

Airway epithelial cell cultures for studying obstructive lung disease effects of IL-13 and cigarette smoke

Mertens, T.C.J.

Citation

Mertens, T. C. J. (2018, May 9). Airway epithelial cell cultures for studying obstructive lung disease effects of IL-13 and cigarette smoke. Retrieved from https://hdl.handle.net/1887/62064

Version: Not Applicable (or Unknown)

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/62064

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle http://hdl.handle.net/1887/62064 holds various files of this Leiden University dissertation

Author: Mertens, Tinne

Title: Airway epithelial cell cultures for studying obstructive lung disease effects of IL-13

and cigarette smoke **Date:** 2018-05-09

CHAPTER 2

USE OF AIRWAY EPITHELIAL CELL CULTURE TO UNRAVEL THE PATHOGENESIS AND STUDY TREATMENT IN OBSTRUCTIVE AIRWAY DISEASES

Pulm Pharmacol Ther, 2017 Aug; 45:101-113

<u>Tinne C.J. Mertens</u>, Harry Karmouty-Quintana, Christian Taube and Pieter S. Hiemstra

ABSTRACT

Asthma and chronic obstructive pulmonary disease (COPD) are considered as two distinct obstructive diseases. Both chronic diseases share a component of airway epithelial dysfunction. The airway epithelium is localized to deal with inhaled substances, and functions as a barrier preventing penetration of such substances into the body. In addition, the epithelium is involved in the regulation of both innate and adaptive immune responses following inhalation of particles, allergens and pathogens. Through triggering and inducing immune responses, airway epithelial cells contribute to the pathogenesis of both asthma and COPD. Various in vitro research models have been described to study airway epithelial cell dysfunction in asthma and COPD. However, various considerations and cautions have to be taken into account when designing such in vitro experiments. Epithelial features of asthma and COPD can be modelled by using a variety of disease-related invoking substances either alone or in combination, and by the use of primary cells isolated from patients. Differentiation is a hallmark of airway epithelial cells, and therefore models should include the ability of cells to differentiate, as can be achieved in air-liquid interface models. More recently developed in vitro models, including precision cut lung slices, lung-on-a-chip, organoids and human induced pluripotent stem cells derived cultures, provide novel stateof-the-art alternatives to the conventional in vitro models. Furthermore, advanced models in which cells are exposed to respiratory pathogens, aerosolized medications and inhaled toxic substances such as cigarette smoke and air pollution are increasingly used to model e.g. acute exacerbations. These exposure models are relevant to study how epithelial features of asthma and COPD are affected and provide a useful tool to study the effect of drugs used in treatment of asthma and COPD. These new developments are expected to contribute to a better understanding of the complex gene-environment interactions that contribute to development and progression of asthma and COPD.

INTRODUCTION

Asthma and chronic obstructive pulmonary disorder (COPD) are common disorders and affect 1 out of 12 people worldwide. Asthma and COPD are chronic inflammatory diseases characterized by airway obstruction which is reversible in asthma and often irreversible in COPD (1). Another important feature of COPD, and occasionally in severe asthma, is emphysema whereby the alveolar tissue is destroyed, resulting in impaired oxygen exchange (1-3). Since this review focuses on airway epithelial cells, studies investigating alveolar epithelial cells and their role in the development of emphysema are outside its scope. Inflammation of the airways is present in both asthma and COPD, but in asthma it affects mainly the conducting airways whereas in COPD it affects primarily the small airways, likely reflecting the distribution of inhaled provoking substances, such as allergens in asthma and cigarette smoke in COPD. Despite being different disease entities, both asthma and COPD share an important component of epithelial dysfunction (4, 5).

Approximately 20 to 35% of the world population smokes, with surprisingly similar smoking rates reported in patients with asthma (6-8). Cigarette smoking has been shown to worsen asthma symptoms, reduce responsiveness to corticosteroid treatment, accelerate lung function decline and increase exacerbation rates (9). In contrast, various characteristics typically assigned to asthma have also been found in patients with COPD, including reversibility of airway obstruction, atopy and T helper 2 (Th2)- mediated inflammation (1). Importantly, asthma and COPD share various dysfunctional features of the airway epithelium, in addition to several other disease features (4).

The epithelium of the conducting airways is a pseudostratified epithelial layer that comprises basal, ciliated and secretory cells. The epithelial barrier function in both asthma and COPD has been shown to be decreased, resulting from disrupted intercellular junctional proteins (10, 11). Other shared features of asthma and COPD include goblet cell metaplasia with increased mucus production, altered inflammatory responses, reduced antimicrobial peptide expression and activity, and altered basal function that may lead to defective repair responses following injury (5) (4, 10).

Epithelial dysfunction in both asthma and COPD implies an important role for these cells in the development and self-perpetuation of these diseases. Various research models have been applied to investigate the pathogenic mechanisms, diagnostic potential and

therapeutic targets of airway epithelial cells in chronic lung diseases. However, very few models have focused on the combined features of both asthma and COPD and how these may interact *in vitro*. In this review, we discuss recent advances and important considerations for *in vitro* models to study airway epithelial cell dysfunction in asthma and COPD.

ASSESSING EPITHELIAL FUNCTION IN VITRO

In contrast to patient studies and *in vivo* models, *in vitro* models allow us to deconstruct multi-layered mechanisms of disease pathogenesis and investigate the contribution of individual cellular components. Epithelial features of asthma and COPD can be investigated *in vitro* using patient derived primary cells, but can also be induced by known invoking substances involved in disease pathogenesis. Such substances can include complex mixtures such as cigarette smoke for COPD or allergen extracts for asthma, but also specific chemicals or proteins known to play a role in specific disease mechanisms can be used. Furthermore, the route of administration of invoking substances can vary. Using the culture media as the vehicle for the compound of interest is the most common approach, but for volatile compounds a more sophisticated technique may be required.

In vitro models can range from simple monolayers of epithelial cells to complex threedimensional culture models involving multiple cell types. In a pseudostratified epithelium, all epithelial cells are attached to a basement membrane. Therefore, airway epithelial cells can be grown on a variety of different surfaces and careful selection of an appropriate support is warranted. Supports can range from uncoated tissue culture treated plastics to decellularized scaffolds of human tissue. Recent reviews provide an overview of various available supports and scaffolds and will not be revisited here (12-15).

Airway epithelial cells are available as continuous cell lines or as primary cells from various anatomical locations which vary in various characteristics including, but not restricted to apical-to-basal polarization, ciliary development, mucus production or barrier function. Primary epithelial cells can be obtained at a low passage from an increasing number of commercial sources, but can also be isolated from tissue by adequately equipped research laboratories if human samples are available. A major advantage of freshly isolated cells is also that they can be obtained from patients with disease and compared to cells derived from healthy persons. Primary cells can be grown as a submerged monolayer, but also as an

air-liquid interface culture with air exposure on the apical side and culture medium on the basolateral side of the membrane. In contrast, most tumour and immortalized cells lines are studied as submerged monoculture, which is partly explained by the fact that they do not differentiate into a pseudostratified epithelial layer at air-liquid interface. Airway epithelial cells can also be grown as organoids, in which cells are grouped and organized in a way similar to the organ they are representing (16, 17). Multiple structural, inflammatory and immune cell types can be included with the airway epithelial cells to create a more complex interacting system involving multiple cell types. Overall, various considerations have to be taken into account when modelling disease features *in vitro*.

Modelling epithelial changes of asthma and COPD in vitro

Various methods and techniques have been developed to recreate physiological relevant epithelial features of asthma and COPD in vitro. Reconstructing these disease features in vitro can be done by collecting airway epithelial cells from patients and culturing these cells using different techniques. Interestingly, when primary cells are isolated from asthma or COPD patients, several epithelial features observed in vivo are retained in vitro, including altered cytokine release, impaired immune responses and increased susceptibility to oxidative stress, suggesting that the epigenetic programming of the airway epithelial cells is retained after isolation (18-22). Nonetheless, it is important to consider that gene transcription, epigenetic programming and metabolism of the cells can be affected by the cell culture conditions. Airway epithelial cells can be collected by nasal or bronchial biopsy or brush, from resected lung tissue obtained during resection surgery, from resected lungs obtained during transplantation or from donor lungs not used for transplantation. However, in many research groups such studies are hampered by the fact that patient tissue is often difficult or expensive to obtain. Both primary airway epithelial cells or cell lines exposed to appropriate substances can be used to model certain features of disease, for example environmental exposures known to be involved in disease pathogenesis. Additionally, it is also important to consider exposure patterns and duration, as acute exposures may not reflect observations seen during chronic exposures.

Airway epithelial cells can be obtained *in vivo* through bronchoscopy or biopsies followed by morphology or expression analysis. Such analyses have been used by various groups to identify potential new therapeutic targets, but have helped in defining new phenotypes of asthma and COPD (23-27). Airway epithelial cells can be collected and cultured *in vitro*

followed by experimental exposures and other treatments and subsequent analysis. To this end, cigarette smoke and respiratory allergen exposures have been used to model COPD and asthma pathogenesis respectively (28). Alternatively, cytokines previously shown to be involved in disease pathogenesis have also been used to induce various signalling cascades that may lead to epithelial dysfunction. Th2 cytokines, including interleukin (IL)-4 or IL-13 are commonly used to model *in vitro* epithelial changes found in patients with asthma, whereas the pro-inflammatory cytokines TNF α and IL-1 β have been used to model COPD (27, 29-31). Additionally, individual components of cigarette smoke or allergens can be used to induce epithelial dysfunction *in vitro* (32, 33).

Cigarette smoke is a complex mixture containing thousands of chemicals. Extracts of cigarette smoke have been made and used in vitro to study the effects cigarette smoke on airway epithelial cells. However, it is important to note that cigarette smoke consists of a volatile and a particulate fraction, with the particulate fraction being the minority fraction, contributing only to 4-9% of the total smoke weight (28). Cigarette smoke extract fails to capture the complete volatile fraction and consists mostly of the particulate fraction. Additionally, the particulate and the volatile fraction have been shown to have different properties (34). As an alternative to cigarette smoke extract, whole cigarette smoke can be used that contains both the particulate and volatile fraction of cigarette smoke, which resembles in vivo smoke exposure more closely (28). Various exposure designs, both commercial-available and selfmade, have been developed to expose airway epithelial cells to whole cigarette smoke (35-39). Additionally, the availability of research grade cigarettes with defined chemical content allows for reproducible experiments between research groups. Moreover, cigarette smoke has been shown to contain harmful bacterial and fungal components that may affect epithelial responses following exposure (40). Cigarette smoke extract or whole cigarette smoke have both been used to expose airway epithelial cells in vitro, but also whole diesel exhaust or particles (28, 35, 41-47). Alternatively, individual components of cigarette smoke have also been used including nicotine, acrolein, formaldehydes or benzopyrene (32, 48-51). E-cigarettes, a recent commercially available alternative to cigarette smoking, has received a lot of attention regarding the safety and health risks and thus provide a new field to study the effects on airway epithelial cells (52). Whereas research focussing on the physiological effects of E-cigarette smoking remains limited, a recent publication provided important information regarding the use of E-cigarettes. The authors showed that electronic cigarette aerosols can induce nicotine-dependent gene expression changes in primary bronchial epithelial cells cultured at air-liquid interface, similar to whole cigarette smoke

induced changes. Moreover, they validated these *in vitro* findings in *in vivo* samples, overall suggesting that this *in vitro* model is relevant to study the *in vivo* effects of E-cigarette smoking (53).

Exposure of epithelial cells to inhaled allergens may provide important information on the pathogenesis on allergic airway disease such as asthma. The composition of allergen preparations used in such studies shows considerable variability, and a large variety of inhaled allergens exist, including house dust mite, pollen and fungi, which are most often applied as a crude extracts (54-57). Alternatively, individual components of allergen extracts have been used to investigate the effects on airway epithelial cells (58, 59). In addition to using extracts or individual components, it is important to consider the concentration applied and whether it reflects physiological concentrations encountered *in vivo*. Furthermore, extracts are prone to batch-to-batch variability and also extracts from commercial sources have been shown to vary in protein content (60, 61). Moreover, inhaled allergens can also contain numerous bacterial and fungal components due to close proximity of these compounds in the environment (62).

Comparing different sources of airway epithelial cells

In vitro airway epithelial cell cultures can be derived from cell lines or primary epithelial cells. Airway epithelial cell lines have acquired the ability to divide indefinitely either by nature occurring mutations such as tumours or through genetic transformation of primary tissue derived cells. These cells are generally easy to expand and cheap to culture and data obtained through cell lines are typically very reproducible. However, cell lines often fail to recapitulate the characteristics of an *in vivo* pseudostratified epithelium. On the other hand, primary airway epithelial cells have limited dividing capacity *in vitro*, additionally, these cells are expensive to culture and donor variability often hampers results. Despite these differences, primary airway epithelial cells retain the capacity to differentiate into a pseudostratified epithelial layer when cultured at air-liquid interface, thereby resembling more closely the *in vivo* epithelium morphologically and molecularly (63, 64).

To investigate the role of specific molecular targets in asthma or COPD, molecular techniques are available to genetically manipulate primary airway epithelial cells. However, primary cells are inherently difficult to manipulate genetically (65). Consequently, mouse tracheal epithelial cells from transgenic mice have been used as an alternative to human airway

epithelial cultures (57, 66-68). Moreover, disease models can be induced in transgenic mice followed by airway epithelial isolation. Nonetheless, transgenic animals are expensive and time consuming to establish and mouse tracheal epithelial cells are difficult to maintain in a proliferative state *in vitro*. As a result, to obtain an adequate amount of cells for experimental use, excessive animal numbers are needed for *in vitro* experiments which may hamper its applicability to study the role of airway epithelial cells in asthma and COPD.

Primary airway epithelial cells and various cell lines can be cultured either submerged or at air-liquid interface. The in vivo pseudostratified epithelium forms a physical and immunological barrier against inhaled particles and pathogens and consists of various epithelial cell types including club, goblet, ciliated and basal cells (69). Secretory epithelial cell types, club and goblet cells, maintain the airway surface liquid in which inhaled particles and pathogens are trapped followed by mucociliary clearance by ciliated cells (70). Upon damage of the epithelial layer, basal cells will proliferate followed by differentiation into specialized epithelial cell types (71, 72). Capturing these specific features of the airway epithelium in vitro is an important aspect of modelling asthma and COPD in vitro. To this end, airway epithelial cells have been cultured both submerged or at the air-liquid interface. Whereas submerged monolayers do not differentiate into a pseudostratified epithelial layer, they can be applied to investigate cell signalling pathways and basic cellular responses. Culturing airway epithelial cells at air-liquid interface allows mimicking in vivo exposures more closely by using e.g. aerosols (64). Primary airway epithelial cells cultured in vitro at air-liquid interface will differentiate into a pseudostratified epithelial layer consisting of club, goblet, ciliated and basal cells (73). Each of these cell types has its specific transcriptional program, thus it is important to verify the presence and composition of these cell types when culturing primary airway epithelial cells. Also, whereas in vitro cultured airway epithelial cells retain the ability to differentiate into a pseudostratified epithelial layer, it is important to consider that the transcriptional program can be also be affected by the *in vitro* culturing method including, but not limited to, the isolation procedure, culture medium containing antibiotics and the surface on which the cells are cultured. Additionally, primary airway epithelial cells can be cultured submerged to generate three dimensional spheroids which resemble a pseudostratified epithelium (74). Some epithelial cell lines also have the capability to be cultured at the air-liquid interface. However, whereas certain cell lines are able to develop the required robust barrier function that allows culture at the air-liquid interface, they will not differentiate into a functional pseudostratified epithelial layer. Both epithelial cell lines and primary airway epithelial cells, cultured either at ALI or submerged,

have been used to study the effects of whole cigarette smoke, cigarette smoke extract, allergens, chemicals or cytokines and are listed in table 1.

Table 1. Use of airway epithelial cell lines and primary airway epithelial cells under submerged or air-liquid interface culture conditions. ALI, air-liquid interface; PBEC, primary bronchial epithelial cells; SAEC, small airway epithelial cells.

Cell source	Cell type	Culture method	References
	1CUDE	ALI	(10, 75, 76)
	16HBE	ALI Submerged ALI Submerged ALI Submerged Submerged ALI Submerged	(77-79)
	BEAS-2B		(80, 81)
Immortalized cell lines	BEA3-2B	Submerged	(82-84)
	PBEC	ALI	(85)
		Submerged	(57, 86, 87)
	SAEC	Submerged ALI Submerged ALI Submerged Submerged ALI Submerged ALI Submerged ALI Submerged ALI Submerged ALI Submerged ALI Submerged	(88, 89)
	NCL LI202	ALI (10, 75 Submerged (77-79 ALI (80, 81 Submerged (82-84 ALI (85) Submerged (57, 86 Submerged (88, 89 ALI (30, 90 Submerged (91, 92 ALI (54, 93 Submerged (55, 95 ALI (29, 45 Submerged (78, 79 ALI (98, 99 Submerged (100-1 ALI (103-1	(30, 90)
Turna ur aall lin aa	NCI-H292		(91, 92)
Tumour cell lines	Calu-3	ALI	(54, 93-95)
		Submerged	(55, 95)
	PBEC	ALI	(29, 45, 96)
Primary cells iso- lated in research	PBEC	Submerged (7 ALI (8 Submerged (8 ALI (8 Submerged (5 Submerged (8 ALI (9 Submerged (9 ALI (2 Submerged (7 ALI (9 Submerged (1 ALI (1 Submerged (1 ALI (1	(78, 79, 97)
laboratories	SAEC		(98, 99)
	SAEC		(100-102)
Primary cells commercially available(*)	MucilAir	ALI	(103-105)
	EpiAirway	ALI	(52, 103, 106, 107)

^(*) Multiple providers are available for primary bronchial or small airway epithelial cells. In addition, to Epithelix (providing MucilAir) and MatTek (EpiAirway), other major providers include Lonza, ATCC and ScienCell.

When using airway epithelial cell lines, it is important to consider that these may show marked differences in several important epithelial characteristics, including the capacity to form a physical barrier and their response to various exposures. Commonly used cell lines to resemble airway epithelial cells are 16HBE140. (16HBE), NCI-H292, Calu-3 and

BEAS-2B. 16HBE cells are transformed normal human bronchial epithelial cells that can form polarized monolayers with an intact barrier function, although conflicting reports exist on the presence of cilia and ciliary proteins in these cells (108-110). BEAS-2B cells, also transformed normal human bronchial epithelial cells, do not retain the ability to form an intact barrier function (111). Whereas BEAS-2B cells have limited differentiation capacity when cultured at air-liquid interface, they have been reported to develop cilia on the apical surface (111, 112). Calu-3 and NCI-H292 are both carcinoma-derived cell lines. Whereas Calu-3 cells are able to form a robust barrier function, NCI-H292 cells will only develop a robust barrier function when cultured on permeable supports (111, 113). Calu-3 cells have been reported to express ciliary proteins, although these were not expressed at the apical surface (111, 114). NCI-H292 cells have not been reported to express ciliary proteins (110). The adenocarcinoma cell line A549 is the most commonly used cell line to represent alveolar epithelial cells, from which it is also likely derived. A549 cells have several features of alveolar type II cells, but they lack the ability to form a strong barrier when cultured at the air-liquid interface, which is an essential feature of alveolar type II cells (115, 116). Because of their anatomical origin and features, A549 cells are not a suitable model to study airway epithelial cell function.

Primary airway epithelial cells can be isolated from human tissue or obtained at low passage from commercial sources. Primary cells have limited proliferation capacity and with increased passages, they suffer from senescence and diminished differentiation potential into a pseudostratified epithelial layer (73). However, recent advances have provided new techniques that allow extensive propagation of primary airway epithelial cells in vitro. Various studies have now shown that the combination of irradiated feeder cells, typically fibroblasts, with the RhoA kinase (ROCK) inhibitor Y-27632 enhances both the cell growth and life span of epithelial cells (117, 118). These so-called conditionally reprogrammed cells (CRC) are karyotype stable, and removal of the feeders and the ROCK inhibitor will allow cells to differentiate normally. Interestingly, human lung fibroblasts and mesenchymal stromal cells (MSC) were less efficient in supporting growth than mouse embryonic 3T3-J2 fibroblasts (117). A recent study showed that CRC technology can also be used to increase the availability of airway epithelial cells from patients with cystic fibrosis that retain their disease specific characteristics upon long-term culture (119). ROCK inhibition without the use of feeder cells has also been shown to induce basal cell proliferation without affecting their ability to differentiate (120). More recently, SMAD-signalling inhibition has also been shown to improve the proliferative capacity of primary airway epithelial cells

with subsequent air-liquid interface differentiation similar to low passage numbers (121). Whereas these approaches may increase the availability of primary airway epithelial cells, caution is needed. For instance, it is not clear whether disease-associated epithelial features of patient-derived epithelial cells are preserved using such cultures. Whereas the results with CF cultures generated using CRC technology are encouraging (119), this may be different in cultures from asthma and COPD patients since persistence of diseasespecific features of such cells is more likely explained by epigenetic mechanisms than by genetic features. Additionally, genetic drift may affect the behaviour of these cells when high passage numbers are used. The same notes of caution are warranted when using airway epithelial cells that were generated using more recent immortalization techniques such as transduction overexpression of telomerase (hTERT) and inhibition of p16, that allow generation of cell lines that do form tight barriers and differentiate into mucociliary cell layers (122). As an alternative to primary airway epithelial cells, induced pluripotent stem cells (iPSC) have been shown to be able to differentiate into airway epithelial cells (123). Notably, iPSC can be derived from various sources (patients and controls) using minimally invasive or non-invasive techniques (e.g. skin, blood and urine). However, up to now, the generation of airway epithelial cells from multiple donors is expensive, time consuming and labour-intensive and therefore not yet readily applicable to a large number of laboratories.

Co-culture models

The major limitation of *in vitro* models is the capacity to model multifaceted interactions as seen *in vivo*. Using a single cell type does not capture the complex interplay between various cell types within the cellular environment of the human airways. To investigate the complex interactions of cells involved in asthma and COPD pathogenesis, various *in vitro* models were designed to include additional cell types. Co-culturing various cell types can be achieved by culturing epithelial cells with direct or indirect contact to other cells. Direct co-cultures allow for different cell types to make direct contact within the same culture environment, whereas in indirect co-cultures, the different cell types are separated without direct contact and cell-cell interactions occur through soluble factors. Co-culture models thus allow us to create a simplified and controllable *in vitro* system to mimic cell-cell interactions through either direct contact, soluble factors or both.

To establish a co-culture model, multiple factors have to be taken into account to warrant the quality of all cell types involved. Importantly, cell culture medium should be optimized as growth of certain cell types may not be compatible with specific media formulations. Additionally, ratios of different cell types should reflect their *in vivo* physiologic relative abundance to ensure that results are not masked by irregular cell proportions. Both primary airway epithelial cells and cell lines have been used for co-culture models, grown as either monolayers or air-liquid interfaces. However, due to strict medium formulations for primary airway epithelial cells, cell lines are usually opted for as an alternative. Additionally, the accompanying cell types included in the co-culture models can originate from either cell lines or primary sources. Accompanying cell types can include structural cells (fibroblasts, airway smooth muscle cells, endothelial cells) or inflammatory and immune cells (macrophages, dendritic cells, B cells, T cells, neutrophils or eosinophils). Various co-culture models have been described using airway epithelial cells with various accompanying cell types although few have been specifically used to assess the role of epithelial cells in asthma or COPD. Even a tetra culture models has been reported, containing four cell lines including an alveolar type 2, macrophage, mast cell and endothelial cell line (124). An overview of recently used co-culture models is presented in table 2.

Table 2. Co-culture models using airway epithelial cells with accompanying cell types. ALI, air-liquid interface; BM, bone marrow, MDDC, monocyte-derived dendritic cell; MDM, monocyte-derived macrophage; iPSC, induced pluripotent stem cell; PBEC, primary bronchial epithelial cells; SAEC, small airway epithelial cells

Epithelial cells	Co-culture method	Accompanying cell types	References
PBEC 16HBE	Direct	MDDC	(125)
16HBE	Direct	MDDC MDM	(126)
16HBE	Direct	Fibroblast cell line (MRC-5) MDDC	(127)
ALI-PBEC	Direct	Fibroblast cell line (IMR-90)	(128)
BEAS-2B	Conditioned medium	Mesenchymal stem cells (iPSC or BM-derived)	(129)
16HBE PBEC	Indirect Conditioned medium	Primary fibroblasts Fibroblast cell line (MRC-5)	(130)
ALI-PBEC (MucilAir)	Indirect	Primary fibroblasts	(104)
ALI-PBEC	Indirect	B-cells	(131)
16HBE	Indirect	Fibroblast cell line (HFL-1)	(132)
BEAS-2B	Conditioned medium	Monocyte cell line (THP-1)	(133)
16HBE	Direct	MDDC MDM	(134, 135)
BEAS-2B ALI-PBEC	Conditioned medium	MDDC MDM	(136)
BEAS-2B	Direct or indirect	MDDC MDM	(136)
16HBE	Conditioned medium	Basophils	(58)
PBEC SAEC	Indirect	Microvascular endothelial cells	(42)
NCI-H292 ALI-PBEC	Conditioned medium	Mesenchymal stem cells	(30)
16HBE	Direct	Eosinophils Neutrophils	(137)
NCI-H292 PBEC	Direct	Umbilical vein endothelial cells	(138)
ALI-PBEC (EpiAirway)	Direct	Primary fibroblasts	(107, 139)

A novel approach is the development of a lung-on-a-chip which included alveolar and endothelial cells, but they also included a continuous flow of culture medium and mechanical stretch to mimic blood flow and breathing-induced stretch respectively (140). In this approach alveolar epithelial cells are cultured in an air-liquid interface, and additionally endothelial cells are grown on opposite sides of a porous membrane. Vacuum chambers on either side of the porous membrane were incorporated in the device to induce mechanical stretch. Despite some limitations including cell lines and the lack of other cell types, this novel model allowed for researchers to develop more sophisticated models that also allow human disease modelling (141). A more recent lung-on-a-chip model used air-liquid interface differentiated bronchial epithelial cells with microfluidics. Although this model did not include additional cell types, it did allow for kinetic analysis of epithelial responses following pollen exposure (142). Lung-on-a-chip models including multiple cell types will become useful tools for analysing the kinetics of epithelial responses following environmental exposures (143).

Precision cut lung slices

Precision cut lung slices (PCLS) are slices of lung tissue that are put into culture (144, 145). In contrast to in vitro co-culture models including airway epithelial cells, PCLS contain all the cell types present within a particular section of the lung in addition to retaining metabolic activity, tissue homeostasis and structural integrity, making PCLS particularly beneficial to study the pathophysiology and underlying mechanisms of asthma and COPD(146). Moreover, PCLS provide an important link between in vitro cell culture models and in vivo models of disease. Despite these advantages, lung tissue, particularly human lung tissue, is difficult to obtain and the quality of the lung tissue can vary a lot between donors. Due to limited availability of human lung tissue, animal lung tissue has been used as alternatives for PCLS with species including horses, sheep, mice, rats and guinea pigs. Moreover, PCLS have a limited, and likely cell-type specific variable life span in vitro with initial reports suggesting 72 h, although more recent reports suggest PCLS can be maintained up to 2 weeks while retaining metabolic activity, tissue homeostasis and structural integrity (147-149). Lung slices can vary in thickness (200 - 700 µm) which may affect gas diffusion and exposure efficiency. Moreover, the cutting edges of the slice will contain damaged cells, thus the thinner the slice, the higher the percentage of damaged cells per slice (150). PCLS can be cultured submerged, but also at air-liquid interface using porous membranes in cell culture inserts (151, 152).

So far no studies have reported the use of human PCLS from COPD or asthma patients. Additionally, the number of studies using human PCLS to investigate the effects of cigarette smoke, allergens or individual components remain low (153, 154). PCLS from animal models have been used more commonly, including *in vitro* exposed PCLS but also PCLS from disease models reflecting allergic airway disease or COPD pathogenesis (151, 155).

UTILIZING IN VITRO MODELS TO STUDY INFECTIONS AND EXACERBATIONS

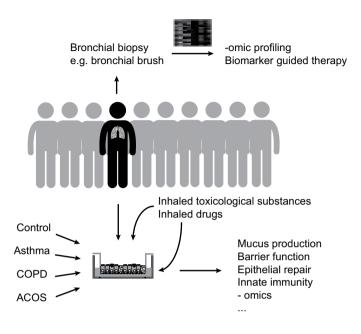
Asthma and COPD patients are both at increased risk for acute exacerbations which can be triggered by viral or bacterial infection. Recurrent exacerbations are worrisome for patients and can lead to progressive worsening of the disease (1). Exacerbations involve complex interactions with multiple cell types, making *in vitro* models a respectable alternative to *in vivo* models to study cell-specific effects or cell-cell communication when using co-culture models. The airway epithelium is an important site for mounting an inflammatory response against inhaled bacteria and viruses. They can produce an array of inflammatory mediators, including cytokines and chemokines, thereby contributing to host defence and augmenting the inflammatory response by recruiting specialized inflammatory cells (5). Several concerns have to be taken into account when modelling infections *in vitro*. Epithelial cell types including goblet, ciliated and basal cells have been shown to have differential susceptibility to infection (156-158). Consequently, using cell lines or submerged monolayers of primary airway epithelial cells may not capture the full capabilities of the airway epithelium as they do not develop a pseudostratified epithelial layer. However, using submerged cultures of primary bronchial epithelial cells allows for studying basal cells specifically.

Airway epithelial cells from asthma or COPD patients cultured *in vitro* are more susceptible to viral infections compared to controls, suggesting that epithelial cells retain these features after isolation and that epigenetic mechanisms are involved (19, 159-161). This is in line with a report where active smoking has been shown to impair antiviral responses through epigenetic mechanisms (162). Additionally, cigarette smoke has been shown to increase epithelial susceptibility to infections although no similar evidence currently exists for inhaled allergens (94, 163-165). Also, no studies have currently investigated the effect of cigarette smoking in asthmatic airway epithelial cells nor the combined effect of cigarette smoke or air pollutants and inhaled allergens.

When studying inflammatory responses of airway epithelial cells following infection, the micro-organism studied can be applied alive or inactivated, but also lysates or specific microbial components can be used. Alternatively, conditioned medium can be used to study the effects of secreted components by these organisms (166). Using live fungi or bacteria in in vitro cultures can be quite challenging as epithelial cells alone may not be able to clear the infection, leading to overwhelming amounts of bacteria in the culture media with subsequent cell death of the airway epithelial cells. However, inactivated bacteria or bacterial lysates may not fully represent epithelial responses to a live infection (167). Live viral infection is often preferred over inactivated viral infection to allow for intracellular viral replication and subsequent activation of inflammatory mechanisms. The choice of microbial stimulus used is a major determinant of the epithelial response. Indeed, recent studies highlight the capacity of cells to sense microbial viability (in addition to e.g. discriminating pathogenic from commensal bacteria, colonizing versus infecting bacteria) to adapt their response based on the challenge encountered (168). Indeed, detection of bacterial death may be a sign of a successful immune response, requiring resolution of the immune response and initiation of a repair response.

Most studies to date, focus on epithelial exposure to a single microbial species. However, the epithelial surface of the airways contains a large variety of not only pathogenic, but also commensal bacteria, viruses and fungi that can affect the inflammatory response of airway epithelial cells against inhaled pathogens (169-171). This collection of commensal micro-organisms constitutes a major part of the microbiome, that has been shown to be altered in asthma and COPD compared to controls and likely attributes to disease pathogenesis (172, 173). Studying the effects of the microbiome on airway epithelial cells cultured in vitro is very challenging and thus far, research has focused on a selection of specific strains rather than the microbiome as a whole. Indeed, studying exposure to the complex mixtures of micro-organisms that constitute the microbiome is very challenging for various reasons. These include the fact that sampling techniques and in vitro culture conditions may result in selection of specific strains, thus altering the composition of the microbiome. Furthermore, also the absence of mucociliary clearance and nonepithelial components of the innate immune system in culture may affect the stability of the microbiome. Nonetheless, the microbiome has emerged as a critical player in lung homeostasis and disease development and will be an important research topic in the future.

EPITHELIAL CELL CULTURE: POTENTIAL ROLE IN DRUG SCREENING AND PERSONALIZED MEDICINE


Epithelial dysfunction is a common feature of both asthma and COPD (5). A better understanding of epithelial dysfunction will aid to identify new pathways and therapeutic strategies in asthma and COPD pathogenesis. Additionally, airway epithelial cells are the first cells to encounter not only inhaled toxic substances, but also inhaled pulmonary drugs. Consequently, airway epithelial cells cultures are a suitable model for drug screening and evaluation (Figure 1). Several considerations have to be taken into account when evaluating drugs in vitro. In a clinical setting, drugs can be delivered through various routes for e.g. inhalation, oral or injection. Accordingly, depending on the culture method of the airway epithelial cells, e.g. air-liquid interface, drugs can be applied apically, basolateral or a combination of both, representing different routes of application as seen in vivo. Moreover, drug metabolites encountered in vivo, may not be present when applying particular drugs in vitro. The importance of airway epithelial cell differentiation in metabolism of xenobiotics was recently demonstrated, highlighting the need to use differentiated cultures (174). Also, the dose used in vitro may not reflect clinically relevant concentrations, which may affect the observed results. Finally, especially when using e.g. aerosols, careful monitoring of drug deposition on the epithelial surface is important.

Despite these potential limitations and complicating factors, cultured airway epithelial cells are a representative and useful model to study the effects of inhaled pulmonary drugs. *In vitro* models using cultured airway epithelial cells have shown that muscarinic antagonists are able to reduce cigarette smoke and IL-13-induced mucus hypersecretion (175, 176). Inflammatory responses in cultured airway epithelial cells have been shown to be reduced by the corticosteroids, whereas oxidative-stress induced responses appear to be steroid resistant (177, 178). In addition to inhaled pulmonary drugs, also orally administered drugs, e.g. macrolides, have been studied *in vitro* using airway epithelial cells cultures (29, 179-182).

Airway epithelial cells line the conducting airways of the lung, providing a barrier against inhaled particles and pathogens. Being at the interface between environmental exposures and underlying tissue, makes airway epithelial cells ideal candidates as reporters of underlying tissue pathogenesis. Moreover, airway epithelial cells are reasonably accessible and bronchial brushings represent a relatively pure population of epithelial cells (183).

Consequently, airway epithelial cells derived from bronchial brushings have been applied in multiple transcriptomic studies to develop clinically relevant biomarker signatures, ultimately leading to biomarker-guided therapy. Also, gene expression profiles can be considered clinically at multiple time points during the course of treatment to study intermediate markers of therapeutic efficacy (24, 184).

Asthma and COPD are both heterogeneous chronic lung diseases with multiple clinical phenotypes existing within these diseases, including molecular phenotypes that show overlapping features of both asthma and COPD (23, 25, 27, 185). Additionally, differential therapeutic responses have been observed between these clinical phenotypes, indicating that patient-specific therapies are required (186). Biomarker guided therapy based on airway epithelial signatures has provided us with important information to delineate clinical phenotypes for tailored disease management. Furthermore, patient-specific airway epithelial cells allow for individualized drug screening, although current research is still limited. However, within cystic fibrosis, an autosomal recessive genetic disease caused by different classes of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, important progress was made towards patient-specific in vitro cultures to guide personalized treatment. Dekkers and colleagues developed a sphere-forming assay using patient-derived intestinal epithelial cells to study CFTR function. They demonstrated that forskolin-induced swelling of spheroids could be used to demonstrate patient-specific CFTR function by simple sphere swelling. Importantly, drug responses of the patientspecific spheroids could be positively correlated with clinical outcome data (187). This work highlighted the significant value of patient-specific in vitro cultures to guide personalised medicine, although current work using airway epithelial cells is still lacking.

Figure 1. Epithelial cell cultures for drug screening and personalized medicine. ACOS, asthma – COPD overlapping syndrome; COPD, chronic obstructive pulmonary disease

ASTHMA AND COPD OVERLAP

Asthma and COPD are considered as distinct disease entities, however a hypothesis concerning a common pathophysiology has been described and named the "Dutch hypothesis" (1). In the Dutch hypothesis it was suggested that all obstructive airway diseases should be considered as different expressions of a single disease with shared genetic backgrounds. Environmental factors determined when and how the disease was clinically expressed (188). For both asthma and COPD it has become well recognized that within these diseases, several phenotypes exist that share overlapping features of both asthma and COPD. Airway hyperresponsiveness is typically attributed to asthma, although several reports indicate that airway hyperresponsiveness is a risk factor for the development of COPD and that the prevalence in COPD patients is up to 60% (2, 189, 190). Additionally, reversibility of airway obstruction and atopy can be present in COPD patients whereas these symptoms are typically recognized as features of asthma (191-194). Moreover, 20

to 35% of patients with asthma smoke, resulting in worsened asthma symptoms, reduced responsiveness to corticosteroid treatment, accelerated lung function decline and increase exacerbation rates (6-9).

In vitro models studying the shared epithelial features of asthma and COPD can be done by investigating the combined effects of COPD and asthma-related provoking substances. Cigarette smoke was shown to increase epithelial permeability for allergens with subsequent augmented histamine release from basophils (58). Moreover, cigarette smoke potentiated house dust mite-induced airway barrier function decrease and inflammatory cytokine release (195, 196). Alternatively, airway epithelial cells from asthma or COPD donors can be used in combination with COPD or asthma-related provoking substances respectively. Airway epithelial cells from asthma patients were shown to be more sensitive to diesel exhaust particles with increased pro-inflammatory cytokine release compared to control cells (20). Additionally, asthmatic airway epithelial cells are more susceptible to oxidative stress-induced apoptosis than control cells (18, 197). Nonetheless, in vitro studies investigating the shared epithelial features of asthma and COPD remain limited. In contrast, shared features of asthma and COPD have been more commonly studied in mouse models. Mouse models with share features of asthma and COPD focus mostly on the effect of cigarette smoke in allergic airway inflammation. Overall these models show conflicting results, with cigarette smoke either aggravating or attenuating inflammatory responses (198-202). These contradictory results are likely in part explained by the use of different models of allergic airway inflammation and different cigarette smoke exposure setups. Modern research allows us to use sophisticated transgenic animal models that enable us to investigate complex systemic interactions in asthma and COPD. However, these animal models do not fully reflect human anatomy, physiology and immunology. Despite these important differences, they can provide novel insights of complex interactions that we currently cannot model in vitro.

CONCLUSIONS AND FUTURE DIRECTIONS

Over the last decades we have gained increasing knowledge of airway epithelial cells and how they are involved in asthma and COPD pathogenesis. Airway epithelial cells form an important barrier against inhaled particles, allergens and pathogens and epithelial dysfunction is known to play an important role in asthma and COPD pathogenesis. Modelling these epithelial features *in vitro* is challenging and requires multiple considerations to be

2

made to mimic *in vivo* pathophysiology as close as possible. Currently there is no golden standard model to study the epithelial component in these diseases *in vitro*. Moreover, the large variety in epithelial cell sources, culture methods and exposure setups requires us to evaluate and reconsider our options with regard to ease-of-use, complexity and robustness of the *in vitro* model. Recent advances in *in vitro* models including lung-on-a-chip and precision cut lung slices, allow us to mimic the *in vivo* situation more closely. However, very few studies have incorporated these new models and techniques to study epithelial dysfunction in asthma and COPD. Overall, new research strategies should aim to include complex environmental interactions seen *in vivo* and combine these with physiologic relevant *in vitro* models to study epithelial dysfunction in asthma and COPD.

REFERENCES

- Postma DS, Rabe KF. The Asthma-COPD Overlap Syndrome. The New England journal of medicine. 2015:373(13):1241-9.
- 2. Slats A, Taube C. Asthma and chronic obstructive pulmonary disease overlap: asthmatic chronic obstructive pulmonary disease or chronic obstructive asthma? Therapeutic advances in respiratory disease. 2016;10(1):57-71.
- 3. Gelb AF, Yamamoto A, Verbeken EK, Nadel JA. Unraveling the Pathophysiology of the Asthma-COPD Overlap Syndrome: Unsuspected Mild Centrilobular Emphysema Is Responsible for Loss of Lung Elastic Recoil in Never Smokers With Asthma With Persistent Expiratory Airflow Limitation. Chest. 2015;148(2):313-20.
- 4. Gohy ST, Hupin C, Pilette C, Ladjemi MZ. Chronic inflammatory airway diseases: the central role of the epithelium revisited. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2016;46(4):529-42.
- 5. Hiemstra PS, McCray PB, Jr., Bals R. The innate immune function of airway epithelial cells in inflammatory lung disease. The European respiratory journal. 2015;45(4):1150-62.
- 6. Cerveri I, Cazzoletti L, Corsico AG, Marcon A, Niniano R, Grosso A, et al. The impact of cigarette smoking on asthma: a population-based international cohort study. Int Arch Allergy Immunol. 2012;158(2):175-83.
- 7. Thomson NC, Chaudhuri R, Heaney LG, Bucknall C, Niven RM, Brightling CE, et al. Clinical outcomes and inflammatory biomarkers in current smokers and exsmokers with severe asthma. The Journal of allergy and clinical immunology. 2013;131(4):1008-16.
- 8. To T, Stanojevic S, Moores G, Gershon AS, Bateman ED, Cruz AA, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC public health. 2012;12:204.
- 9. Polosa R, Thomson NC. Smoking and asthma: dangerous liaisons. The European respiratory journal. 2013;41(3):716-26.
- 10. Shaykhiev R, Otaki F, Bonsu P, Dang DT, Teater M, Strulovici-Barel Y, et al. Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium *in vivo*. Cell Mol Life Sci. 2011;68(5):877-92.
- 11. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. The Journal of clinical investigation. 1999;104(1):123-33.
- 12. Nichols JE, Niles JA, Vega SP, Argueta LB, Eastaway A, Cortiella J. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp Biol Med (Maywood). 2014;239(9):1135-69.
- 13. Hogrebe NJ, Reinhardt JW, Gooch KJ. Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. J Biomed Mater Res A. 2016.
- 14. Stabler CT, Lecht S, Mondrinos MJ, Goulart E, Lazarovici P, Lelkes PI. Revascularization of decellularized lung scaffolds: principles and progress. Am J Physiol Lung Cell Mol Physiol. 2015;309(11):L1273-85.
- 15. Shologu N, Szegezdi E, Lowery A, Kerin M, Pandit A, Zeugolis DI. Recreating complex pathophysiologies *in vitro* with extracellular matrix surrogates for anticancer therapeutics screening. Drug Discov Today. 2016;21(9):1521-31.
- 16. Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A, et al. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep. 2015;10(2):239-52.
- 17. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, et al. Basal cells as stem cells of the mouse trachea

and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(31):12771-5.

- 18. Bucchieri F, Puddicombe SM, Lordan JL, Richter A, Buchanan D, Wilson SJ, et al. Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis. Am J Respir Cell Mol Biol. 2002;27(2):179-85.
- 19. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. The Journal of experimental medicine. 2005;201(6):937-47.
- 20. Devalia JL, Bayram H, Abdelaziz MM, Sapsford RJ, Davies RJ. Differences between cytokine release from bronchial epithelial cells of asthmatic patients and non-asthmatic subjects: effect of exposure to diesel exhaust particles. Int Arch Allergy Immunol. 1999;118(2-4):437-9.
- 21. Schulz C, Wolf K, Harth M, Krätzel K, Kunz-Schughart L, Pfeifer M. Expression and Release of Interleukin-8 by Human Bronchial Epithelial Cells from Patients with Chronic Obstructive Pulmonary Disease, Smokers, and Never-Smokers. Respiration; international review of thoracic diseases. 2003;70(3):254-61.
- 22. Amatngalim GD, Schrumpf JA, Henic A, Dronkers E, Verhoosel RM, Ordonez SR, et al. Antibacterial Defense of Human Airway Epithelial Cells from Chronic Obstructive Pulmonary Disease Patients Induced by Acute Exposure to Nontypeable Haemophilus influenzae: Modulation by Cigarette Smoke. J Innate Immun. 2017;9(4):359-74.
- 23. Christenson SA, Steiling K, van den Berge M, Hijazi K, Hiemstra PS, Postma DS, et al. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 2015;191(7):758-66.
- 24. Steiling K, van den Berge M, Hijazi K, Florido R, Campbell J, Liu G, et al. A dynamic bronchial airway gene expression signature of chronic obstructive pulmonary disease and lung function impairment. American journal of respiratory and critical care medicine. 2013;187(9):933-42.
- 25. Tilley AE, Harvey BG, Heguy A, Hackett NR, Wang R, O'Connor TP, et al. Down-regulation of the notch pathway in human airway epithelium in association with smoking and chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 2009;179(6):457-66.
- 26. Pierrou S, Broberg P, O'Donnell RA, Pawlowski K, Virtala R, Lindqvist E, et al. Expression of genes involved in oxidative stress responses in airway epithelial cells of smokers with chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 2007;175(6):577-86.
- 27. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(40):15858-63.
- 28. Clunes LA, Bridges A, Alexis N, Tarran R. *In vivo* versus *in vitro* airway surface liquid nicotine levels following cigarette smoke exposure. Journal of analytical toxicology. 2008;32(3):201-7.
- 29. Mertens TC, Hiemstra PS, Taube C. Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells. Pulmonary pharmacology & therapeutics. 2016;39:14-20.
- 30. Broekman W, Amatngalim GD, de Mooij-Eijk Y, Oostendorp J, Roelofs H, Taube C, et al. TNF-alpha and IL-1beta-activated human mesenchymal stromal cells increase airway epithelial wound healing *in vitro* via activation of the epidermal growth factor receptor. Respiratory research. 2016;17:3.
- 31. Saatian B, Rezaee F, Desando S, Emo J, Chapman T, Knowlden S, et al. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue barriers. 2013;1(2):e24333.
- 32. Haswell LE, Hewitt K, Thorne D, Richter A, Gaca MD. Cigarette smoke total particulate matter increases mucous secreting cell numbers *in vitro*: a potential model of goblet cell hyperplasia. Toxicology *in vitro*: an

international journal published in association with BIBRA. 2010;24(3):981-7.

- 33. Ramage L, Jones AC, Whelan CJ. Induction of apoptosis with tobacco smoke and related products in A549 lung epithelial cells *in vitro*. J Inflamm (Lond). 2006;3:3.
- 34. Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environmental health perspectives. 1985;64:111-26.
- 35. Beisswenger C, Platz J, Seifart C, Vogelmeier C, Bals R. Exposure of differentiated airway epithelial cells to volatile smoke *in vitro*. Respiration; international review of thoracic diseases. 2004;71(4):402-9.
- 36. Amatngalim GD, van Wijck Y, de Mooij-Eijk Y, Verhoosel RM, Harder J, Lekkerkerker AN, et al. Basal Cells Contribute to Innate Immunity of the Airway Epithelium through Production of the Antimicrobial Protein RNase 7. J Immunol. 2015;194(7):3340-50.
- 37. Olivera DS, Boggs SE, Beenhouwer C, Aden J, Knall C. Cellular mechanisms of mainstream cigarette smoke-induced lung epithelial tight junction permeability changes *in vitro*. Inhalation toxicology. 2007;19(1):13-22.
- 38. Maunders H, Patwardhan S, Phillips J, Clack A, Richter A. Human bronchial epithelial cell transcriptome: gene expression changes following acute exposure to whole cigarette smoke *in vitro*. Am J Physiol Lung Cell Mol Physiol. 2007;292(5):L1248-56.
- 39. Thorne D, Adamson J. A review of *in vitro* cigarette smoke exposure systems. Exp Toxicol Pathol. 2013;65(7-8):1183-93.
- 40. Larsson L, Pehrson C, Dechen T, Crane-Godreau M. Microbiological components in mainstream and sidestream cigarette smoke. Tobacco induced diseases. 2012;10(1):13.
- 41. Heijink IH, Brandenburg SM, Noordhoek JA, Slebos DJ, Postma DS, van Oosterhout AJ. Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD. Respiratory research. 2011;12:110.
- 42. Richter PA, Li AP, Polzin G, Roy SK. Cytotoxicity of eight cigarette smoke condensates in three test systems: comparisons between assays and condensates. Regul Toxicol Pharmacol. 2010;58(3):428-36.
- 43. Forteza RM, Casalino-Matsuda SM, Falcon NS, Valencia Gattas M, Monzon ME. Hyaluronan and layilin mediate loss of airway epithelial barrier function induced by cigarette smoke by decreasing E-cadherin. J Biol Chem. 2012;287(50):42288-98.
- 44. Amatngalim GD, Broekman W, Daniel NM, van der Vlugt LE, van Schadewijk A, Taube C, et al. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells. PloS one. 2016;11(11):e0166255.
- 45. Zarcone MC, Duistermaat E, van Schadewijk A, Jedynska A, Hiemstra PS, Kooter IM. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am J Physiol Lung Cell Mol Physiol. 2016;311(1):L111-23.
- 46. Parnia S, Hamilton LM, Puddicombe SM, Holgate ST, Frew AJ, Davies DE. Autocrine ligands of the epithelial growth factor receptor mediate inflammatory responses to diesel exhaust particles. Respiratory research. 2014;15:22.
- 47. Zarcone MC, van Schadewijk A, Duistermaat E, Hiemstra PS, Kooter IM. Diesel exhaust alters the response of cultured primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD) to non-typeable Haemophilus influenzae. Respiratory research. 2017;18(1):27.
- 48. Wang H, Liu X, Umino T, Skold CM, Zhu Y, Kohyama T, et al. Cigarette smoke inhibits human bronchial epithelial cell repair processes. Am J Respir Cell Mol Biol. 2001;25(6):772-9.
- 49. West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, et al. Rapid Akt activation by nicotine and

a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. The Journal of clinical investigation. 2003;111(1):81-90.

- 50. Li Q, Zhou X, Kolosov VP, Perelman JM. The expression and pharmacological characterization of nicotinic acetylcholine receptor subunits in HBE16 airway epithelial cells. Cell Biochem Biophys. 2012;62(3):421-31.
- 51. Xu X, Bai L, Chen W, Padilla MT, Liu Y, Kim KC, et al. MUC1 contributes to BPDE-induced human bronchial epithelial cell transformation through facilitating EGFR activation. PloS one. 2012;7(3):e33846.
- 52. Neilson L, Mankus C, Thorne D, Jackson G, DeBay J, Meredith C. Development of an *in vitro* cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol. Toxicology *in vitro*: an international journal published in association with BIBRA. 2015;29(7):1952-62.
- 53. Moses E, Wang T, Corbett S, Jackson GR, Drizik E, Perdomo C, et al. Molecular Impact of Electronic Cigarette Aerosol Exposure in Human Bronchial Epithelium. Toxicol Sci. 2017;155(1):248-57.
- 54. Vinhas R, Cortes L, Cardoso I, Mendes VM, Manadas B, Todo-Bom A, et al. Pollen proteases compromise the airway epithelial barrier through degradation of transmembrane adhesion proteins and lung bioactive peptides. Allergy. 2011;66(8):1088-98.
- 55. Runswick S, Mitchell T, Davies P, Robinson C, Garrod DR. Pollen proteolytic enzymes degrade tight junctions. Respirology (Carlton, Vic). 2007;12(6):834-42.
- 56. Vroling AB, Jonker MJ, Breit TM, Fokkens WJ, van Drunen CM. Comparison of expression profiles induced by dust mite in airway epithelia reveals a common pathway. Allergy. 2008;63(4):461-7.
- 57. Danyal K, de Jong W, O'Brien E, Bauer RA, Heppner DE, Little AC, et al. Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR. Am J Physiol Lung Cell Mol Physiol. 2016;311(5):L913-L23.
- 58. Gangl K, Reininger R, Bernhard D, Campana R, Pree I, Reisinger J, et al. Cigarette smoke facilitates allergen penetration across respiratory epithelium. Allergy. 2009;64(3):398-405.
- 59. Kauffman HF, Tamm M, Timmerman JA, Borger P. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms. Clinical and molecular allergy: CMA. 2006;4:5.
- 60. Post S, Nawijn MC, Hackett TL, Baranowska M, Gras R, van Oosterhout AJ, et al. The composition of house dust mite is critical for mucosal barrier dysfunction and allergic sensitisation. Thorax. 2012;67(6):488-95.
- 61. Patterson ML, Slater JE. Characterization and comparison of commercially available German and American cockroach allergen extracts. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2002;32(5):721-7.
- 62. Douwes J, Zuidhof A, Doekes G, van der Zee SC, Wouters I, Boezen MH, et al. (1-->3)-beta-D-glucan and endotoxin in house dust and peak flow variability in children. American journal of respiratory and critical care medicine. 2000;162(4 Pt 1):1348-54.
- 63. Karp PH, Moninger TO, Weber SP, Nesselhauf TS, Launspach JL, Zabner J, et al. An *in vitro* model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol Biol. 2002;188:115-37.
- 64. Pezzulo AA, Starner TD, Scheetz TE, Traver GL, Tilley AE, Harvey BG, et al. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of *in vivo* airway epithelia. Am J Physiol Lung Cell Mol Physiol. 2011;300(1):L25-31.
- 65. Gresch O, Altrogge L. Transfection of difficult-to-transfect primary mammalian cells. Methods Mol Biol. 2012;801:65-74.

- 66. Rock JR, Randell SH, Hogan BL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010;3(9-10):545-56.
- 67. Lam HC, Choi AM, Ryter SW. Isolation of mouse respiratory epithelial cells and exposure to experimental cigarette smoke at air liquid interface. J Vis Exp. 2011(48).
- 68. Yokota M, Tamachi T, Yokoyama Y, Maezawa Y, Takatori H, Suto A, et al. IkappaBNS induces Muc5ac expression in epithelial cells and causes airway hyper-responsiveness in murine asthma models. Allergy. 2016.
- 69. Breeze RG, Wheeldon EB. The cells of the pulmonary airways. The American review of respiratory disease. 1977;116(4):705-77.
- 70. Jeffery PK, Reid L. New observations of rat airway epithelium: a quantitative and electron microscopic study. Journal of anatomy. 1975;120(Pt 2):295-320.
- 71. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. The American journal of pathology. 2004;164(2):577-88.
- 72. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. *In vivo* differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L643-9.
- 73. Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1996;14(1):104-12.
- 74. Nadkarni RR, Abed S, Draper JS. Organoids as a model system for studying human lung development and disease. Biochemical and biophysical research communications. 2016;473(3):675-82.
- 75. Hao Y, Kuang Z, Walling BE, Bhatia S, Sivaguru M, Chen Y, et al. Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2. Cellular microbiology. 2012;14(3):401-15.
- 76. Leino MS, Loxham M, Blume C, Swindle EJ, Jayasekera NP, Dennison PW, et al. Barrier disrupting effects of alternaria alternata extract on bronchial epithelium from asthmatic donors. PloS one. 2013;8(8):e71278.
- 77. Zhang R, Dong H, Zhao H, Zhou L, Zou F, Cai S. 1,25-Dihydroxyvitamin D3 targeting VEGF pathway alleviates house dust mite (HDM)-induced airway epithelial barrier dysfunction. Cell Immunol. 2016.
- 78. Pace E, Ferraro M, Di Vincenzo S, Siena L, Gjomarkaj M. Effects of ceftaroline on the innate immune and on the inflammatory responses of bronchial epithelial cells exposed to cigarette smoke. Toxicol Lett. 2016;258:216-26.
- 79. Heijink IH, Jonker MR, de Vries M, van Oosterhout AJ, Telenga E, Ten Hacken NH, et al. Budesonide and fluticasone propionate differentially affect the airway epithelial barrier. Respiratory research. 2016;17:2.
- 80. Ghio AJ, Dailey LA, Soukup JM, Stonehuerner J, Richards JH, Devlin RB. Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure. Particle and fibre toxicology. 2013;10:25.
- 81. Baber O, Jang M, Barber D, Powers K. Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to *in vitro* BEAS-2B cells. Inhalation toxicology. 2011;23(9):532-43.
- 82. Li D, Hu J, Wang T, Zhang X, Liu L, Wang H, et al. Silymarin attenuates cigarette smoke extract-induced inflammation via simultaneous inhibition of autophagy and ERK/p38 MAPK pathway in human bronchial epithelial cells. Scientific reports. 2016;6:37751.
- 83. Heijink IH, de Bruin HG, Dennebos R, Jonker MR, Noordhoek JA, Brandsma CA, et al. Cigarette smoke-induced epithelial expression of WNT-5B: implications for COPD. The European respiratory journal. 2016;48(2):504-15.

- 84. Baudiss K, Ayata CK, Lazar Z, Cicko S, Beckert J, Meyer A, et al. Ceramide-1-phosphate inhibits cigarette smoke-induced airway inflammation. The European respiratory journal. 2015;45(6):1669-80.
- 85. Jang JH, Bruse S, Liu Y, Duffy V, Zhang C, Oyamada N, et al. Aldehyde dehydrogenase 3A1 protects airway epithelial cells from cigarette smoke-induced DNA damage and cytotoxicity. Free radical biology & medicine. 2014:68:80-6.
- 86. Chung S, Vu S, Filosto S, Goldkorn T. Src regulates cigarette smoke-induced ceramide generation via neutral sphingomyelinase 2 in the airway epithelium. Am J Respir Cell Mol Biol. 2015;52(6):738-48.
- 87. Randall MJ, Spiess PC, Hristova M, Hondal RJ, van der Vliet A. Acrolein-induced activation of mitogenactivated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1. Redox biology. 2013;1:265-75.
- 88. Smith JL, Lee LC, Read A, Li Q, Yu B, Lee CS, et al. One-step immortalization of primary human airway epithelial cells capable of oncogenic transformation. Cell & bioscience. 2016;6:57.
- 89. Piao CQ, Liu L, Zhao YL, Balajee AS, Suzuki M, Hei TK. Immortalization of human small airway epithelial cells by ectopic expression of telomerase. Carcinogenesis. 2005;26(4):725-31.
- 90. Azzopardi D, Haswell LE, Foss-Smith G, Hewitt K, Asquith N, Corke S, et al. Evaluation of an air-liquid interface cell culture model for studies on the inflammatory and cytotoxic responses to tobacco smoke aerosols. Toxicology *in vitro*: an international journal published in association with BIBRA. 2015;29(7):1720-8.
- 91. Taylor M, Carr T, Oke O, Jaunky T, Breheny D, Lowe F, et al. E-cigarette aerosols induce lower oxidative stress *in vitro* when compared to tobacco smoke. Toxicol Mech Methods. 2016;26(6):465-76.
- 92. Sundar IK, Chung S, Hwang JW, Lapek JD, Jr., Bulger M, Friedman AE, et al. Mitogen- and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-kappaB-dependent genes. PloS one. 2012;7(2):e31378.
- 93. Winton HL, Wan H, Cannell MB, Gruenert DC, Thompson PJ, Garrod DR, et al. Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 1998;28(10):1273-85.
- 94. Sharma P, Kolawole AO, Core SB, Kajon AE, Excoffon KJ. Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection. PloS one. 2012;7(11):e49930.
- 95. Kreft ME, Jerman UD, Lasic E, Hevir-Kene N, Rizner TL, Peternel L, et al. The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized *in vitro* model to investigate bronchial epithelial function. Eur J Pharm Sci. 2015;69:1-9.
- 96. Conickx G, Mestdagh P, Avila Cobos F, Verhamme FM, Maes T, Vanaudenaerde BM, et al. MicroRNA Profiling Reveals a Role for MicroRNA-218-5p in the Pathogenesis of Chronic Obstructive Pulmonary Disease. American journal of respiratory and critical care medicine. 2016.
- 97. McInnes N, Davidson M, Scaife A, Miller D, Spiteri D, Engelhardt T, et al. Primary Paediatric Bronchial Airway Epithelial Cell *in vitro* Responses to Environmental Exposures. Int J Environ Res Public Health. 2016;13(4):359.
- 98. McCarthy CE, Duffney PF, Gelein R, Thatcher TH, Elder AC, Phipps RP, et al. Dung Biomass Smoke Activates Inflammatory Signaling Pathways in Human Small Airway Epithelial Cells. Am J Physiol Lung Cell Mol Physiol. 2016:ajplung.00183.2016.
- 99. Thaikoottathil JV, Martin RJ, Zdunek J, Weinberger A, Rino JG, Chu HW. Cigarette smoke extract reduces VEGF in primary human airway epithelial cells. The European respiratory journal. 2009;33(4):835-43.
- 100. Birch J, Anderson RK, Correia-Melo C, Jurk D, Hewitt G, Marques FM, et al. DNA damage response at

telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015;309(10):L1124-37.

- 101. Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H, et al. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J. 2015;29(7):2912-29.
- 102. Wang Q, Wang Y, Zhang Y, Zhang Y, Xiao W. Involvement of urokinase in cigarette smoke extract-induced epithelial-mesenchymal transition in human small airway epithelial cells. Lab Invest. 2015;95(5):469-79.
- 103. Iskandar AR, Mathis C, Schlage WK, Frentzel S, Leroy P, Xiang Y, et al. A systems toxicology approach for comparative assessment: Biological impact of an aerosol from a candidate modified-risk tobacco product and cigarette smoke on human organotypic bronchial epithelial cultures. Toxicology *in vitro*: an international journal published in association with BIBRA. 2016;39:29-51.
- 104. Iskandar AR, Xiang Y, Frentzel S, Talikka M, Leroy P, Kuehn D, et al. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts. Toxicol Sci. 2015;147(1):207-21.
- 105. Iskandar AR, Martin F, Talikka M, Schlage WK, Kostadinova R, Mathis C, et al. Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues. Biomed Res Int. 2013;2013:512086.
- 106. Ren D, Nelson KL, Uchakin PN, Smith AL, Gu XX, Daines DA. Characterization of extended co-culture of non-typeable Haemophilus influenzae with primary human respiratory tissues. Exp Biol Med (Maywood). 2012;237(5):540-7.
- 107. Berube K, Pitt A, Hayden P, Prytherch Z, Job C. Filter-well technology for advanced three-dimensional cell culture: perspectives for respiratory research. Alternatives to laboratory animals: ATLA. 2010;38 Suppl 1:49-65.
- 108. Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, et al. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1994;10(1):38-47.
- 109. Ehrhardt C, Kneuer C, Fiegel J, Hanes J, Schaefer UF, Kim KJ, et al. Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o-: implications for the use of this cell line as an *in vitro* model for bronchial drug absorption studies. Cell and tissue research. 2002;308(3):391-400.
- 110. Yoshisue H, Puddicombe SM, Wilson SJ, Haitchi HM, Powell RM, Wilson DI, et al. Characterization of ciliated bronchial epithelium 1, a ciliated cell-associated gene induced during mucociliary differentiation. Am J Respir Cell Mol Biol. 2004;31(5):491-500.
- 111. Stewart CE, Torr EE, Mohd Jamili NH, Bosquillon C, Sayers I. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. Journal of allergy. 2012;2012:943982.
- 112. Jain R, Pan J, Driscoll JA, Wisner JW, Huang T, Gunsten SP, et al. Temporal relationship between primary and motile ciliogenesis in airway epithelial cells. Am J Respir Cell Mol Biol. 2010;43(6):731-9.
- 113. van Schilfgaarde M, van Alphen L, Eijk P, Everts V, Dankert J. Paracytosis of Haemophilus influenzae through cell layers of NCI-H292 lung epithelial cells. Infect Immun. 1995;63(12):4729-37.
- 114. Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res. 2006;23(7):1482-90.
- 115. Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Experimental cell research. 1998;243(2):359-66.
- 116. Blank F, Rothen-Rutishauser BM, Schurch S, Gehr P. An optimized in vitro model of the respiratory tract

wall to study particle cell interactions. Journal of aerosol medicine: the official journal of the International Society for Aerosols in Medicine. 2006;19(3):392-405.

- 117. Butler CR, Hynds RE, Gowers KH, Lee DD, Brown JM, Crowley C, et al. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering. American journal of respiratory and critical care medicine. 2016;194(2):156-68.
- 118. Suprynowicz FA, Upadhyay G, Krawczyk E, Kramer SC, Hebert JD, Liu X, et al. Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(49):20035-40.
- 119. Gentzsch M, Boyles SE, Cheluvaraju C, Chaudhry IG, Quinney NL, Cho C, et al. Pharmacological Rescue of Conditionally Reprogrammed Cystic Fibrosis Bronchial Epithelial Cells. Am J Respir Cell Mol Biol. 2016.
- Horani A, Nath A, Wasserman MG, Huang T, Brody SL. Rho-associated protein kinase inhibition enhances airway epithelial Basal-cell proliferation and lentivirus transduction. Am J Respir Cell Mol Biol. 2013;49(3):341-7.
- 121. Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, et al. Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells. Cell Stem Cell. 2016;19(2):217-31.
- 122. Vaughan MB, Ramirez RD, Wright WE, Minna JD, Shay JW. A three-dimensional model of differentiation of immortalized human bronchial epithelial cells. Differentiation; research in biological diversity. 2006;74(4):141-8.
- Huang SX, Islam MN, O'Neill J, Hu Z, Yang YG, Chen YW, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 2014;32(1):84-91.
- 124. Klein SG, Serchi T, Hoffmann L, Blomeke B, Gutleb AC. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Particle and fibre toxicology. 2013;10:31.
- Bleck B, Tse DB, Jaspers I, Curotto de Lafaille MA, Reibman J. Diesel Exhaust Particle-Exposed Human Bronchial Epithelial Cells Induce Dendritic Cell Maturation. The Journal of Immunology. 2006;176(12):7431-7.
- Lehmann AD, Daum N, Bur M, Lehr CM, Gehr P, Rothen-Rutishauser BM. An *in vitro* triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2011;77(3):398-406.
- 127. Nguyen Hoang AT, Chen P, Juarez J, Sachamitr P, Billing B, Bosnjak L, et al. Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol Lung Cell Mol Physiol. 2012;302(2):L226-37.
- 128. Ishikawa S, Ito S. Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue. Toxicology *in vitro*: an international journal published in association with BIBRA. 2017;38:170-8.
- Li X, Zhang Y, Liang Y, Cui Y, Yeung SC, Ip MS, et al. iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced apoptosis/proliferation imbalance in airway cells. J Cell Mol Med. 2016.
- 130. Osei ET, Noordhoek JA, Hackett TL, Spanjer AI, Postma DS, Timens W, et al. Interleukin-1alpha drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD. The European respiratory journal. 2016;48(2):359-69.
- Ladjemi MZ, Lecocq M, Weynand B, Bowen H, Gould HJ, Van Snick J, et al. Increased IgA production by B-cells in COPD via lung epithelial interleukin-6 and TACI pathways. The European respiratory journal. 2015;45(4):980-93.

- 132. Sun C, Zhu M, Yang Z, Pan X, Zhang Y, Wang Q, et al. LL-37 secreted by epithelium promotes fibroblast collagen production: a potential mechanism of small airway remodeling in chronic obstructive pulmonary disease. Lab Invest. 2014;94(9):991-1002.
- 133. Yang BC, Yang ZH, Pan XJ, Xiao FJ, Liu XY, Zhu MX, et al. Crotonaldehyde-exposed macrophages induce IL-8 release from airway epithelial cells through NF-kappaB and AP-1 pathways. Toxicol Lett. 2013;219(1):26-34.
- 134. Blom RA, Erni ST, Krempaska K, Schaerer O, van Dijk RM, Amacker M, et al. A Triple Co-Culture Model of the Human Respiratory Tract to Study Immune-Modulatory Effects of Liposomes and Virosomes. PloS one. 2016;11(9):e0163539.
- Papazian D, Wagtmann VR, Hansen S, Wurtzen PA. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts *in vitro*. Clin Exp Immunol. 2015;181(2):207-18.
- 136. Sundaram K, Mitra S, Gavrilin MA, Wewers MD. House Dust Mite Allergens and the Induction of Monocyte Interleukin 1beta Production That Triggers an IkappaBzeta-Dependent Granulocyte Macrophage Colony-Stimulating Factor Release from Human Lung Epithelial Cells. Am J Respir Cell Mol Biol. 2015;53(3):400-11.
- 137. Gagliardo R, Chanez P, Gjomarkaj M, La Grutta S, Bonanno A, Montalbano AM, et al. The role of transforming growth factor-beta1 in airway inflammation of childhood asthma. International journal of immunopathology and pharmacology. 2013;26(3):725-38.
- 138. Mul FP, Zuurbier AE, Janssen H, Calafat J, van Wetering S, Hiemstra PS, et al. Sequential migration of neutrophils across monolayers of endothelial and epithelial cells. Journal of leukocyte biology. 2000;68(4):529-37.
- 139. Behrsing H, Raabe H, Manuppello J, Bombick B, Curren R, Sullivan K, et al. Assessment of *in vitro* COPD models for tobacco regulatory science: Workshop proceedings, conclusions and paths forward for *in vitro* model use. Alternatives to laboratory animals: ATLA. 2016;44(2):129-66.
- 140. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science (New York, NY). 2010;328(5986):1662-8.
- 141. Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Science translational medicine. 2012;4(159):159ra47.
- Blume C, Reale R, Held M, Millar TM, Collins JE, Davies DE, et al. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics. PloS one. 2015;10(10):e0139872.
- 143. Benam KH, Novak R, Nawroth J, Hirano-Kobayashi M, Ferrante TC, Choe Y, et al. Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip. Cell systems. 2016;3(5):456-66.e4.
- 144. Parrish AR, Gandolfi AJ, Brendel K. Precision-cut tissue slices: applications in pharmacology and toxicology. Life Sci. 1995;57(21):1887-901.
- 145. Fisher RL, Smith MS, Hasal SJ, Hasal KS, Gandolfi AJ, Brendel K. The use of human lung slices in toxicology. Human & experimental toxicology. 1994;13(7):466-71.
- 146. Morin JP, Baste JM, Gay A, Crochemore C, Corbiere C, Monteil C. Precision cut lung slices as an efficient tool for *in vitro* lung physio-pharmacotoxicology studies. Xenobiotica. 2013;43(1):63-72.
- 147. Temann A, Golovina T, Neuhaus V, Thompson C, Chichester JA, Braun A, et al. Evaluation of inflammatory and immune responses in long-term cultured human precision-cut lung slices. Human vaccines & immunotherapeutics. 2016:0.
- 148. Monteil C, Guerbet M, Le Prieur E, Morin JP, Jouany JM, J PF. Characterization of Precision-cut Rat

Lung Slices in a Biphasic Gas/Liquid Exposure System: Effect of O(2). Toxicology *in vitro*: an international journal published in association with BIBRA. 1999;13(3):467-73.

- 149. Umachandran M, Howarth J, Ioannides C. Metabolic and structural viability of precision-cut rat lung slices in culture. Xenobiotica. 2004;34(8):771-80.
- 150. Freeman BA, O'Neil JJ. Tissue slices in the study of lung metabolism and toxicology. Environmental health perspectives. 1984;56:51-60.
- 151. Lin JC, Roy JP, Verreault J, Talbot S, Cote F, Couture R, et al. An *ex vivo* approach to the differential parenchymal responses induced by cigarette whole smoke and its vapor phase. Toxicology. 2012;293(1-3):125-31.
- Davies EJ, Dong M, Gutekunst M, Narhi K, van Zoggel HJ, Blom S, et al. Capturing complex tumour biology *in vitro*: histological and molecular characterisation of precision cut slices. Scientific reports. 2015;5:17187.
- 153. Wohlsen A, Martin C, Vollmer E, Branscheid D, Magnussen H, Becker WM, et al. The early allergic response in small airways of human precision-cut lung slices. European Respiratory Journal. 2003;21(6):1024-32.
- Jude J, Koziol-White C, Scala J, Yoo E, Jester W, Maute C, et al. Formaldehyde Induces Rho-Associated Kinase Activity to Evoke Airway Hyperresponsiveness. Am J Respir Cell Mol Biol. 2016;55(4):542-53.
- Lambermont VA, Schleputz M, Dassow C, Konig P, Zimmermann LJ, Uhlig S, et al. Comparison of airway responses in sheep of different age in precision-cut lung slices (PCLS). PloS one. 2014;9(9):e97610.
- 156. Jakiela B, Brockman-Schneider R, Amineva S, Lee WM, Gern JE. Basal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infection. Am J Respir Cell Mol Biol. 2008;38(5):517-23.
- 157. Jakiela B, Gielicz A, Plutecka H, Hubalewska-Mazgaj M, Mastalerz L, Bochenek G, et al. Th2-type cytokine-induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2014;51(2):229-41.
- 158. Krunkosky TM, Jordan JL, Chambers E, Krause DC. Mycoplasma pneumoniae host-pathogen studies in an air-liquid culture of differentiated human airway epithelial cells. Microb Pathog. 2007;42(2-3):98-103.
- 159. Baines KJ, Hsu AC, Tooze M, Gunawardhana LP, Gibson PG, Wark PA. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD. Respiratory research. 2013;14:15.
- 160. Schneider D, Ganesan S, Comstock AT, Meldrum CA, Mahidhara R, Goldsmith AM, et al. Increased cytokine response of rhinovirus-infected airway epithelial cells in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 2010;182(3):332-40.
- 161. Bai J, Smock SL, Jackson GR, Jr., MacIsaac KD, Huang Y, Mankus C, et al. Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus. PloS one. 2015;10(2):e0118286.
- Wu W, Zhang W, Booth JL, Hutchings DC, Wang X, White VL, et al. Human primary airway epithelial cells isolated from active smokers have epigenetically impaired antiviral responses. Respiratory research. 2016;17(1):111.
- Eddleston J, Lee RU, Doerner AM, Herschbach J, Zuraw BL. Cigarette smoke decreases innate responses of epithelial cells to rhinovirus infection. Am J Respir Cell Mol Biol. 2011;44(1):118-26.
- 264. Zhang W, Case S, Bowler RP, Martin RJ, Jiang D, Chu HW. Cigarette smoke modulates PGE(2) and host defence against Moraxella catarrhalis infection in human airway epithelial cells. Respirology (Carlton, Vic). 2011;16(3):508-16.
- 165. Gally F, Chu HW, Bowler RP. Cigarette smoke decreases airway epithelial FABP5 expression and promotes Pseudomonas aeruginosa infection. PloS one. 2013;8(1):e51784.
- 166. van 't Wout EF, van Schadewijk A, van Boxtel R, Dalton LE, Clarke HJ, Tommassen J, et al. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway

Epithelial Cells. PLoS Pathog. 2015;11(6):e1004946.

- 167. Hartwig SM, Ketterer M, Apicella MA, Varga SM. Non-typeable Haemophilus influenzae protects human airway epithelial cells from a subsequent respiratory syncytial virus challenge. Virology. 2016;498:128-35.
- 168. Blander JM, Sander LE. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat Rev Immunol. 2012;12(3):215-25.
- 169. Chekabab SM, Silverman RJ, Lafayette SL, Luo Y, Rousseau S, Nguyen D. Staphylococcus aureus Inhibits IL-8 Responses Induced by Pseudomonas aeruginosa in Airway Epithelial Cells. PloS one. 2015;10(9):e0137753.
- 170. Bellinghausen C, Gulraiz F, Heinzmann AC, Dentener MA, Savelkoul PH, Wouters EF, et al. Exposure to common respiratory bacteria alters the airway epithelial response to subsequent viral infection. Respiratory research. 2016;17(1):68.
- 171. Gulraiz F, Bellinghausen C, Bruggeman CA, Stassen FR. Haemophilus influenzae increases the susceptibility and inflammatory response of airway epithelial cells to viral infections. Faseb j. 2015;29(3):849-58.
- 172. Hansel TT, Johnston SL, Openshaw PJ. Microbes and mucosal immune responses in asthma. Lancet (London, England). 2013;381(9869):861-73.
- 173. Dickson RP, Huang YJ, Martinez FJ, Huffnagle GB. The lung microbiome and viral-induced exacerbations of chronic obstructive pulmonary disease: new observations, novel approaches. American journal of respiratory and critical care medicine. 2013;188(10):1185-6.
- Boei JJ, Vermeulen S, Klein B, Hiemstra PS, Verhoosel RM, Jennen DG, et al. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Archives of toxicology. 2016.
- 175. Kistemaker LE, Hiemstra PS, Bos IS, Bouwman S, van den Berge M, Hylkema MN, et al. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax. 2015;70(7):668-76.
- 176. Montalbano AM, Albano GD, Anzalone G, Bonanno A, Riccobono L, Di Sano C, et al. Cigarette smoke alters non-neuronal cholinergic system components inducing MUC5AC production in the H292 cell line. European journal of pharmacology. 2014;736:35-43.
- 177. Montalbano AM, Anzalone G, Albano GD, Sano CD, Gagliardo R, Bonanno A, et al. Beclomethasone dipropionate and formoterol reduce oxidative/nitrosative stress generated by cigarette smoke extracts and IL-17A in human bronchial epithelial cells. European journal of pharmacology. 2013;718(1-3):418-27.
- 178. Heijink I, van Oosterhout A, Kliphuis N, Jonker M, Hoffmann R, Telenga E, et al. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells. Thorax. 2014;69(1):5-13.
- 179. Araki N, Yanagihara K, Morinaga Y, Yamada K, Nakamura S, Yamada Y, et al. Azithromycin inhibits nontypeable Haemophilus influenzae-induced MUC5AC expression and secretion via inhibition of activator protein-1 in human airway epithelial cells. European journal of pharmacology. 2010;644(1-3):209-14.
- 180. Morinaga Y, Yanagihara K, Miyashita N, Seki M, Izumikawa K, Kakeya H, et al. Azithromycin, clarithromycin and telithromycin inhibit MUC5AC induction by Chlamydophila pneumoniae in airway epithelial cells. Pulmonary pharmacology & therapeutics. 2009;22(6):580-6.
- 181. Tanabe T, Kanoh S, Tsushima K, Yamazaki Y, Kubo K, Rubin BK. Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells. Am J Respir Cell Mol Biol. 2011;45(5):1075-83.
- 182. Yamada K, Morinaga Y, Yanagihara K, Kaku N, Harada Y, Uno N, et al. Azithromycin inhibits MUC5AC induction via multidrug-resistant Acinetobacter baumannii in human airway epithelial cells. Pulmonary pharmacology & therapeutics. 2014;28(2):165-70.
- 183. Wang R, Ahmed J, Wang G, Hassan I, Strulovici-Barel Y, Salit J, et al. Airway epithelial expression of TLR5 is downregulated in healthy smokers and smokers with chronic obstructive pulmonary disease. J Immunol.

2012;189(5):2217-25.

- 184. van den Berge M, Steiling K, Timens W, Hiemstra PS, Sterk PJ, Heijink IH, et al. Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity. Thorax. 2014;69(1):14-23.
- 185. Rootmensen G, van Keimpema A, Zwinderman A, Sterk P. Clinical phenotypes of obstructive airway diseases in an outpatient population. J Asthma. 2016:0.
- 186. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. American journal of respiratory and critical care medicine. 2009;180(5):388-95.
- 187. Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Science translational medicine. 2016;8(344):344ra84.
- 188. Orie N, Sluiter H, de Vries K, Tammeling T, Witkop J. The host factor in bronchitis. Orie NGM, Sluiter HJ, eds Bronchitis Assen, Royal Van Gorcum. 1961:43–59.
- 189. Rijcken B, Schouten JP, Xu X, Rosner B, Weiss ST. Airway hyperresponsiveness to histamine associated with accelerated decline in FEV1. American journal of respiratory and critical care medicine. 1995;151(5):1377-82.
- 190. Tashkin DP, Altose MD, Bleecker ER, Connett JE, Kanner RE, Lee WW, et al. The lung health study: airway responsiveness to inhaled methacholine in smokers with mild to moderate airflow limitation. The Lung Health Study Research Group. The American review of respiratory disease. 1992;145(2 Pt 1):301-10.
- 191. Boros PW, Martusewicz-Boros MM. Reversibility of airway obstruction vs bronchodilatation: do we speak the same language? Copd. 2012;9(3):213-5.
- 192. Bleecker ER, Emmett A, Crater G, Knobil K, Kalberg C. Lung function and symptom improvement with fluticasone propionate/salmeterol and ipratropium bromide/albuterol in COPD: response by beta-agonist reversibility. Pulmonary pharmacology & therapeutics. 2008;21(4):682-8.
- 193. Fattahi F, ten Hacken NH, Lofdahl CG, Hylkema MN, Timens W, Postma DS, et al. Atopy is a risk factor for respiratory symptoms in COPD patients: results from the EUROSCOP study. Respiratory research. 2013;14:10.
- 194. Jamieson DB, Matsui EC, Belli A, McCormack MC, Peng E, Pierre-Louis S, et al. Effects of allergic phenotype on respiratory symptoms and exacerbations in patients with chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 2013;188(2):187-92.
- 195. Rusznak C, Sapsford RJ, Devalia JL, Justin John R, Hewitt EL, Lamont AG, et al. Cigarette smoke potentiates house dust mite allergen-induced increase in the permeability of human bronchial epithelial cells *in vitro*. Am J Respir Cell Mol Biol. 1999;20(6):1238-50.
- 196. Rusznak C, Sapsford RJ, Devalia JL, Shah SS, Hewitt EL, Lamont AG, et al. Interaction of cigarette smoke and house dust mite allergens on inflammatory mediator release from primary cultures of human bronchial epithelial cells. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2001;31(2):226-38.
- 197. Bucchieri F, Marino Gammazza A, Pitruzzella A, Fucarino A, Farina F, Howarth P, et al. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors. PloS one. 2015;10(3):e0120510.
- 198. Botelho FM, Llop-Guevara A, Trimble NJ, Nikota JK, Bauer CM, Lambert KN, et al. Cigarette smoke differentially affects eosinophilia and remodeling in a model of house dust mite asthma. Am J Respir Cell Mol Biol. 2011;45(4):753-60.

- 199. Trimble NJ, Botelho FM, Bauer CM, Fattouh R, Stampfli MR. Adjuvant and anti-inflammatory properties of cigarette smoke in murine allergic airway inflammation. Am J Respir Cell Mol Biol. 2009;40(1):38-46.
- 200. Kumar S, Lanckacker E, Dentener M, Bracke K, Provoost S, De Grove K, et al. Aggravation of Allergic Airway Inflammation by Cigarette Smoke in Mice Is CD44-Dependent. PloS one. 2016;11(3):e0151113.
- 201. Thatcher TH, Benson RP, Phipps RP, Sime PJ. High-dose but not low-dose mainstream cigarette smoke suppresses allergic airway inflammation by inhibiting T cell function. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L412-21.
- 202. Robbins CS, Pouladi MA, Fattouh R, Dawe DE, Vujicic N, Richards CD, et al. Mainstream cigarette smoke exposure attenuates airway immune inflammatory responses to surrogate and common environmental allergens in mice, despite evidence of increased systemic sensitization. J Immunol. 2005;175(5):2834-42.