
Airway epithelial cell cultures for studying obstructive lung disease
effects of IL-13 and cigarette smoke
Mertens, T.C.J.

Citation
Mertens, T. C. J. (2018, May 9). Airway epithelial cell cultures for studying obstructive lung
disease effects of IL-13 and cigarette smoke. Retrieved from
https://hdl.handle.net/1887/62064
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/62064
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/62064


 
Cover Page 

 
 

 
 
 

 
 
 

The handle  http://hdl.handle.net/1887/62064 holds various files of this Leiden University 

dissertation 
 
Author: Mertens, Tinne 
Title: Airway epithelial cell cultures for studying obstructive lung disease effects of IL-13 

and cigarette smoke 
Date:  2018-05-09 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/62064


CHAPTER 2 
 

USE OF AIRWAY EPITHELIAL CELL CULTURE  
TO UNRAVEL THE PATHOGENESIS  

AND STUDY TREATMENT IN OBSTRUCTIVE  
AIRWAY DISEASES

 

Pulm Pharmacol Ther, 2017 Aug; 45:101-113

Tinne C.J. Mertens, Harry Karmouty-Quintana, Christian Taube and Pieter S. Hiemstra



Chapter 2

16

ABSTRACT

Asthma and chronic obstructive pulmonary disease (COPD) are considered as two distinct 
obstructive diseases. Both chronic diseases share a component of airway epithelial 
dysfunction. The airway epithelium is localized to deal with inhaled substances, and 
functions as a barrier preventing penetration of such substances into the body. In addition, 
the epithelium is involved in the regulation of both innate and adaptive immune responses 
following inhalation of particles, allergens and pathogens. Through triggering and inducing 
immune responses, airway epithelial cells contribute to the pathogenesis of both asthma 
and COPD. Various in vitro research models have been described to study airway epithelial 
cell dysfunction in asthma and COPD. However, various considerations and cautions have 
to be taken into account when designing such in vitro experiments. Epithelial features of 
asthma and COPD can be modelled by using a variety of disease-related invoking substances 
either alone or in combination, and by the use of primary cells isolated from patients. 
Differentiation is a hallmark of airway epithelial cells, and therefore models should include 
the ability of cells to differentiate, as can be achieved in air-liquid interface models. More 
recently developed in vitro models, including precision cut lung slices, lung-on-a-chip, 
organoids and human induced pluripotent stem cells derived cultures, provide novel state-
of-the-art alternatives to the conventional in vitro models. Furthermore, advanced models 
in which cells are exposed to respiratory pathogens, aerosolized medications and inhaled 
toxic substances such as cigarette smoke and air pollution are increasingly used to model e.g. 
acute exacerbations. These exposure models are relevant to study how epithelial features 
of asthma and COPD are affected and provide a useful tool to study the effect of drugs used 
in treatment of asthma and COPD. These new developments are expected to contribute to 
a better understanding of the complex gene-environment interactions that contribute to 
development and progression of asthma and COPD.
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INTRODUCTION 

Asthma and chronic obstructive pulmonary disorder (COPD) are common disorders and 
affect 1 out of 12 people worldwide. Asthma and COPD are chronic inflammatory diseases 
characterized by airway obstruction which is reversible in asthma and often irreversible 
in COPD (1). Another important feature of COPD, and occasionally in severe asthma, is 
emphysema whereby the alveolar tissue is destroyed, resulting in impaired oxygen exchange 
(1-3). Since this review focuses on airway epithelial cells, studies investigating alveolar 
epithelial cells and their role in the development of emphysema are outside its scope. 
Inflammation of the airways is present in both asthma and COPD, but in asthma it affects 
mainly the conducting airways whereas in COPD it affects primarily the small airways, likely 
reflecting the distribution of inhaled provoking substances, such as allergens in asthma and 
cigarette smoke in COPD. Despite being different disease entities, both asthma and COPD 
share an important component of epithelial dysfunction (4, 5). 

Approximately 20 to 35% of the world population smokes, with surprisingly similar smoking 
rates reported in patients with asthma (6-8). Cigarette smoking has been shown to worsen 
asthma symptoms, reduce responsiveness to corticosteroid treatment, accelerate lung 
function decline and increase exacerbation rates (9). In contrast, various characteristics 
typically assigned to asthma have also been found in patients with COPD, including 
reversibility of airway obstruction, atopy and T helper 2 (Th2)- mediated inflammation 
(1). Importantly, asthma and COPD share various dysfunctional features of the airway 
epithelium, in addition to several other disease features (4).

The epithelium of the conducting airways is a pseudostratified epithelial layer that 
comprises basal, ciliated and secretory cells. The epithelial barrier function in both asthma 
and COPD has been shown to be decreased, resulting from disrupted intercellular junctional 
proteins (10, 11). Other shared features of asthma and COPD include goblet cell metaplasia 
with increased mucus production, altered inflammatory responses, reduced antimicrobial 
peptide expression and activity, and altered basal function that may lead to defective repair 
responses following injury (5) (4, 10). 

Epithelial dysfunction in both asthma and COPD implies an important role for these cells 
in the development and self-perpetuation of these diseases. Various research models 
have been applied to investigate the pathogenic mechanisms, diagnostic potential and 
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therapeutic targets of airway epithelial cells in chronic lung diseases. However, very few 
models have focused on the combined features of both asthma and COPD and how these 
may interact in vitro. In this review, we discuss recent advances and important considerations 
for in vitro models to study airway epithelial cell dysfunction in asthma and COPD.  

ASSESSING EPITHELIAL FUNCTION IN VITRO 

In contrast to patient studies and in vivo models, in vitro models allow us to deconstruct 
multi-layered mechanisms of disease pathogenesis and investigate the contribution of 
individual cellular components. Epithelial features of asthma and COPD can be investigated 
in vitro using patient derived primary cells, but can also be induced by known invoking 
substances involved in disease pathogenesis. Such substances can include complex mixtures 
such as cigarette smoke for COPD or allergen extracts for asthma, but also specific chemicals 
or proteins known to play a role in specific disease mechanisms can be used. Furthermore, 
the route of administration of invoking substances can vary. Using the culture media as 
the vehicle for the compound of interest is the most common approach, but for volatile 
compounds a more sophisticated technique may be required. 

In vitro models can range from simple monolayers of epithelial cells to complex three-
dimensional culture models involving multiple cell types. In a pseudostratified epithelium, 
all epithelial cells are attached to a basement membrane. Therefore, airway epithelial cells 
can be grown on a variety of different surfaces and careful selection of an appropriate 
support is warranted. Supports can range from uncoated tissue culture treated plastics to 
decellularized scaffolds of human tissue. Recent reviews provide an overview of various 
available supports and scaffolds and will not be revisited here (12-15). 

Airway epithelial cells are available as continuous cell lines or as primary cells from various 
anatomical locations which vary in various characteristics including, but not restricted to 
apical-to-basal polarization, ciliary development, mucus production or barrier function. 
Primary epithelial cells can be obtained at a low passage from an increasing number of 
commercial sources, but can also be isolated from tissue by adequately equipped research 
laboratories if human samples are available. A major advantage of freshly isolated cells is 
also that they can be obtained from patients with disease and compared to cells derived 
from healthy persons. Primary cells can be grown as a submerged monolayer, but also as an 
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air-liquid interface culture with air exposure on the apical side and culture medium on the 
basolateral side of the membrane. In contrast, most tumour and immortalized cells lines are 
studied as submerged monoculture, which is partly explained by the fact that they do not 
differentiate into a pseudostratified epithelial layer at air-liquid interface. Airway epithelial 
cells can also be grown as organoids, in which cells are grouped and organized in a way 
similar to the organ they are representing (16, 17). Multiple structural, inflammatory and 
immune cell types can be included with the airway epithelial cells to create a more complex 
interacting system involving multiple cell types. Overall, various considerations have to be 
taken into account when modelling disease features in vitro. 

Modelling epithelial changes of asthma and COPD in vitro

Various methods and techniques have been developed to recreate physiological relevant 
epithelial features of asthma and COPD in vitro. Reconstructing these disease features in 
vitro can be done by collecting airway epithelial cells from patients and culturing these cells 
using different techniques. Interestingly, when primary cells are isolated from asthma or 
COPD patients, several epithelial features observed in vivo are retained in vitro, including 
altered cytokine release, impaired immune responses and increased susceptibility to 
oxidative stress, suggesting that the epigenetic programming of the airway epithelial 
cells is retained after isolation (18-22). Nonetheless, it is important to consider that gene 
transcription, epigenetic programming and metabolism of the cells can be affected by the 
cell culture conditions. Airway epithelial cells can be collected by nasal or bronchial biopsy 
or brush, from resected lung tissue obtained during resection surgery, from resected lungs 
obtained during transplantation or from donor lungs not used for transplantation. However, 
in many research groups such studies are hampered by the fact that patient tissue is often 
difficult or expensive to obtain. Both primary airway epithelial cells or cell lines exposed 
to appropriate substances can be used to model certain features of disease, for example 
environmental exposures known to be involved in disease pathogenesis. Additionally, it is 
also important to consider exposure patterns and duration, as acute exposures may not 
reflect observations seen during chronic exposures.

Airway epithelial cells can be obtained in vivo through bronchoscopy or biopsies followed 
by morphology or expression analysis. Such analyses have been used by various groups to 
identify potential new therapeutic targets, but have helped in defining new phenotypes 
of asthma and COPD (23-27). Airway epithelial cells can be collected and cultured in vitro 
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followed by experimental exposures and other treatments and subsequent analysis. To this 
end, cigarette smoke and respiratory allergen exposures have been used to model COPD 
and asthma pathogenesis respectively (28). Alternatively, cytokines previously shown to be 
involved in disease pathogenesis have also been used to induce various signalling cascades 
that may lead to epithelial dysfunction. Th2 cytokines, including interleukin (IL)-4 or IL-13 
are commonly used to model in vitro epithelial changes found in patients with asthma, 
whereas the pro-inflammatory cytokines TNFα and IL-1β have been used to model COPD 
(27, 29-31). Additionally, individual components of cigarette smoke or allergens can be used 
to induce epithelial dysfunction in vitro (32, 33).

Cigarette smoke is a complex mixture containing thousands of chemicals. Extracts of cigarette 
smoke have been made and used in vitro to study the effects cigarette smoke on airway 
epithelial cells. However, it is important to note that cigarette smoke consists of a volatile and 
a particulate fraction, with the particulate fraction being the minority fraction, contributing 
only to 4-9% of the total smoke weight (28). Cigarette smoke extract fails to capture the 
complete volatile fraction and consists mostly of the particulate fraction. Additionally, the 
particulate and the volatile fraction have been shown to have different properties (34). As 
an alternative to cigarette smoke extract, whole cigarette smoke can be used that contains 
both the particulate and volatile fraction of cigarette smoke, which resembles in vivo smoke 
exposure more closely (28). Various exposure designs, both commercial-available and self-
made, have been developed to expose airway epithelial cells to whole cigarette smoke 
(35-39). Additionally, the availability of research grade cigarettes with defined chemical 
content allows for reproducible experiments between research groups. Moreover, cigarette 
smoke has been shown to contain harmful bacterial and fungal components that may affect 
epithelial responses following exposure (40). Cigarette smoke extract or whole cigarette 
smoke have both been used to expose airway epithelial cells in vitro, but also whole diesel 
exhaust or particles (28, 35, 41-47). Alternatively, individual components of cigarette smoke 
have also been used including nicotine, acrolein, formaldehydes or benzopyrene (32, 48-
51). E-cigarettes, a recent commercially available alternative to cigarette smoking, has 
received a lot of attention regarding the safety and health risks and thus provide a new 
field to study the effects on airway epithelial cells (52). Whereas research focussing on the 
physiological effects of E-cigarette smoking remains limited, a recent publication provided 
important information regarding the use of E-cigarettes. The authors showed that electronic 
cigarette aerosols can induce nicotine-dependent gene expression changes in primary 
bronchial epithelial cells cultured at air-liquid interface, similar to whole cigarette smoke 
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induced changes. Moreover, they validated these in vitro findings in in vivo samples, overall 
suggesting that this in vitro model is relevant to study the in vivo effects of E-cigarette 
smoking (53). 

Exposure of epithelial cells to inhaled allergens may provide important information on 
the pathogenesis on allergic airway disease such as asthma. The composition of allergen 
preparations used in such studies shows considerable variability, and a large variety of inhaled 
allergens exist, including house dust mite, pollen and fungi, which are most often applied 
as a crude extracts (54-57). Alternatively, individual components of allergen extracts have 
been used to investigate the effects on airway epithelial cells (58, 59). In addition to using 
extracts or individual components, it is important to consider the concentration applied and 
whether it reflects physiological concentrations encountered in vivo. Furthermore, extracts 
are prone to batch-to-batch variability and also extracts from commercial sources have been 
shown to vary in protein content (60, 61). Moreover, inhaled allergens can also contain 
numerous bacterial and fungal components due to close proximity of these compounds in 
the environment (62).

Comparing different sources of airway epithelial cells

In vitro airway epithelial cell cultures can be derived from cell lines or primary epithelial 
cells. Airway epithelial cell lines have acquired the ability to divide indefinitely either by 
nature occurring mutations such as tumours or through genetic transformation of primary 
tissue derived cells. These cells are generally easy to expand and cheap to culture and data 
obtained through cell lines are typically very reproducible. However, cell lines often fail 
to recapitulate the characteristics of an in vivo pseudostratified epithelium. On the other 
hand, primary airway epithelial cells have limited dividing capacity in vitro, additionally, 
these cells are expensive to culture and donor variability often hampers results. Despite 
these differences, primary airway epithelial cells retain the capacity to differentiate into a 
pseudostratified epithelial layer when cultured at air-liquid interface, thereby resembling 
more closely the in vivo epithelium morphologically and molecularly (63, 64). 

To investigate the role of specific molecular targets in asthma or COPD, molecular techniques 
are available to genetically manipulate primary airway epithelial cells. However, primary 
cells are inherently difficult to manipulate genetically (65). Consequently, mouse tracheal 
epithelial cells from transgenic mice have been used as an alternative to human airway 
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epithelial cultures (57, 66-68). Moreover, disease models can be induced in transgenic mice 
followed by airway epithelial isolation. Nonetheless, transgenic animals are expensive and 
time consuming to establish and mouse tracheal epithelial cells are difficult to maintain in a 
proliferative state in vitro. As a result, to obtain an adequate amount of cells for experimental 
use, excessive animal numbers are needed for in vitro experiments which may hamper its 
applicability to study the role of airway epithelial cells in asthma and COPD. 

Primary airway epithelial cells and various cell lines can be cultured either submerged 
or at air-liquid interface. The in vivo pseudostratified epithelium forms a physical and 
immunological barrier against inhaled particles and pathogens and consists of various 
epithelial cell types including club, goblet, ciliated and basal cells (69). Secretory epithelial 
cell types, club and goblet cells, maintain the airway surface liquid in which inhaled particles 
and pathogens are trapped followed by mucociliary clearance by ciliated cells (70). Upon 
damage of the epithelial layer, basal cells will proliferate followed by differentiation into 
specialized epithelial cell types (71, 72). Capturing these specific features of the airway 
epithelium in vitro is an important aspect of modelling asthma and COPD in vitro. To this 
end, airway epithelial cells have been cultured both submerged or at the air-liquid interface. 
Whereas submerged monolayers do not differentiate into a pseudostratified epithelial layer, 
they can be applied to investigate cell signalling pathways and basic cellular responses. 
Culturing airway epithelial cells at air-liquid interface allows mimicking in vivo exposures 
more closely by using e.g. aerosols (64). Primary airway epithelial cells cultured in vitro at 
air-liquid interface will differentiate into a pseudostratified epithelial layer consisting of club, 
goblet, ciliated and basal cells (73). Each of these cell types has its specific transcriptional 
program, thus it is important to verify the presence and composition of these cell types 
when culturing primary airway epithelial cells. Also, whereas in vitro cultured airway 
epithelial cells retain the ability to differentiate into a pseudostratified epithelial layer, it is 
important to consider that the transcriptional program can be also be affected by the in vitro 
culturing method including, but not limited to, the isolation procedure, culture medium 
containing antibiotics and the surface on which the cells are cultured. Additionally, primary 
airway epithelial cells can be cultured submerged to generate three dimensional spheroids 
which resemble a pseudostratified epithelium (74). Some epithelial cell lines also have the 
capability to be cultured at the air-liquid interface. However, whereas certain cell lines are 
able to develop the required robust barrier function that allows culture at the air-liquid 
interface, they will not differentiate into a functional pseudostratified epithelial layer. Both 
epithelial cell lines and primary airway epithelial cells, cultured either at ALI or submerged, 
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have been used to study the effects of whole cigarette smoke, cigarette smoke extract, 
allergens, chemicals or cytokines and are listed in table 1.

Table 1. Use of airway epithelial cell lines and primary airway epithelial cells under submerged or air-liquid 

interface culture conditions. ALI, air-liquid interface; PBEC, primary bronchial epithelial cells; SAEC, small airway 

epithelial cells.

Cell source Cell type Culture method References

Immortalized cell 
lines

16HBE
ALI (10, 75, 76)
Submerged (77-79)

BEAS-2B
ALI

Submerged

(80, 81)

(82-84)

PBEC
ALI (85)
Submerged (57, 86, 87)

SAEC Submerged (88, 89)

Tumour cell lines
NCI-H292

ALI (30, 90)
Submerged (91, 92)

Calu-3
ALI (54, 93-95)
Submerged (55, 95)

Primary cells iso-
lated in research 
laboratories

PBEC
ALI (29, 45, 96)
Submerged (78, 79, 97)

SAEC
ALI (98, 99)
Submerged (100-102)

Primary cells 
commercially 
available(*)

MucilAir ALI (103-105)

EpiAirway ALI (52, 103, 106, 107)

(*) Multiple providers are available for primary bronchial or small airway epithelial cells. In addition, to Epithelix 

(providing MucilAir) and MatTek (EpiAirway), other major providers include Lonza, ATCC and ScienCell.

When using airway epithelial cell lines, it is important to consider that these may show 
marked differences in several important epithelial characteristics, including the capacity 
to form a physical barrier and their response to various exposures. Commonly used cell 
lines to resemble airway epithelial cells are 16HBE14o- (16HBE), NCI-H292, Calu-3 and 
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BEAS-2B. 16HBE cells are transformed normal human bronchial epithelial cells that can 
form polarized monolayers with an intact barrier function, although conflicting reports exist 
on the presence of cilia and ciliary proteins in these cells (108-110). BEAS-2B cells, also 
transformed normal human bronchial epithelial cells, do not retain the ability to form an 
intact barrier function (111). Whereas BEAS-2B cells have limited differentiation capacity 
when cultured at air-liquid interface, they have been reported to develop cilia on the apical 
surface (111, 112). Calu-3 and NCI-H292 are both carcinoma-derived cell lines. Whereas 
Calu-3 cells are able to form a robust barrier function, NCI-H292 cells will only develop a 
robust barrier function when cultured on permeable supports (111, 113). Calu-3 cells 
have been reported to express ciliary proteins, although these were not expressed at the 
apical surface (111, 114). NCI-H292 cells have not been reported to express ciliary proteins 
(110). The adenocarcinoma cell line A549 is the most commonly used cell line to represent 
alveolar epithelial cells, from which it is also likely derived. A549 cells have several features 
of alveolar type II cells, but they lack the ability to form a strong barrier when cultured at the 
air-liquid interface, which is an essential feature of alveolar type II cells (115, 116). Because 
of their anatomical origin and features, A549 cells are not a suitable model to study airway 
epithelial cell function.

Primary airway epithelial cells can be isolated from human tissue or obtained at low 
passage from commercial sources. Primary cells have limited proliferation capacity and with 
increased passages, they suffer from senescence and diminished differentiation potential 
into a pseudostratified epithelial layer (73). However, recent advances have provided new 
techniques that allow extensive propagation of primary airway epithelial cells in vitro. 
Various studies have now shown that the combination of irradiated feeder cells, typically 
fibroblasts, with the RhoA kinase (ROCK) inhibitor Y-27632 enhances both the cell growth 
and life span of epithelial cells (117, 118). These so-called conditionally reprogrammed 
cells (CRC) are karyotype stable, and removal of the feeders and the ROCK inhibitor will 
allow cells to differentiate normally. Interestingly, human lung fibroblasts and mesenchymal 
stromal cells (MSC) were less efficient in supporting growth than mouse embryonic 3T3-J2 
fibroblasts (117). A recent study showed that CRC technology can also be used to increase 
the availability of airway epithelial cells from patients with cystic fibrosis that retain their 
disease specific characteristics upon long-term culture (119). ROCK inhibition without 
the use of feeder cells has also been shown to induce basal cell proliferation without 
affecting their ability to differentiate (120). More recently, SMAD-signalling inhibition has 
also been shown to improve the proliferative capacity of primary airway epithelial cells 
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with subsequent air-liquid interface differentiation similar to low passage numbers (121). 
Whereas these approaches may increase the availability of primary airway epithelial 
cells, caution is needed. For instance, it is not clear whether disease-associated epithelial 
features of patient-derived epithelial cells are preserved using such cultures. Whereas 
the results with CF cultures generated using CRC technology are encouraging (119), this 
may be different in cultures from asthma and COPD patients since persistence of disease-
specific features of such cells is more likely explained by epigenetic mechanisms than by 
genetic features. Additionally, genetic drift may affect the behaviour of these cells when 
high passage numbers are used. The same notes of caution are warranted when using 
airway epithelial cells that were generated using more recent immortalization techniques 
such as transduction overexpression of telomerase (hTERT) and inhibition of p16, that allow 
generation of cell lines that do form tight barriers and differentiate into mucociliary cell 
layers (122). As an alternative to primary airway epithelial cells, induced pluripotent stem 
cells (iPSC) have been shown to be able to differentiate into airway epithelial cells (123). 
Notably, iPSC can be derived from various sources (patients and controls) using minimally 
invasive or non-invasive techniques (e.g. skin, blood and urine). However, up to now, the 
generation of airway epithelial cells from multiple donors is expensive, time consuming and 
labour-intensive and therefore not yet readily applicable to a large number of laboratories.  

Co-culture models

The major limitation of in vitro models is the capacity to model multifaceted interactions as 
seen in vivo. Using a single cell type does not capture the complex interplay between various 
cell types within the cellular environment of the human airways. To investigate the complex 
interactions of cells involved in asthma and COPD pathogenesis, various in vitro models were 
designed to include additional cell types. Co-culturing various cell types can be achieved 
by culturing epithelial cells with direct or indirect contact to other cells. Direct co-cultures 
allow for different cell types to make direct contact within the same culture environment, 
whereas in indirect co-cultures, the different cell types are separated without direct contact 
and cell-cell interactions occur through soluble factors. Co-culture models thus allow us to 
create a simplified and controllable in vitro system to mimic cell-cell interactions through 
either direct contact, soluble factors or both.

To establish a co-culture model, multiple factors have to be taken into account to warrant 
the quality of all cell types involved. Importantly, cell culture medium should be optimized 
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as growth of certain cell types may not be compatible with specific media formulations. 
Additionally, ratios of different cell types should reflect their in vivo physiologic relative 
abundance to ensure that results are not masked by irregular cell proportions. Both primary 
airway epithelial cells and cell lines have been used for co-culture models, grown as either 
monolayers or air-liquid interfaces. However, due to strict medium formulations for primary 
airway epithelial cells, cell lines are usually opted for as an alternative. Additionally, the 
accompanying cell types included in the co-culture models can originate from either cell lines 
or primary sources. Accompanying cell types can include structural cells (fibroblasts, airway 
smooth muscle cells, endothelial cells) or inflammatory and immune cells (macrophages, 
dendritic cells, B cells, T cells, neutrophils or eosinophils). Various co-culture models have 
been described using airway epithelial cells with various accompanying cell types although 
few have been specifically used to assess the role of epithelial cells in asthma or COPD. Even 
a tetra culture models has been reported, containing four cell lines including an alveolar 
type 2, macrophage, mast cell and endothelial cell line (124). An overview of recently used 
co-culture models is presented in table 2.
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Table 2. Co-culture models using airway epithelial cells with accompanying cell types. ALI, air-liquid interface; 

BM, bone marrow, MDDC, monocyte-derived dendritic cell; MDM, monocyte-derived macrophage; iPSC, induced 

pluripotent stem cell; PBEC, primary bronchial epithelial cells; SAEC, small airway epithelial cells

Epithelial cells Co-culture  
method Accompanying cell types References

PBEC 
16HBE Direct MDDC (125)

16HBE Direct MDDC 
MDM (126)

16HBE Direct Fibroblast cell line (MRC-5) 
MDDC (127)

ALI-PBEC Direct Fibroblast cell line  
(IMR-90) (128)

BEAS-2B Conditioned  
medium

Mesenchymal stem cells  
(iPSC or BM-derived) (129)

16HBE 
PBEC

Indirect  
Conditioned 
medium

Primary fibroblasts 
Fibroblast cell line (MRC-5) (130)

ALI-PBEC  
(MucilAir) Indirect Primary fibroblasts (104)

ALI-PBEC Indirect B-cells (131)
16HBE Indirect Fibroblast cell line (HFL-1) (132)

BEAS-2B Conditioned 
medium Monocyte cell line (THP-1) (133)

16HBE Direct MDDC 
MDM (134, 135)

BEAS-2B 
ALI-PBEC

Conditioned 
medium

MDDC 
MDM (136)

BEAS-2B Direct or indirect MDDC 
MDM (136)

16HBE Conditioned 
medium Basophils (58)

PBEC 
SAEC Indirect Microvascular endothelial cells (42)

NCI-H292 
ALI-PBEC

Conditioned 
medium Mesenchymal stem cells (30)

16HBE Direct Eosinophils 
Neutrophils (137)

NCI-H292 
PBEC Direct Umbilical vein endothelial cells (138)

ALI-PBEC 
(EpiAirway) Direct Primary fibroblasts (107, 139)
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A novel approach is the development of a lung-on-a-chip which included alveolar and 
endothelial cells, but they also included a continuous flow of culture medium and 
mechanical stretch to mimic blood flow and breathing-induced stretch respectively 
(140). In this approach alveolar epithelial cells are cultured in an air-liquid interface, and 
additionally endothelial cells are grown on opposite sides of a porous membrane. Vacuum 
chambers on either side of the porous membrane were incorporated in the device to induce 
mechanical stretch. Despite some limitations including cell lines and the lack of other cell 
types, this novel model allowed for researchers to develop more sophisticated models that 
also allow human disease modelling (141). A more recent lung-on-a-chip model used air-
liquid interface differentiated bronchial epithelial cells with microfluidics. Although this 
model did not include additional cell types, it did allow for kinetic analysis of epithelial 
responses following pollen exposure (142). Lung-on-a-chip models including multiple cell 
types will become useful tools for analysing the kinetics of epithelial responses following 
environmental exposures (143).

Precision cut lung slices

Precision cut lung slices (PCLS) are slices of lung tissue that are put into culture (144, 145). 
In contrast to in vitro co-culture models including airway epithelial cells, PCLS contain all the 
cell types present within a particular section of the lung in addition to retaining metabolic 
activity, tissue homeostasis and structural integrity, making PCLS particularly beneficial 
to study the pathophysiology and underlying mechanisms of asthma and COPD(146). 
Moreover, PCLS provide an important link between in vitro cell culture models and in vivo 
models of disease. Despite these advantages, lung tissue, particularly human lung tissue, is 
difficult to obtain and the quality of the lung tissue can vary a lot between donors. Due to 
limited availability of human lung tissue, animal lung tissue has been used as alternatives 
for PCLS with species including horses, sheep, mice, rats and guinea pigs. Moreover, PCLS 
have a limited, and likely cell-type specific variable life span in vitro with initial reports 
suggesting 72 h, although more recent reports suggest PCLS can be maintained up to 2 
weeks while retaining metabolic activity, tissue homeostasis and structural integrity (147-
149). Lung slices can vary in thickness (200 - 700 µm) which may affect gas diffusion and 
exposure efficiency. Moreover, the cutting edges of the slice will contain damaged cells, 
thus the thinner the slice, the higher the percentage of damaged cells per slice (150). PCLS 
can be cultured submerged, but also at air-liquid interface using porous membranes in cell 
culture inserts (151, 152).
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So far no studies have reported the use of human PCLS from COPD or asthma patients. 
Additionally, the number of studies using human PCLS to investigate the effects of cigarette 
smoke, allergens or individual components remain low (153, 154). PCLS from animal 
models have been used more commonly, including in vitro exposed PCLS but also PCLS 
from disease models reflecting allergic airway disease or COPD pathogenesis (151, 155).  

UTILIZING IN VITRO MODELS TO STUDY INFECTIONS AND 
EXACERBATIONS 

Asthma and COPD patients are both at increased risk for acute exacerbations which can be 
triggered by viral or bacterial infection. Recurrent exacerbations are worrisome for patients 
and can lead to progressive worsening of the disease (1). Exacerbations involve complex 
interactions with multiple cell types, making in vitro models a respectable alternative to in 
vivo models to study cell-specific effects or cell-cell communication when using co-culture 
models. The airway epithelium is an important site for mounting an inflammatory response 
against inhaled bacteria and viruses. They can produce an array of inflammatory mediators, 
including cytokines and chemokines, thereby contributing to host defence and augmenting 
the inflammatory response by recruiting specialized inflammatory cells (5). Several concerns 
have to be taken into account when modelling infections in vitro. Epithelial cell types 
including goblet, ciliated and basal cells have been shown to have differential susceptibility 
to infection (156-158). Consequently, using cell lines or submerged monolayers of primary 
airway epithelial cells may not capture the full capabilities of the airway epithelium as they 
do not develop a pseudostratified epithelial layer. However, using submerged cultures of 
primary bronchial epithelial cells allows for studying basal cells specifically. 

Airway epithelial cells from asthma or COPD patients cultured in vitro are more susceptible 
to viral infections compared to controls, suggesting that epithelial cells retain these features 
after isolation and that epigenetic mechanisms are involved (19, 159-161). This is in line 
with a report where active smoking has been shown to impair antiviral responses through 
epigenetic mechanisms (162). Additionally, cigarette smoke has been shown to increase 
epithelial susceptibility to infections although no similar evidence currently exists for inhaled 
allergens (94, 163-165). Also, no studies have currently investigated the effect of cigarette 
smoking in asthmatic airway epithelial cells nor the combined effect of cigarette smoke or 
air pollutants and inhaled allergens. 
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When studying inflammatory responses of airway epithelial cells following infection, the 
micro-organism studied can be applied alive or inactivated, but also lysates or specific 
microbial components can be used. Alternatively, conditioned medium can be used to study 
the effects of secreted components by these organisms (166). Using live fungi or bacteria 
in in vitro cultures can be quite challenging as epithelial cells alone may not be able to 
clear the infection, leading to overwhelming amounts of bacteria in the culture media 
with subsequent cell death of the airway epithelial cells. However, inactivated bacteria or 
bacterial lysates may not fully represent epithelial responses to a live infection (167). Live 
viral infection is often preferred over inactivated viral infection to allow for intracellular viral 
replication and subsequent activation of inflammatory mechanisms. The choice of microbial 
stimulus used is a major determinant of the epithelial response. Indeed, recent studies 
highlight the capacity of cells to sense microbial viability (in addition to e.g. discriminating 
pathogenic from commensal bacteria, colonizing versus infecting bacteria) to adapt their 
response based on the challenge encountered (168). Indeed, detection of bacterial death 
may be a sign of a successful immune response, requiring resolution of the immune response 
and initiation of a repair response. 

Most studies to date, focus on epithelial exposure to a single microbial species. However, 
the epithelial surface of the airways contains a large variety of not only pathogenic, but 
also commensal bacteria, viruses and fungi that can affect the inflammatory response of 
airway epithelial cells against inhaled pathogens (169-171). This collection of commensal 
micro-organisms constitutes a major part of the microbiome, that has been shown 
to be altered in asthma and COPD compared to controls and likely attributes to disease 
pathogenesis (172, 173). Studying the effects of the microbiome on airway epithelial cells 
cultured in vitro is very challenging and thus far, research has focused on a selection of 
specific strains rather than the microbiome as a whole. Indeed, studying exposure to the 
complex mixtures of micro-organisms that constitute the microbiome is very challenging 
for various reasons. These include the fact that sampling techniques and in vitro culture 
conditions may result in selection of specific strains, thus altering the composition of 
the microbiome. Furthermore, also the absence of mucociliary clearance and non-
epithelial components of the innate immune system in culture may affect the stability of 
the microbiome. Nonetheless, the microbiome has emerged as a critical player in lung 
homeostasis and disease development and will be an important research topic in the future.  
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EPITHELIAL CELL CULTURE: POTENTIAL ROLE IN DRUG SCREENING AND 
PERSONALIZED MEDICINE 

Epithelial dysfunction is a common feature of both asthma and COPD (5). A better 
understanding of epithelial dysfunction will aid to identify new pathways and therapeutic 
strategies in asthma and COPD pathogenesis. Additionally, airway epithelial cells are the 
first cells to encounter not only inhaled toxic substances, but also inhaled pulmonary drugs. 
Consequently, airway epithelial cells cultures are a suitable model for drug screening and 
evaluation (Figure 1). Several considerations have to be taken into account when evaluating 
drugs in vitro. In a clinical setting, drugs can be delivered through various routes for e.g. 
inhalation, oral or injection. Accordingly, depending on the culture method of the airway 
epithelial cells, e.g. air-liquid interface, drugs can be applied apically, basolateral or a 
combination of both, representing different routes of application as seen in vivo. Moreover, 
drug metabolites encountered in vivo, may not be present when applying particular drugs 
in vitro. The importance of airway epithelial cell differentiation in metabolism of xenobiotics 
was recently demonstrated, highlighting the need to use differentiated cultures (174). Also, 
the dose used in vitro may not reflect clinically relevant concentrations, which may affect 
the observed results. Finally, especially when using e.g. aerosols, careful monitoring of drug 
deposition on the epithelial surface is important. 

Despite these potential limitations and complicating factors, cultured airway epithelial cells 
are a representative and useful model to study the effects of inhaled pulmonary drugs. In 
vitro models using cultured airway epithelial cells have shown that muscarinic antagonists 
are able to reduce cigarette smoke and IL-13-induced mucus hypersecretion (175, 176). 
Inflammatory responses in cultured airway epithelial cells have been shown to be reduced 
by the corticosteroids, whereas oxidative-stress induced responses appear to be steroid 
resistant (177, 178). In addition to inhaled pulmonary drugs, also orally administered drugs, 
e.g. macrolides, have been studied in vitro using airway epithelial cells cultures (29, 179-
182).

Airway epithelial cells line the conducting airways of the lung, providing a barrier against 
inhaled particles and pathogens. Being at the interface between environmental exposures 
and underlying tissue, makes airway epithelial cells ideal candidates as reporters of 
underlying tissue pathogenesis. Moreover, airway epithelial cells are reasonably accessible 
and bronchial brushings represent a relatively pure population of epithelial cells (183). 
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Consequently, airway epithelial cells derived from bronchial brushings have been applied 
in multiple transcriptomic studies to develop clinically relevant biomarker signatures, 
ultimately leading to biomarker-guided therapy. Also, gene expression profiles can be 
considered clinically at multiple time points during the course of treatment to study 
intermediate markers of therapeutic efficacy (24, 184). 

Asthma and COPD are both heterogeneous chronic lung diseases with multiple clinical 
phenotypes existing within these diseases, including molecular phenotypes that show 
overlapping features of both asthma and COPD (23, 25, 27, 185). Additionally, differential 
therapeutic responses have been observed between these clinical phenotypes, indicating 
that patient-specific therapies are required (186). Biomarker guided therapy based on 
airway epithelial signatures has provided us with important information to delineate 
clinical phenotypes for tailored disease management. Furthermore, patient-specific airway 
epithelial cells allow for individualized drug screening, although current research is still 
limited. However, within cystic fibrosis, an autosomal recessive genetic disease caused by 
different classes of mutations in the cystic fibrosis transmembrane conductance regulator 
(CFTR) gene, important progress was made towards patient-specific in vitro cultures to 
guide personalized treatment. Dekkers and colleagues developed a sphere-forming assay 
using patient-derived intestinal epithelial cells to study CFTR function. They demonstrated 
that forskolin-induced swelling of spheroids could be used to demonstrate patient-specific 
CFTR function by simple sphere swelling. Importantly, drug responses of the patient-
specific spheroids could be positively correlated with clinical outcome data (187). This work 
highlighted the significant value of patient-specific in vitro cultures to guide personalised 
medicine, although current work using airway epithelial cells is still lacking.
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Figure 1. Epithelial cell cultures for drug screening and personalized medicine. ACOS, asthma – COPD overlapping 

syndrome; COPD, chronic obstructive pulmonary disease

ASTHMA AND COPD OVERLAP

Asthma and COPD are considered as distinct disease entities, however a hypothesis 
concerning a common pathophysiology has been described and named the “Dutch 
hypothesis” (1). In the Dutch hypothesis it was suggested that all obstructive airway diseases 
should be considered as different expressions of a single disease with shared genetic 
backgrounds. Environmental factors determined when and how the disease was clinically 
expressed (188). For both asthma and COPD it has become well recognized that within 
these diseases, several phenotypes exist that share overlapping features of both asthma 
and COPD. Airway hyperresponsiveness is typically attributed to asthma, although several 
reports indicate that airway hyperresponsiveness is a risk factor for the development of 
COPD and that the prevalence in COPD patients is up to 60% (2, 189, 190). Additionally, 
reversibility of airway obstruction and atopy can be present in COPD patients whereas 
these symptoms are typically recognized as features of asthma (191-194). Moreover, 20 
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to 35% of patients with asthma smoke, resulting in worsened asthma symptoms, reduced 
responsiveness to corticosteroid treatment, accelerated lung function decline and increase 
exacerbation rates (6-9). 

In vitro models studying the shared epithelial features of asthma and COPD can be done 
by investigating the combined effects of COPD and asthma-related provoking substances. 
Cigarette smoke was shown to increase epithelial permeability for allergens with 
subsequent augmented histamine release from basophils (58). Moreover, cigarette smoke 
potentiated house dust mite-induced airway barrier function decrease and inflammatory 
cytokine release (195, 196). Alternatively, airway epithelial cells from asthma or COPD 
donors can be used in combination with COPD or asthma-related provoking substances 
respectively. Airway epithelial cells from asthma patients were shown to be more sensitive 
to diesel exhaust particles with increased pro-inflammatory cytokine release compared 
to control cells (20). Additionally, asthmatic airway epithelial cells are more susceptible 
to oxidative stress-induced apoptosis than control cells (18, 197). Nonetheless, in vitro 
studies investigating the shared epithelial features of asthma and COPD remain limited. 
In contrast, shared features of asthma and COPD have been more commonly studied in 
mouse models. Mouse models with share features of asthma and COPD focus mostly on 
the effect of cigarette smoke in allergic airway inflammation. Overall these models show 
conflicting results, with cigarette smoke either aggravating or attenuating inflammatory 
responses (198-202). These contradictory results are likely in part explained by the use of 
different models of allergic airway inflammation and different cigarette smoke exposure 
setups. Modern research allows us to use sophisticated transgenic animal models that 
enable us to investigate complex systemic interactions in asthma and COPD. However, these 
animal models do not fully reflect human anatomy, physiology and immunology. Despite 
these important differences, they can provide novel insights of complex interactions that we 
currently cannot model in vitro. 

CONCLUSIONS AND FUTURE DIRECTIONS

Over the last decades we have gained increasing knowledge of airway epithelial cells and 
how they are involved in asthma and COPD pathogenesis. Airway epithelial cells form 
an important barrier against inhaled particles, allergens and pathogens and epithelial 
dysfunction is known to play an important role in asthma and COPD pathogenesis. Modelling 
these epithelial features in vitro is challenging and requires multiple considerations to be 
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made to mimic in vivo pathophysiology as close as possible. Currently there is no golden 
standard model to study the epithelial component in these diseases in vitro. Moreover, the 
large variety in epithelial cell sources, culture methods and exposure setups requires us to 
evaluate and reconsider our options with regard to ease-of-use, complexity and robustness 
of the in vitro model. Recent advances in in vitro models including lung-on-a-chip and 
precision cut lung slices, allow us to mimic the in vivo situation more closely. However, 
very few studies have incorporated these new models and techniques to study epithelial 
dysfunction in asthma and COPD. Overall, new research strategies should aim to include 
complex environmental interactions seen in vivo and combine these with physiologic 
relevant in vitro models to study epithelial dysfunction in asthma and COPD. 
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