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5 The detection of deviants in
pseudo-verse lines

5.1 Introduction

Verse encompasses a variety of forms, such as song, poetry, chant or nursery
rhymes. All of these containwords, but they also include a feature which is absent
from everyday speech, viz. in verse, words are set to templates. These constrain
the verbal material one wants to use in several ways. Often, for instance, the
length of lines in poems or songs is limited by a fixed number of syllables or beats.
In many languages, the relative prominence of the syllables is also constrained, so
that e.g. when creating an English sonnet in iambic pentameter, lines are usually
opened with an unstressed syllable, followed by a stressed one.

Notwithstanding these structural constraints, verse is not completely rigid, as
poets and singers often deviate from the templates, introducing unexpected el-
ements which can be exploited for aesthetic purposes by generating interest or
surprise in the listener (Huron 2006). Studies of verse corpora show that, still, it
is possible to generalise where deviations tend to occur: they are most frequent at
the beginning of lines, and their incidence (progressively) decreases (Fabb 2002:
173–177). This phenomenon is referred to by terms such as final strictness or ini-
tial looseness, bringing out the fact that the asymmetry can stem from exceptional
events at either edge of the line.

Despite the lack of a systematic typological survey, robust final strictness phe-
nomena are reported for languages from unrelated families, such as Sanskrit
(Arnold 1905), Finnish (Kiparsky 1968), Berber (Dell & Elmedlaoui 2008), and
Greek (Allen 1973; Golston & Riad 2000). Chapter 4 provides further details on
final strictness, as well as an overview of other phenomena usually considered
examples of final strictness, such as rhyme or melodic cadence. Hence, there is
some evidence that final strictness is not a property linked to a limited set of re-
lated languages which accidentally developed the tendency. Instead, the range
of independent observations of final strictness, and the lack of a robust set of
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languages showing the opposite pattern (i.e. initial strictness) asks for a common
explanation. There is the possibility, for instance, that the effect is driven by some
aspect of cognition shared across populations. In the present chapter we explore
one hypothesis within this context, namely, that the decrease in the frequency
of deviations is due to an increase of attention along the line, which is disrupted
between lines.

Previous studies show that if the occurrence of an event can be predicted, its
processing is facilitated (Jongsma, Desain & Honing 2004; Niemi & Näätänen
1981). The internal regularities characteristic of verse lines allow for prediction
building to take place. Nevertheless, this process may be disrupted by line bound-
aries, which are a defining feature of verse (Fabb 2015). Other constituent levels
such as the stanza or the hemistich (see Chapter 2) may also show comparable
disruptions, but we focus on the line because it is the constituent for which (1)
final strictness is most often described, (2) universality has been argued.

In the present chapter we use sequences of drum strokes as a model of verse
lines. Subjects are asked to detect deviations from a pattern under three differ-
ent experimental conditions. We manipulate the relative timing of the strokes in
order to test the extent to which the regularity of the stimuli and the pause be-
tween the sequences is driving the variation in reaction times. Overall, the results
show that it takes longer to detect deviations closer to the beginning of the line,
mirroring the data from verse corpora.

5.2 Method

5.2.1 Participants

A total of 45 subjects took part in the experiment (mean age = 23.1 year; 26 males,
19 females; all native Dutch speakers). Each participant was randomly assigned
to one of the three conditions, reaching a total of 15 subjects per condition. The
recruitment was done at Leiden University and Radboud University (The Nether-
lands). All participants signed an informed consent before performing the task
(in accordance with Leiden University’s LUCL procedure).

5.2.2 Procedure

The general procedure of the experiment was the same for all three conditions, i.e.
subjects performed an auditory odd-ball experiment. Each participant listened to
a total of 576 drum strokes; these could be of two kinds: (1) a probe stroke (n
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Figure 5.1: Temporal presentation of the stimuli, with time running from left to right
following the arrow. The s symbol represents a standard drum stroke, and the

d symbol represents a deviant stroke, i.e. the probe.

= 48), or a standard stroke (n = 528). Both sounds are publicly available studio
recordings of a mridangam drum (Anantapadmanabhan, Bellur & Murthy 2013),
comparable in frequency and intensity, but with differing timbre.1

Participants were instructed to press a key as soon as they detected a probe
stroke. The general temporal configuration of the 576 strokes was similar across
conditions: the strokes are played sequentially, with a short silent gap after every
stroke, and a longer gap after every eighth stroke. Figure 5.1 depicts the temporal
presentation of the stimuli, with time running from left to right following the
arrow.

As seen in Figure 5.1, we refer to the group of eight strokes separated by a longer
gap as a sequence. The duration from the beginning of a stroke to the beginning of
the following stroke is called the inter-onset interval (IOI).The longer gap between
sequences is called the inter-sequence interval (ISI). Each participant listened to
a total of 72 sequences, two thirds of which (n = 48) contained a probe, and the
remaining third (n = 24) served as fillers with no probe. None of the sequences
contained more than one probe. The key measure taken during the experiment is
the reaction time to detect the probe, i.e. the lapse of time between the onset of
the probe and the subject pressing the key.

All three conditions contain the same number of sequences and probes, but
they differ in their temporal presentation, as summarised in Table 5.1. The IOI is
kept constant in conditions 1 and 2, i.e. strokes within sequences are isochronous.
In condition 3, the IOI varies randomly and can take any value between 250 and
500 milliseconds. The difference between conditions 1 and 2 lies in the ISI, which
is kept constant for condition 1, but varies in condition 2 between 1200 and 1800
milliseconds.

1 Specifically, the standard sound is the ta stroke with identifier 224350, and the probe tone is the
num stroke with identifier 224279.
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Table 5.1: Summary of the parametres which define the three experimental condi-
tions.

Inter-onset interval (IOI) Inter-sequence interval (ISI)

Condition 1 300 ms 1500 ms
Condition 2 300 ms 1200 ∼ 1800 ms
Condition 3 250 ∼ 500 ms 1500 ms

5.2.3 Statistical analyses

The main test we perform assesses whether probes occurring earlier within a
sequence were detected more slowly than later probes. This is based on the ob-
servation that deviant syllables are more likely to occur earlier in verse lines,
as formulated by the strict end hypothesis (Chapter 4). Thus, we build a mixed
effects model with reaction time as the dependent variable, probe position as a
fixed effect, and subject as a random effect. Subsequently, we run more complex
models adding the experimental conditions as fixed effects, and controlling for
potential confounds.

All the mixed models are implemented in R (R Core Team 2017) using the statis-
tical package lme4 (Bates et al. 2015). Significance of the predictors is calculated
in two ways. First, we conduct maximum likelihood t-tests using Satterthwaite
approximations to degrees of freedom, as implemented in the package lmerTest

(Kuznetsova, Bruun Brockhoff & Haubo Bojesen Christensen 2016). Second, we
build a null model, identical to the full model except that the variable of interest
has been excluded. The fit of the model to the data is compared through a like-
lihood ratio test to determine whether the full model bears greater explanatory
power, hence showing support for the predictor under consideration (Roberts,
Winters & Chen 2015).

5.3 Results

Visual inspection of the reaction times to the probe plotted against the probe
position within the line (Figure 5.2) reveals a strong negative correlation: probes
occurring later in the line require less time to be detected.

However, there is an important confound to control for. Given the design of the
experiment (maximally one probe per sequence), probes occurring earlier in the
line can have a preceding probe closer by (i.e. if the previous sequence contains

108



5.3 Results

Table 5.2: Summary of the fixed effects in the mixed model analysis.

Predictor Estimate Std. Error df t Pr (> t)

(Intercept) 0.271 0.0925 51.85 2.93 0.00496
probe.dist -0.0277 0.00534 1949.06 -5.18 2.39e-07
probe -0.0346 0.0171 61.09 -2.02 0.0476
condition2 0.105 0.127 46.08 0.83 0.411
condition3 0.362 0.127 45.69 2.86 0.00637
probe:condition2 -0.0236 0.0228 48.29 -1.04 0.306
probe:condition3 -0.0791 0.0227 47.58 -3.48 0.00109

a late probe). Let probe distance be the number of strokes between a probe and
its preceding probe. On the one hand, probes in position 1 have a mean probe
distance of 4.5, while the mean probe distance in position 8 is 12.1 (r = .64). On
the other hand, probe distance negatively correlateswith reaction time: the longer
the probe distance, the shorter it takes to react to a probe (r = −.3).

Our full model (see Equation 5.1) includes probe distance as a predictor of reac-
tion time, plus an interaction between probe position and experimental condition.
A random slope and intercept for the effect of probe position per subject is added.
The results of the model are summarised in Table 5.2. Condition 1 is taken as a
baseline with which the other two conditions are compared. It can be observed
that probe position remains a robust predictor of reaction time after controlling
for the confounding effect of probe distance. Besides, the effect of probe position
is significantly greater under condition 3.

RT ∼ probe.dist + probe.pos ∗ condition + (1 + probe.pos|subjectID) (5.1)

The statistical significance of the fixed effects on reaction time is confirmed by
the comparison of the full model with equivalent null models where the predictor
of interest has been removed. The addition of probe position improves the model
(χ2 = 38.5, p = 2.2e − 08), the addition of the experimental condition does so
too (χ2 = 13.4, p = 0.0096), and the model with an interaction between probe
position and condition provides a better fit too (χ2 = 11.3, p = 0.0035).
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Figure 5.2: Mean reaction time to detect the probe in each of the eight possible po-
sitions within the sequence. Pearson’s correlation coefficient added separately for
each of the conditions. Error bars indicate the 95% confidence interval. In each panel,
the condition of interest is highlighted, and the other two conditions are greyed out
as a visual reference.

5.4 Discussion

Overall, our experimental results correlate with the strict end hypothesis posited
for verse: (1) later in the verse line, deviations are less frequent, and (2) later in
the experimental sequence, deviations are detected faster. Nevertheless, the three
conditions under inspection do not pinpoint the defining rhythmic context under
which the decreasing reaction time takes place.

Unlike similar odd-ball experiments (Schwartze, Farrugia & Kotz 2013; Bouwer
& Honing 2015), our stimuli were organised into sequences separated by a longer
silent gap. To be sure, the stimuli used in Bouwer & Honing (2015) have a recur-
ring metrical structure which does evoke eight-beat sequences. Nevertheless, and
despite the differences in design, we can hypothesise that the crucial difference
which produces the decreasing reaction times lies in the sequence-dividing silent
gaps.

That being said, we do find some noteworthy differences between the three
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experimental conditions. The effect of probe position on reaction time is smallest
under condition 1, and it increments gradually under conditions 2 and 3.

The first condition is maximally regular, i.e. both the IOI and the ISI are kept
constant throughout. This regularity entails that the timing of the events is also
maximally predictable. In the second condition, the sounds within sequences
are regularly spaced, but the onset of each sequence is unpredictable. Hence,
by comparing conditions 1 and 2, we test whether the crucial factor producing
a decrease in reaction time lies in the uncertainty of knowing when the first
stroke of the sequence will be heard. An unpredictable beginning would produce
a sequence-initial disadvantage, which would then disappear as further strokes
are played with predictable timing. The results do confirm a slightly bigger initial-
disadvantage under condition 2 compared to condition 1. Still, (1) with the current
sample size, the difference fails to reach statistical significance, and, more impor-
tantly (2) the first condition still shows an initial disadvantage, even if the onsets
of sequences are completely predictable.

The predictability-driven initial disadvantage (and final advantage) relies on
the general readiness principle: if one can predict when an event will occur, the
speed and accuracy with which we respond to the event is enhanced (Woodworth
1938; Niemi & Näätänen 1981). Despite the difference between the first two condi-
tions, the longer gap which precedes sequences in both cases can be interpreted
as a disruption of readiness.

Beyond readiness, finer-grained models of how attention is modulated as a
function of predictability become relevant. According to the dynamic attention
model (Large & Jones 1999), when we track an external regular rhythm such as
a beat sequence, our attention is modulated at the same rate as the rhythm via
entrainment. Empirical work (Jones et al. 2002; Fitzroy & Sanders 2015; Jongsma,
Desain &Honing 2004) has shown that performance (a proxy for attention) peaks
at the points where a beat is predicted, and decreases elsewhere. As the under-
lying mechanism, it is hypothesised that neural populations synchronise to the
external rhythm by firing at the same rate.

The dynamic attention account can explain an increasing advantage later in
the line, as the neural entrainment comes into place and attention tracks incom-
ing strokes more precisely. However, this account relies on the regularity of the
strokes for the increasing advantage to take place. An alternative account which
does not rely on the isochrony of the input is the Bayesian predictive coding
model (Vuust & Witek 2014). In this case, our prediction of events gets continu-
ously updated as new stimuli are processed, regardless of isochrony. New strokes
of the same kind reinforce our prediction, and performance is enhanced as a con-
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sequence.
The third experimental condition tackles this critical point: the IOI or within-

sequence regularity. Our results show that, compared to the other two conditions,
the initial disadvantage is further increased (Figure 5.2), and the overall effect of
probe position on reaction time is significantly greater (Table 5.2). These results fit
better the predictive coding rather than the dynamic attention model. Under the
latter, the lack of isochrony of condition 3 would predict that the final advantage
is diminished, but the opposite is true. The alternative explanatory mechanism
is more general, since it relies on the building of predictions based on previous
regularities, though not necessarily temporal. This has the potential of being ap-
plicable to a broader range of verse types, not restricted to prototypical metrical
songs (where a beat can be felt), but including, for instance, non-isochronous
poetry recitation.

Fluctuations of attention across verse lines offer a possible explanation of final
strictness defined as a decrease in the frequency of deviations. Nevertheless, there
exist other phenomena related to final strictness, such as rhyme, or the categorical
control of word-length at the end of the line (Fabb 2002:174). An increasingly
efficient use of attention is not well suited for these other kinds of final strictness,
where the very end of the line is targeted. We should conclude, instead, that
verse final strictness is driven by a variety of factors, including attention and the
highlighting of constituent boundaries.

Further work is required in order to bridge two critical gaps. First, the low-
level odd-ball task used here should be followed up with more ecological stimuli
using e.g. verbal material (i.e. syllables), and rhythmic sequences. Many poetic
metres, for instance, rely on the alternation of strong and weak positions; hence,
deviations from the norm in that kind of context are more complex than in the
present paradigm, where violations deviate from a single standard tone. Second,
the gap between perception and production needs to be addressed, since the final
strictness evidencewhichmotivated the study relies on howpoets and singers pro-
duce their lines of verse, not on how they perceive them. Unavoidably, the extent
to which the attention mechanisms described here are applicable in a compara-
ble way during the generation of lines (or other non-linguistic sound sequences)
needs to be determined by production experiments.
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5.5 Conclusion

Versification systems are cultural phenomena shaped by a complex interaction of
factors. Typological tendencies such as final strictness can shed light on some of
the underlying principles which bothmake possible and constrain the production
of songs and poems. When the subjects in our experiment were asked to track
the sequences of drum strokes and react to the deviant ones, their performance
consistently dropped after the sequence-dividing gap. We propose that a similar
drop of attention can play a role in the reduced faithfulness to templates found in
songs and poems. Nonetheless, it should be kept inmind that, besides cognitive or
anatomical constraints, verse is also shaped by aesthetic ideas which purposefully
satisfy and violate our expectations.
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