Chemical tools to study the cannabinoid receptor type 2
Soethoudt, M.

Citation

Version: Not Applicable (or Unknown)
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/62061

Note: To cite this publication please use the final published version (if applicable).
The handle [http://hdl.handle.net/1887/62061](http://hdl.handle.net/1887/62061) holds various files of this Leiden University dissertation

**Author:** Soethoudt, Marjolein  
**Title:** Chemical tools to study the cannabinoid receptor type 2  
**Date:** 2018-04-26
Chapter 8

Summary and Future Prospects
Chapter 8

The cannabinoid receptor type 2 (CB2R) is, together with the cannabinoid receptor type 1 (CB1R), an established target of Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive substituent of the plant Cannabis sativa. Preparations of the cannabis plant have been used throughout history as a medicine for a wide variety of conditions. The CB2R is predominantly found in immune cells and has been proposed as a therapeutic target for several neuroinflammatory diseases. The CB2R is predominantly located in the central nervous system, and is responsible for the psychoactive side effects associated with cannabis use. Drug discovery efforts have focused on the development of CB2R-selective ligands, because it is anticipated that these drugs will lack the CB1R-mediated side effects. Since not all THC-induced biological effects are abolished in CB2R KO mice, research efforts have also focused on the identification of other (non-CBR) protein targets of THC. Ultimately, these developments could lead to the discovery of novel CB2R therapeutics with fewer side effects. The work described in this thesis has focused on the discovery, synthesis and application of chemical tools and strategies to study the CB2R (Chapters 3-6) as well as on the identification of unknown protein targets of THC (Chapter 7). This chapter summarizes the work described in this thesis and provides possible future directions for the research towards CB2R-based therapeutics.

8.1 Development of chemical tools to study the CB2 receptor

Chapter 1 provides a general introduction to the drug discovery concepts applied in this thesis (i.e. target identification, target validation, hit-to-lead optimization, target engagement), followed by a general description of G protein-coupled receptors (GPCRs) and their signaling pathways. The cannabinoid receptors type 1 and 2 (CB1R and CB2R) are introduced, which are both members of an endogenous signaling system, i.e. the endocannabinoid system (ECS). Both cannabinoid receptors (CBRs) are targeted by endogenous ligands, such as anandamide (AEA) and 2-arachinoylglycerol (2-AG). Despite two decades of drug discovery efforts on the development of CB2R-selective ligands, no CB2R-selective drugs have yet reached the market. More information on CB2R distribution, expression level, occupancy, internalization and pharmacology, both in vitro and in vivo models, is essential to guide the development of novel CB2R-based therapeutics. Therefore, new chemical tools (“probes”), such as radioligands, PET tracers, fluorescent or biotinylated small molecules as well as covalent probes, like electrophilic or photoactivatable ligands, are required to aid drug discovery and development efforts.

Chapter 2 provides an extensive summary of various types of CB2R probes reported in the literature and discusses their advantages and limitations. In general, CB2R probes suffer from low metabolic stability, low CB2R selectivity, significant losses in receptor affinity, or high non-specific binding. Covalent probes for CB2R have been successfully applied in CB2R binding site mapping when used in conjunction with site-directed mutagenesis.
The covalent probes do not possess a detection element, which makes it difficult to use them to study CB2R expression and ligand engagement. Previously, drug-target engagement in living systems has been successfully studied using two-step photoaffinity-based protein profiling (pA2/BPP). This technique combines the covalent addition to the receptor’s active site with a detection element, but avoids the problems associated with large reporter groups (see Figure 11 in Chapter 2). It has previously been predominantly applied to soluble proteins, but in this thesis it was used to study CB2R expression (i.e. a membrane-bound protein) and ligand engagement (Chapter 6) as well as for target identification studies (Chapter 7).

In Chapter 3, the development of the PathHunter® β-arrestin recruitment assay is described. In this assay, β-arrestin activity is measured in live CBR-overexpressing cells using enzyme complementation and a chemoluminescent read-out. These CBRs are tagged at their C-terminus with a small fragment of β-galactosidase. This cell line stably co-expresses β-arrestin that is fused to a catalytically inactive N-terminal deletion mutant of β-galactosidase. Recruitment of β-arrestin to the activated CBR induces the complementation of both enzyme fragments, resulting in the formation of an active β-galactosidase enzyme. The active enzyme is able to convert a substrate into a chemiluminescent product. Therefore, the light emission by the product is directly related to the activity of the β-galactosidase, and thus the level of β-arrestin recruited to the receptor after ligand binding. The Pathhunter® β-arrestin recruitment assay is an easy-to-use assay that has shown to deliver reproducible results. In addition, its 384-well format enables high-throughput screening, a useful feature for lead optimization in early drug discovery research. This assay was successfully validated and applied to characterize a set of cannabinoid receptor reference ligands (Chapter 4), to identify a suitable ligand for CB2R target validation, and novel CB2R chemical tools (Chapters 5 and 6).

Chapter 4 describes a multi-laboratory, comprehensive profiling of cannabinoid ligands to identify the most suitable ligand for CB2R target validation. To study therapeutic relevance of CB2R in early stage drug discovery, it is essential to use selective ligands with a well-defined molecular mode of action. In this chapter, the 18 most widely used CB2R ligands were profiled. This ‘cannabinoid reference library’ consisted of widely used ligands to explore CBR biology, such as dual CBR agonists Δ9-THC, CP55940, WIN55212-2, HU210, 2-AG and AEA, CB2R-selective antagonists SR141716A (rimonabant) and AM251, CB2R-selective agonists HU308, HU910, Gp-1a, JWH015, JWH133 and AM1241 and CB2R-selective antagonists AM630 and SR144528. These ligands were profiled on receptor binding of human and mouse CB2R, and on multiple signal transduction pathways (GTPγS, cAMP, β-AR, pERK and GIRK). Their physico-chemical, in vitro ADME, pharmacokinetic parameters and cross-reactivity in the CEREPA panel of 64 common off-targets were also determined. The ‘best’ three CB2R agonists (good selectivity over CB2R, minimal off-target activity, reasonable pharmacokinetics) were further investigated in vivo to study potential CB2R-mediated effects by their metabolites.
Interspecies differences in CB2R selectivity over CB1R were identified for several ligands as well as marked differences in signal transduction preference (i.e. biased signaling). For example, HU308 and HU910 were balanced agonists on human CB1R, but showed significant biased agonism on mouse CB2R. Most ligands were found to display a rich polypharmacology, but CB2R-selective agonists HU308, HU910 and JWH133 and CB2R-selective inverse agonist SR144528 had the least off-targets. Although the pharmacokinetic profile of these ligands was far from optimal, in vivo experiments showed that effective drug concentrations can be achieved after intravenous as well as oral administration. Finally, HU308, HU910 and JWH133 were found to have no CB1R activity in vivo when tested in the mouse cannabinoid triad (anti-nociception, catalepsy and hypothermia). All together, HU910, HU308 and JWH133 (Figure 1) were identified as the most suitable CB2R agonists to study CB2R biology for target validation purposes. SR144528 was selected as the most suitable antagonist, because of its high selectivity profile for CB2R in both humans and mice.

![Figure 1. Structures of HU910, HU308, JWH133 and SR144528.](image)

Chapter 5 describes the synthesis and molecular pharmacology of an agonist library, based on the recently reported in vivo active CB2R-selective agonist, LEI101. The aim of this chapter was to identify relationships between physicochemical properties, ligand binding kinetics and functional activity on CB2R. To this end, a series of 24 agonists, for which the lipophilicity and basicity was systematically varied, was synthesized. The equilibrium binding affinity and Kinetic Rate Index (KRI), a high-throughput measure as an indication for ligand-receptor (dissociation) kinetics, was measured for all compounds. In addition, the full kinetic profile, as well as functional potency and efficacy in G protein activation and β-arrestin recruitment, was measured for 14 of these ligands. This led to the finding that increasing lipophilicity, specifically on the R2 position, led to increased receptor residence time, which was correlated with increased potency, but not with efficacy, in the two signaling pathways without biased agonism. In contrast, basicity of the agonists did not show a relationship with affinity, residence time or functional activity. These findings provide important insights how CB2R agonists can be designed to have optimal kinetic profiles. This may aid the lead optimization process to study or treat inflammatory diseases.

Chapter 6 reports on the design, synthesis and application of a LEI101-based photoaffinity probe as a tool to detect endogenous CB2R expression and target engagement in primary human immune cells.
Previously reported structure-activity relationships (SAR) of LEI101\textsuperscript{47} combined with a docking study in a homology model of the human CB\textsubscript{2}R (hCB\textsubscript{2}R)\textsuperscript{46, 49} were used for the rational design of the two-step photoaffinity probe LEI121 (Figure 2). The probe LEI121 was applied in a photoaffinity-based labeling workflow as introduced in Chapter 2. The probe possesses a diazirine as photoreactive group to capture CB\textsubscript{2}R and an alkyne as ligation handle to enable visualization or isolation of the protein by conjugation to fluorophores or biotin, respectively. LEI121 was identified as a potent CB\textsubscript{2}R inverse agonist and shown to be selective over CB\textsubscript{1}R. The ability of LEI121 to target CB\textsubscript{2}R was validated in CB\textsubscript{2}R-overexpressing CHO cells using gel-based imaging. Two main fluorescent bands, probably corresponding to different glycosylated forms of the receptor, were visualized. The labeling was dependent on UV-irradiation and copper-catalyzed conjugation of a fluorophore and could be prevented by pre-incubation with various, structurally diverse CB\textsubscript{2}R ligands. In addition, LEI121 could be used to identify the CB\textsubscript{2}R via chemical proteomics using live cells by bioorthogonal ligation with biotin, followed by streptavidin enrichment, tryptic digestion and mass spectrometry analysis. Finally, LEI121 was successfully applied to determine endogenous CB\textsubscript{2}R expression and target engagement in HL-60 cells and in a specific subset of human immune cells using flow cytometry.

The development of LEI121 as a two-step photoaffinity probe provides new opportunities to study CB\textsubscript{2}R biology. For example, it is envisioned that LEI121 may serve as an alternative to the highly unselective CB\textsubscript{2}R antibodies to profile CB\textsubscript{2}R expression levels in PBMCs of patients suffering from inflammatory pain and/or other diseases, such as rheumatoid arthritis, multiple sclerosis and Crohn’s disease. Additionally, isolation of CB\textsubscript{2}R using primary cells and tissues may facilitate the identification of potential protein interaction partners of the receptor to further elucidate the cellular processes of CB\textsubscript{2}R and to enable drug discovery efforts for e.g. dual inhibitors. The photoreactive probe may also help stabilizing CB\textsubscript{2}R to facilitate crystallization studies of the protein.

Finally, to study the THC protein interaction landscape, the development of a THC-based photoaffinity probe, is described in Chapter 7. In this chapter, a Δ\textsubscript{8}-THC-based photoaffinity probe (“probe 1”), carrying a diazirine as the photoreactive moiety and a terminal alkyne as the ligation handle, was designed and synthesized in 14 steps. While probe 1 had high affinity for both CBRs it was unable to covalently label the CBRs.

![Figure 2. Structure of LEI121](image-url)
Probe 1 enriched ~150 proteins in mouse Neuro2A cells. The abundance of four of these proteins (i.e. Cox4i1, Reep5, Mtxc2 and Gnb1) was significantly lowered by pretreatment with either Δ²-THC or Δ⁸-THC, indicating these proteins are putative protein targets of THC. Follow up studies should validate the interaction of THC with these targets and whether modulation of these proteins by THC can be attributed to the beneficial effects of THC observed in several mouse models.

### 8.2 Towards CB₂R-based therapies

The work described in this thesis provides important insights in CB₂R ligand pharmacology for target validation (Chapter 4) and binding kinetics in lead optimization (Chapter 5), and has resulted in the development of a two-step photoaffinity-based strategy to study CB₂R expression and target engagement (Chapter 6) and to identify novel protein targets of THC (Chapter 7, Figure 3 upper right). It is anticipated that this work may help in the discovery and development of CB₂R-based therapeutics that have fewer side effects than medicinal cannabis or purified THC (Figure 3).

CB₂R expression is highly upregulated in several conditions that have an unmet medical need, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, Crohn’s disease, neuropathic pain and rheumatoid arthritis. Development of CB₂R-selective drugs for these type of diseases would be highly valuable, but clinical trials to evaluate the efficacy of CB₂R agonists in these diseases have only recently started (Alzheimer’s disease (NTRX-07/MDA7), dermatomyositis, cystic fibrosis, systemic lupus erythematosus and diffuse cutaneous systemic sclerosis (Resunab/JBT-101, NCT02466243, NCT02465450, NCT03093402 and NCT02465437, respectively) and an analgesic for visceral pain associated with Crohn’s disease (APD371, NCT03155945). Previously, CB₂R-selective ligands have only been tested in clinical trials for their analgesic properties in a third molar tooth extraction model, osteoarthritis or atopic dermatitis. The development of these ligands as drugs was discontinued due to a lack of in vivo efficacy (or unspecified reasons), despite compelling evidence of efficacy in preclinical settings. Although the reasons for this non-translatability are unknown and could be related to the predictive quality of the preclinical animal models, it is hypothesized that the therapeutic role of CB₂R is not properly validated for these applications. Furthermore, a lack of target engagement might also explain the lack of efficacy observed in the clinical trials.

For future development of CB₂R drug candidates, it is essential that the therapeutic relevance of CB₂R in a particular disease is properly validated, using highly selective, well characterized molecules (Figure 3, upper left). Ligands used for target validation should lack inter-species differences in CB₂R selectivity (both affinity and activity) as well as in signal transduction preference (i.e. biased signaling).
Differences in selectivity and signaling profile of ligands between rodents and humans may have important consequences in the translation of preclinical models to the clinic when testing novel drug candidates (reviewed in Kenakin and Miller68 and Violin et al69). For CB2R, it is currently unknown whether different signaling pathways may lead to different (pathophysiological outcomes, and it is therefore not clear which signal transduction pathways (or combinations thereof) are relevant for therapeutical purposes.

Figure 3. Drug discovery challenges for CB2R-based therapies with fewer side effects. The puzzle pieces represent the different stages of drug discovery, in which the parameters are listed that need to be taken into account in these stages. After target identification from therapeutic relevant molecules (e.g. THC, Chapter 7), the therapeutic relevance of the target need to be validated per disease type and progression, using selective ligands with a well-defined molecular mode of action (Chapter 4). In the hit-to-lead optimization stage, selectivity, activity and drug-target binding kinetics (Chapter 5) as well as pharmacokinetics need to be optimized. Finally, selective small molecules are essential to verify that the compound engages with its target at the site-of-action in a dose-dependent manner (Chapter 6).
In the hit-to-lead optimization stage, it is equally important to take biased signaling into account, because small structural changes have been associated with changes in signaling preference (Figure 3, lower left). In addition, structural changes may lead to significant differences in binding kinetics, which in turn may have important implications for the functional activity of ligands, in potency or efficacy, but also in signaling preference. For example, biased signaling was observed for the endocannabinoids 2-AG and AEA (Chapter 4), but not for the LEI101-based library reported in Chapter 5. This indicates that the key determinants for ligand binding kinetics as well as biased signaling is dependent on the scaffold of the ligand. Previously, it was reported that JWH133 and HU308, both in vivo active cannabinoid ligands have different kinetic profiles. This suggests that the optimal kinetic profile of CB2R ligands for in vivo activity is not a determinant factor and can be flexible, or may be dependent on disease type and its progression. The binding kinetics of endogenous ligands has been hypothesized to be an indication of the kinetics required to maintain homeostasis. The divergent binding kinetics of three different endocannabinoids may, therefore, support the notion that the CB2R accepts flexible kinetic profiles.

Next to the determination of the efficacy and safety profile of a drug candidate, it is also essential to verify that the compound engages with its target at the site-of-action in a dose-dependent manner in preclinical animal models as well as in humans (Figure 3, lower right). Proof of target engagement has not been possible for CB2R with the current reported chemical tools (as summarized in Chapter 2). The development of LEI121 (Chapter 6) enables, for the first time, proof of in vitro CB2R engagement in human cells using FACS analysis and may enable target engagement ex vivo in clinical trials, for example to determine whether a clinical candidate targets CB2R on these cell types.

8.3 Conclusions

This thesis has shown that comprehensive profiling of ligands on protein binding, kinetics, functional activity on both human and rodent CB2R as well as off-target activity may reveal important consequences for the interpretation of biological results and the drug discovery process. In addition, this thesis described the design, synthesis and application of the first two-step photoactivatable probe that allows the visualization of CB2R expression on human cells and its engagement by various ligands. It is anticipated that these new chemical tools and insights will help to improve the drug discovery and development of CB2R ligands.

References

Chapter 8


