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ABSTRACT 
Uveal melanoma (UM) is a rare tumor with a high propensity to metastasize. 
Although no effective treatment for metastases yet exists, prognostication in UM 
is relevant for patient counselling, planning of follow-up, and stratification in 
clinical trials. Besides conventional clinicopathologic characteristics, genetic tumor 
features with prognostic significance have been identified. Non-random 
chromosome aberrations such as monosomy 3 and gain of chromosome 8q are 
strongly correlated with metastatic risk, while gain of chromosome 6p indicates a 
low risk. Recently, mutations in genes such as BAP1, SF3B1, and EIF1AX have been 
shown to be related to patient outcome. Genetics of UM is a rapidly developing 
field, which not only contributes to the understanding of the pathogenesis of this 
cancer, but also results in further refinement of prognostication. 
Concomitantly, advances have been made in the use of genetic tests. New 
methods for genetic typing of UM have been developed. Despite the considerable 
progress made recently, many questions remain, such as those relating to the 
reliability of prognostic genetic tests, and the use of biopsied or previously-
irradiated tumor tissue for prognostication by genetic testing. In this article, we 
review genetic prognostic indicators in UM, also comparing available genetic tests, 
addressing the clinical application of genetic prognostication, and discussing 
future perspectives for improving genetic prognostication in UM. 
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1. INTRODUCTION 
Uveal melanoma (UM) arises from melanocytes residing in the uveal tract, which 
comprises the iris, ciliary body, and choroid. UM accounts for most (85%) ocular 
melanomas and is the most common primary intraocular malignancy in adults.1 
The annual age-adjusted incidence in the United States is 5.1 per million, with a 
male-to-female ratio of 1.1:1.2 The mean age at diagnosis is 61 years and most 
patients develop UM after the age of 50.3 Approximately 95% of uveal melanomas 
occur in Caucasians,3 especially in those with a light iris color, fair skin, propensity 
to sunburn, and a tendency to develop common/atypical cutaneous nevi and 
cutaneous freckles.4-7 Congenital oculodermal melanocytosis (nevus of Ota), 
which affects 0.04% of the white population,8 is associated with a 1 in 400 risk of 
uveal melanoma. 9 Choroidal nevi are estimated to have a 1-in-4300 to 1-in-8845 
per year risk of malignant transformation.10-12 Evidence correlating ultraviolet light 
exposure with UM is inconclusive. Arc welding has been reported to be a risk 
factor;13 however, welding arcs are also a source of blue light, which has recently 
been proposed as a risk fator for the development of UM.14   
In the last decades, many advances have been made in the treatment of the 
primary tumor, which include various forms of radiotherapy, phototherapy and 
local resection. These eye-sparing methods have largely replaced enucleation, 
which is now reserved for large UMs, tumors involving the optic nerve and eyes 
with a poor visual prognosis. Early detection of UM may enhance opportunities 
for eye-conserving therapy.15, 16 Damato et al. have provided tentative evidence 
that early treatment of tumors may prevent metastatic disease and improve 
survival in patients with small tumors.17 However, survival of patients with 
metastasized UM has not improved because effective treatment is lacking. The 
overall 10-year metastasis rate is 40% with almost 50% of patients eventually 
dying from metastases, which usually involve the liver. The median survival time 
after the diagnosis of metastases ranges from 4 to 15 months.18  
Despite the lack of efficient treatment for metastasized UM, prognostication in 
UM is valuable since it enables clinicians to reassure patients who have a low risk 
of metastasis and to target special measures at high-risk patients, who are likely 
to have clinically undetectable micrometastases at the time of diagnosis of the 
primary UM.19 These patients may be stratified in clinical trials to determine the 
efficacy of adjuvant treatments for UM metastases. Moreover, reliable 
prognostication allows risk-based planning of screening for metastases, 
preventing unnecessary investigations in those with a good prognosis.   
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Various patient and tumor characteristics have been identified as survival 
predictors in UM. For example, the prognosis is better in children than in adults, 
independently of other risk factors.20, 21 Clinical features indicating increased 
metastatic risk include large tumor size, ciliary body involvement, and extraocular 
extension.22-25 These form the basis of the Tumor, Node, Metastasis (TNM) staging 
system of the American Joint Committee on Cancer (AJCC).26 This prognostication 
system has recently been validated in large multinational studies.27, AJCC 
Ophthalmic Oncology Task Force 28 Histopathologic predictors of metastasis 
include epithelioid melanoma cytomorphology,29 high mitotic count,30 
lymphocytic infiltration,31 extravascular matrix loops 32 and vascular invasion.33  
Early studies of the genetics of UM indicate that non-random alterations of 
chromosomes 3, 6, and 8 are common and have prognostic significance. Recently, 
molecular classification of UMs based on gene-expression profiling has been 
shown to correlate with survival. Several studies have demonstrated that genetic 
markers have better prognostic accuracy than clinical and histopathologic 
biomarkers. Although considerable progress has been made in the genetic 
characterisation of UM, questions remain with regard to the accuracy of markers, 
the reliability of genetic tests, and the use of biopsy specimens or previously-
irradiated tumor tissue for prognostication by genetic testing.  
In this article, we overview genetic prognostic indicators in UM, compare current 
genetic tests, discuss genetic testing in biopsied and irradiated tumors, and 
propose methods for improving genetic prognostication in UM.  
 
2. GENETIC PROGNOSTIC MARKERS 
Genomic instability is one of the hallmarks of cancer.34, 35 However, in comparison 
to cutaneous melanoma and other cancers, UM has relatively few mutations.36-39 
In UM, one can identify recurring non-random chromosome aberrations, which 
are not the result of chromosomal instability but which are specific alterations 
that are linked to tumor development and progression.39  
 
2.1 Chromosome alterations  
In 1996, a strong association was observed between loss of one copy of 
chromosome 3 and the development of metastatic disease.40 Several studies had 
previously reported chromosome 3 aberrations in UM and had described the 
recurrent and nonrandom nature of these alterations41-51 Prescher et al. detected 
monosomy 3 in 56% of a series of 54 UMs and reported a 50% metastasis rate at 

15441-Dogrusoz_BNW.indd   26 28-03-18   08:22



G e n e t i c  p r o g n o s t i c a t i o n  | 27 

 

3-years follow-up in patients whose tumor harbored this aberration, while none 
of the patients with a disomy 3 melanoma had developed metastatic disease.40 
Subsequent studies in larger cohorts showed monosomy 3 in 25% to 65% of UMs 
and confirmed the strong association with metastatic disease  (Table 1A).52-62 
Monosomy 3 is known to be associated with clinicopathologic features indicative 
of a poor prognosis, such as large tumor diameter, ciliary body involvement, 
epithelioid melanoma cytomorphology,53, 54, 63 and inflammation.64, 65 Nevertheless, 
monosomy 3 is also predictive of metastatic death independent of 
clinicopathologic factors 54 and has been shown to be superior to clinicopathologic 
factors as a prognostic indicator.40, 66-68 In UM metastases, the presence of 
monosomy 3 has been associated with decreased survival from the time of 
diagnosis of disseminated disease.69   
Some studies proposed that complete monosomy is more strongly correlated to 
metastasic risk than partial monosomy 3.56, 70 However, when considering cases 
with borderline results as ‘normal’ and only defining tumors with definite loss of 
chromosome 3 as such, Damato and associates reported similar rates of 
metastatic death for cases with partial or total loss of chromosome 3,55, 71 which 
was corroborated in a study by Ewens et al.59  
Another type of loss of heterozygosity (LOH) of chromosome 3, isodisomy 3,51 
which occurs in 5% to 10% of cases, conveys a metastatic risk that is similar to 
monosomy 3.72 Isodisomy is the presence of two identical copies of a 
chromosome, both from the same parent. This implies that the pathologic effect 
of monosomy 3 is not due to haploinsufficiency, but due to complete loss of 
various tumor suppressor proteins, presumably by mutations on certain loci on 
the remaining copy of chromosome 3 (see below). It is supposedly this abnormal 
copy that is duplicated in tumors with isodisomy 3.72 The way monosomy 3 affects 
tumor development and progression has not yet been elucidated. Since 
monosomy 3 UMs exhibit a higher level of aneuploidy than disomy 3 tumors, it 
has been suggested that monosomy 3 leads to increased genomic instability.39  
Another chromosome that is frequently altered in UM is chromosome 8.42-44, 47 
Gain of the long arm of chromosome 8 (8q), which often results from 
isochromosome formation, is associated with poor prognosis and occurs in 37% to 
63% of primary UM.52, 54, 55, 58, 59, 61, 62, 68 Isochromosome 8q leads to gain of  
  

15441-Dogrusoz_BNW.indd   27 28-03-18   08:22



28 | C h a p t e r  2  

 

Table 1. Frequency of common chromosome aberrations with evident prognostic 
significance and gene mutations in primary uveal melanoma. Studies are listed in 
chronologic order. A: chromosome aberrations. B: gene mutations. 
A:  

 

 

 

 

 

 

 

 

 

B: 
 

 

 

 

 

 

 

 

 

 

  

Study Chromosome aberration (%) 
Loss of 1p Monosomy 3 Gain of 6p Gain of 8q 

Prescher et al. 1996  56   
Sisley et al. 1997  50  54 
Scholes et al. 2003  51   
Kilic et al. 2006 24  18 53 
Damato et al. 2007  47  37 
Damato et al. 2010 34 61 54 63 
Shields et al. 2011  25   
Thomas et al. 2012  56   
Van den Bosch et al. 2012 30 61 42 61 
Ewens et al. 2013 19 45 32 51 
Ewens et al. 2014  65   
Koopmans et al. 2014 31 62 51 58 
Dogrusöz et al. 2017  53  47 
Range  19-34 25-65 18-54 37-63 

Study Gene mutation (%) 
GNAQ GNA11 BAP1 SF3B1 EIF1AX 

Van Raamsdonk et al. 2009 46     
Harbour et al. 2010   47   
Van Raamsdonk et al. 2010 48 34    
Daniels et al. 2012 47  44     
Furney et al. 2013 25 58 58 15 8 
Harbour et al. 2013 42 52 38 19  
Koopmans et al. 2013 50 43    
Martin et al. 2013 45 40  21 18 
Dono et al. 2014 42 33 32 10 19 
Ewens et al. 2014 46 35 50 10 16 
Koopmans et al. 2014   47   
Decatur et al. 2016 44 44 45 24 17 
Moore et al. 2016 43 49 35 18 13 
Van de Nes et al. 2016   51   
Yavuzyigitoglu et al. 2016 49 45 46 24 21 
Range  25-50 33-58 32-58 10-24 8-21 
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material because it results in 3 copies of 8q while there is only 1 copy of 8p. An 
increasing dosage of 8q has been shown to convey an even greater risk of 
metastatic death.52, 73 Gain of 8q commonly accompanies monosomy 3 and the 
concomitant occurrence of these aberrations is associated with a higher risk of 
metastasis than either of the aberrations alone.52, 54, 55, 74 We corroborated this in a 
recently published study in collaboration with the Copenhagen University Hospital 
Rigshospitalet, in which we reported on combining AJCC staging and chromosome 
3 and 8q status to improve prognostication.61 In the cohort of 470 tumors with 
known chromosome 3 and 8q status, tumors harboring monosomy 3 as well as 
chromosome 8q gain showed an increased risk of metastatic death (Figure 1). 
 

 
Figure 1. Cumulative incidence curves showing death due to uveal melanoma 
metastases in relation to chromosome 3 and 8q status. Adopted from reference# 61.  
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Although less frequently occurring than loss of chromosome 3 and gain of 
chromosome 8q, loss of the short arm of chromosome 1 (1p) is quite common in 
UM (19-34%),55, 58, 59, 62, 68 especially in metastasizing tumors (33%).75 In keeping 
with that finding, loss of 1p is associated with monosomy 3 55, 76, 77 and the 
concurrent loss of 1p and chromosome 3 has been correlated with a decreased 
disease-free survival.78 
Chromosome 6 was the first chromosome in which alterations were reported in 
UM.79 The loss of the long arm of chromosome 6 (6q) is more common in 
metastasizing than in non-metastasizing primary UM,75 while, in contrast to all 
aforementioned chromosomal alterations, gain of the short arm of chromosome 6 
(6p) has a protective effect.55, 71, 80 However, tumors with a normal chromosome 3 
status and normal chromosome 6p status show a better prognosis than those 
with 6p gain.39 Between 18% and 54% of UM exhibit gain of chromosome 6p,55, 58, 

59, 62, 68 which is almost exclusive to monosomy 3, suggesting distinct evolutionary 
pathways of tumor development.76, 81, 82 Although chromosome 8q gain is related 
to monosomy 3, it is also found in tumors with gain of 6p.39 While it has been 
hypothesized that monosomy 3 is the first step in the malignant transformation of 
UM,83 and that 8q gain occurs after monosomy 3 or 6p gain,39, 81 a recently 
published study reported monosomy 3 heterogeneity in tumors that are 
homogeneous for 8q gain; the authors therefore concluded that monosomy 3 is 
preceded by gain of 8q.84 A study by Singh et al. indicated that gain of the 
telomeric part of 8q has a central role in UM tumorigenesis and reported this 
aberration in 92% of their studied tumors. Their analysis showed that this 
aberration is followed by either gain of the centromeric 8q and loss of 
chromosome 3, or by gain of chromosome 6p, as well as 7q, 11p, and 22q.85  
 
2.2 Gene expression profiling 
Since UM is characterized by non-random chromosome aberrations with distinct 
prognostic implications, it was anticipated that UM could be separated into 
prognostic groups based on gene expression profiling (GEP). In 2003, Tschentscher 
et al. performed unsupervised hierarchical cluster analysis of gene expression 
data on 20 primary tumors using a microarray gene chip of 12,500 probes and 
defined two distinct molecular classes, correlating with chromosome 3 status.86 
Zuidervaart et al., in an independent study, performed an mRNA expression array 
on 12 UM cell lines, and identified four genes that were subsequently used on 19 
primary UM samples to separate them into two groups, based on the expression 
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of these genes.87 A subsequent study of gene expression by Onken et al. in 40 
primary UM used a microarray chip containing approximately 45,000 probes and 
confirmed the clustering of UM into two molecular groups. This study showed 
that the two observed specific genetic expression profiles (GEP) predicted 
survival.88 Class 1 tumors were found to correlate with a low risk of metastatic 
death with a 92-month survival rate of 95% as compared to 31% in class 2 UM 
(the high-risk tumors). In a subgroup analysis of 10 tumors, chromosome 6p gain 
was found in four of five class 1 tumors and in none of the class 2 tumors, while 
loss of chromosome 3 occurred in four of five class 2 cases and in none of the 
class 1 UMs. All class 2 tumors with loss of chromosome 3 also showed gain of 
chromosome 8q, which was found in only two class 1 tumors.88  
Recently, class 1 tumors have been subdivided into class 1A (2% 5-year metastatic 
risk) and class 1B (21% 5-year metastatic risk),89 based on the differential 
expression of the CDH1 and RAB31 genes.90 Class 2 tumors occur more commonly 
in older patients 88 and are related to monosomy 3,91 greater thickness, epithelioid 
cell type,92 extravascular matrix loops,93 and a higher proliferation rate (Ki-67 
score).94 Class 2 tumors have been subclustered into class 2A and class 2B tumors. 
Class 2B cases harbor a deletion of chromosome 8p that makes the tumors even 
more aggressive and results in an earlier onset of metastasis compared to class 2A 
tumors.95 Recently, expression of PRAME has been associated with increased 
metastatic risk in class 1 as well as class 2 tumors.90  
The association between GEP class and survival has been validated independently 
in several studies.92, 96, 97 For clinical purposes, a practical 15-gene assay based on 
the 12 most highly discriminating genes and 3 control genes, which can be 
performed on small biopsied tumor samples, has been developed,98 and validated 
in a large multicenter study.99 It has been claimed that analysis of mRNA is more 
accurate in prognostication than clinicopathologic parameters or chromosome 3 
testing.91, 99 However, similar to the original reports of Tschentscher et al.,86 
Onken et al.,88 and van Gils et al.,96 the mRNA expression pattern corresponds 
very strongly with chromosome 3 status.100 In accordance with earlier reports by 
Damato’s group on combining clinical, histologic, and genetic predictors to 
improve prognostication in UM,101, 102 a recent study from Harbour’s group 103 and 
another independent study104 indicated that largest basal diameter provides 
prognostic information that is independent of GEP (see section 5).  
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2.3 Gene mutations  
Unlike cutaneous melanoma, UM does not harbor mutations in BRAF or NRAS 
genes,105-109 but instead is characterized by mutations in the GNAQ gene 
(chromosome 9q) and its paralogue GNA11 (chromosome 19p); these genes 
encode alpha subunits of the heterotrimeric G proteins associated with the 
transmembrane G protein-coupled receptors.110-114 Mutations in these genes are 
thought to result in the constitutive activation of the mitogen-activated protein 
kinase (MAPK) pathway and protein kinase C (PKC) pathway, which are involved in 
cell growth, cell proliferation, differentiation and apoptosis.110, 111, 113, 115, 116 The 
MAPK pathway is activated in up to 90% of primary UM 108 and mutations of 
GNAQ and GNA11 have been reported in 83% to 91% of primary UM, occurring in 
a mutually-exclusive manner.113, 117, 118 Mutations in GNAQ are reported to occur 
in 25-50% of tumors, while GNA11-mutant cases account for 33-58% (Table 1B).60, 

111, 113, 117-125  
GNAQ and GNA11 mutations are thought to be initiating events in UM 
pathogenesis since they are present in the majority of UM, regardless of 
chromosome aberrations or GEP class, and are also found in benign melanocytic 
lesions such as blue nevi.110, 111, 113 Van Raamsdonk et al. found a mutation in 
either GNAQ or GNA11 in 61% of the 139 blue nevi they have tested,113 and 
reported an 83% mutation frequency for GNAQ in 29 tested blue nevi in an earlier 
study.111 Although most studies could not find a correlation between GNAQ or 
GNA11 and survival,113, 118, 126 a recent study by Griewank et al. reported a 
predominance of GNA11 mutations in UM metastases, and a poorer disease-
specific survival of GNA11-mutant tumors in a cohort of 30 UM patients with 
metastases.127 In 101 UMs treated by primary enucleation in the LUMC, we found 
monosomy 3 in 70% of GNA11-mutant UMs (n=53) versus 48% in GNAQ-mutant 
UMs (n=48) (Pearson’s chi-squared test, p=0.03) (unpublished data). Although we 
noticed a trend towards worse survival for GNA11-mutant tumors compared to 
GNAQ-mutant cases, this difference was not signicant (log-rank test, p=0.27) 
(unpublished data).  
As mentioned above, the strong correlation between loss of heterozygosity of 
chromosome 3 and an adverse prognosis raised the suspicion that loss of function 
of tumor suppressor genes on chromosome 3 may result in a malignant 
phenotype. Early efforts to identify the critical region of chromosome 3 yielded 
varying results.128-130 Blasi et al. found a translocation involving chromosome 
region 3p13 as the only clinical aberration in a primary UM cell culture and 
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suggested that this region could harbor a pathogenically-relevant tumor 
suppressor gene.128 Tschentscher et al. investigated partial deletions of 
chromosome 3 and found two regions (3q24-26 and 3p25) that were frequently 
lost.129 A study by Parrella et al. identified the same region (3p25.1-25.2), and 
overlapping results were reported by Cross et al. and van Gils et al., who also 
speculated on a segment (3p12-3p14) similar to the one addressed earlier by Blasi 
et al. 96, 128, 130, 131 
In 2010, inactivating hemizygous somatic mutations of the BAP1 (BRCA1-
associated protein 1) gene on chromosome 3p21.1 were identified in 47% (27/57) 
of cases. BAP1 mutation was found in most metastasizing UMs, occurring in 84% 
(26/31) of class 2 tumors and in only 4% (1/26) of class 1 cases.132. Subsequent 
studies showed that inactivating mutations of BAP1 occur in 32-58% of primary 
UM.60, 62, 119-122, 124, 125, 133 Mutation of BAP1 is also strongly correlated with 
chromosome 3 status, ocurring in 89% of monosomy 3 tumors and in no disomy 3 
tumors, in a cohort of 66 Ums.133  
Loss of BAP1 gene expression has been shown to correlate well with the lack of 
BAP1 protein expression, which has been proposed as a clinically valuable 
prognostic tool.62, 100, 133-135 Metastases arise when there is a combination of loss of 
one chromosome 3 and a mutation in the BAP1 gene on the other chromosome, 
leading to loss of expression of BAP1.62, 100  
The BAP1 protein is a ubiquitin carboxyterminal enzyme that affects the activity of 
other proteins through deubiquitination. For example, it regulates gene 
expression epigenetically by removing ubiquitin molecules from histone H2A. It 
has been demonstrated that loss of BAP1 function leads to the loss of the 
melanocytic cell phenotype and loss of differentiation in UM.136 
Germline mutations in BAP1 137, 138 have been identified in 2-3% of UM 
patients.139-141 These patients tend to have a family history of UM. A recent study 
reported BAP1 germline mutations in approximately 20% of familial cases of 
UM.142 Patients with BAP1 germline mutations have larger tumors, with more 
common ciliary body involvement, both of which are related to a higher risk of 
metastasis.140 These mutations may be present in UM occurring at a younger 
age.143 In addition, patients with germline BAP1 mutations are at higher risk of 
other cancers such as lung adenocarcinoma, renal cell carcinoma, meningioma, 
and malignant mesothelioma,137, 144-146 prompting the need for treating physicians 
to recognize familial cases of UM and to identifying patients with germline BAP1 
mutations.   
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In contrast to BAP1, mutations in the SF3B1 (splicing factor 3 subunit B1) gene on 
chromosome 2q are associated with favorable prognostic parameters such as 
younger age at diagnosis and fewer epithelioid cells, whilst being inversely 
associated with adverse prognostic features such as monosomy 3 and the class 2 
gene expression profile.123 Patients with mutations in this gene account for 10% to 
24% of UM cases.60, 119-125 In the study by Furney et al., patients with SF3B1 
mutations showed a better prognosis than patients with SF3B1-wildtype 
tumors,121 while in another study significance could not be reached 123 and in a 
study with a relatively short follow-up (48 months) no association with metastatic 
disease was reported.60 In a long-term study by Yavuzyigitoglu et al. using whole-
exome sequencing, an association of mutated SF3B1 and favorable prognosis was 
observed in the overall group (n=133, 32 SF3B1-mutant) during the first few years 
of follow-up; however, this difference was less evident at longer follow-up since 
patients with SF3B1 were noticed to develop metastases at a later stage. Within 
the disomy 3 cohort, patients with SF3B1 mutations had an increased metastasic 
risk when compared to patients without this mutation and developed metastases 
at a median follow-up of 8.2 years. SF3B1 mutation was therefore correlated with 
late-onset metastasis and was the only parameter independently associated with 
worse survival in disomy 3 tumors in the multivariate analysis. Most (11/14) 
disomy 3 patients who developed metastases had an SF3B1 mutation, while BAP1 
mutations were found in two other disomy 3 patients who developed 
metastases.125 These mutations were missense mutations and the tumors stained 
positively for BAP1 using immunohistochemistry. Although it may be assumed 
that a nonfunctional protein is produced, this should be validated by functional 
assays.  
Mutations in the EIF1AX (eukaryotic translation initiation factor 1A, X-linked) gene 
on chromosome Xp are found in 8% to 21% of primary UMs and are associated 
with a decreased risk of metastasis.60, 119-121, 123-125 Ewens et al. reported a 10-fold 
lower metastasic risk for disomy 3/BAP1-wild type/EIF1AX-mutant tumors, when 
compared to disomy 3/BAP1-wild type/EIF1AX-wild type cases.60 The association 
of EIF1AX mutations and a favorable clinical outcome was confirmed in two 
recently published studies.119, 125 Together, these reports show that mutations in 
BAP1, SF3B1 and EIF1AX occur in a mutually exclusive manner, which has been 
underlined by a study that reported on the results of whole-genome sequencing 
in 33 samples.147 Moreover, mutations in these three genes are associated with 
differing risks of developing metastasis. Tumors with BAP1 mutations show a high 
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and early metastatic risk whereas tumors with mutated SF3B1 are associated with 
late-onset metastasis and EIF1AX-mutant tumors have a very low metastatic 
risk.125  
 
3. GENETIC TESTS  
Diverse genetic techniques, such as karyotyping, fluorescence in situ hybridization 
(FISH), multiplex ligation-dependent probe amplification (MLPA), array-based 
comparative genomic hybridization (aCGH), single-nucleotide polymorphism (SNP) 
assay, and GEP are commonly utilized to determine genomic tumor characteristics 
with prognostic value in UM. Relevant aspects to take into consideration with 
regard to the application of a certain test are the type of tumor specimen (fresh 
tumor tissue/frozen/formalin-fixed paraffin embedded), the available genetic 
material from the tumor specimen (DNA/RNA), the prognostic accuracy, and the 
costs of the test. In this section, we discuss briefly the most important tests that 
can be utilized for genetic prognostication in UM and mention their respective 
advantages and disadvantages (Table 2).  
Initial studies reporting on the prognostic value of aberrations in chromosomes 3 
and 8 40-43 used karyotyping of short-term cultured UM cells, which was also 
utilized in later studies to further characterize UM cytogenetically.68, 148 The 
advantage of karyotyping is that it provides information on all chromosomes in a 
single assay and allows the identification of structural and balanced chromosome 
abnormalities, in addition to numerical changes. However, tumor specimens must 
be fresh since viable dividing cells are required. Furthermore, this method is 
labor-intensive test and has to be performed by an experienced cytogeneticist. 
Another disadvantage of karyotyping is that it can only reliably detect gross 
aberrations due to its overall low resolution of approximately 5 to 10 Mega base 
pairs (Mbp).149-151 Kilic et al. have reported a 100% 10-year mortality in patients 
with loss of chromosome 3p detected by karyotyping, and a 30% mortality rate in 
patients without this aberration.68 The relatively high percentage of mortality in 
patients without detected loss of chromosome 3 may be explained by the low 
sensitivity of karyotyping in detecting LOH in cases of isodisomy 3 (copy-neutral 
LOH).51  
Another approach to chromosomal testing is FISH, which can be performed on 
aged, frozen and paraffin-embedded specimens as well as fresh samples. FISH 
uses a technique where a specific colored probe is used that binds 
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Table 2. Main advantages and limitations of genetics tests commonly utilized in UM 
prognostication. 

  

Genetic test Main advantages Main limitations 
Karyotyping - information on all chromosomes in single 

assay 
- identification structural and balanced 
chromosome abnormalities 

- fresh tumor specimens with  
viable dividing cells needed 
- labor-intensive  
- experienced cytogeneticist required 
- low resolution  
(only reliable for gross aberrations) 
- prone to sampling error  
(tumor heterogeneity) 
- can not detect isodisomy 3 

FISH - can be performed on fixed samples 
- relatively easy technique 

- only identification targeted  
(regions of) chromosomes 
- can not detect isodisomy 3 
- prone to sampling error  
(tumor heterogeneity) 

aCGH - can be performed on fixed samples 
- provides copy numbers of all 
chromosomes 
- high resolution (can detect smaller 
aberrations than karyotyping and FISH) 

- can not detect isodisomy 3 
- prone to sampling error  
(tumor heterogeneity) 

SNP - can be performed on fixed samples 
- high resolution 
- detects isodisomy 3 
- relatively inexpensive 

- prone to sampling error  
(tumor heterogeneity) 

MSA - can be performed on fixed samples 
- detects isodisomy 3 
- inexpensive 

- prone to sampling error  
(tumor heterogeneity) 
- low resolution 

MLPA - can be performed on fixed samples 
- suitable for small samples (biopsies) 
- detects aberrations of chromosomes 
1p,3,6, and 8 in single reaction 
- relatively inexpensive 

- prone to sampling error  
(tumor heterogeneity) 
- can not detect isodisomy 3 

GEP - can be performed on fixed samples 
- gene expression information on all 
chromosomes 
- analyzes the tumor microenvironment 
- claimed to be the most accurate test 
 

- costly 
- probably prone (claimed to be 
insensitive) for sampling error (tumor 
heterogeneity)  
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to a specific chromosome site. FISH can be performed on tissue secions as well as 
isolated nuclei.152 Two advantages of FISH over karyotyping are, first, that it does 
not require the presence of viable dividing cells to yield a successful result and, 
second,  it does not have to be performed by an experienced cytogeneticist.151 
FISH has been shown to be a reliable technique for detecting chromosome 3 and 8 
aberrations 153 and has been used, alone or in combination with conventional 
karyotyping, for the assessment of the chromosomal status of UM.52, 54, 66, 148, 152, 154, 

155 
Limitations of FISH are that it only allows evaluation of alterations in the targeted 
(region of) a chromosome 156 and its inability to detect isodisomy of chromosome 
3 and structural abnormalities such as partial deletions (in particular if only 
centromeric probes are used).54, 157 An example of this is provided by Lake et al. in 
metastasizing UM, where MLPA identified two cases with multiple deletions in 3p 
and 3q, which were previously missed by FISH.158 Although it has been reported 
that FISH and MLPA have similar predictive powers,159 Damato et al. have shown 
that MLPA is more sensitive than FISH in detecting partial deletions of 
chromosome 3,71, 160, 161 also validating the use of this technique for 
prognostication in UM in a large cohort of 452 choroidal melanomas.55 MLPA can 
be performed on smaller samples than FISH, which makes it suitable for use in 
biopsy material.157 Although MLPA can be used on formalin-fixed tumor 
specimens, the use of fresh or snap-frozen material is preferred.162 However, 
similar to karyotyping and FISH,152, 155, 163, 164 MLPA is prone to sampling errors 
caused by tumor heterogeneity.71, 165 The effect of sampling errors on predictive 
value of these tests was not specifically determined.   
Another technique used for genetic testing in UM is aCGH.74, 166, 167 In aCGH, tumor 
DNA and reference DNA are labelled differently and hybridized with cloned DNA 
fragments (±100-200 kb) of which the exact chromosomal location is known.168, 169 
aCGH provides genome-wide information on copy-number variations and can 
detect smaller aberrations than karyotyping and FISH.167, 170 However, as with 
karyotyping, FISH, and MLPA, aCGH is unable to detect copy-neutral LOH, and 
therefore can not identify isodisomy 3.  
A more modern technique is the use of SNP arrays, in which variations of single 
nucleotides are evaluated. A major advantage of SNP is its ability to detect 
isodisomy 3, since it can distinguish the two copies of chromosomes inherited 
from each parent. In a study by Onken et al. SNP was more accurate than FISH and 
aCGH in detecting LOH of chromosome 3 due to its ability to identify isodisomy 
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3.72 Another technique that can be utilized to detect isodisomy 3 is microsatellite 
analysis (MSA), which evaluates the presence of informative microsatellite marker 
regions of repetitive DNA on chromosomes. However, this technique is also 
susceptible to sampling error resulting from tumor heterogeneity.171  
Recently, whole-exome sequencing (WES) and whole-genome sequencing (WGS) 
have been applied for research purposes to evaluate the genetic landscape of 
UM.125, 147 WES sequences all exons of the genome, thereby identifying genetic 
variants that alter protein sequences, while WGS also sequences the non-coding 
regions. Although WGS provides more information than WES, it has higher costs 
and is more time-consuming. However, costs keep decreasing, probably soon 
allowing WGS for a fair cost. 
In contrast to the above-mentioned genetic tests, which analyze DNA, GEP 
evaluates mRNA expression to stratify tumors into two main prognostic classes, 
class 1 and class 2.88 In the initial paper correlating GEP classes to survival, Onken 
et al. stated that this molecular classification may potentially be superior to 
chromosomal analysis in predicting high-risk cases.88 However, the studies 
showing a higher accuracy of GEP were performed with relatively few patients 
and FISH and aCGH were used instead of more reliable chromosome tests to 
detect chromosome copy number variations. As mentioned earlier, these 
techniques are unable to detect isodisomy of chromosome 3, which is related to 
the development of metastatic disease.72 Multiple chromosome changes are very 
strongly associated with a specific GEP and it has been shown that combining 
prognostic information provided by different chromosomes increases the 
predictive accuracy of chromosomal testing.52, 54, 55, 74, 166  
Although GEP is more costly than tests based on chromosomal analysis, one of the 
advantages of GEP over chromosomal testing has been proposed to be its 
insensitivity for sampling errors due to tumor heterogeneity. This is supposedly 
due to the fact that it evaluates the tumor environment, which is less variable 
across the tumor than the cytogenetic markers.98 Nevertheless, a recently 
published study by Augsburger et al. evaluating the GEP classification of biopsy 
samples from different sites within a tumor, reported a discordance rate of 
11%.172 Although GEP is able to provide prognostic information even in very small 
samples,173 Augsburger et al. found that discordant GEP results occur most 
frequently (24%) in small tumors (thickness<3.5mm).172 To decrease the risk of 
misclassification, the Collaborative Ocular Oncology Group has recommended 
taking several samples if the tumor consists of morphologically different areas.99 
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In concordance with this recommendation, a recently published case report 
showed discordant GEP results of samples with different histopathologic 
features.174  
 
4. CLINICAL ASPECTS OF GENETIC PROGNOSTICATION 
Genetic testing for prognostication in UM is now applied in many ophthalmic 
oncology centers. The clinical application of genetic testing has raised certain 
issues, which we will highlight in this section. Below we discuss implications of 
genetic prognostication for follow-up and therapy of patients. We also address 
clinical issues regarding the use of biopsy material and the application of genetic 
testing in irradiated tumors, highlight statistical issues considering the 
interpretation of the results of genetic prognostication, and discuss the 
psychological aspects of genetic prognostication for patients.  
 
4.1 Implications for follow-up and therapy 
Genetic prognostication will play an important role in the stratification of patients 
into clinical trials in order to evaluate the efficacy of novel adjuvant treatments. It 
allows the identification of high-risk patients who may benefit the most from 
adjuvant therapies and thereby guides enrollment of patients into clinical trials to 
test therapies targeting micrometastases. Prognostic stratification allows 
clinicians to taylor follow-up according to metastatic risk: those with a low-risk 
can be spared from follow-up examinations, saving costs, while more intensive 
surveillance can be offered for high-risk patients. However, there is a lack of 
consensus regarding the type and frequency of systemic screening,175 and the 
possible survival benefit of earlier detection of clinical metastases for the 
individual patient has been questioned since no effective treatment for metastatic 
UM yet exists.  
In a study by Kim et al., the median survival after diagnosis of primary UM of 90 
patients with metastatic UM detected by surveillance was only 4.5 months longer 
than the survival of 259 patients who were diagnosed with metastatic UM at the 
time that they developed symptoms. The percentage of patients receiving 
treatment for their metastases and the treatment type was comparable between 
the groups. The authors concluded that the difference in survival was due to lead-
time bias.176 An earlier study similarly reported a longer survival after detection of 
metastases (8.9 vs 4.3 months) in patients who had undergone surveillance 
examinations.177 However, the survival time after diagnosis of the primary tumor 
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was comparable. More recent studies evaluating the effects of novel treatment 
options have reported prolonged survival in patients whose metastases were 
detected earlier.178, 179 Nevertheless, no clear survival benefit from screening for 
metastases was reported in a literature review by Augsburger et al.,180 while a 
recently published review concluded that adjuvant therapy has not been shown to 
improve survival in UM.181 
Studies on the analysis of genetic differences between high-risk and low-risk 
tumors have led to an evolved understanding of the pathophysiology of UM. The 
discovery of GNAQ/GNA11 and BAP1 mutations has contributed to the unraveling 
of the molecular landscape of UM and provided opportunities for targeted 
therapy of metastatic disease.116, 182, 183 Progress in the molecular characterization 
of UM may not only enhance prognostication but may also contribute to the 
development of targeted therapy and may in the near future even allow for 
individualized treatment based on mutational analysis of the tumor.   
 
4.2 Genetic testing in biopsies 
UMs treated by enucleation provide adequate tumor specimens for genetic 
testing. Since the entire tumor is available, samples from different parts of the 
tumor can be sent in for genetic analysis. However, most UMs are currently 
treated by globe-preserving techniques such as plaque radiotherapy and proton 
beam irradiation while enucleation is reserved for larger tumors.184 In tumors 
treated by eye-conserving methods, biopsies may be taken to obtain tumor 
material for genetic prognostication. Although there is a risk of localised bleeding, 
vitreous hemorrhage, retinal detachment and tumor seeding after a tumor biopsy, 
these risks are small and fine-needle aspiration biopsy (FNAB) is considered a safe 
procedure.56, 154, 185-187  
Tumor size may be a limiting factor since larger tumor volume makes it easier to 
acquire enough material for testing. Even in enucleated cases, greater tumor size 
was found to be correlated with a higher success rate of FISH in 213 primarily 
enucleated tumors.148 McCannel et al. performed transscleral FNAB in 170 cases 
and reported that sufficient material for FISH was obtained in 91% of tumors with 
a thickness over 5 mm, while this percentage was only 53% for tumors less than 3 
mm thick.186 In a study of FNAB performed in a cohort of 150 UM, Singh et al. 
found that a sufficient yield of tumor material was similarly related to tumor size, 
with more successful tests in larger tumors (basal diameter >5.0 mm, height >2.5 
mm), as well as to the biopsy approach (success rates, transcorneal: 100%, 
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transscleral: 96%, transvitreal: 86%).188 In contrast, Shields et al. determined the 
chromosome 3 status in FNAB specimens by analyzing microsatellite markers and 
found that a transvitreal approach yielded sufficient material in almost all cases 
(97%, 31/32) while a transscleral approach showed a success rate of 67% 
(16/24).189 However, a study in 38 patients showed comparable results for 
transvitreal and transscleral FNAB approaches, with sufficient material for 
cytopathological analysis in 71% and 66% of tumors, respectively.190 Recent 
improvements in surgical techniques and laboratory methods increased the 
success rate of genetic testing in biopsied samples as shown by the group of 
Coupland.191 They analyzed their samples biopsied between 2011 and 2013 and 
noticed an increase in success rate from 79% to 93%.   
The type of needle may also influence tissue yield, which is affected by the 
diameter of the needle bore so that a larger specimen is obtained by FNAB with 
25-gauge needles than with 27-gauge or 30-gauge needles.192 In a study of 18 
cases of UM, transscleral FNAB using a 30-gauge needle yielded sufficient material 
for FISH for chromosome 3 testing in 50% of cases.193 Midena et al. obtained 
sufficient material for chromosome 3 testing with FISH with a 25-gauge 
transscleral FNAB in 7 of 8 cases 185 and in 81% of tumors in a subsequent larger 
cohort (n=32).154  
As already indicated, the biopsy technique may influence the size of the specimen 
and the success rate. Transretinal biopsies using a 25-gauge vitrector have been 
shown to harvest larger tissue samples when compared to FNABs, improving the 
chance of obtaining adequate tumor samples for histologic examination and 
cytogenetic analysis.192, 194 Bagger et al. have shown that the theoretical tissue 
yield of a 25-gauge vitrector-based biopsy is higher than the tissue yield of FNABs 
using 25-gauge, 27-gauge, and 30-gauge needles.192 They have reported a low risk 
of complications for this procedure.195  
The question has arisen as to whether a single biopsy is truly representative of the 
entire tumor. As mentioned previously, genetic heterogeneity in UM has been 
reported 165 and may cause genetic misclassification of tumors when genetic 
testing is performed on biopsies. Naus et al. reported the application of FISH in 
FNABs to be a reliable method for assessing chromosome 3 and 8q status in 40 
UM samples;196 however, other studies reported heterogeneity for chromosome 3 
as determined by FISH in 14% 152 to 32% of cases.197 Regarding MLPA for 
chromosome 3 status, interpretation of results was complicated by genetic 
heterogeneity in 13% of cases.165 In contrast, in a recent study by Coupland et al. 
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who performed MLPA (n=14) and MSA (n=14) on 28 biopsies and matching tumor 
sections, concordant results for chromosome 3 status were reported for all 
cases.198 As mentioned above, it has been suggested that because GEP evaluates 
the tumor microenvironment, which is expected to be less variable across the 
tumor, one might expect that GEP is less prone to sampling errors caused by 
genetic heterogeneity. Nevertheless, a discordance rate of 11% was reported 
recently by Augsburger et al., who compared two random samples from the same 
tumor. To increase the chance of obtaining sufficient tumor material and to 
minimize the risk of genetic misclassification of the tumor, various authors have 
proposed performing vitrector-based biopsies or taking multiple FNAB samples.172, 

192  
 
4.3 Genetic testing in irradiated tumors 
Most patients with UM are treated by irradiation, with a biopsy being performed 
prior to the radiotherapy. However, in some centers, biopsies are not taken 
routinely and genetic testing is performed only on secondarily-enucleated tumors 
in which the radiotherapy failed. In addition, some patients undergo 
endoresection of the tumor after radiation therapy of large melanomas, which 
yields tumor material for genetic analysis.199 However, as the radiobiological 
effects of irradiation on tumor cells causes necrosis and fibrosis,200-205 the 
probability of successfully performing a genetic test on these tumors is 
questioned. We recently published a study evaluating success rates of karyotyping 
and FISH, and found that both tests are more likely to be successful in primarily-
enucleated tumors (n=291) than in enucleated tumors following radiotherapy 
(n=36, 28 Ruthenium-106 brachytherapy).148 Karyotyping was successful in 79% of 
primarily-enucleated cases, while this was the case in only 25% of the previously-
irradiated tumors. FISH was done when karyotyping had not shown monosomy 3 
or had failed and was more often than karyotyping successful in irradiated cases 
(17/35, 49%) (Table 3). Horsman et al. achieved successful karyotyping in 20 of 23 
(87%) primarily-enucleated tumors and 7 of 12 (58%) previously-irradiated tumors 
(gold plaque brachytherapy).47 The greater success rate when compared to our 
cohort may be due to a difference in the time interval between radiotherapy and 
time of enucleation, which may play a determinative role in whether genetic 
testing is successful, as more necrosis and fibrosis has been reported when the 
time interval between irradiation and enucleation was larger.202, 203 
  

15441-Dogrusoz_BNW.indd   42 28-03-18   08:22



G e n e t i c  p r o g n o s t i c a t i o n  | 43 

 

  
Ta

bl
e 

3.
 Su

cc
es

s r
at

es
 o

f d
iff

er
en

t g
en

et
ic 

te
st

s i
n 

irr
ad

ia
te

d 
uv

ea
l m

el
an

om
as

.  

 
St

ud
y 

Ge
ne

tic
 te

st
 

Ty
pe

 o
f 

sp
ec

im
en

 
Ty

pe
 o

f i
rr

ad
ia

tio
n 

Ti
m

e 
be

tw
ee

n 
irr

ad
ia

tio
n 

an
d 

en
uc

le
at

io
n/

 
en

do
re

se
ct

io
n/

 
bi

op
sy

 o
r g

en
et

ic 
te

st
in

g 

Su
cc

es
s 

ra
te

 in
 

irr
ad

ia
te

d 
tu

m
or

s 

Ho
rs

m
an

 e
t a

l. 
 

(1
99

3)
 

Ka
ry

ot
yp

in
g 

(n
=1

2)
 

En
uc

le
at

io
n 

Go
ld

 p
la

qu
e 

br
ac

hy
th

er
ap

y 
No

t s
pe

cif
ie

d 
58

%
  

W
ac

ke
rn

ag
el

 e
t a

l. 
(2

01
3)

 
CG

H 
(n

=1
5)

 
14

 
En

do
re

se
ct

io
n 

1 
En

uc
le

at
io

n 

10
 G

am
m

a-
Kn

ife
 ra

di
ot

he
ra

py
 

5 
Ru

th
en

iu
m

-1
06

 b
ra

ch
yt

he
ra

py
 

~ 
5 

m
on

th
s  

(m
ed

ia
n)

 
10

0%
  

Go
ld

 e
t a

l. 
 

(2
01

4)
 

GE
P 

(n
=3

) 
Bi

op
sy

 
2 

Io
di

ne
-1

25
 b

ra
ch

yt
he

ra
py

 
1 

Pr
ot

on
 b

ea
m

 ir
ra

di
at

io
n 

~ 
27

 m
on

th
s  

(m
ed

ia
n)

 
10

0%
  

Co
up

la
nd

 e
t a

l. 
 

(2
01

5)
 

M
LP

A 
(n

=8
) 

  M
SA

 (n
=1

) 

6 
En

uc
le

at
io

n 
2 

En
do

re
se

ct
io

n 
 En

uc
le

at
io

n 

5 
Ru

th
en

iu
m

-1
06

 b
ra

ch
yt

he
ra

py
 

3 
Pr

ot
on

 b
ea

m
 ir

ra
di

at
io

n 
 Pr

ot
on

 b
ea

m
 ir

ra
di

at
io

n 

~ 
11

 m
on

th
s  

(m
ed

ia
n)

 
 ~ 

34
 m

on
th

s  

10
0%

  
  10

0%
  

Do
gr

us
öz

 e
t a

l. 
  

(2
01

5)
 

Ka
ry

ot
yp

in
g 

(n
=3

6)
 

 w
ith

 a
dd

iti
on

al
 

 FI
SH

 (n
=3

5)
 

En
uc

le
at

io
n 

28
 R

ut
he

ni
um

-1
06

 b
ra

ch
yt

he
ra

py
 

5 
Pr

ot
on

 b
ea

m
 ir

ra
di

at
io

n 
3 

St
er

eo
ta

ct
ic 

ra
di

ot
he

ra
py

 

26
 m

on
th

s 
(m

ed
ia

n)
 

25
%

  
   49

%
  

 
Sy

m
bo

l: 
~:

 in
di

ca
te

s a
 ro

un
de

d 
va

lu
e 

or
 e

st
im

at
io

n 
sin

ce
 in

 th
e 

re
sp

ec
tiv

e 
st

ud
ie

s t
he

 ti
m

e 
pe

rio
ds

 w
er

e 
m

en
tio

ne
d 

as
 d

ay
s o

r w
ee

ks
 

15441-Dogrusoz_BNW.indd   43 28-03-18   08:22



44 | C h a p t e r  2  

 

Secondly, not only the time interval but also the cause for the secondary 
enucleation may influence the success of genetic testing. In our study, we found 
that, although not significantly different, karyotyping as well as FISH tended to be 
more often successful in irradiated tumors that were enucleated because of 
tumor recurrence, compared to enucleations due to tumor non-responsiveness or 
radiation-related complications.148 The fact that the recurrent tumor is unaffected 
by radiobiological damage inflicted by irradiation may explain this difference. 
Thirdly, the success of genetic typing in irradiated tumors may also depend on the 
type of test. Wackernagel et al. performed CGH in 15 irradiated UMs (5 
Ruthenium-106 brachytherapy, 10 Gamma-Knife radiotherapy) and obtained 
successful results in all cases,206 while Gold et al. successfully performed GEP after 
radiotherapy in 3 cases (2 Iodine-125 brachytherapy, 1 proton beam 
irradiation).207 Coupland et al. successfully determined the genetic status of 8 
previously irradiated (5 Ruthenium-106 brachytherapy, 3 proton beam irradiation) 
solid (enucleation/endoresection) specimens using MLPA and in one enucleated 
specimen that was previously treated with proton beam irradiation using MSA.198 
However, these three studies were done in small cohorts of only a few cases.  
Another important issue regarding genetic testing after irradiation is whether the 
results are representative of the primary genetic status of the tumor, since 
radiotherapy may cause genetic alterations. Hussein et al. performed survival 
analysis in 102 patients and found a metastatic death rate of 0% in 63 patients 
with disomy 3, while 35% of 39 monosomy 3 patients died of UM metastases.208 
This suggests that genetic testing by MLPA/MSA after proton beam irradiation is 
reliable and accurately predicts disease outcome. The fact that biopsies were 
taken less than a month after proton beam irradiation may have contributed to 
their accurate testing results, since the time between irradiation and sampling 
may affect the success of genetic testing. Coupland et al. reported concordant 
results for chromosome 3 status when comparing the biopsy specimens with the 
enucleated specimens in 4 tumors that were treated by Ruthenium-106 
brachytherapy and secondarily enucleated due to tumor recurrence.198 
Wackernagel et al. found concordant results for chromosome 3 and 8 status 
determined by CGH pre-radiotherapy and post-radiotherapy in 5 cases with a 
median time interval between radiotherapy and genetic analysis of 76 days.206 
Further studies evaluating genetic testing pre-radiotherapy and post-radiotherapy 
in larger cohorts with longer follow-up are necessary to determine the reliability 
of the different genetic tests after radiotherapy. Because of the lack of validation 
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in post-radiotherapy tumors, the use of DecisionDx-UM GEP in irradiated samples 
has been considered ineligible by the manufacturer of this commonly used GEP 
kit.209  
 
4.4 Statistical considerations 
Prognostic tools must take account of lead-time bias, competing risks, bias caused 
by missing data, loss of precision arising from categorization of continuous data, 
and other factors. For example, with respect to lead-time bias, larger tumors are 
associated with a shorter life expectancy partly because they have been growing 
and metastasizing for a longer time.102 As for competing risks, the censoring (i.e., 
exclusion from analysis) of patients dying of unrelated disease may exaggerate the 
apparent metastatic mortality.210 For this reason, it is necessary to take account of 
the life-expectancy of the general population, matched by age and sex.102 Bias 
may also arise if non-random missing data is simply excluded, which is why some 
statistical models estimate the likely values of missing data according to other 
prognostic factors.101  
Loss of precision occurs when continuous data are categorized into groups so that, 
for example, an 0.1 mm difference in tumor diameter results in a great 
adjustment of survival probability.  
Not all factors associated with mortality are useful for prognostication so that a 
multivariable analysis is needed to determine which factors to include in the 
statistical model.101, 211 The sample size and the number of events (i.e., deaths) 
should be large enough for the model to have adequate statistical power.  
To ensure that the prognostic tool is relevant to patients who were not included 
in its development, the statistical model should be evaluated on a test dataset 
that is separate from the training dataset, unless methods such as bootstrapping 
are used. Every prognostic tool should ideally be validated externally by different 
centres, which should ensure that tumor diameter and thickness are measured in 
a standardized manner and that structures such as ciliary body are defined 
consistently.212   
Genetic tumor type only indicates whether or not the tumor has metastatic 
potential. If it does, then factors such as tumor size and mitotic count may 
indicate the likely survival time.211 If genetic studies suggest that the tumor has no 
metastatic potential, then anatomic and histological predictors should in theory 
not influence the prognosis; however, these biomarkers may sometimes cast 
doubt on a genetic test result (e.g., ostensible disomy 3 in a large tumor with 
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ciliary body involvement, extraocular spread, epithelioid cells, closed loops and a 
high mitotic count).   
 
4.5 Psychological aspects of genetic prognostication 
Most ocular oncology centers offer UM patients genetic testing for 
prognostication. Since an effective treatment for UM metastasis is lacking, the 
main benefits of genetic prognostication are reassurance or life-planning. On the 
other hand, genetic testing for prognostication may have negative psychological 
consequences. One can expect patients with a poor prognosis will experience 
psychological distress and regret their decision to know their prognosis.  
In a study in 298 UM patients, 97% accepted genetic prognostication and none of 
the patients later regretted their decision to have testing.213 Patients reported 
that they gained a sense of control, which was linked to the hope that screening 
and early treatment would improve their survival. The authors gained the 
impression that patients with a good prognosis benefitted the most. In another 
study, 36 of the 38 patients who received a prognostic test stated that they 
wanted to know the results, which to the authors indicated no obvious regret of 
the decision to undergo testing.214 The majority of patients (58%, n=14 of 24) who 
received a conclusive result (monosomy 3/disomy 3) perceived prognostic testing 
as useful. However, significantly more patients who received a disomy 3 result 
(69%, n=9 of 13) perceived testing as useful as compared to those with a 
monosomy 3 tumor (46%, n=5 of 11). Disomy 3 and monosomy 3 patients 
perceived genetic testing as useful for different reasons: patients with a disomy 3 
tumor indicated that the result provided relief/hope, while patients with a 
monosomy 3 tumor generally indicated that the genetic testing result inspired 
them emotionally and/or gave a reason to prepare for a shortened life. When 
assessing depressive symptoms and quality of life (mental/physical), the authors 
did not find significant differences between patients who received prognostic 
testing versus those who did not undergo testing, nor between monosomy 3 and 
disomy 3 patients. Similarly, Hope-Stone et al. did not find differences in 
experiences of uncertainty between patients who received a poor prognosis and 
those receiving a good prognosis. The authors concluded that a good prognostic 
result does not necessarily relieve feelings of uncertainty.215   
In a recently published longitudinal study of 96 patients, depression, anxiety, and 
decision regret prior to prognostication and at 3 and 12 months afterwards was 
assessed.216 In contrast to the aforementioned studies, the authors observed 
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decision regret in 10% and depression symptoms in 9% of their patients at 12 
months follow-up. Decision regret was not correlated with an unfavorable 
prognosis but was associated with depression, which may make patients question 
their decisions.  
 
5. CONCLUSIONS AND FUTURE PERSPECTIVES: IMPROVING GENETIC 
PROGNOSTICATION 
Since the identification of monosomy 3 as a prognostic marker, using karyotyping, 
40 considerable progress has been made in the genetic prognostication of UM. 
New genetic markers have been identified, which, besides being used as a 
prognostic indicators, have also enhanced our understanding of the 
pathophysiology of UM. The genes that initiate tumor formation and metastasis 
have been identified, and this has resulted in the discovery of new targets for 
therapy. Assessment of the applicability of genetic tests in specific types of tumor 
specimens such as biopsy samples and irradiated tumors have expanded the 
group of tumors in which genetic testing for prognostication is possible. However, 
more research is necessary to determine which biopsy type and approach yields 
the best success rate with respect to genetic testing and prognostication. Also 
more studies need to be conducted to validate genetic testing in irradiated 
tumors. 
The field of prognostication in UM is a rapidly advancing one. Although 
chromosome status and GEP are shown to be accurate methods for 
prognostication, both carry a risk of tumor misclassification. Recent discoveries of 
specific gene mutations have made further risk stratification possible and helped 
to explain exceptional cases. Combining different genetic prognostic measures 
with other tumor features and patient demographics clearly enhances prognostic 
accuracy. MLPA for chromosome 3 has been shown to have increased accuracy 
when combined with information on the status of chromosome 8q as well as 
tumor diameter and histologic parameters characteristic of high-grade 
malignancy.71 Damato and associates have created the Liverpool Uveal Melanoma 
Prognosticator Online (LUMPO) tool, which takes into account age, sex, 
chromosome 3 status, tumor size, tumor location, extraocular extension, cell type, 
presence of extracellular closed-loop matrices and mitotic count to estimate the 
survival probability for an individual patient.101, 102, 217 This tool has been used 
effectively to detect patients with a predicted 5-year mortality of at least 50% for 
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inclusion in a prospective study evaluating metastasis screening by MRI in 188 
high-risk cases.218  
Similar to the work of Damato and colleagues, combining genetic alterations with 
the AJCC stage, which is based on tumor size, extraocular extension and ciliary 
body involvement, has been proposed as a means of enhancing prognostic 
accuracy.219 We have expanded a prior study 220 by combining data from our 
center with their data (the Copenhagen University Rigshospitalet) and we have 
demonstrated that the prognostic values of chromosome 3 and 8q status as well 
as the AJCC stage are enhanced when these prognostic parameters are applied 
together.61 We have shown that adding information on the AJCC staging improves 
the prognostic value of chromosome 3 and 8q status (Figure 2). Since 
chromosome 3 status corresponds closely to the GEP classes, it is expected that 
combining AJCC staging with GEP would enhance prognostication. In line with 
these findings, two recently published studies have reported that the tumor 
diameter has prognostic significance that is independent of GEP class and show 
that adding information on the tumor diameter to GEP improves the prognostic 
value of GEP.103, 104 Further stratification of risk estimates provided by genetic 
parameters may also be possible by combining information of several genetic 
determinants. 
Combining chromosome status with specific mutations such as BAP1/ 
SF3B1/EIF1AX mutations also improves prognostic acccuracy 60, 119, 125 and recently 
PRAME has helped to stratify metastatic risk in GEP class 1 as well as class 2 
tumors.90  
These recent findings indicate that genetic prognostication is an advancing field in 
which continued research is expected to further enhance prognostic accuracy  and 
improve patient counselling, planning of follow-up, trial enrollment, and the 
identification of new therapeutic targets.  
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