibraltar (~5 km wide 
and 300 m deep) and early human crossings via that passageway are, therefore, considered highly 
unlikely (Derricourt, 2005; Muttoni et al., 2010; 2014). On the contrary, other authors have argued 
that a 100 m drop of the Mediterranean sea-level would have exposed several islands (Martinet and 
Searight, 1994) which together with changes in the salinity of Atlantic waters at that time (MIS 22) and 
the subsequently reduced intensity of the marine currents in the strait of Gibraltar (Gibert et al., 2003), 
would have facilitated contact between the Iberian Peninsula and the Maghreb (Lahr, 2010; Santonja 
and Pérez-González, 2010; Sharon, 2011).

The pre-Acheulian and Acheulian occupation record of the Maghreb is relatively sparse and many of 
the discovered sites lack chronological control. Acheulian lithic industries are i.e. documented at the 
sites of Tighenif and Lake Karar in northern Algeria as well as at Thomas Quarries in Morocco and Sidi 
Zin in northern Tunisia (Fig. 1.2.1; Lahr, 2010 and references therein). For these sites, researchers have 
made the attempt to produce absolute dates using different chronological methods in the past (e.g. 
Parés et al., 2014; Rhodes et al., 2006). Their results are, however, often limited by the uncertainties 
associated with the age estimates, the fact that only few archaeological layers could be dated for 
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each site or were strongly disputed among the scientific community. In order to understand whether 
the origin of the European Acheulian lies in North African and was brought to Europe by hominin 
populations crossing the strait of Gibraltar, further research at archaeological sites of that time period 
has to be conducted at both sides of the Mediterranean, including reliable absolute dating.

1.2.2. Out of Africa 2 – success and failure of anatomically modern human dispersals 
from North Africa

Throughout large parts of the Middle Pleistocene, succeeding the Out of Africa 1 migration period, 
hominin populations evolved separately within and outside of Africa (Hublin, 2009). During MIS 5, 
descendants of the African clade – early anatomically modern humans – living in North Africa initiated 
a dispersal into the Levant (often referred to as Out of Africa 2a, ~130 ka – 80 ka (Garcea, 2012)), where 
the fossil remains of Skhul and Qafzeh (both Israel; Fig. 1.2.2) provide the oldest evidence of AMHs 
outside of the African continent at between ~135 ka and 100 ka (Fig. 1.1.1; Grün, 2006; Grün et al., 
2005). Since this thesis particularly focusses on the western Mediterranean region, the southern AMH 
dispersal route from Africa – through East Africa into the Arabian peninsula (Armitage et al., 2011; 
Beyin, 2011; Lahr and Foley, 1994) – is not discussed any further. Of great importance is, however, the 
northern passageway which included dispersals through north-eastern Africa and the Nile corridor, the 
Sahara and the Mediterranean coast into the Levant (Garcea, 2016 and references therein).

Fig. 1.2.2 Location of the Middle and Upper Palaeolithic sites mentioned in the text. 1 – Gorham’s Cave; 2 – Zafarraya; 3 
– Carihuela; 4 – Cueva Antón; 5 - El Salt; 6 – Abrigo del Molino; 7 – Cova del Rinoceront; 8 - Peştera cu Oase; 9 – Skhul and 
Qafzeh.

Climatic conditions became less hospitable - including rapid cooling and increased aridity (Rampino 
and Self, 1992) - between MIS 5a and MIS 4 (~74 ka) in the south-western Mediterranean basin 
(Cheddadi and Rossignol-Strick, 1995; Timmermann and Friedrich, 2016; Whiting Blome et al., 2012). 
This, together with the potential failure in the competition for resources against Neanderthals – the 
descendants of a western Eurasian clade living in Europe and the Levant – resulted in a massive decline 
of AMH populations living in the Levant (if not complete depopulation) between about 80 ka and 50 ka 
(Garcea, 2010a; Shea, 2003, 2010), whereas Neanderthals were still present throughout MIS 4, until 
about 45 ka (Bailey et al., 2008; Shea, 2008). 

Another major dispersal wave was initiated by African AMHs (Out of Africa 2b, Fig. 1.1.1) after 60 ka, 
which eventually resulted in the displacement of Neanderthals in the Levant and a further expansion of 
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AMHs into other parts of Europe and Asia (e.g. Mellars, 2006; Shea, 2010; Timmermann and Friedrich, 
2016). Various reasons have been proposed to explain the success of Out of Africa 2b compared to 
the 2a event, i.e. more favourable climatic conditions during MIS 3 (Heterington and Reid, 2010), 
strong demographic pressure on Neanderthal populations (Powell et al., 2009), AMH adaptation skills 
(McBrearty and Brooks, 2000), competitive exclusion (Banks et al., 2008) and improved technological 
equipment, namely projectile armatures (Lombard and Phillipson, 2015; Shea and Sisk, 2010). 

While recent genetic evidence has emphasised the role of North Africa for AMH dispersals out of 
the continent by associating Neanderthal-AMH interbreeding - dated to between 65 ka and 47 ka 
- with North African populations (Pagani et al., 2015; Sankararaman et al., 2012), little is known 
about the advent of cultural modernity in AMHs which might be the key factor to understand the 
evolutionary success of our lineage over Neanderthals (d’Errico et al., 2009; McBrearty and Brooks, 
2000; Vanhaeren et al., 2006). The emergence of behavioural modernity – typically associated with 
instances of symbolic artefacts, pigment use, engravings or formal bone tools at archaeological sites 
(e.g. d’Errico and Vanhaeren, 2007; Klein, 2008; Kuhn and Stiner, 2007; McBrearty and Brooks, 2000) – 
in the Maghreb is usually linked to the Middle Stone Age (MSA) lithic technocomplex called the Aterian. 
This technocomplex is primarily characterised by the appearance of pedunculated tools and bifacial 
foliates but also known for the presence of blades, bladelets, end-scrapers, small Levallois cores and 
personal ornaments (Bouzouggar and Barton, 2012). Consequently, many studies have focussed on 
the technological definition, the timing and the geographical distribution of the Aterian industry to 
investigate the advent of cultural modernity in AMH populations, and to understand the drivers of 
population mobilisation out of Northern Africa (e.g. Bouzouggar and Barton, 2012; d’Errico et al., 2009; 
Garcea, 2010b). Despite the significant progress made in this research field over the last years (see e.g. 
reviews by Garcea, 2016; Reyes-Centeno, 2016), we still do not fully understand where, when and why 
technological innovations took place and modern human behaviour emerged on the Africa continent 
between Out of Africa 2a and 2b and which of the proposed North African migration routes were 
critical for the eventual AMH dispersal into Eurasia.

1.2.3. Neanderthal habitation of southern Iberia

At the time when AMHs arrived in Europe around 50 ka (Hublin, 2012), they came in contact with 
indigenous Neanderthal populations living in western Eurasia (Mellars, 2004). Genetic evidence suggest 
that ancestors of modern humans split from the source population of Neanderthals and Denisovans 
– a sister group recently identified in the Russian Altai (Meyer et al., 2012) – at the beginning of the 
Middle Pleistocene, between 765 ka and 550 ka (Meyer et al., 2016). Early Neanderthal artefact 
assemblages can be classified as Acheulian, while with the onset of the Middle Palaeolithic (~300 ka, 
MIS 8) archaeological records are characterised by the advent of the Levallois technology (Roebroeks 
and Soressi, 2016). Levallois is a hierarchical core reduction strategy which entails, according to Adler 
et al. (2014), the “multistage shaping […] of a mass of stone (core) in preparation to detach a flake of 
predetermined size and shape from a single preferred surface” (see also Boëda, 1994, 1995). The first 
AMH fossils in Europe were found in Peştera cu Oase, Romania (Fig. 1.2.2; Trinkhaus et al., 2013). The 
two main specimens, a mandible (Oase 1) and a skull from a second individual (Oase 2), were directly 
dated and revealed for the latter a minimum age of 33.5 kcal BP (28.9 +∞/-0.2 ka BP, Trinkhaus et al., 
2013), while the former gave an age close to 40 kcal BP (34.3 +1.0/-0.8 and >35.2 ka BP, Trinkaus et 
al., 2003) which is around the same time when Neanderthals disappeared from most archaeological 
records on the continent (~40 ka, Villa and Roebroeks, 2014; Zilhão, 2013).

The timing and causes for the demise of the late Neanderthals in Europe is one of the central topics 
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in palaeoanthropology, and - since it remains unresolved - matter of an ongoing debate. Recent 
studies have argued that the widely assumed “superiority” of AMHs over Neanderthals – in terms 
of i.e. weaponry, subsistence strategies and cooperation skills (e.g. Marean, 2015 and references 
therein) – appear to be less profound than previously thought (Roebroeks and Soressi, 2016; Villa 
and Roebroeks, 2014). Scientific evidence from the last decade support this view by showing that 
Neanderthal populations were very similar to their AMH contemporaries in terms of diet, fire use, 
stone tool technologies and even symbolic behaviour (e.g. Bar-Yosef and Pilbeam, 2000; Finlayson et 
al., 2012; Henry et al., 2014; Roebroeks and Villa, 2011). Nonetheless, following Roebroeks and Soressi 
(2016), “there is no doubt that the Neanderthal phenotype ultimately disappeared through (some 
form of) competition with modern humans” in Eurasia within just a few thousand years, “even though 
the specifics of that process […] are largely unexplored”. Higham et al. (2014) recently quantified the 
temporal overlap between the two hominin groups on the European continent to 2,600 - 5,400 years, 
while emphasising that Neanderthal disappearance occurred in different regions at different times.

In the past, the south of the Iberian Peninsula has often been interpreted as an ecological refugium 
for late Neanderthals with the Ebro River and the Cantabrian Cordillera serving as natural barriers 
between the areas in the south and the rest of Europe (e.g. d’Errico and Sánchez Goñi, 2003; Zilhão, 
2006), a view supported by a number of palaeoenvironmental studies (de Abreu et al., 2003; Moreno 
et al., 2005; Roucoux et al., 2005; Sánchez Goñi et al., 2000, 2002). Radiocarbon dates from sites 
like Carihuela, Zafarraya (both Spain) and Gorham’s Cave (Gibraltar; Fig. 1.2.2) placed the survival of 
Neanderthals in southern Iberia to post-42 ka (Fernández et al., 2007; Hublin et al., 1995; Pettitt and 
Bailey, 2000) and maybe even as late as 28 ka (Finlayson et al., 2006). These dates were, however, 
strongly disputed by Higham and colleagues, who argue that those early dates suffer from incomplete 
removal of contamination in the collagen (Higham et al., 2014; Wood et al., 2013). Nevertheless, there 
still remain reliable evidence for Neanderthal presence in southern Iberia after 40 ka i.e. Cueva Antón, 
shortly after 38.5 kcal BP (Zilhão et al., 2010a).

While comparatively many studies contribute to the ongoing discussion about the Neanderthal demise 
in southern Iberia (e.g. Bar-Yosef and Pilbeam, 2000; d’Errico and Sánchez Goñi, 2003; d’Errico et al., 
1998; Finlayson et al., 2006; Higham et al., 2014; Zilhão et al., 2010b), relatively little attention has 
been paid to the time range preceding the last 50 ka. In part this is due to the overwhelming reliance 
on radiocarbon dating in archaeology which is limited to ~50 ka (Reimer et al., 2016). It is, however, 
exactly this period of time that has the potential to shed further light into the history of Neanderthal 
populations and their subsistence strategies in the region, which might eventually help us to better 
understand the causes of their final extinction in the Iberian Peninsula. Authors have just recently 
started to fill this gap by providing reliable chronostratigraphies for archaeological cave sites (Fig. 1.2.2) 
and their palaeoenvironmental context located mostly in the inland – i.e. Cuevá Anton (~80-35 ka, 
Zilhão et al., 2016), Abrigo del Molino (60-31 ka, Álvarez-Alonso et al., 2016) and El Salt (60-45 ka, 
Galván et al., 2014) – but also at the Mediterranean coast – Cova del Rinoceront (~210-74 ka, Daura et 
al., 2015) – of Iberia safely covering MIS 6 to 3.
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1.3. Dating Palaeolithic cave sites

Our understanding of the timing of human occupation and palaeoenvironmental changes in a region 
largely depends on the reliability and suitability of Quaternary dating techniques which enable 
comparisons between stratigraphical layers on site, regional and global scale (Lowe and Walker, 2015). 
The most widely applied radiometric methods for dating Palaeolithic cave sites are radiocarbon, 
luminescence (comprising thermoluminescence (TL) and optically stimulated luminescence 
(OSL)), U-series and ESR (Electron Spin Resonance) (Fig. 1.3.1). These techniques allow reliable age 
determination of a variety of different materials, which directly (i.e. bones, charcoal, teeth and heated 
flint) or indirectly (i.e. sediments and speleothems) store archaeological evidences at those sites and 
have successfully been used in the past to i.e. date the Middle Pleistocene Neanderthal occupation 
in Sima de los Huesos ~430 ka (Arsuaga et al., 2014), the use of personal ornaments at MSA sites 
in Morocco (d’Errico et al., 2009) and Palaeolithic cave art in Iberia (Pike et al., 2012), as well as to 
reconstruct how wet phases in North Africa affected AMH migration out of and back to the continent 
(Hoffmann et al., 2016).

The radiocarbon method (for further methodological details see Jull and Burr, 2015) is undeniably of 
crucial importance for dating Palaeolithic sites as it provides highly precise ages for organic-bearing 
archaeological finds (Pollard, 2009; Taylor, 2001). It is, however, restricted by the preservation of 
collagen in the samples (when dating bones), an upper dating limit of ~50 ka and a calibration to cosmic 
ray flux through time (Brock et al., 2012; Reimer et al., 2016). While luminescence, ESR and U-series 
dating, on the other hand, have the advantage of covering much older time periods (usually the whole 
Middle Palaeolithic, sometimes even parts of the Lower Palaeolithic) by using inorganic materials for 
dating, determined absolute ages are commonly associated with comparatively larger uncertainties.

Out of all the above-mentioned methods, OSL dating is the least restricted as it determines the time 
elapsed since sediments were last exposed to sunlight. In principle, it can be used for any given 
archaeological site, as i) the material desired for age determination - mineral grains such as quartz 
and feldspar - is ubiquitous in natural sedimentary environments and ii) the only crucial prerequisites 
are its sufficient contact with sunlight prior to deposition and a consistent dose rate through time 
(Aitken, 1998). Although the accumulation age of a sediment layer, within which archaeological finds 
are located, is not per se identical with the age of the human activity reflected by those finds (i.e. 

Fig. 1.3.1 The effective dating ranges of the different Quaternary dating techniques 
mentioned in the text after Walker (2005) and some examples of materials which are 
typically dated using those methods.
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due to redeposition by geologic forces), OSL is a widely applied dating method for Palaeolithic sites 
(Jacobs and Roberts, 2007) and usually complemented by detailed sedimentological investigations of 
the stratigraphical context of each sample to ensure the significance of the obtained dates (Feathers, 
2015). 

It is now almost 20 years since Duller et al. (1999) and Bøtter-Jensen et al. (2000) presented their 
technical improvements of the standard Risø OSL/TL reader which extended the field of applications 
for OSL dating to resolve issues of i.e. post-depositional mixing in archaeological sediment layers 
(Jacobs and Roberts, 2007) by enabling routine measurements of the luminescence signal stored in 
individual sand-sized quartz grains. Before that only multiple-grain aliquots (containing many grains 
which are measured simultaneously) could be measured in greater quantities within reasonable times. 
Further favoured through the development of a new OSL measurement protocol by Murray and Wintle 
(2000, 2003) at about the same time – the single-aliquot regenerative-dose (SAR) protocol (chapter 
1.6.5) - single-grain dating became, over the following years, an increasingly used tool for establishing 
chronologies of sediment deposits in archaeological contexts all over the world (e.g. Fitzsimmons et al., 
2014; Guérin et al., 2012; Jacobs et al., 2011). There are, however, several aspects of single-grain quartz 
OSL dating – mostly concerning the variability observable in the luminescence behaviour of individual 
grains within one sample - which up until now remain inexplicable (Jacobs and Roberts, 2007). These 
include i.e. the occurrence of an extra component of random variation (called overdispersion) in single-
grain distributions which restrict the precision of the final age estimates and hamper our ability to 
distinctly separate different age populations within one sample (Galbraith et al., 1999; Thomsen et al., 
2007). Additional complications may arise when sediment samples i) are close to saturation (indicating 
the upper limit for age determination) or ii) yield large proportions of individual grains which emit 
luminescence signals unsuitable for OSL dating or no signal at all. While various alternative techniques 
have been proposed to extend the age range of standard quartz OSL (e.g. Ankjærgaard et al., 2016; 
Arnold and Demuro, 2015; Singarayer and Bailey, 2003; Wang et al., 2006), conventional multiple-
grain and single-grain dating remain the first choice for establishing reliable chronostratigraphies at 
Palaeolithic cave sites.

1.4. Research questions

The overview of the current knowledge on the history of hominin evolution, dispersal and displacement 
in the western Mediterranean region shows there are still gaps that hamper our understanding of the 
contribution of north-western African populations in the colonisation of the European continent and 
Neanderthal subsistence in southern Iberia prior to the arrival of AMHs in the region. This is despite 
significant progress made in terms of methodological approaches in the fields of palaeoenvironmental, 
geochronological and archaeological research in recent years, which have enabled more precise 
reconstructions of palaeoenvironmental conditions and how hominin groups adapted to those 
throughout Pleistocene times.

Archaeological caves can safely store records of human activity and climatic fluctuations in their 
stratigraphical sequences and, therefore, have the potential to provide optimal conditions for 
studying human-environmental interactions, patterns of human dispersal and the emergence of new 
lithic technologies or behavioural indicators in a certain region in the past. Fundamental to all those 
studies are, however, solid geochronological frameworks coupled with archaeological, geological and 
sedimentological analyses of the Palaeolithic sequences at the investigated sites. Consequently, this 
thesis addresses the following research questions:



Introduction

11

1. To what extent can reliable chronostratigraphies for archaeological cave sites advance our
 understanding of Palaeolithic human behaviour and dispersal events in the western

 Mediterranean?

2. To what extent do sedimentary cave records provide evidence of climatic changes throughout
 the Pleistocene in the region?

OSL is one of the key methods for establishing absolute chronologies of Pleistocene sedimentological 
sequences in geological and archaeological contexts all over the world. Of particular relevance for 
Palaeolithic cave sites is the single-grain dating approach which allows identification of multiple discrete 
age populations within a single stratigraphic layer. However, the suitability of a certain sediment sample 
for OSL dating and, consequently, the soundness of its final calculated OSL age, largely depend on the 
luminescence characteristics of the individual mineral grains desired for age determination. A basic 
understanding of those characteristics and of potential factors which might have falsely altered the 
determined burial age of a sediment sample - resulting in substantial over- or underestimations - are 
crucial for building reliable chronostratigraphies of Palaeolithic cave sites. Therefore:

3. What are the quartz luminescence characteristics of the investigated Moroccan and southern 

 Iberian sediments? How variable are they at site and regional scale through time?

4. What are the challenges to single-grain OSL dating in Palaeolithic cave sites in the western

 Mediterranean?

Necessary to answer those research questions are archaeological sites at both sides of the 
Mediterranean Sea that provide detailed records of Palaeolithic hominin occupation and behaviour, 
palaeoenvironmental changes, and contain quartz-rich sediments suitable for OSL dating. The case 
study sites Thomas Quarries and Rhafas in Morocco are known for their Early to Middle Pleistocene 
and Middle to Late Pleistocene stratigraphical sequences, respectively and, therefore, bear great 
potential to improve our understanding about the role of northwest African hominin populations in 
Out of Africa human dispersal events and for the emergence of cultural modernity in AMHs. Vanguard 
Cave is a Palaeolithic site at the southernmost tip of the Iberian Peninsula providing information about 
environmental conditions and hominin subsistence strategies during times of Neanderthal dominance 
in the region since the last interglacial. The next section (chapter 1.5) will briefly introduce the case 
study sites while in the subsequent chapter 1.6 a methodological overview on OSL dating is given.

1.5. Study sites

This section aims to introduce the Palaeolithic sites studied in this thesis by giving brief overviews of 
their past research history and summarising their archaeological and geological context. The three 
main sites discussed in this thesis are located in the western Mediterranean: the cave of Rhafas and the 
Thomas Quarries are situated in north-eastern and western Morocco, respectively; Vanguard Cave on 
the other hand faces the Mediterranean Sea at the present-day shoreline of Gibraltar (Fig. 1.5.1). For 
a methodological study (chapter 4), OSL samples from an archaeological site in Australia, Lake Mungo, 
are used for comparative reasons; the site is briefly introduced in chapter 1.5.4.
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Fig. 1.5.1 Location of the three main study sites of this thesis in the western Mediterranean.

1.5.1. Rhafas Cave, Morocco

Rhafas is an inland archaeological cave site (Fig. 1.5.1) located in the Oujda Mountains in north-eastern 
Morocco, about 30 km south-eastwards from the city of Oujda and ~900 m above present-day sea-level 
(Fig. 1.5.2). Since its discovery in 1950, the site experienced several series of systematic excavations 
first by J.-L. Wengler (e.g. Wengler, 1993; 1997) and, since 2007, by the current excavation team headed 
by researchers from the Institut National des Sciences de l’Archéologie et du Patrimoine, Rabat, and 
the Max Planck Institute for Evolutionary Anthropology, Leipzig. With its long stratified archaeological 
sequence spanning the MSA (including the Aterian) through to the Neolithic, Rhafas contains valuable 
information about human occupation and dispersal, and cultural changes during the Palaeolithic in 
north-western Africa. Furthermore, the mostly aeolian sediment deposits at Rhafas – which were 
partly affected by post-depositional carbonate cementation – provide an important archive of past 
palaeoenvironmental conditions in the area on a local and regional scale.

The geology in the cave’s surrounding is characterised by Palaeozoic substratum unconformably overlain 
by predominantly Mesozoic carbonates (Fig. 1.5.3, Talbi and Boudchiche, 2012). While the Palaeozoic 
units are composed of various types of metasediments, volcanic rocks and granitoids of Ordovician to 
Carboniferous age, the Mesozoic deposits consist mainly of Jurassic dolomite and limestone. The cave 
itself is situated within a limestone cliff that forms the local hilltop on the north-western slope of a 
prominent northeast/southwest trending valley (Fig. 1.5.2). The limestone unit unconformably overlies 
highly deformed meta-sediments and a coarse grained granodiorite that forms the valley floor (Fig. 
1.5.3). During the Quaternary, the cave was filled with sand- and silt-rich aeolian sediments.

Since the 1990s, the lithic artefact assemblages of Rhafas, their cultural attribution and the 
palaeoclimatic conditions during times of human occupation of the cave in the Late Pleistocene and 
Holocene had been subject of numerous published studies by Wengler and colleagues (Wengler, 1997, 
2001; Wengler and Vernet, 1992; Wengler et al., 2002). An absolute chronometric classification of the 
archaeological layers of Rhafas, however, was not realised until Mercier et al. (2007). For their study, 
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selected samples were collected from the upper part of the cave fill sequence for thermoluminescence, 
OSL and radiocarbon dating and revealed ages (twelve TL, one OSL and two 14C) for five archaeological 
layers of up to 107 ka (Mercier et al., 2007).

Fig. 1.5.2 Photograph of the Rhafas cave site. 

Fig. 1.5.3 Geological map and NW-SE-NE cross section of the Rhafas area (modified after Talbi and Boudchiche, 2012).
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The recent field campaign included beside renewed excavations in the cave also the opening of new 
excavation squares on the relatively flat and terraced area in front of its entrance (Fig. 1.5.4). Geological 
evidence suggests that this area was formerly part of the cave itself. The large limestone boulders 
that are widely spread throughout the lower stratigraphical units of the terrace section are likely to 
represent the collapsed remains of the old cave roof. Some of the stratigraphical layers in this section 
are attributed to the LSA, a technocomplex which was previously thought to be missing at the site, as 
it is not preserved in the cave fill sequence.

Fig. 1.5.4 Photographs of the Rhafas cave site with the location of the different excavation sections.

1.5.2. Thomas Quarries, Morocco

The Thomas Quarries are a complex of Palaeolithic quarry sites (Thomas I, Thomas III and Oulad 
Hamida I) located in the area of Casablanca, western Morocco (Fig. 1.5.1), which is characterised by 
a series of large Quaternary shoreline barrier systems sub-parallel to the present shoreline of the 
Atlantic Ocean (Raynal et al., 2001). Since the beginning of a joint Moroccan-French research program 
in 1978, researchers established an extensive lithostratigraphical, biostratigraphical and archaeological 
framework for the area (e.g. Daujeard et al., 2016; Geraads et al., 1980; Lefevre et al., 1994; Raynal et 
al., 2010; Texier et al., 1994). Today the long geomorphological sequence at Casablanca is not only 
famous for reflecting global Quaternary sea-level fluctuations over the past 5.5 Ma (Lefevre et al., 
1994; Texier et al., 1994), but also for the preservation of up to ~1 Ma old Acheulian artefacts (Raynal 
and Texier, 1989; Rhodes et al., 2006), and for containing rich faunal assemblages (Daujeard et al., 2012; 
Raynal et al., 1993) as well as Middle Pleistocene human fossils (Ennouchi, 1969; Raynal et al., 2010).

Each of the barrier systems reflect a cyclic deposition comprising underlying marine units covered 
by aeolian sediments and were affected by intensive post-depositional cementation (Fig. 1.5.5). The 
Oulad Hamida morpho-stratigraphic unit – within which the Thomas Quarries are situated - represents 
several major episodes of coastal sedimentation, fossilization and eventual cave development during 
the final Early and early Middle Pleistocene (Texier et al., 2002). The Hominid Cave (Fig. 1.5.6) at Thomas 
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Fig. 1.5.7 Photograph of the Rhino Cave site with the location of the upper and lower cave sections.

Fig. 1.5.5 Stratigraphic cross section showing the inferred relationships and relative altitudes above present day sea-level 
of the Quaternary sites Reddad Ben Ali, Oulad J’mel, Sidi Abderhamane and Thomas Quarries I after Texier et al. (2002) 
(modified after Rhodes et al., 2006). Marine units are numbered in reversed chronological order.

Fig. 1.5.6 Photograph of the Thomas Quarry I site with the location of the Locus I and the Hominid Cave.
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Quarry I and the Rhino Cave (Fig. 1.5.7) at Oulad Hamida I, are cave sites filled with sediments dated 
to the Early and Middle Pleistocene based on litho- and biostratigraphy (Geraads, 2002) and absolute 
dating (between 360 and ~1 Ma using OSL, ESR, U-series and laser ablation ICP-MS) (Raynal et al., 2010; 
Rhodes et al., 1994; 2006). Despite the large variety of dating methods applied at the Thomas Quarries 
so far, sample numbers were small (ESR: four rhinoceros teeth, U-series: one speleothem age, laser 
ablation ICP-MS: one human premolar (Raynal et al., 2010; Rhodes et al., 1994; 2006)), and estimated 
absolute ages not always consistent with the previously established stratigraphical and lithological 
interpretation (OSL (Rhodes et al., 2006)).

1.5.3. Vanguard Cave, Gibraltar

The archaeological site of Vanguard Cave is part of a complex of limestone caves which are situated close 
to the present Mediterranean sea-level at the south-eastern coast of the Gibraltar promontory (Figs. 
1.5.1, 1.5.8). Gibraltar is well known for its Neanderthal cave sites which preserve rich archaeological 
records, including human fossil remains (Busk, 1865; Garrod et al., 1928; Sollas, 1908), and provide 
evidence for Neanderthal habitation in the south-western extreme of the Iberian Peninsula throughout 
the Middle Pleistocene (e.g. Barton et al., 2013; Finlayson and Carrión, 2007; Jiménez-Espejo et al., 
2013) and maybe even until 28 ka BP (Finlayson et al., 2006).

Fig. 1.5.8 Photographs of the Gorham’s and Vanguard Cave sites located at the present shoreline of Gibraltar (modified after 
www.visitgibraltar.gi).

The Rock of Gibraltar is composed of Early Jurassic limestones and dolomites; the general shape of 
the promontory, however, was formed mainly as a consequence of the collision between the African 
and Eurasian tectonic plates in the early Miocene (Rose and Rosenbaum, 1994). In the course of this 
tectonic activity, the Mediterranean Sea was cut off from the Atlantic Ocean and gradually dried out 
during the Messinian salinity crisis (~5.6 Ma, Krijgsman et al., 1999). It was only at the beginning of the 
Pliocene, at 5.33 Ma, that Atlantic waters found a way through the Strait of Gibraltar and refilled the 
Mediterranean – an event known as the Zanclean flood (Blanc, 2002; Garcia-Castellanos et al., 2009). 
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Later, neotectonic uplift and eustatic fluctuations combined with surface erosional and depositional 
processes formed the shape of the Gibraltar promontory as it exists today with e.g. elevated marine 
terraces, steep cliffs and staircased slopes (Rodríguez-Vidal et al., 2004). During the Pleistocene, the 
east side of the Rock experienced substantial aeolian accumulation, with windblown sands filling 
considerable parts of the local caves (e.g. Vanguard, Gorham’s and Ibex) which served as large sediment 
traps.

Marine highstands which are best developed to the south and the east of the Rock represent at least 
12 palaeo-shorelines at heights up to 300 m above present-day sea-level (Rose and Rosenbaum, 1994). 
Raised terraces associated with the last interglacial – an episode which is well represented by several 
highstands along the southern Iberian littoral (Zazo et al., 2003; Zazo et al., 1999) - are located at 5 m 
(MIS 5c) and 2 - 1.5 m (MIS 5a) above sea-level at Gibraltar today (Zazo et al., 1994). No younger raised 
marine terraces are recorded along the Iberian coastline (Rodríguez-Vidal et al., 2004) as the sea-level 
significantly dropped after the end of MIS 5 until it reached a minimum (~125 m below present level, 
Fig. 1.1.1) during the last glacial maximum after which it raised again and reached its current height 
~6.000 years ago (Miller et al., 2005).

Despite the great scientific interest on the archaeological content of the Gibraltar caves since the 
discovery of a Neanderthal cranium at Forbes’ Quarry in 1848 (Busk, 1865), most studies in the past 
focussed almost exclusively on Gorham’s Cave (Fig. 1.5.8, e.g. Blain et al., 2013; Carrión et al., 2008; 
Finlayson et al., 2006; Waechter, 1951, 1964) and it was only relatively recently (1995) that first 
excavations started at Vanguard Cave as part of the Gibraltar Caves Project (Barton et al., 2013; Stringer 
et al., 2000). Deposited on top of an MIS 5 marine terrace, the cave is filled with >17 m of sand-rich 
sediments which contain traces for multiple Palaeolithic occupation phases. Chronometric studies by 
Pettitt and Bailey (2000) and Rhodes (2013) used radiocarbon and OSL dating to provide age estimates 
for the Vanguard Cave profile. Unfortunately, both studies were limited by relatively small sample sizes 
and yielded conflicting dating results that placed the age of the uppermost stratigraphical layers to 
either ~45 ka (Pettitt and Bailey, 2000) or ~74 ka (Rhodes, 2013).

1.5.4. Comparative site: Lake Mungo, Australia

Lake Mungo is a presently dry lake in the Willandra Lakes Region World Heritage Area in the 
semi-arid zone of south-eastern Australia (Fig. 1.5.9). It preserves a unique archaeological and 
palaeoenvironmental record and is renowned for some of the earliest archaeological traces of AMHs 
on the Australian continent, including the world’s oldest known cremation and ritual burial (Bowler et 
al., 2003; Bowler et al., 1970; Bowler and Thorne, 1976). In the past, the Willandra Lakes served as an 
overflow for the Willandra Creek which had its headwaters in the south-eastern Australian highlands 
(~1000 km to the east). During the last glacial cycle the lake lunettes experienced episodic sediment 
deposition, therefore providing important archives reflecting changes in lake palaeohydrologies and 
human activity for this time period in the area (Bowler, 1998; Stern, 2008).

Over the last decades, the Lake Mungo lunette had been subject to numerous archaeological and 
palaeoenvironmental studies, including absolute dating (e.g. Adams and Mortlock, 1974; Allen, 
1998; Bowler et al., 2012; 2003; 1970; Fitzsimmons, 2017; Fitzsimmons et al., 2014; 2015; Olley et al., 
2006). Fitzsimmons et al. (2014; 2015) published chronometric studies on the depositional history of 
the lunette (ca. 50–3 ka) and its archaeology based on single-grain OSL dating of sediment samples 
collected from the central portion of the landform. The sediments from the Lake Mungo lunette yield 
quartz-rich deposits well suited for OSL dating due to relatively high proportions of datable sand-
sized grains which exhibit bright, rapidly decaying luminescence signals (Fitzsimmons et al., 2014). The 
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high sensitisation of the quartz can be attributed to multiple cycles of exposure and burial within the 
sedimentary system before the eventual deposition at the Lake Mungo lunette (Fitzsimmons, 2011). 
Feldspar contamination of the quartz is low and although equivalent dose distributions for the younger, 
Holocene-age samples are comparatively wide - potentially related to dose rate heterogeneities within 
the sediments as has been reported by Lomax et al. (2007) for dune samples from the Murray-Darling 
Basin, south-eastern Australia - most of the age distributions are of Gaussian shape, indicating absence 
of post-depositional mixing in the stratigraphical layers and complete bleaching of the sediments 
during the last transportation process before burial (Fitzsimmons et al., 2014). The sediments from 
Lake Mungo, consequently, yield highly sensitised quartz well suited for OSL dating studies which have 
similarly been reported for various other sites from the Australian continent (e.g. Fitzsimmons et al., 
2010; Pietsch et al., 2008; Roberts et al., 1999; Westaway, 2009).

Fig. 1.5.9 Photograph and map of the Lake Mungo lunette within the Willandra Lakes Region in south-eastern Australia 
(modified after Fitzsimmons et al., 2014).

1.6. Optically Stimulated Luminescence dating

Luminescence is a remarkable, natural phenomenon that was already described as references to fireflies 
in Chinese literature about 3000 years ago (Harvey, 1957). While bioluminescence manifests in form of 
e.g. glow worms or luminous bacteria, more relevant to optical dating is the ‘cold light’ luminescence 
emitted by gems and stones which is known at least since Aristotle times (~2000 years ago) (Harvey, 
1957). While the luminescence behaviour of plants, stones and animals was again described by Gesner 
(1555), first scientific studies on luminescence started not before the mid-seventeenth century when 
Robert Boyle investigated the encompassing luminescence behaviours of a ‘carbuncle’ – a diamond 
with the property to emit cold light; he even took the stone with him to bed, warmed it up with his 
body and described its elicited glimmering light (Boyle, 1664).

Scientific interest in luminescence grew after the advent of photomultiplier - a very sensitive detector 
of light – near the middle of the twentieth century (Aitken, 1998). In the following decades, increasing 
numbers of studies were performed eventually leading to the demonstration that the depositional age 
of sediment can be successfully determined by means of stimulation with visible light (Huntley et al., 
1985). Since then, optical dating of quartz and feldspars (Hütt et al., 1988) became a widespread and 



Introduction

19

powerful tool commonly used in archaeology and Quaternary geology, as it enables the reliable dating 
of the last sunlight contact of material - ubiquitous in nature – even if this event took place several 
hundreds of thousands of years ago.

1.6.1. General principles of OSL dating

Luminescence dating techniques are based on the property of naturally occurring minerals – such as 
quartz and feldspar - to emit measurable light signals (luminescence) when being stimulated by energy 
in form of either light or heat. While thermoluminescence (TL) dating determines the time since the 
last heating to 500°C, dating of sediments using optically stimulated luminescence (OSL) measures the 
time since mineral grains were last exposed to sunlight (Aitken, 1998).

This sunlight exposure – or bleaching event - happens in natural environments during erosion, transport 
and deposition of sediments. After burial, mineral grains store energy derived from environmental 
radiation - sourced from the decay of potassium (K), uranium (U) and thorium (Th) isotopes and their 
daughter products, and cosmic rays - within their crystal lattice (Aitken, 1998). Following the band 
model after Aitken (1985), electrons move short-term from the valence band to a higher energy level 
(conduction band) due to ionisation from the environmental radiation (Fig. 1.6.1). While most electrons 
drop back to the valence band, some become trapped and stored over thousands of years within the 
crystal lattice. The more prolonged the exposure to environmental radiation the greater the number of 
trapped electrons. The stability of each trap over time is indicated by its depth under the conduction 
band (Aitken, 1998). Electrons evict from traps in response to stimulation by heat or light (wavelength 
is specific depending on mineral and trap), diffuse and then recombine into recombination centres and 
in turn release energy – some of which is in form of light (Aitken, 1985, 1998).

Fig. 1.6.1 OSL band model after Aitken (1985). (1) Ionisation due to exposure of the crystal to environmental radiation, with 
diffusion and trapping of electrons and holes at traps T and L, respectively; (2) Storage of electrons and holes in stable traps 
over time, the lifetime of electrons within the traps is determined by the depth E of the trap below the conduction band; (3) 
Eviction, and recombination of electrons with luminescence centres, L, and emission of luminescence signals in response to 
light stimulation. Alternatively, electrons may recombine at non-luminescent centres or deeper holes.

The number of electrons trapped in the crystal lattice of a mineral grain is proportional to the flux of 
environmental radiation (dose rate) it received per year since burial, until the traps approach saturation 
(a state where all suitable traps have become filled). Exposure to sunlight in a natural environment or 
intentional stimulation of the crystal by particular wavelengths of light release the stored energy in 
form of photons (i.e. luminescence) which can be detected by the photomultiplier in the laboratory 
and which is proportional to the amount of radiation the mineral received since burial. The burial age 
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The equivalent dose (De) is defined as the laboratory radiation dose equivalent to that received in the 
natural environment since the last sunlight exposure, taking into account the conversion between the 
different energy efficiencies of environmental and laboratory induced radiation (Aitken, 1998). As age 
determination using OSL is limited by sample saturation, its upper dating limit in turn strongly depends 
on the intensity of the natural radiation in the sample surrounding.

1.6.2. Luminescence signal characteristics

Luminescence signals released in the laboratory by using intense light sources are often visually 
displayed as decay curves showing the intensity of the signal over stimulation time (Fig. 1.6.2a). Any 
luminescence signal, however, derives from multiple signal components (Bulur, 1996) - some of which 
might not be stable over geological times (Singarayer and Bailey, 2003) - depending on the electron traps 
in the crystal lattice of the mineral grains. The signal components can be differentiated into ultra-fast, 
fast, medium and slow (Fig. 1.6.2b) based on their length of time taken to respond to light stimulation 
(Bailey et al., 1997; Singarayer and Bailey, 2003). Not all components are similarly easy to bleach and 
each mineral grain must not exhibit every possible component (Bulur, 1996; Bulur et al., 2002). Linearly 
modulated (or LM) OSL measurements linearly ramp the intensity of the light stimulation source during 
measurement and, therefore, produce peak-shaped OSL instead of monotonically decaying OSL signals 
(Bulur, 1996). As the different traps contributing to the OSL signal appear as different peaks in the 
curve, LM-OSL measurements can be used to identify and illustrate different signal components in a 
given sample.

Fig. 1.6.2 (a) Schematic representation of a fast component dominated single-grain quartz luminescence signal decay curve, 
and (b) OSL signal component characterisation after ramped power (LM OSL) measurement (adapted from Singarayer and 
Bailey, 2003).

In this thesis, sand-sized quartz grains were used for age determination of the sediment samples. 
Quartz was chosen over feldspar for dating purposes, as it is i) ubiquitous in the studied areas, ii) more 
light sensitive and, therefore, readily bleachable under natural sunlight conditions (Wallinga, 2002), iii) 
known to produce rapidly decaying OSL signals (Aitken, 1998), iv) not suffering from anomalous fading 
(except volcanic quartz (Westaway, 2009)), a phenomenon which describes the loss of part of the 
luminescence signal with time, and v) has a less complicated internal dosimetry to account for (Huntley 

Equivalent dose (Gy)
Dose rate (Gy a-1)

of a sediment sample can, therefore, be calculated as:

Age (a) =
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and Lamothe, 2001). Quartz has, furthermore, been demonstrated in previous studies to be suitable 
for OSL dating of Pleistocene sediments in both Morocco (e.g. Clark-Balzan et al., 2012; Jacobs et al., 
2011; Rhodes et al., 2006) and Gibraltar (Barton et al., 2013).

LM-OSL measurements showed that all quartz samples in this thesis were dominated by the fast 
luminescence signal component (see i.e. chapter 4), which is known for being relatively easy to bleach. 
Light stimulations during measurements were kept under constant intensities and signals from the 
initial seconds of response were used for De determination.

1.6.3. Sample collection and preparation

Due to the light-sensitive nature of the luminescence signal stored in sediment grains, it is of critical 
importance to avoid any sunlight exposure of the samples before OSL measurement in the laboratory 
(Aitken, 1998). On this account, OSL sampling in the field was conducted – depending on the degree of 
cementation of the layers - by i) hammering stainless steel tubes horizontally into the freshly cleaned 
profile walls, or ii) collecting block samples using either hammer and chisel or a drill. Sampling tubes and 
block samples were quickly capped with light-proof plastic caps and covered in black, light-proof plastic 
bags, respectively. Sediments from the direct surrounding of the OSL sample holes were collected for 
subsequent determination of their radioactive element concentration in the laboratory. All samples 
were carefully sealed to preserve the in situ field moisture content.

In the laboratory, samples were opened and processed (Table 1.6.1) under subdued red light conditions 
(Fig. 1.6.3). To exclude any sediment grains from the dating process which might have been exposed 
to sunlight during sampling, material from both ends (1-2 cm) of each sampling tube was removed. 
Similarly, the outer surfaces (~1 cm) of the block samples were cut off using a circular table saw 
equipped with a diamond saw blade.

    Table 1.6.1 Protocol for coarse-grain quartz processing in the laboratory.
Step Treatment
1 Sample drying at 50°C
2 Wet and dry sieving to recover sand fraction (90-212 µm or 90-300 µm)
3 HCl (10%) etching to remove carbonates
4 Hydrogen peroxide (30%)  wash to remove organic matter
5 Sample drying at 50°C
6 Density separation heavy minerals (Lithium heterotungstate density 2.68 g cm-3)
7 Sample drying at 50°C
8 Density separation feldspar (Lithium heterotungstate density 2.62 g cm-3)
9 Sample drying at 50°C
10 HF (40%) etching for 60 min and rinsing with HCl and purified water
11 Sample drying at 50°C
12 Dry sieving to recover the 180-212  µm sand fraction

The remaining material was weighted and subsequently dried in an oven at 50°C for calculation of the 
field moisture content. Coarse-grain sand (usually 90-212 µm; for some samples 90-300 µm, when only 
little amount of material of the desired sand fraction was available) was extracted from the sediment 
by a combination of wet and dry sieving. Due to intensive cementation, block samples were treated 
with hydrochloric acid (HCl, 10%) first to dissolve carbonates before any sieving was possible (Wintle, 
1997). The isolated sand-fractions of each sample were then used for further chemical treatments, and 
eventual for De determination.
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The material was washed with dilute HCl (10%) and hydrogen peroxide (H2O2, 30%) to remove carbonates 
and organic matter, respectively (Galbraith et al., 1999). Lithium heterotungstate, prepared to densities 
of 2.68 g cm-3 and 2.62 g cm-3 was used to separate quartz grains from heavy minerals and lighter 
feldspar grains (Aitken, 1998; Wintle, 1997). The extracted quartz was then etched with concentrated 
hydrofluoric acid (HF, 40%) for 60 min (Wintle, 1997) in order to remove i) the outer surface of the 
grains (which is affected by α radiation, chapter 1.6.9), and ii) any potentially - after density separation - 
remaining feldspar minerals (a chemical removal in addition to the density separation step is necessary 
as feldspar constitutes a solid solution spectrum of minerals with highly variable densities), which 
store comparatively bright luminescence signals that might otherwise significantly alter quartz OSL 
measurements. After etching, samples were rinsed first in HCl and subsequently multiple times in 
purified water to remove fluoride salts and then dried at 50°C. Laboratory processing of the samples 
was completed by re-sieving of the extracted quartz to recover the grain-size fraction desired for De 
determination (180-212 µm). 

Fig. 1.6.3 The sample preparation room in the luminescence laboratory at the Max Planck Institute for 
Evolutionary Anthropology, Leipzig, Germany.

Fig. 1.6.4 Schematic representation of a 1 mm multiple-grain aliquot disc (containing ~30 individual sand 
grains) and a single-grain disc containing 100 holes (each being 300 µm wide and 300 µm deep).
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Multiple-grain and single-grain dating techniques were used for De measurement. For preparation of 
the multiple-grain aliquots, quartz grains were mounted on stainless steel discs using silicon oil and 
a mask of 1 mm. Single-grain discs were loaded by sweeping individual grains over aluminium discs 
– containing 100 holes (each 300 µm wide and 300 µm deep) in a 10 by 10 array (Duller et al., 1999) – 
with a small brush (Fig. 1.6.4).

1.6.4. Multiple-grain vs. single-grain dating

Multiple-grain aliquots contain small subsamples of the desired material to be dated (Duller, 2004; 
Duller, 2008), and each aliquot provides an independent estimate of De. After measurements of many 
separate aliquots the De distribution within a sample can be assessed (Duller, 2008). The fundamental 
assumption behind this approach is that all sediment grains of a given sample were exposed to 
sufficient sunlight – as is typical for aeolian sediments - before burial to remove any trapped and stored 
electron charge. Godfrey-Smith et al. (1988) showed that for quartz an almost complete signal resetting 
(reduction of the natural unbleached optical signal to 1%) can already be achieved after 10 s of direct 
sunlight exposure on a clear day and even on an overcast day, samples bleach only 10 times more 
slowly. Given a complete signal resetting before burial, all grains would have a zero De at deposition and 
- within a homogeneous radiation environment - accumulate the same amount of charge over time. As 
multiple-grain aliquots usually contain between tens and about a million of individual grains (Duller, 
2008) - depending on the grain-size of the measured sediment fraction and the size of the aliquot – the 
measured Des represent aggregate, averaged luminescence signals (Rhodes, 2007).

Multiple-grain OSL measurements were performed in this thesis using automated Risø OSL/TL readers 
(DA-15 and DA-20, Fig. 1.6.5) each equipped with calibrated 90Sr/90Y beta sources for radiation dosing 
(Bøtter-Jensen et al., 2000). Stimulation light was provided by blue light-emitting diodes (470 nm 
wavelength) and infrared diodes (875 nm). The emitted luminescence signal was filtered by 7.5 mm 
Hoya U-340 detection filters (Bøtter-Jensen, 1997) before being converted from photons to an electric 
signal within EMI photomultiplier tubes (Aitken, 1998).

Over the last years, OSL dating of individual sand-sized quartz grains (Bøtter-Jensen et al., 2000; Duller 
et al., 1999; Roberts et al., 1999) has become a frequently used tool especially in archaeological 
contexts (e.g. Demuro et al., 2012; Fitzsimmons et al., 2014; Jacobs and Roberts, 2007; Jacobs et al., 
2012; Roberts et al., 1998; Tribolo et al., 2010). For this technique Risø readers (Fig. 1.6.5) have to be 
equipped with a single-grain attachment (Bøtter-Jensen et al., 2003); the De of individual grains get 
measured by light stimulation from a green laser emitting at 532 nm (Bøtter-Jensen et al., 2000). Single-
grain luminescence signals are often of low intensity and, therefore, more difficult to measure than 
multiple-grain aliquots, and as not all grains are necessarily suitable for luminescence dating (some 
do not exhibit luminescence signals at all (Jacobs et al., 2003, 2006; Porat et al., 2006)) (Fig. 1.6.6), this 
technique is rather elaborate and time-consuming (Duller, 2008). It, however, enables the identification 
of multiple age populations within a sediment sample, which is difficult to assess in multiple-grain 
dating where an averaged luminescence signal from all grains placed on a disc is recorded. Complete 
bleaching during the last transportation process of the sediment grains cannot always be assumed 
with sufficient certainty when it comes to e.g. caves (Feathers, 2002; Murray et al., 2012). Furthermore, 
archaeological sites are often affected by post-depositional mixing of sediments by natural processes 
and/or human activity (Bateman et al., 2007). In those cases single-grain dating can still provide reliable 
depositional ages for a sediment layer and, additionally, quantify the amount of older or younger 
grains in the sample, which might help to understand local site formation processes. Additional 
problems for OSL dating may arise from the variety of materials in the surrounding of a sediment 
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sample each providing different dose rates (Olley et al., 1997), which often occurs in archaeological 
sites (e.g. Steele et al., 2016). Poor sediment sorting and high variability in grain sizes in a sediment 
layer can, furthermore, result in local radioactive ‘hotspots’ and ‘coldspots’ which effect dose rates at 
an individual grain level. Those inconsistencies in beta dose rates can be identified and visualised using 
single-grain dating (Jacobs et al., 2011; Jacobs and Roberts, 2007).

Fig. 1.6.5 Schematic representation of a Risø OSL/TL reader and a single-grain OSL unit adapted 
from Bøtter-Jensen et al. (2000). Optical stimulation is provided by a light source (blue LEDs, IR 
diodes or green laser hosted in a separate attachment) directly onto the sample which in turn emits 
a luminescence signal that passes through detection filters (and a quartz glass when measuring 
individual grains) into the photomultiplier tube (PMT). The PMT produces an output of photon counts 
against time (see Fig. 1.6.2a).

Since single-grain dating was first introduced to the scientific community by Galbraith et al. (1999) and 
Roberts et al. (1999), researchers have performed comparative studies – using both multiple-grain and 
single-grain dating approaches - to understand the variability observed in luminescence characteristics 
of sediment samples when being measured with differently sized aliquots and/or single-grains (e.g. 
Arnold et al., 2012; Duller, 2008; Rhodes, 2007). Rhodes (2007) showed that the brightness of OSL 
signals might vary considerably between grains within one sample, but also that the proportion of 
grains yielding detectable signals at all is highly variable between samples. Consequently, the commonly 
assumed averaging effect in multiple-grain aliquots can be reduced for samples which yield OSL signals 
dominated by just a few bright grains (Duller, 2008; Rhodes, 2007). And although, single-grain dating 
is often successfully applied at sites with complicated stratigraphical contexts (e.g. Jacobs et al., 2012; 
Roberts et al., 2000; Tribolo et al., 2010), researchers have also reported case studies for which single-
grain dating was unable to overcome such issues (Guérin et al., 2012; Steele et al., 2016) or when 
multiple-grain results were scientifically more conclusive than those determined using single-grains 
(Carr et al., 2007; Guhl et al., 2013).

In this thesis, single-grain dating was used for age determination of sediments from the Moroccan 
sites (Rhafas and Casablanca), while at Gibraltar (Vanguard Cave) a comparative dual chronology was 
developed using both methodological approaches (multiple- and single-grain dating).
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1.6.5. Single-aliquot regenerative-dose protocol for De determination

The most frequently applied protocol for optical dating of sediments, today, is the single-aliquot 
regenerative-dose protocol (SAR) after Murray and Wintle (2000, 2003), which was also used in this 
thesis for De determinations. Laboratory based OSL measurements generally include multiple cycles of 
light stimulation, heating and radiation dosing, which can cause sensitivity change (unwanted charge 
transfer to optically sensitive traps) in quartz minerals, resulting in inconsistent responses to light 
stimulation and radiation dosing and eventually problems for De determination. To account for this, 
the SAR protocol includes correction for sensitivity change by measuring small test doses in between 
each dose step during the protocol run (Table 1.6.2, Murray and Wintle, 2000; 2003).

Table 1.6.2 Summary of the single-grain SAR protocol used in this thesis.
Run Treatment Description
1 Dose (except before first run) Radiation dose
2 Preheat (PH1)

a for 10s Empties thermally unstable traps
3 Optical stimulation with IR diodes for 100s at 20°C (only for 

last run)
Quantifies feldspar contamination

4 Optical stimulation with green laser for 1s at 125°C LX
b

5 Test dose Allows sensitivity change correction
6 Preheat (PH2)

a for 10s Empties thermally unstable traps
7 Optical stimulation with green laser for 1s at 125°C TX

c

8 Start from top
a PH1/PH2 was 240°C/200°C or 260°C/220°C; depending on the sample-specific response to preheat plateau and dose 
recovery preheat plateau tests (section 1.5.6).
b LX is the OSL signal.
c TX is the OSL response to the test dose.

Fig. 1.6.6 EMCCD (electron multiplying charge-coupled device) image for a single-
grain disc showing the luminescence signal released by each of the 100 individual 
grains (modified after Thomsen et al., 2015).
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The SAR protocol measures OSL signals (LX and TX, Table 1.6.2) derived from natural and laboratory 
radiation dosing in multiple-grain aliquots and single-grains. After measurement of the natural dose 
(N) stored in the samples, four regenerative dose cycles (R1-R4) with progressively increasing given 
doses were performed to build up reliable dose response curves (Fig. 1.6.7). The De of a sample is then 
calculated by interpolating N on the laboratory generated dose response curve. Preheats before each 
optical stimulation were incorporated to remove charge from thermally unstable traps that have been 
filled during laboratory irradiation and which may otherwise falsify the result by contributing to the 
recorded OSL signal (Murray and Wintle, 2000, 2003). A zero dose step (also called recuperation, R0) – 
which should ideally give zero signal - was measured to assess the effect of charge transfer from deeper 
traps on the OSL signal caused by preheating, irradiation and optical stimulation during the previous 
dose cycles (Wintle and Murray, 2006).

Usually sensitivity change progressively increases with each dose step in OSL protocols, which is why 
one of the already measured dose points is usually repeated towards the end of the protocol to check 
whether sensitivity change was correctly accounted for (recycling point, RRe) (Murray and Wintle, 
2000). The recycling point was chosen to repeat R1 in this thesis and both values should give the same 
OSL signal assuming that the SAR protocol is successfully correcting for any sensitivity change in the 
samples. The recycling ratio is calculated according to Murray and Wintle (2000) as RRe divided by R1.

The purity of a quartz sample after chemical treatment and its potential contamination by feldspar can 
be examined by measuring the IR-depletion ratio after Duller (2003) in the end of the SAR protocol, 
which allows efficient distinction between quartz and feldspar based solely on their luminescence 
behaviour. The IR-depletion point (RIR) is measured similarly to the recycling point, by repeating the 
first regenerative dose cycle. Prior to optical stimulation, however, the sample is additionally exposed 

Fig. 1.6.7 Schematic representation of a sensitivity corrected SAR dose-response curve for De 
determination of a single-grain or multiple-grain aliquot with a single saturating exponential 
curve fit. The dose-response curve is constructed from the regeneration dose points R1-R4. R0 
is the OSL response to a zero dose (recuperation), RRe is the recycling point which repeats R1 at 
the end of the protocol and RIR represents the IR depletion ratio measurement following Duller 
(2003). The De of a sample is calculated by interpolating the natural dose signal (N) of a sample 
on the laboratory generated dose response curve. The D0 value characterises the rate of OSL 
signal saturation.
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to infrared light stimulation (Table 1.6.2). As quartz OSL traps are not sensitive to IR light stimulation, 
while feldspar traps are, the calculated IR-depletion ratio enables quantification of quartz OSL signal 
depletion caused by IR stimulation, or, in other words, quantification of contamination of the quartz 
sample by feldspar (Duller, 2003).

Age determination in OSL dating is limited by the sample-dependent signal saturation level (2D0), 
a status which is approached when the majority of existing electron traps in the crystal lattice of a 
mineral are filled. OSL growth curves will reach a stable plateau when given radiation doses exceed 
sample saturation level. 

The reliability of each measured De value can be assessed by testing its response to the previously 
outlined quality criteria (test dose, recuperation, recycling, IR-depletion, signal saturation), but also 
by the ability of its natural signal to be interpolated on the dose response curve and the size of the De 
error. As luminescence characteristics of quartz samples can be highly variable, quality criteria were 
defined individually for each site in this thesis and are discussed in greater detail in the corresponding 
chapters 2-5.

1.6.6. SAR performance tests

Thermal treatments (preheats) are essential to any SAR protocol (Table 1.6.2) as they empty light-
sensitive shallow traps, particularly those filled by laboratory irradiations, prior to optical stimulation 
and measurement of the stored luminescence signal (Murray and Wintle, 2000, 2003). Preheats, 
however, may also cause sensitivity change resulting in erroneously high luminescence signals and, 
subsequently, miscounted Des (Wintle and Murray, 2006). A thorough testing of the most appropriate 
thermal treatment in a SAR protocol is, therefore, required for each sample prior to De determination.

In this thesis, standard preheat plateau and combined dose recovery preheat plateau tests were 
performed on each sample. For both tests seven different temperatures - varying between 160°C and 
280°C in 20°C steps – for the 10 s preheat ahead of the main OSL measurement (LX) were tested with a 
fixed low temperature test dose cutheat at 160°C (Wallinga, 2002; Wintle and Murray, 2006).

For the preheat plateau test, natural Des are measured and the ability of the test dose signal (TX) 
to monitor sensitivity change should be shown as an absence of De dependence on the preheat 
temperature (Wintle and Murray, 2006). In other words, if determined Des reach a stable plateau value 
independent of the applied preheat temperature then sensitivity change is correctly accounted for 
in the respective SAR protocols, as shown for preheat temperatures between 180°C and 260°C in the 
hypothetical example of a preheat plateau test in Fig. 1.6.8a. The chosen preheat temperature for 
the final De measurements should, consequently, be selected from the plateau region of the preheat 
plateau test (Wintle and Murray, 2006).

As the most distinct sensitivity change during SAR measurements usually occur when a sample is first 
heated, dose recovery tests on unheated sample material can be carried out to check whether the first 
sensitivity measurement (TN) is appropriate to the preceding natural signal (LN) (Murray and Wintle, 
2003; Roberts et al., 1999). For this test, the unheated, laboratory bleached or modern analogous 
(with zero De) sample is given a known radiation dose (close to the expected natural De of the sample) 
and the SAR protocol is then run. Since a known dose is given, the ability of the protocol to accurately 
measure this dose can be directly tested and is mathematically expressed as ratio of measured over 
given dose (Fig. 1.6.8b).

Ideally, dose recovery experiments should mimic the processes of bleaching and radiation dosing in 
nature. This is, however, an impossible task as i) artificial bleaching sources are different to natural 
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sunlight i.e. with respect to wavelength and light intensity, and ii) irradiation in the laboratory is 
administered by strong beta or gamma sources within seconds, while radiation dosing occurs slowly 
over millennia due to the decay of radioactive elements in natural sedimentary deposits. Researchers 
have performed intensive experiments in the past years using beta and gamma radiation and different 
kinds of bleaching sources (natural sunlight, solar simulator, blue LEDs, green laser) to test the reliability 
of dose recovery test results under varying experimental settings (e.g. Choi et al., 2009; Thomsen et al., 
2012; 2016; Wang et al., 2011) and chapter 4 of this thesis contributes to this discussion by examining 
single-grain dose recovery characteristics of Moroccan and Australian samples.

Fig. 1.6.8 Hypothetical example of a (a) 
preheat plateau test, and (b) dose recovery 
preheat plateau test as a function of 
preheat temperature. (a) Determined De are 
independent of the preheat temperature 
(preheat plateau) at 180-260°C. (b) 
Calculated measured/given dose ratios 
describe the ability of a sample to recover 
a laboratory given dose within acceptable 
ranges (2-sigma of unity).

For this thesis, standard dose recovery test are combined with a preheat plateau test to assess the 
ability of the respective SAR protocol to reproduce a known laboratory dose depending on a chosen 
preheat temperature (Fig. 1.6.8). Based on the results of the preheat plateau tests and dose recovery 
preheat plateau tests of each individual sample, preheat temperatures were selected for final De 
measurements.

1.6.7. Presentation of data

Radial plots – which were initially proposed by Galbraith (1988, 1990) for data presentation in fission 
track dating - are often used in OSL dating studies to graphically display De distributions of single-grains 
and multiple-grain aliquots (Fig. 1.6.9). Luminescence intensities of single-grains and consequently also 
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the precision of their calculated Des may vary greatly, which is why e.g. histograms are likely to be 
uninformative or even misleading for the interpretation of De distributions (Galbraith et al., 1999). 
Each data point in a radial plot represents a single grain/multiple-grain aliquot and its measured De 
can be read by tracing a line from the y-axis origin through the point until the line intersects the radial 
plot axis (log scale). The standard error (in %) and the precision (reciprocal standard error) of each De 
value can be read by extending a line vertically to intersect the x-axis (Olley et al., 2004). De values 
with the highest precision (and the smallest relative standard error) fall furthest to the right, whereas 
those measured with least precision lie furthest to the left. The y-axis extends only from -2 to +2 
thereby effectively displaying the length of a 2-sigma error bar applicable to any point (Galbraith et al., 
1999). The shaded region of the plot indicates those De values that are consistent (at 1-sigma) with the 
weighted mean of a discrete age population.

1.6.8. Analysis of data: age models for De determination

De distributions of sediment samples may i) contain multiple age populations (due to i.e. post-
depositional mixing, roof spall in caves or incomplete bleaching), ii) show extremely wide scattering 
(due to heterogeneous dose rates), or iii) simply display an ideal image of a single age population. 
In the first two cases, single-grain dating should be favoured over multiple-grain dating approaches 
as it allows not only to identify and quantify those multiple age populations in a sample, but also to 
calculate ages separately for each of these populations.

The most commonly used statistical model to calculate the age of a single homogeneous De distribution 
(Fig. 1.6.10a) in the past years, was the Central Age Model (CAM) of Galbraith et al. (1999), which 
calculates a weighted geometric mean of individual Des and gives an estimate for the overdispersion 
of the De distribution. The overdispersion is defined as the scatter beyond measurement uncertainties 
and allows quantification of the variability in De distributions (Galbraith et al., 1999). It comprises 
both extrinsic and intrinsic factors; the former of which can be caused by dose rate heterogeneity, 
incomplete bleaching and/or post-depositional mixing, while the latter arises from thermal transfer, 
instrument reproducibility, counting statistics or other sample-specific OSL characteristics (Thomsen 
et al., 2007). While researchers have recently started discussing the application of alternative mean age 

Fig. 1.6.9 Illustration of a radial plot with a hypothetical De distribution. The graphical display allows 
visual assignment of the measured De and relative standard error for each single-grain or multiple-grain 
aliquot, while at the same time visualises potential discrete De populations.
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models such as the Bayesian central-dose model or the calculation of unweighted arithmetic means 
(e.g. Combès et al., 2015; Guérin et al., 2016; Thomsen et al., 2016), in this thesis, the CAM was used 
when De distributions were characterised by a single homogeneous dose population.

Fig. 1.6.10 Radial plots showing hypothetical examples of De distributions comprising (a) one discrete, and (b) two discrete 
age populations. For the purposes of a simplified illustration, Des of individual grains in (b) are displayed as dots or triangles 
depending on the age population they are assigned to.

For samples in this thesi characterised by mixed single-grain De distributions (Fig. 1.6.10b), the number 
of discrete De populations (components), their relative proportion and their respective weighted mean 
age was determined using the Finite Mixture Model (FMM) after Galbraith et al. (1999) and Roberts et 
al. (2000). In the FMM, it is assumed that the log equivalent doses for single grains represent a mixture 
of discrete, normally distributed populations, each of which has the same relative overdispersion. The 
model can be run by inserting values for the number of fitted components and the overdispersion; it 
then uses maximum likelihood to estimate the mean Des, their standard errors and the proportion of 
grains for each component (Roberts and Jacobs, 2015).

1.6.9. Dose rate determination

Equally important to the De determination in OSL dating is the correct assessment of the dose rate 
received by the sediment grains per year, as the rate at which trapped electrons are accumulated is 
proportional to the energy absorbed by the mineral grains from the surrounding radiation flux since 
its last sunlight exposure (Aitken, 1998). The annual ionising radiation arising from i) the radioactive 
decay of K, Th and U in the sediments, and ii) cosmic rays contribute to the total dose rate (Fig. 1.6.11) 
which can only be measured under present day conditions. The fundamental assumption underlying 
OSL dating studies, therefore, is that the total dose rate for each sediment sample remained constant 
with time or in other words that the present-day dose rate is the same as that in the past. Large 
uncertainties are incorporated into dose rate calculations to account for potential small variations in 
the radiation flux over time (Aitken, 1998).

Naturally occurring radiation in sedimentary bodies is mostly a result of the radioactive decay of 40K 
- emitting β particles and γ rays - and uranium (238U and 235U) and 232Th which both produce α and β 
particles as well as γ rays (Fig. 1.6.11). There is also a minor contribution from the decay of rubidium 
which is usually considered negligible due to its strongly absorbable, low energy β particles (Aitken, 
1985, 1998). 
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α particle are characterised by relatively limited travel ranges within sediment samples (~20 µm, 
Guérin, 2015), penetrating only the outer rinds of sand-sized quartz grains (Fig. 1.6.11c). HF etching 
applied during chemical treatment of the samples in the laboratory removes these outer rinds of the 
quartz grains (section 1.6.3) and, therefore, α contribution to the total dose rate is rendered negligible. 
In contrast, travel ranges of β and γ particles in sedimentary bodies are 2-3 mm and up to 40-50 cm, 
respectively (Aitken, 1998; Guérin, 2015).

Sources of uncertainty in sediment dose rate determination may arise from attenuation of β particles 
by moisture and/or secular disequilibrium in the uranium- or thorium-series decay chain (Olley et 
al., 1996). Water present in the pore spaces of sediments absorbs part of the radiation that would 
otherwise reach individual grains (Mejdahl, 1979). Consequently, the dose rate of moist sediment is 
lower compared to in the same, dry material (Aitken, 1998). In this thesis, in situ and full-saturation 
moisture contents were taken into account to allow estimation of reliable average burial-time moisture 
contents for each individual OSL sample.

Fig. 1.6.11 Schematic representation of the sources of environmental radiation affecting individual 
sediment grains on different resolution levels (from low (a) to high (c)) adapted from S. Stokes in 
Aitken (1998) and Fleming (1970). Grains are irradiated by cosmic rays from outer space as well as 
alpha particles, beta particles and gamma rays originating from the radioactive decay of naturally 
occurring K, Th and U in the sediment. Alpha particles travel only short distances (<20 µm) 
compared to beta particles (2-3 mm), gamma rays (up to 40-50 cm) and cosmic rays, which is why 
they only penetrate the outer rind of sand-sized grains (b,c).
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In radioactive decay chains, a secular equilibrium represents the condition in which activities of 
daughter isotopes are equal to those of the parent. Disequilibrium, hence, indicates an imbalance 
between daughter and parent isotope, either due to introduction of new material from an allochthonous 
source, or by escape or removal of the daughter isotope (e.g. gaseous escape, leaching in groundwater, 
absorption) (Aitken, 1985, 1998; Krbetschek et al., 1994). While the thorium decay chain is generally 
assumed to be in secular equilibrium due to low solubility of 232Th and the short-lived nature of its 
unstable daughter isotopes (Fig. 1.6.12), disequilibrium in the uranium decay chain occurs more 
frequently – as 238U produces e.g. water soluble daughter isotopes 226Ra and 222Rn (Fig. 1.6.12) – and 
can introduce substantial changes (up to ~30%) to the OSL age estimate (Olley et al., 1996; 1997). 
Therefore, in depositional environments where water naturally percolates through the sediment 
body (i.e. fluvial deposits or caves), disequilibrium is more likely to occur and should, consequently, be 
thoroughly assessed.

β and γ dose rates for sediment samples can be determined by various techniques. In this thesis, dose 
rates were measured using primarily beta counting and in situ gamma spectrometry. Beta counting was 
performed on a Risø low-level multicounter system (GM-25-5) which allows β dose rate determination 
on small sample sizes (<10 g) (Bøtter-Jensen and Mejdahl, 1985; 1988). The system measures the 
total counts of β emission derived from radioactive sources in the sediment for a defined time span 
(usually 24h), it, however, does not give information on the concentration of the specific elements 
the radiation originates from. In situ gamma spectrometry (Fig. 1.6.13) allows the measurement of 
the natural γ radiation in a 30 cm radius sphere surrounding each OSL sampling hole in the field with 
a crystal detector (NaI or LaBr3). This technique is particularly useful for samples from sedimentary 

Fig. 1.6.12 Summary of the 238U and 232Th decay chains, including half-lives of their daughter 
isotopes; data from Lorenz (1983). Daughter isotopes of the 238U decay chain with long half-
lives for which disequilibrium might be an issue in sediments are highlighted in red.
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contexts which are likely to be affected by high spatial heterogeneity in the γ radiation field, such as 
archaeological sites. 

To allow assessment of the reliability of the calculated β and γ dose rates and to detect and quantify 
potential disequilibria in the Th and U decay chains (Fig. 1.6.12), the specific activities of the 
radioelements 238U, 232Th, 40K and their daughter products were determined on sediment samples from 
the direct surrounding of each OSL sample in the laboratory using high-resolution gamma spectrometry 
(HRGS). The conversion factors for radioactivity of Guérin et al. (2011) were applied to calculate the 
corresponding β and γ dose rates, which were then compared with those derived from beta counting 
and in situ gamma spectrometry.

Fig. 1.6.13 In situ gamma spectrometry measurement using a LaBr3 detector at an OSL sample hole at 
Vanguard Cave, Gibraltar.

The contribution from cosmic radiation (Fig. 1.6.11) to the total dose rate in this thesis was calculated 
according to Prescott and Hutton (1988, 1994) as a function of i) the site’s longitude, geomagnetic 
latitude and altitude, and ii) the burial depth and density of the overburden for each of the dated 
samples. Cosmic radiation is classically grouped into a soft and a hard component, the former is 
absorbed within ~80 centimetres of sediment, whereas the latter is capable of penetrating much 
further into the ground (Aitken, 1985). While in most studies, cosmic radiation contributes only a 
low percentage (<10%) to the total dose rate compared to the dose rate derived from the decay of 
radioactive elements (Guérin, 2015), it can be 25% or more in quartz-rich sediments (e.g. Fitzsimmons 
et al., 2014).

1.7. Outline of thesis chapters

The following four chapters aim to investigate the luminescence characteristics of individual quartz 
grains of Pleistocene archaeological cave sites in the western Mediterranean and to build reliable 
chronological frameworks for those sites using single-grain OSL dating to improve our understanding of 
the timing of hominin occupation phases and their palaeoenvironmental context at local and regional 
scales:
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Chapter 2 (Paper 1) – Rhafas, NE Morocco – linking a long stratified Palaeolithic sequence to 
records of palaeoenvironmental variability and modern human dispersal across the Maghreb

Much attention has been devoted to the study of modern human origins and dispersal within and 
out of Africa; more recently, growing interest has been placed on the archaeological record of the 
Maghreb and especially the Aterian technocomplex which is often associated with personal ornaments 
interpreted to represent cultural modernity. Building reliable chronologies for archaeological sites 
containing multiple Palaeolithic stone tool industries is of critical importance to understand both 
timing and geographical dispersal of the emergence of modern human behaviour in Africa. The cave 
of Rhafas is one of the few sites in the Maghreb known to contain an exceptional Palaeolithic record 
spanning the MSA through to the Neolithic.

Chapter 2 focusses on the development of an absolute chronostratigraphy for the site using single-grain 
OSL dating. Geological and sedimentological investigations are conducted to gain insights into local 
site formation processes as well as Middle to Late Pleistocene palaeoenvironmental conditions in the 
area. The results of this multi-proxy approach allows not only to obtain reliable age estimates for large 
parts of the stratigraphic sequence but also to identify local processes (sediment mixing, carbonate 
cementation, ground water flux) which substantially affected the sediments well after deposition. This 
chapter provides valuable support for future OSL studies dealing with highly complicated cave settings 
and discusses the new ages for Rhafas in the broader chronological context of the Palaeolithic sites in 
the Maghreb.

Chapter 3 (unpublished study) – Casablanca, Atlantic Morocco – attempt to construct reliable 
chronologies for Acheulian sites close to the upper limit of quartz OSL dating

In chapter 3 the regional focus is shifted towards Atlantic Morocco where the Casablanca sites provide 
rich archaeological records for the study of Early and Middle Pleistocene Acheulian assemblages and 
their palaeoclimatic context. Eight collected OSL samples from two cave sites - which were subject to 
chronological investigations in the past - are used to test the potential of single-grain quartz for age 
determination of sediments close to the upper dating limit of this method, with the overall aim to build 
refined chronostratigraphies for both sites.

The OSL signal characteristics of the samples are investigated using laboratory-based experiments. 
It is demonstrated that while stored luminescence signals are usually bright and fast component 
dominated, samples are very close to saturation level and tend to fail standard OSL performance tests. 
The obtained test results between differently sized aliquots are often conflicting, which hampers the 
drawing of solid conclusions and creates more questions than initially intended to solve.

Subsequently, single-grain OSL ages are determined and critically discussed. The validity of the age 
estimates is highly questionable for both sites, as they are neither chronostratigraphically consistent 
nor in agreement with independent age controls. It is argued that while standard single-grain quartz 
luminescence appears to be unsuitable for the dating of these archaeological sediments, this does not 
necessarily applies for all quartz OSL approaches.
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Chapter 4 (Paper 2) - investigating single-grain dose recovery characteristics of archaeological 
sediments from Moroccan and Australian sites

The question whether a specific quartz sample is suitable for OSL dating given predetermined 
measurement protocol parameters and whether its calculated natural De is, consequently, considered 
reliable, is commonly checked by a dose recovery test. These laboratory based experiments can, 
however, only mimic the processes of sunlight bleaching and radiation dosing that occur in natural 
environments and as yet it is unclear which effects artificial bleaching sources or differently sized 
recovery doses might have on the obtained test results of a sample.

Chapter 4 addresses these issues by systematically examining single-grain quartz OSL dose recovery 
characteristics of archaeological samples from Morocco (Rhafas and Casablanca) in comparison 
to those from an Australian site. This study demonstrates that dose recovery test results primarily 
depend on the size of the administered dose. It is furthermore shown that sample-specific responses 
to the chosen test parameters can significantly alter experimental results, especially in samples which 
underwent relatively few numbers of sensitisation cycles. As this is the case for considerable numbers 
of sedimentary sequences in archaeological sites – including Rhafas and Casablanca – special caution is 
advised for conducting dose recovery experiments on such sediments in general and more specifically 
for the interpretation of the obtained results.

Chapter 5 (Paper 3) – Vanguard Cave, Gibraltar – testing two OSL approaches on a high resolution 
sedimentary cave sequence in the context of Neanderthal occupation and Mediterranean sea-
level fluctuations

Substantial amount of work on the Palaeolithic of southern Iberia has focused on the timing of 
Neanderthal persistence in the area as well as their potential interaction and eventual replacement by 
AMH. Less attention has been given to reconstruct past ecological and climatic conditions during times 
of Neanderthal dominance that pre-date the arrival modern human populations in the region.

In chapter 5, a chronostratigraphy for the upper part of the >17 m sedimentary sequence of Vanguard 
Cave is developed, a site located on top of a MIS 5 marine terrace at the present-day shoreline of 
Gibraltar. Sediment accumulation rates are high at Vanguard Cave, which allows a critical testing of 
the soundness of OSL ages derived from differently sized aliquots by means of the high resolution 
stratigraphical cave sequence. A dual chronology – comprising quartz single-grain and multiple-
grain ages – is thus created demonstrating a high level of consistency between the two OSL dating 
approaches and, consequently, a great suitability of the method for age determination of the Vanguard 
Cave sediments. It is argued in this chapter that the stratigraphy of the cave deposits generally supports 
a scenario of relatively stable palaeoenvironmental conditions between MIS 5 and MIS 3 in the region. 
The site, thus, offers great potential for detailed studies of human-environmental interactions in 
southern Iberia at that time building on a robust chronostratigraphical framework.

Chapter 6 - Conclusion

The last chapter provides a synthesis of the accomplishments and conclusions of this thesis and 
integrates the research questions posed in the introduction.
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