Universiteit

U Leiden
The Netherlands

Multiple context-free tree grammars: lexicalization and

characterization
Engelfriet, J.; Maletti, A.; Maneth, S.

Citation

Engelfriet, J., Maletti, A., & Maneth, S. (2018). Multiple context-free tree grammars:
lexicalization and characterization. Theoretical Computer Science, 728, 29-99.
doi:10.1016/j.tcs.2018.03.014

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/61490

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/61490

1707.03457v1 [cs.FL] 11 Jul 2017

arxXiv

Multiple Context-Free Tree Grammars:
Lexicalization and Characterization

Joost Engelfriet?, Andreas Maletti®, Sebastian Maneth®

¢LIACS, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
b Institute of Computer Science, Universitit Leipzig, P.O. Boz 100 920, 04009 Leipzig, Germany

¢Department of Mathematics and Informatics, Universitdt Bremen, P.O. Box 330440, 28334 Bremen, Germany

Abstract

Multiple (simple) context-free tree grammars are investigated, where “simple” means “linear and non-
deleting”. Every multiple context-free tree grammar that is finitely ambiguous can be lexicalized; i.e., it
can be transformed into an equivalent one (generating the same tree language) in which each rule of the
grammar contains a lexical symbol. Due to this transformation, the rank of the nonterminals increases
at most by 1, and the multiplicity (or fan-out) of the grammar increases at most by the maximal rank
of the lexical symbols; in particular, the multiplicity does not increase when all lexical symbols have
rank 0. Multiple context-free tree grammars have the same tree generating power as multi-component
tree adjoining grammars (provided the latter can use a root-marker). Moreover, every multi-component
tree adjoining grammar that is finitely ambiguous can be lexicalized. Multiple context-free tree grammars
have the same string generating power as multiple context-free (string) grammars and polynomial time
parsing algorithms. A tree language can be generated by a multiple context-free tree grammar if and only
if it is the image of a regular tree language under a deterministic finite-copying macro tree transducer.
Multiple context-free tree grammars can be used as a synchronous translation device.

Contents
1 Introduction

2 Preliminaries
2.1 Sequences and Strings L L. Lo Lo s e e e e
2.2 Trees and forests L L L L L L e
2.3 Substitution oL L e

3 Multiple context-free tree grammars
3.1 Syntax and least fixed point semantics L L L L L L L e e e e e e
3.2 Derivation trees L L oL e e e e s e e e
3.3 Derivations L oL e e e e e s e

4 Normal forms
4.1 Basic normal forms L L oL L e e e e e e e e
4.2 Lexical normal forms L0 0L e e e e e e e

5 Lexicalization
6 MCFTG and MC-TAG
6.1 Footed MCFEFTGS o et e e e
6.2 MC-TAL almost equals MCFT e e e
6.3 Monadic MCFTGS o 0 v ittt e e e e e e e e s
7 Multiple context-free grammars
7.1 String generating power of MCEFTGs 0 e e e e
7.2 Parsing of MCEFTGs 0 e e e
8 Characterization

9 Translation

10 Parallel and general MCFTG

§ B B B e zEEE B BEE BEEH cooa =

11 Conclusion

Preprint submitted to [To be determined] July 18, 2017

http://arxiv.org/abs/1707.03457v1

1. Introduction

Multiple context-free (string) grammars (MCFG) were introduced in [87] and, independently, in [92]
where they are called (string-based) linear context-free rewriting systems (LCFRS). They are of interest
to computational linguists because they can model cross-serial dependencies, whereas they can still be
parsed in polynomial time and generate semi-linear languages. Multiple context-free tree grammars
were introduced in [57], in the sense that it is suggested in [57, Section 5] that they are the hyperedge-
replacement context-free graph grammars in tree generating normal form, as defined in [27]. Such graph
grammars generate the same string languages as MCFGs [21),194]. Tt is shown in [57] that they generate
the same tree languages as second-order abstract categorial grammars (2ACG), generalizing the fact that
MCFGs generate the same string languages as 2ACGs [82]. It is also observed in [57] that the set-local
multi-component tree adjoining grammar (MC-TAG, see |53,193]), well-known to computational linguists,
is roughly the monadic restriction of the multiple context-free tree grammar, just as the tree adjoining
grammar (TAG, see |49, 51]) is roughly the monadic restriction of the (linear and nondeleting) context-
free tree grammar, see [37, [61), [71]. We note that the multiple context-free tree grammar could also be
called the tree-based LCFRS; such tree grammars were implicitly envisioned already in [92].

In this paper we define the multiple context-free tree grammars (MCFTG) in terms of familiar concepts
from tree language theory (see, e.g., [41, 142]), and we base our proofs on elementary properties of trees
and tree homomorphisms. Thus, we do not use other formalisms such as graph grammars, A-calculus, or
logic programs. Since the relationship between MCFTGs and the above type of graph grammars is quite
straightforward, it follows from the results of |27] that the tree languages generated by MCFTGs can be
characterized as the images of the regular tree languages under deterministic finite-copying macro tree
transducers (see [26,34,139]). However, since no full version of [27] ever appeared in a journal, we present
that characterization here (Theorem [76]). It generalizes the well-known fact that the string languages
generated by MCFGs can be characterized as the yields of the images of the regular tree languages under
deterministic finite-copying top-down tree transducers, cf. |94]. These two characterizations imply (by a
result from [26]) that the MCFTGs have the same string generating power as MCFGs, through the yields
of their tree languages. We also give a direct proof of this fact (Corollary [70), and show how it leads
to polynomial time parsing algorithms for MCFTGs (Theorem [72]). All trees that have a given string as
yield, can be viewed as “syntactic trees” of that string. A parsing algorithm computes, for a given string,
one syntactic tree (or all syntactic trees) of that string in the tree language generated by the grammar. It
should be noted that, due to its context-free nature, an MCFTG, like a TAG, also has derivation trees (or
parse trees), which show the way in which a tree is generated by the rules of the grammar. A derivation
tree can be viewed as a meta level tree and the derived syntactic tree as an object level tree, cf. |51]. In
fact, the parsing algorithm computes a derivation tree (or all derivation trees) for the given string, and
then computes the corresponding syntactic tree(s).

We define the MCFTG as a straightforward generalization of the MCFG, based on tree substitution
rather than string substitution, where a (second-order) tree substitution is a tree homomorphism. How-
ever, our formal syntactic definition of the MCFTG is closer to the one of the context-free tree grammar
(CFTG) as in, e.g., [31,137, 42, |58, 161, 181, [90]. Just as for the MCFG, the semantics of the MCFTG is a
least fixed point semantics, which can easily be viewed as a semantics based on parse trees (Theorem [).
Moreover, we provide a rewriting semantics for MCFTGs (similar to the one for CFTGs and similar to
the one in [78] for MCFGs) leading to a usual notion of derivation, for which the derivation trees then
equal the parse trees (Theorem [[). Intuitively, an MCFTG G is a simple (i.e., linear and nondeleting)
context-free tree grammar (spCFTG) in which several nonterminals are rewritten in one derivation step.
Thus every rule of G is a sequence of rules of an spCFTG, and the left-hand side nonterminals of these
rules are rewritten simultaneously. However, a sequence of nonterminals can only be rewritten if (earlier
in the derivation) they were introduced explicitly as such by the application of a rule of G. Therefore,
each rule of G must also specify the sequences of (occurrences of) nonterminals in its right-hand side that
may later be rewritten. This restriction is called “locality” in [53, [78, 193)].

Apart from the above-mentioned results (and some related results), our main result is that MCFTGs
can be lexicalized (Theorem [4]). Let us consider an MCFTG G that generates a tree language L(G) over
the ranked alphabet ¥, and let A C ¥ be a given set of lexical items. We say that G is lezicalized (with
respect to A) if every rule of G contains at least one lexical item (or anchor). Lexicalized grammars are
of importance for several reasons. First, a lexicalized grammar is often more understandable, because
the rules of the grammar can be grouped around the lexical items. Each rule can then be viewed as
lexical information on its anchor, demonstrating a syntactical construction in which the anchor can

2

occur. Second, a lexicalized grammar defines a so-called dependency structure on the lexical items of
each generated object, allowing to investigate certain aspects of the grammatical structure of that object,
see [64]. Third, certain parsing methods can take significant advantage of the fact that the grammar is
lexicalized, see, e.g., [86]. In the case where each lexical item is a symbol of the string alphabet (i.e.,
has rank 0), each rule of a lexicalized grammar produces at least one symbol of the generated string.
Consequently, the number of rule applications (i.e., derivation steps) is clearly bounded by the length of
the input string. In addition, the lexical items in the rules guide the rule selection in a derivation, which
works especially well in scenarios with large alphabets (cf. the detailed account in [10]).

We say that G is finitely ambiguous (with respect to A) if, for every n > 0, L(G) contains only finitely
many trees with n occurrences of lexical items. For simplicity, let us also assume here that every tree in
L(G) contains at least one lexical item. Obviously, if G is lexicalized, then it is finitely ambiguous. Our
main result is that for a given MCFTG G it is decidable whether or not G is finitely ambiguous, and if
s0, a lexicalized MCFTG G’ can be constructed that is (strongly) equivalent to G, i.e., L(G') = L(G).
Moreover, we show that G’ is grammatically similar to G, in the sense that their derivation trees are
closely related: every derivation tree of G’ can be translated by a finite-state tree transducer into a
derivation tree of G for the same syntactic tree, and vice versa. To be more precise, this can be done by a
linear deterministic top-down tree transducer with regular look-ahead (LDTR-transducer). We say that
G and G’ are LDTR-equivalent. Since the class of LDT®R-transductions is closed under composition, this
is indeed an equivalence relation for MCFTGs. Note that, due to the LDTR-equivalence of G’ and G,
any parsing algorithm for G’ can be turned into a parsing algorithm for G by translating the derivation
trees of G’ in linear time into derivation trees of G, using the LDTR-transducer. Thus, the notion
of LDTR-equivalence is similar to the well-known notion of cover for context-free grammars (see, e.g.,
[46,174]). For context-free grammars, no LDTR-transducer can handle the derivation tree translation that
corresponds to the transformation into Greibach Normal Form. In fact, our lexicalization of MCFTGs
generalizes the transformation of a context-free grammar into Operator Normal Form as presented in [46],
which is much simpler than the transformation into Greibach Normal Form.

The multiplicity (or fan-out) of an MCFTG is the maximal number of nonterminals that can be
rewritten simultaneously in one derivation step. The lexicalization of MCFTGs, as discussed above,
increases the multiplicity of the grammar by at most the maximal rank of the lexical symbols in A.
When viewing an MCFTG as generating a string language, consisting of the yields of the generated
trees, it is natural that all lexical items are symbols of rank 0, which means that they belong to the
alphabet of that string language. The lexicalization process is then called strong lexicalization, because
it preserves the generated tree language (whereas weak lexicalization just requires preservation of the
generated string language). Thus, strong lexicalization of MCFTGs does not increase the multiplicity. In
particular spCFTGs, which are MCFTGs of multiplicity 1, can be strongly lexicalized as already shown
in [70]. Note that all TAG tree languages can be generated by spCFTGs [61]. Although TAGs can be
weakly lexicalized (see [36]), they cannot be strongly lexicalized, which was unexpectedly shown in [65].
Thus, from the lexicalization point of view, spCFTGs have a significant advantage over TAGs. The strong
lexicalization of MCFTGs (with lexical symbols of rank 0) is presented without proof (and without the
notion of LDTR-equivalence) in [25].

The width of an MCFTG is the maximal rank of its nonterminals. The lexicalization of MCFTGs
increases the width of the grammar by at most 1.

In addition to the above results we compare the MCFTGs with the MC-TAGs and prove that they have
(“almost”) the same tree generating power, as also presented in [25]. It is shown in [61] that “non-strict”
TAGs, which are a slight generalization of TAGs, generate the same tree languages as monadic spCFTGs,
where ‘monadic’ means width at most 1; i.e., all nonterminals have rank 1 or 0. We confirm and strengthen
the above-mentioned observation in [57] by showing that both MCFTGs and monadic MCFTGs have the
same tree generating power as non-strict MC-TAGs (Theorems 9 and [61), with a polynomial increase of
multiplicity. Since the constructions preserve lexicalized grammars, we obtain that non-strict MC-TAGs
can be (strongly) lexicalized. Note that by a straightforward generalization of [65] it can be shown that
non-strict TAGs cannot be strongly lexicalized. Then we show that even (strict) MC-TAGs have the
same tree generating power as MCFTGs (Theorem [B8)). To be precise, if L is a tree language generated
by an MCFTG, then the tree language #(L) = {#(t) | t € L} can be generated by an MC-TAG, where
is a “root-marker” of rank 1. This result settles a problem stated in [93, Section 4.5]@ It also implies

n the first paragraph of that section, Weir states that “it would be interesting to investigate whether there exist
LCFRS’s with object level tree sets that cannot be produced by any MCTAG.”

3

that, as opposed to TAGs, MC-TAGs can be (strongly) lexicalized (Theorem [60).

It is shown in |60, 95] that 2ACGs, and in particular tree generating 2ACGs, can be lexicalized (for
A =). Although 2ACGs and MCFTGs generate the same tree languages, this does not imply that
MCFTGs can be lexicalized. It is shown in [83] that multi-dimensional TAGs can be strongly lexicalized.
Although it seems that for every multi-dimensional TAG there is an MCFTG generating the same tree
language (see the Conclusion of [58]), nothing else seems to be known about the relationship between
multi-dimensional TAGs and MC-TAGs or MCFTGs.

The structure of this paper is as follows. Section [2] consists of preliminaries, mostly on trees and
tree homomorphisms. Since a sequence of nonterminals of an MCFTG generates a sequence of trees, we
also consider sequences of trees, called forests. The substitution of a forest for a sequence of symbols in
a forest is realized by a tree homomorphism. In Section [3] we define the MCFTG, its least fixed point
semantics (in terms of forest substitution), its derivation trees, and its derivations. Every derivation tree
yields a tree, called its value, and the tree language generated by the grammar equals the set of values of
its derivation trees. The set of derivation trees is itself a regular tree language. We recall the notion of
an LDTR-transducer, and we define two MCFTGs to be LDTR-equivalent if there is a value-preserving
LDTR-transducer from the derivation trees of one grammar to the other, and vice versa. Section H
contains a number of normal forms. For every MCFTG we construct an LDTR-equivalent MCFTG in such
a normal form. In Section] we discuss some basic normal forms, such as permutation-freeness which
means that application of a rule cannot permute subtrees. In Section we prove that every MCFTG
can be transformed into Growing Normal Form (generalizing the result of [89, 190] for spCFTGs). This
means that every derivation step increases the sum of the number of terminal symbols and the number
of “big nonterminals” (which are the sequences of nonterminals that form the left-hand sides of the rules
of the MCFTG). It even holds for finitely ambiguous MCFTGs, with ‘terminal’ replaced by ‘lexical’
(Theorem [B7)). Thus, this result is already part of our lexicalization procedure. Moreover, we prove
that finite ambiguity is decidable. Section [Blis devoted to the remaining, main part of the lexicalization
procedure. It shows that every MCFTG in (lexical) Growing Normal Form can be transformed into
an LDTR-equivalent lexicalized MCFTG. The intuitive idea is to transport certain lexical items from
positions in the derivation tree that contain more than one lexical item (more precisely, that are labeled
with a rule of the grammar that contains more than one lexical item), up to positions that do not contain
any lexical item. In Section [G.Ilwe prove that MCFTGs have the same tree generating power as non-strict
MC-TAGs. We define non-strict MC-TAGs as a special type of MCFTGs, namely “footed” ones, which
(as in |61]) are permutation-free MCFTGs such that in every rule the arguments of each left-hand side
nonterminal are all passed to one node in the right-hand side of the rule. Then we prove in Section[6.2lthat
(strict) MC-TAGs have the same tree generating power as MCFTGs, as explained above, and we show
that MC-TAGs can be strongly lexicalized. In Section we observe that every MC-TAG (and hence
every MCFTG) can be transformed into an equivalent MCFTG of width at most 1, which is in contrast
to the fact that spCFTGs (and arbitrary context-free tree grammars) give rise to a strict hierarchy with
respect to width, as shown in [30, Theorem 6.5] (see also |67, Lemma 24]). In all the results of Section[6 the
constructed grammar is LDTR-equivalent to the given one. In Section [l we define the multiple context-
free (string) grammar (MCFG) as the “monadic case” of the MCFTG, which means that all terminal and
nonterminal symbols have rank 1, except for a special terminal symbol and the initial nonterminal symbol
that have rank 0. We prove (using permutation-freeness) that every tree language L(G) that is generated
by an MCFTG G can also be generated by an MCFG, provided that we view every tree as a string in
the usual way (Theorem [67]). Using this we show that yd(L(G)), which is the set of yields of the trees in
L(G), can also be generated by an MCFG G’ and, in fact, every MCFG string language is of that form.
Since, moreover, the derivation trees of G and G’ are related by LDTR-transducers (in a way similar
to LDTR-equivalence), this result can be used to transform any polynomial time parsing algorithm for
MCFGs into a polynomial time parsing algorithm for MCFTGs, as discussed in Section [7.2l In Section [
we recall the notion of macro tree transducer, and show that the tree translation that computes the value of
a derivation tree of an MCFTG G can be realized by a deterministic finite-copying macro tree transducer
(DMT¢.-transducer). This implies that L(G) is the image of a regular tree language (viz. the set of
derivation trees of G) under a DMTy.-transduction. Vice versa, every such image can be generated by
an MCFTG that can be obtained by a straightforward product construction. From this characterization
of the MCFTG tree languages we obtain a number of other characterizations (including those for the
MCFG string languages), known from the literature. Thus, they are the tree/string languages generated
by context-free graph grammars, they are the tree/string languages generated by 2ACGs, and they are the
tree/string languages obtained as images of the regular tree languages under deterministic MSO-definable

4

tree/tree-to-string transductions (where MSO stands for Monadic Second-Order logic). Section[@is based
on the natural idea that, since every “big nonterminal” of an MCFTG generates a forest, i.e., a sequence
of trees, we can also use an MCFTG to generate a set of pairs of trees (i.e., a tree translation) and hence,
taking yields, to realize a string translation. We study the resulting translation device in Section[@land call
it an MCFT-transducer. It generalizes the (binary) rational tree translation of [79] (called synchronous
forest substitution grammar in [69]) and the synchronous context-free tree grammar of [73]. We prove
two results similar to those in [73]. The first result characterizes the MCFT-transductions in terms of
macro tree transducers, generalizing the characterization of the MCFTG tree languages of Section [l
We show that the MCFT-transductions are the bimorphisms determined by the DM Ty -transductions as
morphisms (Theorem BI]). The second result generalizes the parsing result for MCFTGs in Section [1
It shows that any polynomial time parsing algorithm for MCFGs can be transformed into a polynomial
time parsing algorithm for MCFT-transducers (Theorem[R2). For an MCFT-transducer M, the algorithm
parses a given input string w and translates it into a corresponding output string; more precisely, the
algorithm computes all pairs (t1,t2) in the transduction of M such that the yield of ¢; is w. Finally,
in Section [[0] we consider two generalizations of the MCFTG for which the basic semantic definitions
are essentially still valid. In both cases the generalized MCFTG is able to generate an unbounded
number of copies of a subtree, by allowing several occurrences of the same nonterminal (in the first case)
or the same variable (in the second case) to appear in the right-hand side of a rule. Consequently, the
resulting tree languages need not be semi-linear anymore. The first generalization is the parallel MCFTG
(or PMCFTG), which is the obvious generalization of the well-known parallel MCFG of [87]. Roughly
speaking, in a parallel MCFTG (or parallel MCFG), whenever two occurrences of the same nonterminal
are introduced in a derivation step, these occurrences must be rewritten in exactly the same way in the
remainder of the derivation. We did not study the lexicalization of PMCFTGs, but for all the other
results on MCFTGs there are analogous results for PMCFTGs with almost the same proofs. The second
generalization, which we briefly consider, is the general (P)MCFTG, for which we drop the restriction
that the rules must be linear (in the variables). Thus a general (P)MCFTG can copy subtrees during
one derivation step. General MCFTGs are discussed in [8]. The general MCFTGs of multiplicity 1 are
the classical IO context-free tree grammars. The synchronized-context-free tree languages of 7] (which
are defined by logic programs) lie between the MCFTG tree languages and the general PMCFTG tree
languages. The general PMCFTG tree languages can be characterized as the images of the regular tree
languages under arbitrary deterministic macro tree transductions, but otherwise we have no results for
general (P)MCFTGs.

As observed above, part of the results in this contribution were first presented in [27], [70], and [25)].

2. Preliminaries

We denote the set {1,2, 3, ...} of positive integers by N and the set of nonnegative integers by Ng = NU{0}.
For every n € Ng, we let [n] = {i € N|i <n}. For a set A, we denote its cardinality by |A|. A partition
of A is a set II of subsets of A such that each element of A is contained in exactly one element of IT; we
allow the empty set @) to be an element of II. For two functions f: A — B and g: B — C (where A, B,
and C are sets), the composition go f: A — C of f and g is defined as usual by (g o f)(a) = g(f(a)) for
every a € A.

2.1. Sequences and strings

Let A be a (not necessarily finite) set. When we view A as a set of basic (i.e., indecomposable) elements,
we call A an alphabet and each of its elements a symbol. Note that we do not require alphabets to be
finite; finiteness will be explicitly mentioned @ For every n € Ny, we denote by A™ the n-fold Cartesian
product of A containing sequences over 4; i.e., A" = {(a1,...,a,) | a1,...,a, € A} and A° = {()}
contains only the empty sequence (), which we also denote by . Moreover, we let A* = |J,, .y A™ and
A* = UneN0 A™. When A is viewed as an alphabet, the sequences in A* are also called strings. Let

w = (a1,...,a,) be a sequence (or string). Its length n is denoted by |w|. For i € [n], the i-th element
of w is a;. The elements of w are said to occur in w. The set {ai,...,a,} of elements of w will
2Infinite alphabets are sometimes convenient. For instance, it is natural to view the infinite set {x1,x2,...} of variables

occurring in trees as an alphabet, see Section 23] We will use grammars with infinite alphabets as a technical tool in
Section [3.3] to define the derivations of usual grammars, which of course have finite alphabets.

5

be denoted by occ(w). The sequence w is repetition-free if no element of A occurs more than once
in w; ie., Jocc(w)] = n. A permutation of w is a sequence (aj,,...,a;,) of the same length such that
{i1,...,in} = [n]. Given another sequence v = (af,...,a,,) the concatenation w - v, also written just ww,
is simply (a1, ...,an,a},...,al,). Moreover, for every n € Ny, the n-fold concatenation of w with itself is
denoted by w", in particular w® = . As usual, we identify the sequence (a) of length 1 with the element
a € A it contains, so A = A C A*. Consequently, we often write the sequence (ai,...,a,) as ai - - a,.
However, if the a1, ..., a, are themselves sequences, then a; - - - a,, will always denote their concatenation
and never the sequence (a1, ...,a,) of sequences.

Notation. In the following we will often denote sequences over a set A by the same letters as the elements
of A. For instance, we will write @ = (aq,...,a,) with a € A" and a; € A for all i € [n]. It should
hopefully always be clear whether a sequence over A or an element of A is meant. We will consider
sequences over several different types of sets, and it would be awkward to use different letters, fonts, or
decorations (like @ and @) for all of them.

Homomorphisms. Let A and B be sets. A (string) homomorphism from A to B is a mapping h: A — B*.
It determines a mapping h*: A* — B* which is also called a (string) homomorphism and which is defined
inductively as follows for w € A*:

h*(w){e fw=e

h(a)-h*(v) if w=av with a € A and v € A*.

We note that h* and h coincide on A and that h*(wv) = h*(w) - h*(v) for all w,v € A*. In certain
particular cases, which will be explicitly mentioned, we will denote h* simply by h, for readabihtyﬁ
A homomorphism over A is a homomorphism from A to itself. We will often use the following homo-
morphism from A to B, in the special case where B C A. For a string w over A, the yield of w with
respect to B, denoted ydg(w), is the string over B that is obtained from w by erasing all symbols not
in B. Formally, ydg is the homomorphism from A to B such that ydz(a) = a if a € B and ydg(a) =¢
otherwise, and we define ydz(w) = yd5(w). Thus,

€ ifw=e
ydp(w) = S aydg(v) if w=av with a € B and v € A*
ydg(v) ifw=avwithae A\ B and v e A*.

Note that yd 4 is the identity on A*.

Context-free grammars. We assume that the reader is familiar with context-free grammars [3], which are
presented here as systems G = (N, X, S, R) containing a finite alphabet N of nonterminals, a finite alpha-
bet ¥ of terminals that is disjoint to N, an initial nonterminal S € N, and a finite set R of rules of the
form A — w with a nonterminal A € N and a string w € (N UX)*. Each nonterminal A generates a lan-
guage L(G, A), which is given by L(G, A) = {w € ¥* | A =, w} using the reflexive, transitive closure =
of the usual rewriting relation =¢ = {(vAv,uwv) | u,v € (N UX)*, A - w € R} of the context-free
grammar G. The language generated by G is L(G) = L(G, S). The nonterminals A, A’ € N are aliases
if{w| A —>we R} ={w| A — w e R}, which yields that L(G, 4) = L(G, A"). It is well known
that for every context-free grammar G = (N, X, S, R) there is an equivalent one G’ = (N, %, 51, R')
such that w does not contain any nonterminal more than once for every rule A — w € R’. This can
be achieved by introducing sufficiently many aliases as follows. Let m be the maximal number of occur-
rences of a nonterminal in the right-hand side of a rule in R. We replace each nonterminal A by new

nonterminals Ay, ..., A, with initial nonterminal S;. In addition, we replace each rule A — w by all
the rules 4; — w', where ¢ € [m] and w’ is obtained from w by replacing the j-th occurrence of each
nonterminal B in w by B;. Thus, A,,..., A,, are aliases. As an example, the grammar G with rules

S — 0SS and S — a is transformed into the grammar G’ with rules S; — 05155, Sy — 05152, S1 — a,
and Sy — a. It should be clear that L(G’) = L(G), and in fact, the derivation trees of G and G’ are
closely related (by simply introducing appropriate subscripts in the derivation trees of G or removing the
introduced subscripts from the derivation trees of G).

3There will be four such cases only: yield functions ‘yd’ (see the remainder of this paragraph), rank functions ‘rk’ (see

the first paragraph of Section 22)), injections ‘in’ (see the first paragraph of Section 2.3), and tree homomorphisms h (see
the third paragraph of Section 2.3]).

2.2. Trees and forests

A ranked set, or ranked alphabet, is a pair (X, rky), where X is a (possibly infinite) set and rky: ¥ — Ny
is a mapping that associates a rank to every element of ¥. In what follows the elements of ¥ will be
called symbols. For all k& € Ny, we let ¥} = {0 € ¥ | rkx(c) = k} be the set of all symbols of
rank k. We sometimes indicate the rank k of a symbol o € ¥ explicitly, as in o*). Moreover, as usual,
we just write ¥ for the ranked alphabet (3,rky), and whenever ¥ is clear from the context, we write
‘rk’ instead of ‘rky’. If ¥ is finite, then we denote by mrky the maximal rank of the symbols in ¥;
i.e., mrky = max{rk(o) | o € £}. The mapping rk* from ¥* to N, as defined in the paragraph on
homomorphisms in Section 2] will also be denoted by ‘rk’. It associates a multiple rank (i.e., a sequence
of ranks) to every sequence of elements of 3. The union of ranked alphabets (X,rky) and (A,rka)
is (X U A,rky Urka); it is again a ranked alphabet provided that the same rank rkx(v) = rka(y) is
assigned to all symbols v € X N A.

We build trees over the ranked alphabet ¥ such that the nodes are labeled by elements of ¥ and
the rank of the node label determines the number of its children. Formally we define trees as nonempty
strings over X as follows. The set Tx; of trees over ¥ is the smallest set T C X+ such that oty -t € T
for all k € No, 0 € X% and t,...,t;, € T. As usual, we will also denote the string ot; - - -t; by the
term o(t1,...,t;). If we know that t € T, and t = o(ty,...,tx), then it is clear that k € Ny, o0 € £(*),

and t1,...,t, € Ty, so unless we need stronger assumptions, we will often omit the quantifications of k,
o, and tq,...,t,. It is well known that if ow € Ts with k € Ny, 0 € 2, and w € 2*, then there are
unique trees t1,...,t; € Tx such that w = t1 ---tx. Any subset of T%; is called a tree language over X. A

detailed treatment of trees and tree languages is presented in [41] (see also [16, 42]).

Trees can be viewed as node-labeled graphs in a well-known way. As usual, we use DEWEY notation
to address the nodes of a tree; these addresses will be called positions. Formally, a position is an element
of N*. Thus, it is a sequence of positive integers, which, intuitively, indicates successively in which
subtree the addressed node can be found. More precisely, the root is at position €, and the position pi
with p € N* and ¢ € N refers to the i-th child of the node at position p. The set pos(t) C N* of positions
of a tree t € Ty, with t = o(t1,...,) is defined inductively by pos(t) = {e} U {ip | i € [k], p € pos(t;)}.
The tree t associates a label to each of its positions, so it induces a mapping ¢: pos(t) — X such that
t(p) is the label of t at position p. Formally, if ¢t = o(t1,...,tx), then t(e) = o and t(ip) = t;(p). For
nodes p,p’ € pos(t), we say as usual that p’ is an ancestor of p if p’ is a prefix of p; i.e., there exists
w € N* such that p = p'w. A leaf of t is a position p € pos(t) with t(p) € X(°). The yield of t, denoted
by yd(¢), is the sequence of labels of its leaves, read from left to right. However, as usual, we assume
the existence of a special symbol e of rank 0 that represents the empty string and is omitted from yd(t).
Formally yd(t) = yds o)\ (¢} (t), where ydp is defined in the paragraph on homomorphisms in Section 2.1

A forest is a sequence of trees; i.e., an element of T5;. Note that every tree of T¥, is a forest of length 1.
A forest can be viewed as a node-labeled graph in a natural way, for instance by connecting the roots of
its trees by “invisible” #-labeled directed edges, in the given order. This leads to the following obvious
extension of DEWEY notation to address the nodes of a forest. Formally, from now on, a position is
an element of the set {#"p | n € Ng, p € N*} C (NU {#})*, where # is a special symbol not in N.
Intuitively, the root of the j-th tree of a forest is at position #7~! and, as before, the position pi refers to
the i-th child of the node at position p. For each forest t = (t1,...,tm) with m € Ny and t1,...,¢, € T,
the set pos(t) of positions of ¢ is defined by pos(t) = j~,{#’'p | p € pos(t;)}. Moreover, for every
j € [m] and p € pos(t;), we let t(#7~'p) = t;(p) be the label of ¢ at position #-1p0 Let Q C %
be a selection of symbols. For every ¢ € T3, we let posg(t) = {p € pos(t) | t(p) € Q} be the set of
all Q-labeled positions of t. For every o € X, we simply write pos, (t) instead of pos {0} (t), and we say
that o occurs in t if pos,(t) # 0. The set of symbols in Q that occur in ¢ is denoted by occq(t); i.e.,
occa(t) = {t(p) | p € posg(t)} B The forest ¢ is uniquely Q-labeled if no symbol in © occurs more than
once in t; i.e., |pos,(t)] <1 for every w € Q. It is well known, and can easily be proved by induction on
the structure of ¢, that |pos(t)] + m < 2 - |possy.o) ()| + |posya) (t)] for every forest t € T4 of length m.

Regular tree grammars. A regular tree grammar (in short, RTG) over ¥ is a context-free grammar
G = (N,X, S, R) such that N is a ranked alphabet with rk(A) = 0 for every A € N, ¥ is a ranked
alphabet, and w is a tree in Ty for every rule A — w in R. Throughout this contribution we assume

4These definitions are consistent with those given in the previous paragraph for trees, which are forests of length 1.
5Note that occ(t) = {t1,...,tm} by Section Il This will, however, never be used.

7

that G is in normal form; i.e., that all its rules are of the form A — o(Ay,...,A;) with k € Ny,
A, Ay,..., A, € N, and o0 € £®) | The language L(G) generated by an RTG G is a regular tree language.
The class of all regular tree languages is denoted by RT. We assume the reader to be familiar with regular
tree grammars [42, Section 6], and also more or less familiar with (linear, nondeleting) context-free tree
grammars |42, Section 15], which we formally define in Section

2.83. Substitution

In this subsection we define and discuss first- and second-order substitution of trees and forests. To this
end, we use a fixed countably infinite alphabet X = {x1,x2,...} U {o} of variables, which is disjoint
to the ranked alphabet ¥, and for every k € Ny we let X, = {z; | i € [k]} be the first k variables
from X. Note that Xy = (). The use of the special variable o will be explained in Section [l (before
Lemma [42)). For Z C X, the set Tx(Z) of trees over ¥ with variables in Z is defined by T%(Z) = Txuz,
where every variable x € Z has rank 0. Thus, the variables can only occur at the leaves. We will be
mainly interested in the substitution of patterns. For every k € Ny, we define the set Py (X}) of k-ary
patterns to consist of all trees t € Tx(X}) such that each variable of X} occurs exactly once in ¢; i.e.,
Ipos, ()| = 1 for every = € X[Consequently, Ps(Xy) = Tx(Xo) = T, and for all distinct i, € No
the sets Ps(X;) and Px(X;) are disjoint. This allows us to turn the set Px(X) = ey, Po(Xk) of all
patterns into a ranked set such that Py(X)®) = Pg(X}) for every k € Ny; in other words, for every
t € Pg(X) let rk(¢) be the unique integer k € Ny such that ¢ € Py (X;)[1 Since ‘rk’ also denotes rk*
(see the first paragraph of Section [Z2)), ‘rk’ is also a mapping from Pg(X)* to Nj. There is a natural
rank-preserving injection in: ¥ — Pyx(X) of the alphabet ¥ into the set of patterns, which is given
by in(o) = o(z1,...,21) for every k € Ny and o €). Note that in(o) = o if & = 0. The mapping
in* from ¥* to Px(X)*, as defined in Section [Z] will also be denoted by ‘in’. It is a rank-preserving
injection that associates a sequence of patterns to every sequence of elements of X.

We start with first-order substitution, in which variables are replaced by trees. For a tree ¢t € Tx(X),
a set Z C X of variables, and a mapping f: Z — Tx(X), the first-order substitution t[f], also written as
tlz < f(2) | z € Z], yields the tree in Tx(X) obtained by replacing in ¢ every occurrence of z by f(z) for
every z € Z. Formally, t[f] is defined by induction on the structure of ¢ as follows:

Hf] = f(z) ift=zwithzeZ
o(ti[f], .- te[f]) ft=o0c(ts,...,ty) witho e XU X, 0 ¢ Z.

We note that t[f] = h*(t), where h is the string homomorphism over ¥ U X such that h(a) = f(«a)
if @ € Z and h(a) = a otherwise.

Whereas we replace X-labeled nodes (which are leaves) in first-order substitution, in second-order
substitution we replace 3-labeled nodes (which can also be internal nodes); i.e., nodes with a label
in ©(*) for some k € Ny. Such a node is replaced by a k-ary pattern, in which the variables 1, ...,z are
used as unique placeholders for the k children of the node. In fact, second-order substitutions are just
tree homomorphisms. Let ¥ and A be ranked alphabets. A (simple) tree homomorphism from ¥ to A
is a rank-preserving mapping h: ¥ — Pa(X); ie., tk(h(o)) = rk(o) for every o € S8 It determines a
mapping h: Ts(X) — Ta(X), and we will use h also to denote the mapping (h)*: Tx(X)* — Ta(X)* as
defined in the paragraph on homomorphisms in Section Il Roughly speaking, for a tree (or forest) ¢,
the tree (or forest) h(t) is obtained from ¢ by replacing, for every p € pos, () with label ¢ € () the
subtree at position p by the pattern h(o), into which the k subtrees at positions pl, ..., pk are (first-order)
substituted for the variables x1, ..., xy, respectively. Since h(o) is a pattern, these subtrees can neither
be copied nor deleted, but they can be permuted. Thus, the pattern h(o) is “folded” into ¢ at position p.
Formally, the mapping 71, which we also call tree homomorphism, is defined inductively as follows for
tely (X)

h(t) = x ift=xwithxeX
(o) — h(t) |1 <i<k] ift=o(ty,... t) with o € .

6Note that the variable o does not occur in patterns.

"Since P (X) C (S U X)* by definition, every pattern ¢ € Ps;(X) also has a multiple rank rkxyx (t) € N3. This will,
however, never be used. We also observe that we will not consider trees over the ranked set Ps(X).

8Since h(0) is a pattern for every o € 3, the tree homomorphism h is simple; i.e., linear and nondeleting. This is the
only type of tree homomorphism considered in this paper (except briefly in the last section).

8

Clearly, iL(f) only depends on the values of h for the symbols occurring in ¢; in other words, if g is another
tree homomorphism from ¥ to A such that g(c) = h(o) for every o € oces(t), then §(t) = h(t). We
additionally observe that a(t) = 8(h(t1), ..., h(ty)) if t = o(t1, ..., tx) and k(o) = in(8) for some § € A.
A tree homomorphism h is a projection if for every o € ¥ there exists 6 € A such that h(o) = in(d). Thus,
a projection is just a relabeling of the nodes of the trees. For a ranked alphabet X, a tree homomorphism
over ¥ is a tree homomorphism from ¥ to itself.

The following lemma states elementary properties of (simple) tree homomorphisms. They can easily
be proved by induction on the structure of trees in 7% (X) and then extended to forests in Tx(X)*.
Lemma 1 Let h be a tree homomorphism from ¥ to A, and let t € Ts(X)* and u = h(t).

(1) |pos,(u)| = |pos,(t)| for every x € X.

(2) [poss(u)| = 22, exlpos, (t)] - [poss(h(0))] for every 6 € A.

By the first statement of this lemma, tree homomorphisms preserve patterns and their ranks; i.e.,
h(t) € Pa(Xy) for all t € Ps(X}). Moreover, h(t) € Pa(X)* and rk(h(t)) = rk(t) for all t € Ps(X)*.

Next, we recall two other easy properties of tree homomorphisms. Namely, they distribute over
first-order substitution, and they are closed under composition (see |4, Corollary 8(5)]).

Lemma 2 Let h be a tree homomorphism from X to A, let t € Tx(X), and let f: Z — Tx(X) for some
Z C X. Then h(t[f]) = h(t)[h o f].

Lemma 3 Let hy and hs be tree homomorphisms from % to € and from Q to A, respectively, and let
h = hs o hy, which is a tree homomorphism from % to A. Then h = ho o hy.

These lemmas have straightforward proofs. Lemma [2] can be proved by induction on the structure
of t, and then Lemma [can be proved by showing that h(t) = ha(hi(t)), again by induction on the
structure of ¢, using Lemma 2] in the induction step.

In the remainder of this subsection we consider tree homomorphisms over X. Let ¢ be a forest
in Tx(X)* and let 0 = (01,...,0,) € X" with n € Ny be a repetition-free sequence of symbols in X.
Moreover, let u = (u1,...,uy) be a forest in Px(X)™ such that rk(u) = rk(o)ﬁ The second-order substi-
tution t[o < u] yields the forest h(t) € Tx(X)*, where h is the tree homomorphism over 3 corresponding
to [0 < u], which is defined by h(o;) = u; for i € [n] and h(r) = in(r) for 7 € ¥\ {o1,...,0n}.
If t € Po(X)*, then t[o < u] € Px(X)* and rk(t[o < u]) = rk(t) by Lemma [I(1). Obviously, the order
of the symbols and trees in ¢ and wu is irrelevant: if ¢/ = (0y,,...,0;,) and v’ = (u;,,...,u;,), where
(i1,...,0,) is a permutation of (1,...,n), then t[o’ + '] = t[o + u]. Thus, the use of sequences is just
a way of associating each symbol o; with its replacing tree u;. Clearly, t[o < u] = ¢t if no symbol of o
occurs in ¢; i.e., if ocex (t) Noce(o) = . We also note that ¢[o < in(o)] = t and in(o)[o + u] = u. Finally
tlo < u] = t1[o + u] - to[o + u] if t = t1to for forests t; and to.

In the next lemma, we state some additional elementary properties of second-order substitution.

Lemma 4 Lett € Ts,(X)* be a forest and 1,09 € X* be repetition-free sequences of symbols. Moreover,
let uy,uz € Ps(X)* be forests of patterns such that tk(u1) = k(o) and rk(ug) = rk(oz).
(1) If occ(o1) Nocc(oz) =0 (i.e., o109 is repetition-free), then

tlor + ui][oe us] = tlo10g + ui[o2 < usl - ua).
(2) If occ(or) Noce(oz) = 0 and oces(u1) Noce(oz) = 0, then
tloy < wi][og + usg] = tlo1o2 urusg).
(3) If occ(or) Noce(oz) = 0 and oces(uz) Noce(or) = 0, then
tloy < ui)[oa + ug] = tlog + usllor ui[oe + usll.
(4) If occs(t) Nocc(og) C occ(oy), then
tloy + ui][oa + ug] = tloy uyfoa + usl].

PROOF Let hy and hs be the tree homomorphisms over ¥ that correspond to [o7 < ;] and [o2 + usg], as
defined above. Moreover, let h be the tree homomorphism that corresponds to [o102 — u1[o2 < u2] - usg).

9Recall that this means that u; € Ps, (Xik(o,)) for every i € [n].

9

Provided that o105 is repetition-free, it is easy to check that h = ﬁgohl, and hence h = hoohy by Lemma[3
This shows the first equality. If additionally no symbol of o occurs in wy, then uj[os us] = uq,
which shows the second equality. The third equality is a direct consequence of the first two because
tloro9 < wuifoa ug] - ug] = tloaor ug - ur[oe < ws]]. To prove the fourth equality, let g be the
tree homomorphism that corresponds to [o1 < u1[o2 + uz]]. By Lemma [3 it now suffices to show that
ha(hi(c)) = g(o) for every o € oces(t). This is obvious for o € occ(a1). If o € oces(t) \ occ(oy) then,
by assumption, o ¢ occ(o2), and so both sides of the equation are equal to in(o). =

In particular, Lemma [|(3) implies that t[oy + u1][o2 < u2] = tloz < us][o1 + uy] provided that
occ(o1) Noce(oz) = 0, ocex(uz) Noce(ar) = @, and oces(ug) Nocc(oz) = @. This is called the confluence
or commutativity of substitution in [11]. Similarly, Lemmal[d{4) is called the associativity of substitution
n [11]. As shown in the proof above, these two properties of substitution are essentially special cases of
the composition of tree homomorphisms as characterized in Lemma Bl

Above, we have defined the substitution of a forest (of patterns) for a repetition-free sequence
over Y. In the next section we also need to simultaneously substitute several forests for several such
sequences. That leads to the following formal definitions, which may now seem rather superfluous. Let
L ={o1,...,0k} be a finite subset of 3* such that oy - - - oy, is repetition-free, where o1 - -0 = € if k = 0.
A (second-order) substitution function for £ is a mapping f: £ — Ps(X)* such that rk(f(0)) = rk(o)
for every o € L. For a forest ¢ € Px(X)*, the simultaneous second-order substitution t[f], also writ-
ten as tlo < f(o) | o € L], yields t[f] = tlor---0or « f(o1)--- f(ox)]. Clearly, t[f] does not
depend on the given order of the elements in £. In the special case £ C X we obtain a notion of
second-order substitution that does not involve sequences, with f: £L — Ps(X). In that case we have

tfl = tllor, o) < (fon), ..., fon))].

3. Multiple context-free tree grammars

In this section we introduce the main formalism discussed in this contribution: the multiple context-free
tree grammars. In the first subsection we define their syntax and least fixed point semantics and in
the second and third subsection we discuss two alternative semantics, namely their derivation trees and
their derivations, respectively. In the second subsection we also define the notion of LDTR-equivalence
of multiple context-free tree grammars, which formalizes grammatical similarity.

3.1. Syntazx and least fixed point semantics

We start with the syntax of multiple context-free tree grammars, which we explain after the formal
definition. The definition of their semantics follows after that explanation. Then we give two examples.

Definition 5 A multiple context-free tree grammar (in short, MCFTG) is a system G = (N, N,%, S, R)
such that
e N is a finite ranked alphabet of nonterminals,
e N C N+ is a finite set of big nonterminals, which are nonempty repetition-free sequences of non-
terminals, such that occ(A) # occ(A’) for all distinct A, A’ € N,
e Y is a finite ranked alphabet of terminals such that X NN = @) and mrks > 1@
e S € NN N is the initial (big) nonterminal (of length 1 and rank 0), and
e R is a finite set of rules of the form A — (u, L), where A € N is a big nonterminal, v € Pyun(X)*
is a uniquely N-labeled forest (of patterns) such that rk(u) = rk(A), and £ C N is a set of big
nonterminals such that {occ(B) | B € L} is a partition of occy (u) O

For a given rule p = A — (u, £), the big nonterminal A, denoted by lhs(p), is called the left-hand side
of p, the forest u, denoted by rhs(p), is called the right-hand side of p, and the big nonterminals of L,
denoted by L(p), are called the links of p.

The multiplicity (or fan-out) of the MCFTG G, which is denoted by p(G), is the maximal length of its
big nonterminals. The width of G, which is denoted by 6(G), is the maximal rank of its nonterminals. And
the rule-width (or rank) of G, which is denoted by A(G), is the maximal number of links of its rules. Thus
w(G) =max{|A| | A e N}, 0(G) = mrky = max{rk(A) | A € N}, and \(G) = max{|L(p)| | p € R}.

10To avoid trivialities, we do not consider the case where all symbols of ¥ have rank 0.
HThus, ocen (u) = Upe 0cc(B) and oce(B) Noce(B') = for all distinct B, B’ € L.

10

T T T T
. AB—>A/\ /\ A B’—>A/\ /\
/ ’ / /
SN /\ A B B A B B
A B
A B — a a A B — a a

Figure 1: Rules of the MRTG G of Example [6]

Next, we define two syntactic restrictions. An MCFTG G is a multiple regular tree grammar (in short,
MRTG) if §(G) = 0, and it is a (simple) context-free tree grammar (in short, spCFTG) if u(G) = 1;
ie, N C N. In an MRTG all nonterminals thus have rank 0, and in an spCFTG all big nonterminals
are nonterminals since their length is exactly 1. Consequently, in an spCFTG we may simply assume
that N' = N, and thus there is no need to specify N for it. In the literature, a rule A — (u,L) of
an spCFTG is usually written as in(A) — u, in which in(A) = A(z1,..., 2 4)) and £ can be omitted
because it must be equal to occy (u). Since the right-hand side u of this rule is a pattern, our context-free
tree grammars are simple; i.e., linear and nondeleting.

Let us discuss the requirements on the components of G in more detail. Each big nonterminal is
a nonempty repetition-free sequence A = (Ajp,...,A,) of nonterminals from N. Repetition-freeness
of A requires that all these nonterminals A; are distinct (cf. Section 2I). The requirement that ‘occ’
is injective on N (i.e., that occ(A) # occ(A’) for all distinct A, A’ € A') means that A can be viewed
as consisting of sets of nonterminals, where each set is equipped with a fixed linear order (viz. the set
occ(A) = {A1,...,Ap} with the order C such that A; T --- T A,). Moreover, since the alphabet
N is ranked, every big nonterminal A has a (multiple) rank rk(A4) = (rk(A41),...,rk(A,)) € Ni (cf.
Section 2.2]), and similarly, every forest v = (u1,...,u,) with ui,...,u, € Pyus(X) has a (multi-
ple) rank rk(u) = (rk(u1),...,rk(u,)) € Nf (cf. Section 2.3). Thus, a rule A — (u, L) of G is of the
form (A1,...,An) = ((u1,...,un), L) where n € Ng, A; € N and u; € Pyus(Xika,)) for every i € [n],
and £L C N. The use of sequences is irrelevant; it is just a way of associating each A; € occ(A)
with the corresponding pattern u;, thus facilitating the formal description of the syntax and semantics
of G. Additionally, in the above rule, u is uniquely N-labeled, which means that also in « no nonter-
minal occurs more than once (cf. Section [2:2). This requirement, which is not essential but technically
convenient, is similar to the restriction discussed for context-free grammars at the end of Section 211
Moreover, the set {occ(B) | B € L} forms a partition of occy(u). Since each big nonterminal B is
repetition-free, ‘occ’ is injective on A/, and u is uniquely N-labeled, we obtain that each big nonterminal
from L occurs “spread-out” exactly once in u and no other nonterminals occur in u. More precisely,
for each big nonterminal B = (C1,...,Cy,) € L with Cy,...,C,, € N, there is a unique repetition-free
sequence pg = (p1,...,Pm) € posy(u)™ of positions such that (u(p1),...,u(pm)) = (C1,...,Cn), and
we have that occ(pp) Nocc(pp:) = 0 for every other B’ € L and posy(u) = Jge, occ(pp). Note that if
L ={By,...,Bg} with By,..., By € N/, then the concatenation Bj --- By, € N* of the elements of L is
repetition-free and occ(By - - - By) = ocen (u).

Intuitively, the application of the above rule p = A — (u, £) consists of the simultaneous application
of the n spCFTG rules A;(z1,...,Tma,)) — u; to an occurrence of the “spread-out” big nontermi-
nal A = (Ay,...,A,) and the introduction of (occurrences of) the new “spread-out” big nonterminals
from L. Every big nonterminal B = (C1,...,Cy,) € L, as above, can be viewed as a link between the
positions py, . .., pm of w with labels C, . .., C,, as well as a link between the corresponding positions after
the application of p (see Figure[). The rule p can only be applied to positions with labels Ay,..., A,
that are joined by such a link. Thus, rule applications are “local” in the sense that a rule can rewrite only
nonterminals that were previously introduced together in a single step of the derivation, just as for the lo-
cal unordered scattered context grammar of |78], which is equivalent to the multiple context-free (string)
grammar. However, since it is technically a bit problematic to define such derivation steps between trees
in Tyuy that are not necessarily uniquely N-labeled (because it additionally requires to keep track of
each link as a sequence of positions rather than as a big nonterminal), we prefer to define the language
generated by the MCFTG G through a least fixed point semantics similar to that of multiple context-free
(string) grammars in [87]. As will be discussed in Section B2 this is closely related to a semantics in
terms of derivation trees, similar to that of (string-based) linear context-free rewriting systems in [92].
The derivations of an MCFTG will be considered in Section

In an spCFTG, a nonterminal A of rank k can be viewed as a generator of trees in Py (X}) using

11

derivations that start with A(z1,...,2;). In the same fashion, a big nonterminal A of an MCFTG
generates nonempty forests in Ps(X)* of the same rank as A, as defined next. Let G = (N,N,%, S, R)
be an MCFTG. For every big nonterminal A € A we define the forest language generated by A, denoted
by L(G, A), as follows. For all big nonterminals A € A simultaneously, L(G, A) C Ps(X)* is the smallest
set of forests such that for every rule A — (u,£) € R, if f: £L — Px(X)* is a substitution function for £
such that f(B) € L(G, B) for every B € L, then u[f] € L(G, A). Note that u[f] is a simultaneous second-
order substitution as defined at the end of Section The fact that f is a substitution function for £
means that rk(f(B)) = rk(B) for every B € L, which implies that rk(¢) = rk(A) for every ¢t € L(G, A);
in particular, ¢ is a nonempty forest of the same length as A. The tree language L(G) generated by G is
defined by L(G) = L(G,S) C Tx. Two MCFTGs G and Gg are equivalent if L(G1) = L(Gg) A tree
language is multiple context-free (multiple regular, (simple) context-free) if it is generated by an MCFTG
(MRTG, spCFTG). The corresponding class of generated tree languages is denoted by MCFT (MRT,
CFTp).

As observed above, each big nonterminal can be viewed as a nonempty subset of N, together with
a fixed linear order on its elements. It is easy to see that the tree language L(G) generated by G
does not depend on that order. For a given big nonterminal A = (4;,...,4,) and a given per-
mutation A" = (4;,,...,4;,) of A, we can change every rule A — ((uy,...,u,),L) into the rule
A = ((wiyy--yui,), (LN {A}) U{A'}), provided that we also change L(p) into (L(p) \ {A}) U {4’}
for every other rule p € R.

The restriction that the right-hand side of a rule of G must be uniquely N-labeled can be compen-
sated for by the appropriate use of aliases. Two big nonterminals A, A’ € N are said to be aliases if
{(u, L) | A= (u, L) € R} ={(u, L) | A’ = (u, L) € R}. Tt is not difficult to see that L(G, A) = L(G, A")
for aliases A and A’. Of course, in examples, we need not specify the rules of an alias (but we often will).
Additionally, to improve the readability of examples, we will write a rule A — (u, £) as in(A) — u and
specify £ separately. Recall from Section 23] that if A = (A1,...,A,) and rk(4;) = k; for every ¢ € [n],
then

in(A) = (A1 (x1,. -y &y)y oo An(T1, .oy 2k,)

If all the big nonterminals of G are mutually disjoint, in the sense that they have no nonterminals in
common (i.e., occ(B) Noce(B’) = P for all distinct B, B’ € N), then it is not even necessary to specify £
because it clearly is equal to {B € N | occ(B) C ocen(u)}.

Example 6 We first consider the MRTG G = (N,N,%, S, R) such that (i) N = {S,A,B, A, B'},
(i) N = {S,(A, B), (A, B}, and (iii) & = {¢@,7® 73 ¢}, Thus, u(G) = 2. And 6(G) = 0
because G is a multiple regular tree grammar. The big nonterminal (A’, B’) is an alias of (A, B). The
set R contains the rules (illustrated in Figure [I))

S — o(A, B) (A, B) = (7(A, A"),7(B, B")) (A", B") — (n(A, A", 7(B, B"))
(A,B) — (a,a) (A, B") = (a,a) .

Since the big nonterminals in A" are mutually disjoint, the set £ of links of each rule is uniquely determined.
In fact, £ = {(4, B)} for the leftmost rule in the first line, £ = {(A4, B), (A", B’)} for the two remaining
rules in the first line, and £ =) for the two rules in the second line. The tree language L(G) generated
by G consists of all trees o(t,t), where t is a tree over {m,a} and t is the same tree with every =
replaced by 7. For readers familiar with the multiple context-free grammars of [87] we note that this tree
language can be generated by such a grammar with nonterminals S and C, where C' corresponds to our
big nonterminal (A, B) and its alias, using the three rules

e S — f[C] with f(l'll,l'lg) = 0Xx11T12,

e (' — g[C, C] with g($11,$12,1'21,$22) == (7T£L'11£L'21, 7?:612:622), and

e C — (a,a).
Note that the variables x11, 212, 21, and xe of [87] correspond to our nonterminals A, B, A’, and B/,
respectively. In fact, every tree language in MRT can be generated by a multiple context-free grammar,
just as every regular tree language can be generated by a context-free grammar (see Section [2.2). We
will prove in Section [7] (Theorem [67)) that this even holds for MCFT. O

12When viewing G and G2 as specifications of the string languages yd(L(G1)) and yd(L(Gz2)), they are strongly equivalent
if L(G1) = L(G2) and weakly equivalent if yd(L(G1)) = yd(L(G2)).

12

T «

| o a |
2 B /\ B /\ T i o 7
A= /\ | - B B | - B B O R
B T3 x \ | z ‘ \ x1 g T Ty
r1 A T A
T2 1
« B B’ T
S = | ! ! | T Ty — T T v
A X1 T Tq

Figure 2: Rules of the MCFTG G of Example [7

Example 7 As a second example we consider the MCFTG G = (N, N, X, S, R) such that

o N ={50,40 W p® 7 7 7% and N = {8, A, B, B/, (T1,T», T3)}, and

e 3= {o® o 30 10 0,04
Consequently, ;1(G) = 3 and 0(G) = 1. The (big) nonterminal B’ is an alias of B. The set R consists of
the following rules p, ..., ps and the two rules p4 and p) with left-hand side B’ (illustrated in Figure [2).

p1e S = a(A) p2: A = Ti(o(B(T2),T3))
ps: B(x1) = o(B(x1), B'(4)) Py B'(21) = o(B(x1), B'(4))
P4 B(z1) = o1 Py B'(z1) — 21

ps: (Ti(x1), T2, T3) — ((T1(B(21))), a(T2), v(T3)) pe: (T1(x1), T2, T3) — (21, 7,v) .

Since, again, all big nonterminals in A/ are mutually disjoint, the sets of links of these rules are uniquely
determined. They are, in fact, as follows:

‘C(pl) = {A} ﬁ(p3) ‘C(pIS) = {B’B/aA} ﬁ(pg) = {Ba (T1’T25T3)}
L(pa) = L(py) = L(ps) =0 L(ps) ={(T1, T2, T3)} .

Let T = (T1,T%,T3). The rule pg shows that (x1,7,v) € L(G,T). We can write the rule ps also as
T — (aT1Bz1, aTy, yT5). Substituting (z1,7,v) for T in us = rhs(ps) we obtain that L(G,T) also
contains the forest us[(T1,T2,T3) « (x1,7,v)] = (afz1, at, yv). Then, substituting this forest for T'
in us we obtain that L(G,T) also contains (aaffx1, aar, yyv). Continuing in this way we see that
L(G,T) = {(a"B"x1,a™1,7y"v) | n € Ng}. If we temporarily view A as a terminal, then B(z1) generates
all trees t € T(, 4,,,) such that the left-most leaf of ¢ has label x1 and all other leaves have label A.
The right-hand side us = T1(0(B(T2),T5)) of pa generates all trees us[B < t,T <+ t'| with ¢ as above
and t' € L(G,T); i.e., all trees a™f"o(t[x1 < a™7],7"v). This should give an idea of the form of the
trees in L(G, A), and hence of the trees in L(G). O

3.2. Derivation trees

The least fixed point semantics of an MCFTG G = (N, N, X, S, R) naturally leads to the notion of
a derivation tree of G that we define now. We assume that for every rule p of G, the links in £(p)
are linearly ordered by an arbitrary, fixed order C. Whenever we write L(p) = {B1,..., By} with
B; € N for all i € [k], we will assume that By C --- T By. The derivation tree grammar of G is
the RTG Gder = (Nder, R, S, Rder) defined as follows [First, Nger = N i.e., its nonterminals (of
rank 0) are the big nonterminals of G. Its initial nonterminal is S, which is the initial (big) nonter-
minal of G. Second, its terminal ranked alphabet is the set R of rules of G such that the rule p has
rank rk(p) = |L(p) Finally, the set Rger consists of all rules A — p(Bi,...,By) such that p € R,
lhs(p) = A, and L(p) = {B1,...,Br}. For A € N, a derivation tree of G of type A is a tree d € Thur

13See Section 2 for the definition of a regular tree grammar (RTG). Note that, in this contribution, RTGs are in normal
form.
14Note that, therefore, the rule-width of G' (as defined after Definition [B)) is A(G) = mrk g, the maximal rank of its rules.

13

such that A =¢, d. Obviously, every derivation tree has a unique type, viz. lhs(d()); i.e., the left-
hand side of the rule that labels its root. We will denote the set of derivation trees of G of type A
by DL(Gger, A). Note that L(Gger, A) = DL(Gger, A) N Tr. To capture the semantics of G, only the
derivation trees in L(Gger) C Tr are relevant, but we will need the other derivation trees for techni-
cal reasons in proofs. As in the case of context-free grammars, it can be checked locally whether a
tree d € Thug is a derivation tree. In fact, let us say that the type of a position p € pos(d) is ei-
ther d(p) if d(p) € N, or lhs(d(p)) if d(p) € R. Then d is a derivation tree if and only if for every
position p € posg(d) with L£(d(p)) = {Bi,..., B}, the child pi of p has type B; for every i € [k].

The value of a derivation tree d of type A, denoted by val(d), is a forest in Pyyux(X)* of the same rank
as A in G, and is defined inductively as follows. If d = A € N, then val(d) = in(4). If d = p(dy,...,dx)
for some p = A — (u, L) € R with £ = {By,..., By} (and thus d; is of type B; for every i € [k]), then
val(d) = u[B; + val(d;) | 1 < i < k]. The value val(d) of the derivation tree d can clearly be computed in
linear time. We also observe here that its computation can be realized by a macro tree transducer [13,34]
(see Lemma [73in Section[§). Since that macro tree transducer is finite-copying, ‘val’ can also be realized
by a deterministic MSO-transducer (see [26]).

Example 8 The derivation tree grammar Gqe, of the grammar G of Example [has the following eight
rules, where T' = (T, T3, 7T3) and the linear order of the links of each rule of G is fixed as indicated in
Example [Tt

S — P1 (A) A= P2 (B T) Rules of Example [
)
/ / / / pr: S = a(4) pa: A= Ty(o(B(T2),T3))
B — p3 (B, B, A) B — P3 (B, B A) p3: B(x1) = o(B(z1), B'(A)) i B'(01) = o(Blen), BA)
B — P4 B/ N p/ pa: B(zy) — 71 o Bl(a1) = o
4 ps: (Ti(x1), T2, T3) — ((T1(B(21))), a(T2), ¥(T3)) pe: (Ti(21), T2, T3) — (21, 7,v) .
T — p5(T) T — ps -

An example of a derivation tree of type A is d = pa(ps(ps, B, A), p5(ps)), which is shown in Figure
Obviously, val(ps) = x1 and we have val(pg) = (x1,7,v). Then val(ps(pg)) is obtained by substitut-
ing (x1,7,v) for T = (T1,T>,T3) in the right-hand side of rule p5. We saw in Example[7] that the result is
(afz1, at, yv). Similarly, val(ps(ps, B', A)) is obtained from rhs(ps) by substituting val(ps) = x; for B
(and simultaneously substituting in(B’) for B” and in(A) for A, without effect). The result is o(z1, B'(A)).
Finally, val(d) is obtained from rhs(ps) by substituting o(x1, B'(A4)) for B and (afz;, at, yv) for T.
Hence val(d) = af(o(o(ar, B'(A)),yv)). The process is illustrated in Figure Bl An example of a deriva-
tion tree in L(Gger, S) is
d' = p1(d[(B', A) < (p} p2(pa; pe))])

which equals p1(p2(p3(pa, phs p2(pa, ps)), ps(ps))). Clearly, val(p)) = 21 and val(p2(p4, ps)) = o(7,v). It
is straightforward to compute val(d') = aaf(o(o(ar,o(r,v)),vv)) = a(val(d)[(B’, A) + (x1, o(1,v))]),
which shows that ‘val’ distributes over substitution. O

From the least fixed point semantics we immediately obtain a characterization by derivation trees.
Theorem 9 L(G, A) = val(L(Gger, A)) for every A € N'. In particular, L(G) = val(L(Gger))-

PROOF Obviously, the sets val(L(Gger, A)) satisfy the fixed point requirement for all A € N, which
says that for every rule p = A — (u,£) € R and substitution function f for £ such that f(B) is in
val(L(Gger, B)) for every B € L, we have that u[f] € val(L(Gger, A)). In fact, if L = {By,..., By}
and f(B;) = val(d;) for all ¢ € [k], then u[B < f(B) | B € L] is equal to val(p(dy,...,dx)) by definition
of ‘val’. This shows that L(G, A) C val(L(Gger, A)) for every A € N. In the other direction, it is easy to
show that val(d) € L(G, A) for every d € L(Gger, A) and every A € A by induction on the structure of
the derivation tree d. -

This theorem implies that the emptiness problem is decidable for L(G) and L(G, A). In fact, L(G) = 0
if and only if L(Gqer) = 0, which is decidable because Gqer is an RTG; and similarly for L(G, A). Tt
is now also very easy to see that L(G,A) = L(G,A’) for aliases A and A" if p = A — (u,L) and
p'=A — (u,L) arerules and d = p(dy,...,dy) is in L(Gger, A), then d’ = p'(dy,...,dg) isin L(Gger, A’)
and val(d) = val(d’), under the assumption that £ has the same linear order in p and p’.

We will need three simple properties of derivation trees, which are stated in the next three lemmas.
The first is a generalization of Lemma [[[2) and states that for every derivation tree of G, the number
of occurrences of a terminal in val(d) is the sum of its occurrences in the right-hand sides of the rules
that occur in d. Also, the number of occurrences of a nonterminal in val(d) is equal to the number of its
“occurrences” (as part of a big nonterminal) in d.

14

Ty
|
/O'\ Ty
.‘B T3 O" O‘é
\
o T2 B/ T3 f
B/ \11‘1.1‘2.1‘3) (T1,72,T3) ‘ 7
B
i T / 0 " e
W24 i (T1,T2,T3) g s - i
o B A pe /\ 1"1 c‘t "Y O’B/ a\<TTT /\, |
B B A R I
] B Ta Ts| |z p||B | | .
I ‘ | | Ty T A
I A Z1

Figure 3: Derivation tree of the MCFTG G of Example [Tl and illustration of the (bottom-up) computation of its value.

Lemma 10 Let d € DL(Gger, A) with A € N, and let 0 € X and C € N.
(1) |pos, (val(d))| = 3 epos , () [POS (ths(d(p)))]-

(2) [posc(val(d))| = 3 penr.IPosp(d)], where No = {B € N'| C € occ(B)}.
(3) val(d) € T, if and only if d € Tg.

PRrROOF The proofs of (1) and (2) can be achieved by induction on the structure of d. The statements
are obvious for d = A € N because we obtain 0 =0 in (1), 1 =1 in (2) if C € occ(4), and 0 =0 in (2)
otherwise. Let us now consider d = p(dy,...,dy) for some rule p = A — (u, L) with £ = {By,..., Bi}.
By the definition of ‘val’ we have val(d) = u[B; + val(d;) | 1 < i < k], which equals the second-order
substitution u[B; - - - By, + val(dy) - - - val(dy)] by the definition of simultaneous second-order substitution.
Let h be the tree homomorphism over N UX corresponding to [By - - - By val(dy) - - - val(dg)]. Tt is now
straightforward to prove (1) and (2) using Lemma [T}(2) and the induction hypotheses for dy,...,d;. It
follows from (2) that occn (val(d)) = Upeocer (@) 0c¢(B), which proves (3). n

The second property is that ‘val’ distributes over second-order substitution, of which an example was
presented at the end of ExampleBl It can be viewed as a generalization of Lemma [(4). For convenience,
and because it is all we will need, we only prove this for the case where just one big nonterminal is
replaced.

Lemma 11 Let A,B € N, and let d € DL(G4er, A) and d' € DL(Gaer, B) be derivation trees of type A
and B such that B € occpr(d). Then val(d[B <+ d']) = val(d)[B « val(d')].

PROOF As in Lemma [T, we proceed by induction on the structure of d. For d = A € N both sides of the
equation are equal to val(d') if B = A and equal to in(A) otherwise. Now we consider d = p(ds, ..., dx)
for some p = A — (u, L) with £ = {By,...,Bx}. Then
val(d)[B <+ val(d')]

=u[By -+ By val(dy) - - - val(dy,)] [B < val(d')] = u[By - - - By (val(dy) - - - val(dy))[B < val(d')]]

=u[By - By < val(dy)[B < val(d')] - - - val(dy)[B « val(d')] |

=u[By - By < val(di[B < d']) - - - val(dp[B < d'])| = val(p(di[B « d],...,dp[B + d'))
=val(d[B + d']) ,

where the second equality is by Lemma [(4) and the fourth by the induction hypotheses. =

We will use the following simple third property in the proofs of Lemmas 28 and

Lemma 12 Let F C R, N/ C N, and Dp = DL(Gger, B) N Thrur for every B € N. Moreover,
let Ac N, t € val(Da), and Liay = {d € D4 | val(d) = t}. If val(Dp) is finite for every B € N, then
L 4,4y 15 a regular tree language.

15

PrOOF An RTG for L4, has the nonterminals (B,v) with B € N and v € val(Dp), of which the
nonterminal (A,t) is initial. For every rule p = B — (u, L) of G with p € F and £ = {Bs,..., By},
it has all the rules (B,v) — p({B1,v1),...,{Bg,vg)) such that v; € val(Dp,) for every i € [k], and
v =u[B; +v; | 1 <i<k]. Moreover, for every B € N it has the rule (B,in(B)) — B. This grammar
can be viewed as a deterministic bottom-up finite tree automaton |41, 142] that, for every derivation
tree d € Thyr, computes the type of d and its value val(d). -

Let us turn to the comparison of the derivation trees of two MCFTGs G and G’. We can define
G and G’ to be “X-equivalent”, where X is a class of tree transductions, if there are value-preserving
tree transductions in X' from the derivation trees of each grammar to those of the other grammar. The
idea here is that G and G’ are grammatically closely related if X is a relatively simple class of tree
transductions. For that purpose we choose the class X = LDTR, which we define now. To define tree
transducers we use the infinite alphabet Y = {y1,y2, ...} of input variables to avoid confusion with the
set X of variables used in MCFTGs (the set X will also be used as output variables, or parameters, for
macro tree transducers in Section B). For every k € Ny, we let Y, = {y; | i € [k]}.

A linear deterministic top-down tree transducer with reqular look-ahead (in short, LDTR-transducer)
from Q to ¥ is a system M = (Q,Q, X, go, R), where @ is a finite set of states, Q and ¥ are finite ranked
alphabets of input and output symbols with QN = (), qo € Q is the initial state, and R is a finite set of
rules. Each rule in R is of the form

<q7w(yl: Ll;-"ayk: Lk) L0>4)<)

where ¢ € Q, k € Ny, w € QW) Lo, Ly,..., L are regular tree languages over (specified, e.g., by
RTGs), and ¢ € T(gxy,)us using the ranked alphabet @ x Y, in which every element has rank 0.
Additionally, we require that each y € Yj occurs at most once in ¢ (linearity property), and that if
(q, w(yri: LY, ..., yx: L},): Ly) — ¢ is another rule in R (for the same ¢ and w), then there exists an
index 0 < ¢ < k such that L; N L}, = () (determinism property). If L; = Tq in the above rule, then we
omit ‘: L;". An LDTR-transducer is called an LDT-transducer (without regular look-ahead) if L; = Tq
for every 0 < ¢ < k in every rule.

For every input tree s € T and every state g € @), we define the g-translation of s by M, denoted
by M,(s), inductively as follows. If s = w(s1,...,sk), the above rule is in R, s € Lo, and s; € L; for
every i € [k|, then

Mq(s) = CUd' yi) < My (si) | ¢ € Q, 1 <i<k] .

We observe that M,(s) is undefined if there does not exist an appropriate rule or, using the rule above,
My (s;) is undefined for some (¢’,y;) that occurs in (. Moreover, the tree transduction realized by M,
also denoted by M, is the partial function M: T — T%, which is given by M (s) = My (s) for every
s € Tq. The tree M(s), provided it is defined, is also called the translation of s by M. We denote
by LDTR the class of all tree transductions realized by LDTR-transducers. Note that every tree homo-
morphism h from © to ¥ can be realized by an LDT-transducer with one state ¢ and with the rules
(q, WY1, -, yx)) = h(w)[zs < (g,1:) | 1 <i < k] for every k € Ny and w € Q). We need the following
two basic properties of LDTR,

Proposition 13 LDTR is closed under composition.

PROOF This is stated after |17, Theorem 2.11]. Part (2) of its proof shows the statement because the
constructions in the proofs of [17, Lemmas 2.9 and 2.10] preserve linearity. n

An LDTR-transducer M is a finite-state relabeling if, in each of its rules as above, (is of the form
a({q1,y1)s - -+, (qr,yx)) for some o € Z*) and ¢i,...,q, € Q. Such a transducer just changes the labels
of the nodes of the input tree. Note that every projection is a finite-state relabeling.

Proposition 14 For every LDTR-transducer M = (Q,$, %, qo, R) there is a polynomial time algorithm
that, for every RTG H over ¥ as input, outputs an RTG H' over Q such that L(H') = M~Y(L(H)).
If M is a finite-state relabeling, then there is a linear time algorithm for the same task.

PROOF It is well known that the class RT is closed under inverse LDTR-transductions |17, Lemma 1.2
and Theorem 2.6]. We now show that the transformation can be realized in polynomial time, for
fixed M. By [17, Theorem 2.8] and (the proof of) [15, Theorem 3.5], the transduction M can be

16

" \b CL/ o $
A /\
m—1 o b '_> ¢ /J n
0 \a b /U\
a/ \a b b

Figure 4: Translating left-recursive into right-recursive trees.

written as the “bimorphism” {(#(t),h(t)) | t € K}, where K is a regular tree language over a finite
alphabet A, 7 is a projection from A to 2, and h is a tree homomorphism from A to 3. Therefore
M~Y(L(H)) = #(h~"(L(H)) N K). Hence, since the intersection with K and the projection # can be
realized in linear time because K and 7 are fixed, we may assume in the remainder of this proof that
M is a tree homomorphism A from 2 to X.

Now let H = (N,X, S, Ry). As mentioned at the end of Section 2.2] we assume that H is in nor-
mal form; i.e., that the rules in Ry are of the form Ay — o(A1,...,A,,) with m € Ny, o € 2™,
and Ay,..., A, € N. We construct H' = (N,Q,S,R’) such that for every k& € Np, w € Q¥ and
Ag, Av,..., Ay € N, if Ay =% h(w)[z; < A; | 1 < i < k], then the rule Ay — w(A1,...,Ax) isin R
It is straightforward to show that L(H’, A) = h='(L(H, A)) for every A € N. It should be clear that
the construction of H’ takes polynomial time (in the size of H). In fact, it takes time O(n*) where n
is the size of H and k = mrkq + 1 (and recall that mrkgq is the maximal rank of the symbols in). If
M is a finite-state relabeling, then it can be checked that h is also a projection. Hence the set R’ can
be constructed such that if h(w) = in(o) and Ag — o(Ay, ..., Ax) is in Ry, then Ag — w(Ay, ..., Ag) is
in R'. That construction only takes linear time. n

We now define X-equivalence of MCFTGs G and G’ for X = LDTR. However, for future use, we give
a more general definition that involves a tree transformation ¢ and implies that L(G") = ¢(L(Q)).

Definition 15 Let G = (N,N,%,S,R) and G' = (N, N',¥, S, R’) be MCFTGs, and let ¢ be a
mapping from Ts to Tx. The grammar G’ is LDTR-p-equivalent to the grammar G if there exist tree
transductions M: Tp — T and M’: Tr — Tx in LDT® such that

(1) M(d) € L(GY},,) and val(M(d)) = ¢(val(d)) for every d € L(Gger), and vice versa,

(2) M'(d") € L(Gger) and @(val(M'(d"))) = val(d’) for every d' € L(G},,)-

In particular, M(d) must be defined for every d € L(Gqer), and similarly for M’ (d’).
The grammars G and G’ are LDTR-equivalent if ¥ = ¥’ and ¢ is the identity on T%. O

It directly follows from item (1) and Theorem [l that (L(G)) C L(G’), and L(G’) C ¢(L(G)) follows
from item (2). Hence L(G’) = ¢(L(G)). In particular, LDTR-equivalent MCFTGs are equivalent. Since
LDTR® is closed under composition by Proposition [[3, LDTR-equivalence of MCFTGs is an equivalence
relation. That is, of course, not true for LDTR-p-equivalence in general.

It should be noted that the notion of LDTR-p-equivalence is independent of the linear order of the links
in the rules of G and G'. In fact, if p = A — (u, £) is arule of G with £ = {By, ..., Bx} and we change that
order into {B;,, ..., B;,}, where (i1,...,i) is a permutation of (1,...,k), then a tree homomorphism h
over R can transform the old derivation trees into the new ones via h(p) = p(zi,,...,x;,). That proves
the observation because tree homomorphisms are in LDT® and LDTR® is closed under composition. Thus,
whenever we construct a new grammar G or G’, we can choose those orders in a convenient way.

As observed above, LDTR-equivalent grammars G and G’ are grammatically closely related by means
of the LDTR-transducers M and M’. Consequently, their parsing problems are closely related as well
because the transducer M’ transforms a derivation tree of G’ with value t € T, in linear time into one
of G with the same value t. Moreover, if H' is an RTG that generates all derivation trees of G’ with
value ¢, then an RTG H can be constructed in polynomial time that generates all derivation trees of G
with value ¢. This follows from Proposition [d because L(H) = M~1(L(H')) N L(G4er). The parsing
problem for MCFTGs will be discussed in more detail in Section

An important example of a tree transduction that cannot be realized by an LDTR-transducer is the
transformation of a left-recursive tree into a right-recursive tree with the same yield. More precisely, for

17

«
| o
T1 T1 Tl ‘
T, \ | | B
| g B |
A /> /o | /N
A= a 3 = a 3 o
B T /\ /\ /N o
B B T, B a /N
T ‘ \ \ /\ | a B v
T, A A a B T3 ‘ |
| T A
T, A

Figure 5: A naive (leftmost) derivation of the grammar G of Example[T] corresponding to the derivation tree in Example [§]
and in Figure[Bl All big nonterminals of G are mutually disjoint and all the trees in this derivation are uniquely N-labeled.

the ranked alphabet ¥ = {o(®) a(®) b0} the tree transformation
7= {(c™Ta™b" | (5a)™ (ob)"b) | m,n € Ng}

which translates the left-recursive tree o™*"a™b"*! into the right-recursive tree (ca)™(ob)"b (see Fig-
ure M), cannot be realized by any LDTR-transducer; i.e., 7 ¢ LDTR. This can be proved by a classical
pumping argument; if there would be such a transducer, then the language {b""ta™b" 1a™ | m,n € Ny}
would be linear context-free. By a similar argument one can show that there is no yield-preserving
LDTR-transducer that translates the derivation trees of the left-recursive context-free grammar with
rules S — Sa, S — Sb, S — a, and S — b into the derivation trees of an equivalent context-free
grammar in GREIBACH Normal Form. In other words, the transformation of a context-free grammar
into GREIBACH Normal Form involves a grammatical transformation of derivation trees that cannot be
realized by any LDTR-transducer.

3.8. Derivations

In this subsection we present a rewriting semantics of MCFTGs, inspired by the level grammars of [8].
The definitions and results of this subsection will not be utilized in the other sections, but we hope that
they improve the intuition of the reader concerning MCFTGs.

Let G = (N, N, %, S, R) be an MCFTG. In a naive approach we would define the derivation steps of G
on trees t € Tyuy and the application of a rule A — (u, £) to t leading to a derivation step t = t[A < ul],
provided that occ(A) C ocey(t). Such a naive derivation is shown in Figure [for the grammar G of
Example[[l Assuming that all big nonterminals of G are mutually disjoint (as in Example [7)), this naive
derivation step works if A occurs exactly once in ¢ (e.g., when ¢ is uniquely N-labeled). However, it fails
if A occurs several times in ¢ because the rule is then applied to all occurrences simultaneously. Moreover,
if A= (A, As) with A1, As € N, then it is unclear which occurrences of A; and As are linked. If not all
big nonterminals of G are mutually disjoint, then it is not clear at all which nonterminals in ¢ are linked
(even when t is uniquely N-labeled). Thus, we additionally have to keep track of how the nonterminal
occurrences in t are linked together to form occurrences of big nonterminals. To facilitate this, we change
for each position p € posy(t) of ¢ the label ¢(p) into an appropriate label (¢(p),¥), where £ € N* is a
position, which is also called link identifier. Nonterminal occurrences with the same link identifier ¢ are
linked, and we only derive uniquely (N x N*)-labeled trees. We note that the positions p and ¢ need not
coincide. In fact, ¢ is a position of the derivation tree corresponding to the derivation.

We need additional notation for the formalization. As in the previous subsection, we assume that for
every rule p of G the set L(p) of links is linearly ordered. For a big nonterminal A = (4;,...,4,) € N
and a link identifier £ € N*| we define A®(= ((A1,0),..., (A, L)) € (N xN*)*. Moreover, for £ € N* and
atule p=A — (u, L) € Rwith £L = {By,..., By}, we define (u, L) ® £ = u[B; + in(B; ® i) | 1 <i < k.
Note that (u, L) ® £ is a forest obtained from u by appropriately relabeling its N-labeled positions.

Now let t1,t2 € T(yxn+jux be trees, p = A — (u, L) € R be a rule, and £ € N* be a link identifier.
We define the derivation step t1 :g’e ty if occ(A ® £) = occnyyey(t1) and ty = t1[A® L < (u, L) ® {].
Intuitively, A ® ¢ occurs in ¢; (and no other nonterminals with link identifier ¢ occur in ;) and the
occurrence of A® Y is replaced by (u, L) ®£. We write t; = ¢ to if there exist p and ¢ such that ¢, ége to.

18

B Ty /\ T, T
| B B |
15 | ‘ g
T, A /\
T
Ty
|
T
a |
« ‘ o
| T2 /
T2 | o 12
e _ PL,E (T p2,1 g‘ p3,11 //7 p2,113 plll ;>§’)112
S =6 e =c’ =a’ J T =q’ |
Bt T2 12 1132
3 B111 (B/)112 T2 Tl
Ty? \ | J;
Ti2 Al13

1132
B3l T

1132
T2

Figure 6: Derivation of the grammar G of Example [T} naive in the top part and as formalized in the bottom part.

19

Example 16 Let us consider the derivation tree d = pi1(p2(p3(B, B, p2(B,T)),T)) of the grammar G
of Examples [and [where T' = (T4, T2, T3). Starting with S and successively applying the rules p1, pa,
ps3, and po according to the naive approach yields the derivation presented in the top part of Figureldl It
can be checked that the final tree in this derivation is val(d). However, now we are in trouble because B,
Ty, Ts, and T3 occur twice. With the help of the derivation steps as defined above and the shorthand C*
for (C, ¢) with C' € N and ¢ € N* we obtain the derivation presented in the bottom part of Figure[@l In its
final tree the occurrences B''! and B''3! of B can be rewritten independently, and the occurrences of T'
are distinguished as T'® 12 = (712,732, T42) and T ® 1132 = (T1'32, T4 132 T1132) and can be rewritten
independently by ps or pg. Note that 111 = (1,1,1) and 1131 = (1,1, 3,1) are the positions of d with
label B, 12 = (1,2) and 1132 = (1,1, 3,2) are the positions of d with label T, and 112 = (1,1,2) is the
unique position of d with label B’'. O

We wish to prove that L(G) = {t € Ty, | S ® ¢ =¢ t}; note that S ® ¢ = (S,¢). To that end, we
define an infinite MCFTG G*° using the properly annotated nonterminals and show that it is equivalent
to G. An infinite MCFTG is defined as in Definition [l except that N, A/, and R are allowed to be infinite
(and similarly, in an infinite RTG N and R are allowed to be infinite). It is easy to check that all the
definitions and results for MCFTGs discussed until now are also valid for infinite MCFTGs and infinite
RTGs. In particular, the derivation tree grammar G533 of G is infinite.

The infinite MCFTG is given by G = (N, N X, §°° R>) with nonterminals N> = N x N*, big
nonterminals N = N @ N* = {A® ¢ | A € N, £ € N*}, initial nonterminal S® = S ® ¢, and rules R*®
determined as follows. If £ € N* and p = A — (u,£) € R with £ = {Bs,..., By}, then R> contains
therule p@ ¢ =A@ — (u, L)@ ¢, LR L), where LR L = {B1 ®{1,..., By ®lk}. Note that p can be
reconstructed from p ® £.

Lemma 17 L(G*) = L(G).

PROOF If d is a derivation tree of G°°, then we denote by rem(d) the derivation tree of G that is
obtained by removing all link identifiers £ from the labels of its nodes; i.e., a label p® ¢ € R*® is changed
into p, and A ® £ € N is changed into A. It is straightforward to show by induction on the structure
of d that d € L(GY,, A ® ¢) implies both rem(d) € L(Gger, A) and val(rem(d)) = val(d). Indeed, if
d=(p®4)(dy,...,dx), then rem(d) = p(rem(d;),...,rem(dy)) and

val(d) = ((u, £) ® £)[B; @ i < val(d;) | 1 <i < K]

ulB; + in(B; @ 4i) | 1 <i<k|[B;®¥i«val(d;) | 1 <i<k
=u[B; + in(B; ® 0i)[B; @ li < val(d;) |1 <i < k] |1 <i < k] =u[B; < val(d;) | 1 <i <k
u[B; + val(rem(d;)) | 1 <4 < k] = val(rem(d)) ,

where the third equality is by Lemma[](4) and the fifth by the induction hypotheses. Taking A®{ = S®e,
we thus obtain that L(G*°) C L(G) by Theorem In the other direction, we consider a deriva-
tion tree d € L(Gger,S), and let d' be the tree such that pos(d’) = pos(d) and d'(p) = d(p) @ p
for every p € pos(d); i.e., we change the label d(p) of each position p into d(p) ® p. Obviously,
d € L(GY,,S ®¢) and rem(d’) = d. Hence, by the above, d’' has the same value as d, which shows

der»

that L(G) C L(G™).]

Lemma 18 Let d € DL(G.,S ®¢) and A®@ L € N*®°. Then A® { € occy(d) if and only if
occ(A ® L) = occn gy (val(d)).

ProOOF We first observe that for every position p € pos(d) there exists « € A'UR such that d(p) = a®p,
cf. the proof of Lemma[I7l Thus, if A® £ occurs in d then it occurs exactly once in d and no B ® £ occurs
in d with B # A.

Let A® ¢ € occy~(d). Then occ(A ® £) C occyyxey(val(d)) by Lemma OO(2). Moreover, if
(C,0) € occyyxqey(val(d)) then there exists B € N such that C' € occ(B) and B ® £ € occa(d).
From the above observation we obtain that B = A and so (C,¢) € occ(A ® ¢).

Now let occ(A ®) = occy g3 (val(d)). From the inclusion occ(A ® £) C occpx g3 (val(d)) we obtain,
by Lemma [I0(2) and the above observation, that there exists B € A such that B ® £ € occp (d) and
occ(A ® ¢) C oce(B @ ¢). Hence occ(A ® ¢) = oce(B ® £) by the previous paragraph, and so A = B by
the second item of Definition =

20

Theorem 19 L(G) ={teTx | S®ec={ t}.
PrROOF By Lemma [[7 Theorem [0 and Lemma [T0[(3), it suffices to prove the following claim:

For every t € T(nxn+)ux We have S ® € = t if and only if there exists d € DL(GE,, S ® ¢)
such that val(d) =t

(If) The proof is by induction on the length n of a derivation S®e :>Gao d required for d € DL(GE,, S®e).
The claim is obvious for n = 0; i.e., for d = S ® . Otherwise, we con81der the last step of the derivation
S®e éGwl d =Gz d, and let A®€ — (pR0)(B1®11,...,B;®Lk) be the rule of G35, that was applied
in the last step, where p = A — (u, L) with £ = {Bl, ..., By} is the corresponding rule of G. Clearly,
since A ® ¢ occurs exactly once in d’ (as observed in the proof of Lemma [I7),

d=d[Axl+ (p@0)(B1®/1,...,B, @ k)] .

Since val((p ® £)(B1 ® {1,...,B; ® tk)) = (u, L) ® £, we obtain val(d) = val(d)[A ® £ + (u,L) ® {]
from Lemma [[Il Hence S ® € =, val(d') =4 ¢ val(d) by the induction hypothesis, Lemma [I§ and the
definition of ég’e.

(Only if) The proof is by induction on the length n of a derivation S ® ¢ =% t. It is again obvious
for n = 0. Otherwise, we consider the last step of the derivation S ® e =5~ L't =4 t. By the induction
hypothesis there exists d’ € DL(GS,, S ® €) such that val(d’) = t’. Moreover, by the definition of =¢,
there exist a rule p = A — (u,£) € R and a link identifier £ such that occ(A ® £) = occy (¢ (t') and
t=t[A®{+ (u,L) ® . Then A® ¢ occurs in d' by Lemma [[8 Defining d as displayed above, we
obtain from Lemma [[1] that val(d) = val(d')[A ® £ < (u, L) ® {]; i.e., val(d) = t. n

In exactly the same way it can be proved that L(G,A) = {t € Ps(X)" | in(A ® ¢) =¢ t} for
every A € N, after extending the notion of derivation step to forests in Py yn-yus(X)". We fi-
nally mention that it is straightforward to prove that for every t € T(nyn+)us, if S ® e =§ ¢, then
(1) t is uniquely (N x N*)-labeled and (2) there is a unique finite subset £ of N’ @ N* such that the
set {occ(B) | B € L} is equal to the set {ochX{g}() # 0 | £ € N*}. Thus, £ is the set of big
nonterminals (of G*™) that can be rewritten in ¢. For instance, for the last tree of Figure [l we have
£L={B®111,B®1131,B'®112,T® 12,T ® 1132}.

4. Normal forms

In this section, we establish a number of normal forms for MCFTGs. We start in Section [£1] with some
basic normal forms. In Section we define the notions of finite ambiguity and lexicalization, and then
we prove a Growing Normal Form that is already part of our lexicalization procedure. Along the way we
show the decidability of finite ambiguity. Finally we establish one additional basic normal form. From
now on, let G = (N, N, X%, S, R) be the considered MCFTG.

4.1. Basic normal forms

The MCFTG G is start-separated if posg(u) = @ for every rule A — (u, £) € R. In other words, the initial
nonterminal S is not allowed in the right-hand sides of the rules. It is clear that G can be transformed
into an LDTR-equivalent start-separated MCFTG G’. We simply take a new initial nonterminal S’, all
original rules, and for every rule p = S — (u, £) € R we add the rule p’ = 5’ — (u, £). Then we obviously
have that L(Géer, S ={p'(d1,...,dr) | p(d1,...,d;) € L(Gger, S)}, and there exist LDT-transducers

that change p(di,...,dx) into p'(di,...,dx) and vice versa. The MCFTGs of Examples [f] and [1 are
start-separated.

Convention. From now on, we assume, without loss of generality (by Proposition [[3]), and without
mentioning it, that every MCFTG is start-separated. Each rule of the form S — (u, £) is called an initial
rule. We call a rule A — (u, £) terminal if u € Px(X)*; i.e., u does not contain nonterminal symbols or
equivalently £ = (). Such a rule will also be written A — u. Note that a rule may be both initial and
terminal. A rule is called proper if it is not both initial and terminal.

The MCFTG G is reduced if every big nonterminal A € N \ {S} is reachable and useful. A big
nonterminal A € N is reachable if S ¢, A, where for all B,B’ € N we define B < B’ if there is a

21

rule B — (u, L) € R such that B’ € L. Moreover, A is useful if L(G, A) # 0. Clearly, G is reduced if and
only if the RTG Gy, is reduced (in the usual, analogous sense); this is obvious for reachability and follows
from Theorem [@ for usefulness. As in the case of context-free grammars, we may and will always assume
that a given MCFTG G is reduced, which can be achieved by removing all nonreachable and useless big
nonterminals together with the rules in which they occur. Since this is the same procedure for Gge,, we
have that L(G/,,) = L(G4er) for the resulting grammar G’, and hence, trivially, G’ is LDTR-equivalent
to G. The MCFTGs of Examples [6l and [7 are reduced.

Let G = (N',N',%, 5" R') be another MCFTG. We say that G’ is a renaming of G if there exists
a rank-preserving bijection 3: N' — N’ such that S" = 3(S) and R’ = {pg | p € R}, where for
every rule p = A — (u, L) € R we let pg = B(A) — (u[B < in(B(B)) | B € L], B(L)), where
B(L) = {B(B1),...,B(Bk)} if L ={Bs,...,B;}. Note that p can easily be reconstructed from pg (by
applying 871); i.e., the mapping p — pg is also a bijection, from R to R'.

Lemma 20 For all MCFTGs G and G', if G' is a renaming of G, then G and G’ are LDTR-equivalent.

PROOF Let 8 be the required bijection. For every tree d € T, let M (d) be obtained from d by changing
every label p into pg. In this manner we obtain a bijection M : Tg — Trs. Obviously, d € L(Ger, 4) if and
only if M(d) € L(GY.,, B(A)). Additionally, we can easily show that val(M(d)) = val(d) by induction on
the structure of d. Indeed, let d = p(dy,...,d;) forarule p=A — (u, L) € Rwith £L ={By,..., By} and
d; € L(Gaer, B;) for every i € [k]. We have val(M (d;)) = val(d;) for every i € [k] by the induction hypothe-
ses. Clearly, M(d) = pg(M(d1),...,M(dy)), and hence val(M(d)) = u[B; < in(8(B;)) | 1 < i < K] [f],
where f is the substitution function for S(£) such that f(8(B;)) = val(M(d;)) = val(d;) for every
i € [k]. It now follows from Lemma [(4) that val(M(d)) = u[B; + in(8(B;)[f]) | 1 < i < k|, which
equals u[B; « val(d;) | 1 < i < k] = val(d). The transformation M: T — Tx as well as its inverse
M~': Tp: — Tg are tree homomorphisms (even projections), and every tree homomorphism can be
realized by an LDTR-transducer, which shows the LDT®R-equivalence. n

The previous lemma shows that the actual identity of nonterminals constituting a big nonterminal is
irrelevant in MCFTGs. We say that the MCFTG G has disjoint big nonterminals if occ(A) Nocc(A’) =0
for all distinct A, A’ € N. The MCFTGs of Examples [and [indeed have disjoint big nonterminals.
Clearly, every MCFTG G has a renaming that has disjoint big nonterminals. Consequently, we may
always assume that a given MCFTG G has disjoint big nonterminals. As observed before Example [G]
the specification of the set of links of a rule is then no longer necessary. Indeed we could have required
disjoint big nonterminals in Definition [B] but this would have been technically inconvenient, as we will
see, e.g., in the proof of Lemma 22

We say that the MCFTG G is free-choice if the following holds. For every rule A — (u,£) € R and
every L' C N that satisfies the requirement in the last item of Definition 5 we require that A — (u, £') is
also a rule of G. This means that the rules of G can be specified as A — u, which stands for all possible
rules A — (u, £). Obviously, if G has disjoint big nonterminals, then it is free-choice because the links
are uniquely determined by A" and u. Thus, we may always assume that a given MCFTG is free-choice.
Free-choice MCFTGs with the derivation semantics of SectionB.3lgeneralize the local unordered scattered
context grammars (LUSCGs) of [78], which are an equivalent formulation of multiple context-free (string)
grammars.

The next easy result is not a normal form result in the usual sense of the word, but shows that the
class MCFT is closed under (simple) tree homomorphisms; for much stronger closure properties of MCFT
we refer to Section [8l Nevertheless, a special case of this result can be used in proofs to assume that the
right-hand sides of a given MCFTG G are not only uniquely N-labeled but also uniquely X-labeled.

Let h be a tree homomorphism from ¥ to ¥’ where ¥’/ is a finite ranked alphabet disjoint to N. We
define the MCFTG G}, = (N,N,%, S, R’) such that

R ={A— (h(u),L) | A= (u,L) € R} ,

where h is extended to a tree homomorphism from N UX to N UX’ by defining h(C) = in(C) for every
C € N. We refer to Definition [IH] for the notion of LDTR-h-equivalence.

22

Lemma 21 For every MCFTG G and every tree homomorphism h (as above), the MCFTG G}, (as
defined above) is LDTR-h-equivalent to G. Hence L(Gj) = h(L(G)).

PROOF The proof is similar to the one of Lemma Let G = G, = (N,N,¥/,S,R’). For every
rule p = A — (u, L) € R, let p, be the rule A — (h(u), £) € R, in which the links of £ have the same
order as in p. For every tree d € Tg, let M(d) be obtained from d by changing every label p into pp,.
This defines a surjection M : Tr — Tr. Obviously, d € L(Gger, A) if and only if M(d) € L(GY,,, A) for
every A € N. We now show, by induction on the structure of d, that val(M(d)) = h(val(d)). Indeed,
let d = p(dy,...,d;) with p = A — (u,L) and £ = {By,..., B}, and by the induction hypotheses

val(M (d;)) = h(val(dy)) for every i € [k]. Then M (d) = pn(M(dy), ..., M(dy)), and hence we have

val(M(d)) = h(u)[B; « h(val(d;)) | 1 < i < k]
= h(u[B; « val(d;) | 1 <i < k]) = h(val(d)) ,

where the second equality is by Lemma[d{3) applied to 01 = B; - - B, and occ(o2) = 3. This shows that
hL(G)) C L(G").

For every rule p’ € R/, let pj, be a fixed rule p € R such that p, = p’. For every tree d' € Tg, let
M'(d’") be obtained from d’ by changing every label p’ into pj,. This defines a mapping M': Tr — Tg.
Obviously M(M'(d')) = d' and hence, by the above, if d' € L(GY.,, A) then M'(d") € L(Gger, A) and
val(M'(d')) = val(d’). This shows that L(G') C h(L(G)).

The transformations M and M’ can be realized by projections, and hence by LDTR-transducers. m

We say that the pair (G, h) is a cover of the MCFTG Gy, if h is a projection; i.e., for every o € &
there exists o’ € ¥ such that h(o) = in(c’). We define the MCFTG G to be uniquely terminal labeled if
for every rule p € R:

(1) the right-hand side rhs(p) is uniquely X-labeled, and

(2) oces(rhs(p)) Noces(rhs(p’)) = O for every other rule p’ € R.

Clearly, every MCFTG G has a cover (Gy, h) such that G, is uniquely terminal labeled. Although the
tree languages L(G) = h(L(Gy)) and L(G,) differ in general, this may be viewed as a normal form of G.

The last basic normal form that we consider in this subsection is permutation-freeness. Let €2 be
a ranked alphabet (such as N U X). For a tree t € To(X) the string ydy(t) € X* is the sequence of
occurrences of variables in ¢, from left to right Clearly, if t € Po(Xk), then ydy (t) is a permuta-
tion x;, -+ -x;, of x1---xk. We say that a pattern ¢ € Po(X) is permutation-free if ydx(t) = x1---xx
for k = rk(¢), and we denote the set of permutation-free patterns over Q by PFq(X). For t € Pqo(X)
we define pf(t) € PFq(X) as follows: if ydy(t) = a;, -- -, then pf(t) is the unique permutation-
free pattern such that t = pf(t)[x1 < =iy,...,2r x;,]. For a forest t = (t1,...,t,) we define
ydx (t) = (ydx(t1),...,ydx(t:)) and pf*(t) = (pf(t1),...,pf(tn)). We say that a tree homomorphism 5
over §) is permutation-free if h(w) is permutation-free for every w € 2. We observe that, for such a tree
homomorphism, ydy (h(t)) = ydx(t) for every t € To(X), as can easily be shown by induction on the
structure of ¢, and h(pf(t)) = pf(h(t)) for every t € Po(X) by Lemma P2l

The MCFTG G is permutation-free if rhs(p) € PFnus(X)* for every rule p € R. Intuitively,
permutation-free MCFTGs are easier to understand than arbitrary MCFTGs because the application
of a rule to a node of a tree does not involve a permutation of the subtrees at the children of that node;
thus, a rule application does not affect the global structure of the tree. The MCFTG G of Example [T is
trivially permutation-free because every nonterminal of G has rank 0 or 1.

Lemma 22 For every MCFTG G there is an LDTR-equivalent MCFTG G’ that is permutation-free.
Moreover, 0(G") = 0(Q), n(G") = u(G), and A(G') = A(G).

ProOOF We construct the grammar G’ = (N’, V'3, S, R’), in which S’ = (S,e) and N’ is the set of
all pairs (C,7) such that C' € N and 7 is a permutation of xy--- 2,). The rank of (C,7) is the

same as the rank of C. The set of big nonterminals N’ consists of all ((A1,m1),...,{A,, 7)) with
(A1,...,A,) € N and (A;,7;) € N' for every i € [n] A big nonterminal A’ = ((A1,71),...,{An, ™))

15The yield of ¢t with respect to X is defined in the paragraph on homomorphisms in Section 211

16Note that if G' has disjoint big nonterminals, then that is in general not the case for G’. Thus, this property of an
MCFTG G is not preserved when information is added to the nonterminals of GG, which is the reason that we did not require
it in Definition

23

will also be denoted by pair(A,n), where A = (Ay,...,A,) and 7 = (m,...,7,), and we define
rem(A’) = A = (Ay,...,A,). Intuitively, if A generates t = (t1,...,t,) with t; € Ps(Xyx4,)) and
ydx (t) = (ydx(t1),-..,ydx(tn)) = (71,...,7), then A’ generates pf*(t) = (pf(t1),...,pf(tn)). To
define the rules of G’ we need the (permuting) tree homomorphism h over N’ U X that is defined by
h({C, 7)) = (C, m)w for every (C,7) € N' and h(c) = in(o) for every o € X.. For example, if 7 = z3xox124,
then h((C, 7)) = (C,m)(x3, x2, %1, x4); in other words, h permutes the subtrees of (C, 7) according to the
permutation 7.

Let p = A — (u, L) be a rule of G with £ = {B,..., By}. Moreover, let Bj,..., B}, be big nonter-
minals in N7 such that rem(B]) = B; for every i € [k], and let v’ = u[B; < in(B}) | 1 < i < k] and

T = ydx (h(v')). Then R’ contains the rule

pp...p, = pair(A,7) — (pf*(h(u)), {B},...,B;}) .

Note that this rule satisfies the requirements of Definition Bl by Lemma [II Note also that p can be
reconstructed from pp;...p; . This completes the construction of G'.

To show that L(G) C L(G’) we prove that for every A € N and every derivation tree d € L(Gger, A)
there exists a derivation tree d’ € L(G),,, pair(A, 7)) such that 7 = yd (val(d)) and val(d') = pf*(val(d)).
For every derivation tree d € Jgcp L(Gaer, B), we let bign(d) = pair(A,yd (val(d))), where A is the
type of d. The proof is by induction on the structure of d. Simultaneously we prove that bign(d) can
be defined inductively. Let d = p(ds,...,d), where p is as shown above. By the induction hypothe-
ses, let B] = bign(d;) = pair(B;, ;) such that m; = ydy(val(d;)), and let d} € L(Gl,,,B.) be such
that val(d;) = pf”(val(d;)), for every i € [k]. We define bign(d) to be the left-hand side of the rule pp;...5; .
Moreover, we take d’ = pp;...p; (dy, ..., d;). Additionally, let [g);] abbreviate the (simultaneous) second-
order substitution [B] < pf*(val(d;)) | 1 < i < k], and let [¢'] and [g] abbreviate the second-order
substitutions [B] < val(d;) | 1 <1i < k] and [B; < val(d;) | 1 <14 < k]. Then the definition of ‘val’ gives
val(d') = pf*(h(u'))[B} « val(d}) | 1 < i < k] = pf* (ﬁ(u'))[gl’Df] = pf* (il(’ul)[g;f]), where the last equal-
ity holds because the permutation-free tree homomorphism g;f corresponding to the substitution [g;f]
commutes with ‘pf’ as observed before this lemma. We now show that

h(w)[ghe] = v'[g] = ulg] = val(d) .

The first equality holds by Lemma [3] because the composition of the tree homomorphisms h and g;f is
equal to the tree homomorphism ¢’ corresponding to the substitution [¢'] for every symbol in ocen/us (u'),
as shown next. In fact, let B = B(C,m)y with (C,7) € N’ and 8,y € (N')*, and let val(d;) = ot
with t € Pe(Xk(c)), ¢, % € Pe(X)*, and |B] = |¢|. From m; = yd’y(val(d;)), we obtain that m = yd (t).
Now we have g/:((C,7)) = pf(t) and therefore g .(h((C,m))) = §,,((C,m)m) =t = ¢'({C, 7T>) The
second equality follows easily from Lemma [](4), and the last equality is again by the definition of ‘val’.
Hence, we have shown that val(d') = pf*(val(d)), and it remains to show that the permutation 7 in the left-

hand side of pp;...p; fulfills ¥ = yd (val(d)). By the calculation above, yd (val(d)) = yd’ (h(u')[g;])-

In addition, 7 = yd (h(u")) by the definition of pp;..5;. Since g is permutation-free, these values are
the same, as observed before this lemma. This proves that L(G) C L(G").

It is easy to see that the above transformation from d to d’ can be realized by an LDTR-transducer M
with one state ¢. In fact, it should be clear from the inductive definition of bign(d) that the set
Ly = {d € Ugen L(Gaer, B) | bign(d) = A’} is a regular tree language for every A" € N’. Then,
for the above rule p, the transducer M has all the rules

<q7 p(yl: LBiv s Yk LB;€>> - pBi---B;ﬂ(<q7y1>a ceey <q7yk>> .

Note that M is a finite-state relabeling.

To show that L(G’") C L(G), we observe that for every derivation tree d’ € L(GY,,) the derivation
tree d € L(Gaer), which is obtained from d' by changing every label pp;...5; into p, satisties M(d) = d’
and hence val(d) = val(d’). Since this transformation from d’ to d is a projection, it can be realized by
an LDT-transducer. n

17To be precise, if ydy (t) = 7 = z;, - - - x4, , then g ((C,m)ym) = pE(t)[x1 = @4y, - oo Tm Ty, | = ¢

24

4.2. Lexical normal forms

We first recall the notion of finite ambiguity from [50, |65, 85] We distinguish a subset A C ¥ of lexical
symbols, which are the symbols that are preserved by the lexical yield mapping. The lexical yield of a
tree t € Ty, is the string yda (¢t) € A*, as defined in Section 2l It is the string of occurrences of lexical
symbols in ¢, from left to right; all other symbols are simply dropped.

Definition 23 The tree language L C T% has finite A-ambiguity if {t € L | yda(t) = w} is finite for
every w € A*. The MCFTG G has finite A-ambiguity if L(G) has finite A-ambiguity. i

Roughly speaking, we can say that the language L has finite A-ambiguity if each w € A* has
finitely many syntactic trees in L, where t is a syntactic tree of w if w is its lexical yield. Note that
|yda(t)| = |posa(t)|; thus, L has finite A-ambiguity if and only if {t € L | |posa(t)] = n} is finite for
every n € Ny. Note also that if ©(O UX®) C A or £\ X C A, then every tree language L C Tk has
finite A-ambiguity.

Example 24 For the MCFTG G of Example[flwe consider the set A = ¥\ {o,v} = {«, 8, 7, v} of lexical
symbols. It should be clear from Example [7] that in each tree of L(G) the number of occurrences of
coincides with the number of occurrences of 8. Since AU{y} = £ UX (M) this implies that L(G) as well
as G have finite A-ambiguity. Similarly, the number of occurrences of v in a tree of L(G) coincides with
the number of occurrences of 7, and the number of occurrences of 3 is half the number of occurrences
of a. Hence G also has finite {a, 7}-ambiguity, but for convenience we will continue to use the lexical
symbols A in examples. O

In this contribution, we want to lexicalize MCFTGs, which means that for each MCFTG G that has
finite A-ambiguity, we want to construct an equivalent MCFTG G’ such that each proper ruld contains
at least one lexical symbol. Let us formalize our lexicalization property.

Definition 25 The forest ¢ is A-lexicalized if posa (t) # . The rule A — (u, £) is A-lexicalized if u is
A-lexicalized. The MCFTG G is A-lexicalized if all its proper rules are A-lexicalized. A forest or rule is
A-free if it is not A-lexicalized. The rule A — (u, L) is doubly A-lexicalized if |posa (u)| > 2, and it is
singly A-lexicalized if |posp (u)| = 1. O

Clearly, for every derivation tree d, the value val(d) is A-free if and only if all rules that occur in d
are A-free by Lemma [[0(1). For the grammar G of Example [[with A = {a, 8, 7,7} as in Example 24
the rules

pr=95—=a(A) ps=(T1(z1), T2, T3) = (a(T1(B(x1))), (T2),v(13)) pe = (T1(21), T2, T3) — (21,7, V)

are A-lexicalized (p; singly and both ps and ps doubly), whereas rule ps = B(x1) — 1 is not even
Y-lexicalized.

Thus, for each MCFTG G that has finite A-ambiguity, we want to construct an equivalent MCFTG G’
that is A-lexicalized. This notion of lexicalization is also called strong lexicalization [50, 65, I85] because
it requires strong equivalence of G and G’; i.e., L(G') = L(G). Weak lexicalization [50] just requires
weak equivalence of G and G'; i.e., yda(L(G’)) = ydA(L(G)). Clearly, with slight adaptations, these
definitions can be applied to any type of context-free-like grammar that has terminal (ranked or un-
ranked) alphabet X. In the literature only two cases are considered: A = X for unranked alphabets and
A = X\ {e} for ranked alphabets. It seems to be quite natural and relevant to consider arbitrary A.

It should be intuitively clear (and will be shown below) that an MCFTG that does not have finite
A-ambiguity cannot be lexicalized (with respect to A). Thus, we will prove that an MCFTG can be
lexicalized (with respect to A) if and only if it has finite A-ambiguity. Moreover, we will prove that this
property is decidable.

To lexicalize an MCFTG of finite ambiguity, we need an auxiliary normal form (stated in Theorem [37]).
It generalizes the Growing Normal Form of [89, 190] for spCFTGs. In the remainder of this section the
MCFTG G = (N, N, 3, S, R) is not assumed to have finite A-ambiguity unless this is explicitly mentioned.
We only assume that G is start-separated and reduced. A rule p is monic if |[L(p)| = 1; i.e.,, L(p) is a
singleton or equivalently p has rank 1 in Gge;.

181t should not be confused with the notion of finite ambiguity of [43, 62].
19Recall from the beginning of Section Bl that a rule is proper if it is not both initial and terminal.

25

Definition 26 The MCFTG G is A-growing if all its non-initial terminal rules are doubly A-lexicalized,
and all its monic rules are A-lexicalized. It is almost A-growing if all its non-initial terminal rules and
all its monic rules are A-lexicalized. i

The application of a proper rule of a A-growing MCFTG increases the sum of the number of oc-
currences of lexical symbols and the number of occurrences of big nonterminals. In this section we will
prove that for every MCFTG G of finite A-ambiguity there is an equivalent A-growing MCFTG (see
Theorem [B7). The instance of this result for spCFTGs and A = ¥ is due to [90, Proposition 2] and
fully proved in [89]. Note that if G is almost 3-growing, then all its terminal rules are Y-lexicalized.
Note also that every A-growing MCFTG is almost A-growing, and that every A-lexicalized MCFTG is
almost A-growing. The grammar G of Example [with A = {a, 8,7, v} as in Example 24]is not almost
A-growing because of rule py = B(x1) — 1.

If the MCFTG G is almost A-growing, then all its rules satisfy the requirements for a A-growing
grammar except the non-initial terminal rules, which might be singly A-lexicalized. The application of
such a rule does not change the sum of the number of occurrences of lexical symbols and the number of
occurrences of big nonterminals because a big nonterminal is replaced by a lexical symbol. This leads to
the following lemma.

Lemma 27 If G is almost A-growing, then G has finite A-ambiguity and

[pos(d)| < 2 ([posa (val(d))[+ [posyr(d)[) +1 < 2 [posyya(val(d))| +1 (1)
for every derivation tree d of G; i.e., for every d € UAeN DL(Gger, A).

PrROOF We begin with (). Let Rj; be the set of all initial terminal rules. The first inequality is clearly
fulfilled for d € Ry, and it suffices to show that |pos(d)] + 1 < 2 (|posa(val(d))| + |posp-(d)|) for the
remaining derivation trees d ¢ R;;. For every such tree d we have

[pos(d)] +1 < 2+ (posy(d)| + Iposga (d)] + [posgen (@)])

where R(®) and R™) are the sets of terminal and monic rules, respectively (see Section 22). Since G is
almost A-growing and posp, (d) = (0, we obtain

[pos o (d)] + [posga ()] < Y [posa(rhs(d(p)))] = [posa (val(d))|

pEpos(d)

where the last equality holds by Lemmal[I0(1). The second inequality in (}) follows from the first because
[posy/ ()] < [posy (val(d))] by Lemma [(2).

For the first part of the statement, we consider the set L, = {t € L(G) | yda(t) = w} for
some w € A*. For every derivation tree d € L(Gger) we have posy(d) = 0, and consequently we
obtain |pos, (val(d))|+ |posy (d)| = |yda (val(d))|. Hence |pos(d)| < 2-|w|+1if val(d) € L., utilizing ().
This shows that Dy, = {d € L(Gger) | val(d) € Ly} is finite, and so L., is finite because L,, = val(D,,)
by Theorem n

The previous result also shows that if G does not have finite A-ambiguity, then there is no A-lexicalized
MCFTG equivalent to G, as we observed above.

Our first goal (in proving Theorem [B7) is to make sure that all the non-initial terminal rules are
A-lexicalized; i.e., contain a lexical symbol. However, for later use, we start by proving a more general
lemma that will allow us to remove every non-initial terminal rule of which the right-hand side has a
certain property F subject to certain requirements. In particular, the value of a derivation tree d has
property F if and only if d only contains rules of a corresponding subset F' C R of rules. Additionally,
each big nonterminal can only generate finitely many forests with property F. An example of such a
property is Y-freeness. The next construction generalizes the removal of epsilon-rules A — ¢ from a
context-free grammar [48].

26

Lemma 28 Let F C Ps(X)* and F C R. If

(1) L(G,A)NF is finite for every A € N, and

(2) val(d) € F if and only if d € Tr, for every d € J 4c v L(Gder, A),
then there is an LDTR-equivalent MCFTG G' = (N,N,%, S, R") such that ths(p) ¢ F for every non-
initial terminal rule p € R’.

PROOF For the effectiveness of the constructions in this proof, we assume that F is a decidable subset
of Ps(X)™, and that the elements of L(G, A) N F are effectively given for every A € N. For A € N,
let F4 = L(G, A)NF, which is finite by (1). Moreover, F4 = val(L(Gger, A)NTF) by (2) and Theorem [
For every A € N and t € Fa, let Liay = {d € L(Gqer, A) N Tr | val(d) = t}. By Lemma [I2 applied
with N7 = (), the tree language L4, is regular.

We now construct the MCFTG G’ = (N,N,%,S,R’). The rule psy = S — ¢t is in R for ev-
ery t € Fg. Moreover, for every rule p = A — (u, L) of G and every substitution function f for £ such
that f(B) € Fp U {in(B)} for every B € L, the set R’ contains the rule

pr=A— (ulfl, {BeL]|[f(B)=in(B)}) ,

provided that u[f] ¢ F. The linear order on L(py) is inherited from the one on £. To be precise, let
L={Bi,...,Biy}and ® = {i € [k] | f(B;) € Fg,}. Moreover, let [k]\® = {i1,...,0,} with i1 < -+ < iy,
Then L(ps) = {Bi,,-..,Bi,}. This ends the construction of G’, so no other rules are in R'.

First, we prove that for every derivation tree d € L(Gger, A) \ Tr a derivation tree d’ € L(GY,,,A)
with val(d’) = val(d) exists. This shows L(G) C L(G’) because L(G) = val(L(Gger,S) \ Tr) U Fs.
The proof proceeds by induction on the structure of d. Let d = p(di,...,dx) for some k € Ny,
rule p = A = (u,£) € R with L = {By,...,Bi}, and d; € L(Gger, B;) for every i € [k]. Let
o = {i € [k] | d; € Tr}, and let f be the substitution function for £ such that f(B;) = val(d;)
if i € ® and f(B;) = in(B;) otherwise. Note that f(B;) € Fp, for every i € ® by (2). Since d ¢ Tr
we have u[f] ¢ F. In fact, if u[f] € F C Pg(X)T, then f(B;) # in(B;) for all ¢ € [k] by Lemma [I}(2),
which yields that u[f] = u[B; < val(d;) | 1 < i < k] = val(d) is in F and thus that d € Tr by (2).
Consequently, py € R'. Now let [k] \ ® = {i1,...,4,} with iy < .-+ < i,. By the induction hy-
pothesis, there exists a derivation tree d; € L(Gjg,, Bi;) with val(d;) = val(d;,) for every j € [n].
We now take d' = pys(d; ,...,d;) € L(Gg,.,A) and prove that val(d') = val(d). Let [g] abbrevi-
ate [B; < val(d;) | ¢ € {i1,...,in}]. Then val(d) = u[f]lg]. By Lemma [H(4) this implies that
val(d') = u[B; + f(B)[g] | 1 < i < k]. Clearly, f(B;)[g] = val(d;) for every i € [k], which shows
that val(d') = val(d).

It should be clear that the transformation from d to d’, as defined above, can be realized by an
LDTR-transducer M from R to R’. It has one state ¢, and for its look-ahead it uses the regular tree lan-
guages L4 4, defined above for A € A and t € F4 in addition to the regular tree language Lo = T\ Tr.
All subtrees in T are deleted by M. The translation of derivation trees d = p(dy, . ..,dx) € L(Gder, A\TF
(as discussed above) is realized by the rules (g, p(y1: Loy, .- Yk: Lo,): Lo) = pr({q,¥ir)s---{q ¥in))
such that b; € {0} U {(B;,t;) | t; € Fp,} for all ¢ € [k], where f(B;) = in(B;) if b = 0 and f(B;) = t;
if b = (By,t;), and {i € [k] | b; = 0} = {41,...,9n} with 43 < .-+ < i,. The translation of derivation
trees d € L(Gqer) N TF is realized by the rules (g, p(y1,...,yx): L(s,) — ps,c with t € Fs.

Second, we show that L(G’) C L(G). For every A € N and t € Fy, let da, be a fixed derivation tree
in L4 4), which can be constructed from the regular tree grammar that generates L4 4. Since Fs C L(G),
it suffices to prove that for every derivation tree d’ € L(G/,,, A) of which the root is labeled with a

der>

rule p¢, a derivation tree d € L(Gger, A) \ Tr can be constructed such that val(d) = val(d’). The proof
proceeds by induction on the structure of d'. Let d' = py(d; ,...,d;) with the same notation as in the
construction of G'. By the induction hypotheses, there are derivation trees d;,, ..., d;, of G such that

di; ¢ Tr and val(d;;) = val(d;) for every j € [n]. We now take d = p(dy, ..., dy), where d; = dp, f(5,)

for every i € ® = [k] \ {i1,...,9n}. Thus d; € Tr and val(d;) = f(B;) for every i € ®. Then d ¢ Tr
because if we suppose d € T, then dy, ..., d; € Tr, which yields ® = [k] and the equality

u[fl]=u[B; + f(B;) |1 <i<k]=ul[B; + val(d;) |1 <i<k]=val(d) ,

which in turn yields the statement u[f] € F, contradicting the fact that py € R’. It is easy to check that

the LDTR-transducer M, in the proof of L(G) C L(G'), transforms d into d’. Hence val(d) = val(d’).
The transformation from d’ to d, as defined above, can easily be realized by an LDT-transducer M’

with one state g. For every rule p’ of G, fix either p and f with p’ = p; or S and ¢ with p’ = pg (there

27

may be more than one such choice). In the first case, M’ has the rule (g, p'(y1,...,yn)) = p(t1,...,tx),
where t; = dp, (B, for every i € ® and t;; = (q,y;) for every j € [n]. In the second case, it has the
rule {q, p') — dg4. This ends the proof that G and G’ are LDTR-equivalent. n

In the next lemma we show how Lemma can be used to remove A-free non-initial terminal rules.

Lemma 29 Let F C R be the set of A-free rules. If val(L(Gger, A) N Tr) is finite for every A € N, then
there is an LDTR-equivalent MCFTG G' such that all its non-initial terminal rules are A-lexicalized.
Moreover, if G is almost X-growing, then so is G'.

PROOF For the purpose of effectiveness, we assume that the elements of val(L(Gger, A) N TF) are ef-
fectively given for every A € N. Let F be the set of A-free forests in Ps(X)*. As observed before,
for every derivation tree d, the value val(d) is A-free if and only if all rules that occur in d are A-free.
Thus, F and F satisfy requirement (2) of Lemma Hence, for every A € N the set Fa, given
by Fa = L(G, A)NF = val(L(Gder, A) NTF), is finite and its elements are effectively given. Thus, F also
satisfies requirement (1) of Lemma

Let G’ be the LDTR-equivalent MCFTG as constructed in the proof of Lemma[28 Then all non-initial
terminal rules of G’ are A-lexicalized. Assume now that G is almost X-growing. Since all non-initial
terminal rules of G are ¥-lexicalized, the elements of L(G, A), and hence of F4, are X-lexicalized (by
Theorem [and Lemma [I0(1)). Now consider a rule p of G and a substitution function f for £(p) such
that f(B) € Fp U {in(B)} for every B € L(p). If there is at least one B € L such that f(B) € Fp, then
the rule py of G’ is ¥-lexicalized by Lemma [I(2). Otherwise, we obviously have py = p and p satisfies
the requirements by assumption. Hence G’ is almost Y-growing.]

We now remove the Y-free terminal rules from G.

Lemma 30 For every MCFTG G there is an LDTR-equivalent MCFTG G’ of which all terminal rules
are X-lexicalized.

PROOF As in the previous lemma, let F' be the set of X-free rules in R, and let F be the set of X-free
forests in Py (X)*. Then val(L(Gger, A) NTr) = L(G, A)NF as demonstrated in the proof of Lemma 29
Clearly, a forest t € Py(X)* is X-free if and only if t € x7; i.e., t is of the form (z1,...,21). Such a
forest t can only be generated by a big nonterminal of rank (1,...,1). Hence, L(G, A)NF is either empty
or equal to {z}} with k = |A|. Moreover, val(L(Gger, A)NTr) can be computed because it is empty if and
only if the regular tree language L(Gqer, A) N Tk is empty. By Lemma 29 there is an LDTR-equivalent
MCFTG G, of which all non-initial terminal rules are X-lexicalized. Obviously, the initial terminal rules
of an MCFTG are also X-lexicalized. -

Example 31 In the MCFTG G of Example[T] the rules ps = B(z1) — x1 and p), = B’(x1) — x; are the
only Y-free rules. The construction in the proof of Lemma 2§ asks us to apply these rules in all possible
ways to the right-hand sides of the other rules. Thus, we change the set R of rules by removing rules
p4 and p) and adding the following rules:

A— Tl(O’(TQ, T3))
B(z1) — o(z1, B'(A)) B(z1) — o(B(z1), A) B(z1) = o(x1, A)
B'(z1) — o(x1, B'(A)) B'(z1) — o(B(z1), A) B'(z1) = o(x1, A) .
In the resulting MCFTG G’, which we will call G again, all terminal rules are Y-lexicalized. In fact, G is

now both X-lexicalized and ¥-growing, and all its terminal rules are A-lexicalized for A = {«, 8, 7, v} as
in Example O

Our second goal is to make sure that all monic rules (i.e., rules whose right-hand side contains exactly

one big nonterminal) are A-lexicalized. In the next construction we remove A-free monic rules thereby
generalizing the removal of chain rules A — B from a context-free grammar [48)].

28

Lemma 32 Suppose that all non-initial terminal rules of G are A-lexicalized. Let F C R be the
set of A-free monic rules. If val(DL(Gger, A) N Tivur) is finite for every A € N, then there is an
LDTR-equivalent almost A-growing MCFTG G'.

PRrROOF Let Fu = val(DL(Gger, A) N Tarur) for every A € N. Again, for the purpose of effectiveness, we
assume that the elements of F,4 are effectively given. Note that in(A) € F4. Every forest t € F4 is of
the form val(d) with d € DL(Gger, A) N Tarur, and every such derivation tree d is of the form d = wB
with w € F* and B € N. Hence t is A-free because all rules that occur in d are A-free. Moreover, by
Lemma [I0(2), ¢ is uniquely N-labeled and occy(t) = oce(B). In other words, the big nonterminal B
occurs exactly once in t, and no other nonterminals occur in ¢t. We will denote B by B;. Note that, since
G is start-separated, if B, = S then A = S because w = ¢. For every t € Fyu, let da; € Tyur be a
particular derivation tree of G of type A such that val(da ;) = ¢. Such a derivation tree can be computed
by Lemma [[2] applied with N/ = N.

We construct the MCFTG G' = (N,N,%,S,R) such that for every big nonterminal A € N,
treet € Fa, andrule p = By — (u, L) € R\ F, therule pa, = A — (¢[B¢ < u], £) is in R’, where the links
in £ have the same order as in the rule p. Since p ¢ F, it is straightforward to check that p4 ; satisfies
the requirements for G’ to be almost A-growing: (i) If p is A-lexicalized, then so is pa: because wu is
substituted for B;. (ii) If p4; is monic, then p is monic and hence A-lexicalized because p ¢ F. (iii) If
p is initial (i.e., By = S), then p4 . is initial (because A = S); thus, if pa; is non-initial terminal, then
p is non-initial terminal and hence A-lexicalized by assumption on G.

To show the correctness of G’, we first prove that for every derivation tree d € L(Gger, A) there is a
derivation tree d’ € L(GY,,, A) with val(d') = val(d). Clearly, d has the unique form d = wp(dy,...,dy)
such that w € F*, p ¢ F, and dy,...,dr € Tr. Let p = B — (u,L) with £ = {By,..., B},
and let t = val(wB) € F4. By the induction hypothesis there is a derivation tree d; € L(Gl,,, B:)
with val(d}) = val(d;) for every i € [k]. We take d’ = pa(dy,...,d}). Then

val(d') = ¢[B + u|[B; + val(d;) | 1 <i < k] = ¢[B < u[B; + val(d;) | 1 <i < k]]
=t[B + val(p(dy,...,d))] = val(wp(dy,...,d;)) = val(d) ,

where the second equality holds by Lemma [}(4) and the penultimate equality holds by Lemma [l This
shows that L(G) C L(G).
The LDTR-transducer M that transforms d into d’, as above, uses the tree languages

Lay={wd € L(Gger,A) | w € F*, d € L(Gger, Bt), d(e) ¢ F, val(wBy) = t}

as look-ahead, where A € N and ¢ € F4. It is easy to see that L4, is regular. An RTG that gener-
ates L4 ¢ can be obtained from the grammar for the regular tree language L4 ¢ in the proof of Lemmal[l2]
as follows. First, add the nonterminals and rules of Gger. Second, replace every rule (B,in(B)) — B
by all rules (B,in(B)) — p(Bi,...,Bs), where B — p(Bi,...,By) is a rule of Gger and p ¢ F.
The transducer M has initial state go and the states ga; for every A € N and ¢ € Fa. For every
rule p € R\ F, the transducer M has the rule {qo, p(y1,.--,yx)) — p({qo,v1),---,{q0,yx)) and all the
rules (qat, p(y1,---»Yk)) = pat({qo,y1),---,{(qo,yr)). Moreover, for every rule p € F, the transducer M
has all rules (qo, p(v1): La,) = {qa,t,y1) and {qa ¢, p(y1)) = {(qa.t, y1). It should be clear that M indeed
transforms d into d’.

Next, we prove that for every derivation tree d’ € L(GY,,, A) there is a derivation tree d € L(Gqer, A)
with val(d) = val(d’). The proof is by induction on d’, so let d' = pa+(d,...,d)) with p, A, and ¢
as in the construction of G’. By the induction hypothesis, there is a derivation tree d; of G such
that val(d;) = val(d}) for every i € [k]. We now take d = d 4 [B; < p(di,...,dy)], where the derivation
tree d4;+ was defined at the end of the first paragraph of this proof. Since da; is of the form wB;
with w € F*, and hence d = wp(dy,...,dy), it should be clear that the construction in the proof
of L(G) C L(G") (i.e., the LDTR-transducer M) transforms d into d’, which implies that val(d) = val(d’).

The transformation from d’ to d, as defined above, can easily be realized by an LDT-transducer M’
with one state ¢. For every rule p’ of G', fix p, A, and ¢ such that p = pa,. Then M’ has the
rule (q, p'(y1,...,yk)) = da[Be < p({¢;¥1),---,{q,yx))]. We finally observe that the transformation
from d to d’ can also be realized by an LDT-transducer (without look-ahead), but the above transducer M
is easier to understand. n

29

Lemma 33 For every MCFTG G there is an LDTR-equivalent almost ¥-growing MCFTG G'.

ProOF By Lemma [B0l and Proposition 3, we may assume that all terminal rules of G are ¥-lexicalized.
Let F© C R be the set of ¥-free monic rules. The statement holds using Lemma if we prove that
Fa = val(DL(Gger, A) N Thrur) is finite and that its elements can be computed for every A € A/. For
every big nonterminal A, let M 4 be the set of all X-free forests ¢ in Pyus(X)" such that rk(¢) = rk(A),
t is uniquely N-labeled, and occy(t) = occ(B) for some B € N. Clearly M, is finite because
[posyus ()] = [posy ()] < p(G) and |posx ()] < u(G) - 0(G). As argued in the beginning of the proof
of Lemma B2] F4 C M 4. Consequently, F, is finite and its elements can be computed by a standard
iteration because the sets F4 with A € N are the smallest sets of forests such that (i) in(A4) € F4 and
(i) if A — (u,{B}) € F and t € Fp, then u[B < t] € Fa. n

Let G be an almost X-growing MCFTG. Then, for every forest ¢, there are only finitely many derivation
trees d such that val(d) = t by inequality () of Lemma This implies that the finiteness problem is
decidable for L(G) and L(G, A). In fact, L(G) is finite if and only if L(Gqe,) is finite, which is decidable
because Gger is an RTG. Moreover, if L(G) is finite, then the elements of L(G) can be computed because
the elements of L(Gger) can be computed and L(G) = val(L(Gger)). Similar statements hold for L(G, A).
Thus, by Lemma B3] the finiteness problem is decidable for MCFTGs.

We now show that if G is almost X-growing, then the requirements of Lemmas 28 and [32] are fulfilled.

Lemma 34 Let G be almost YX-growing. Moreover, let F be the set of all A-free rules and F' C F be the

set of all A-free monic rules. Finally, let Fa = val(L(Gger, A)NTF) and F'y = val(DL(Gger, A) NIuF7)

for every A € N.

(1) It s decidable for A € N whether or not Fa (respectively, F'y) is finite, and if so, its elements can
be computed.

(2) If G has finite A-ambiguity, then Fa and F'y are finite for every A € N.

PROOF For (1) we observe that since G is almost X-growing, inequality (f) of Lemma 27 implies that
Fa is finite if and only if L(Gger, A) N T is finite. The latter is a regular tree language, and it is
decidable whether or not it is finite. Moreover, if so, its elements, and thus also the elements of F4, can
be computed. The same argument holds for F7.

For (2) we assume that G has finite A-ambiguity and that F4 is infinite. Since we may assume that
G and Gger are reduced, there is a derivation tree dg € DL(Gger, S) with |posy (do)| = |posy(do)| = 1. Let
Dy ={do[]A + d] | d € L(Gger, A) NTr} C L(Gaer). Since F4 is infinite, also L(Gger, A) N Tr is infinite,
and thus Dy is infinite by Lemma [[l Since G is almost X-growing, the set Lo = val(Dy) is an infinite
subset of L(G). Now, for every derivation tree d' € Tiyur, let pra(d') = > ¢ o5, a1y [POSa (ths(d'(p)))]-
Lemma[l0(1) and Lemma[lyield |posa (val(do[A < d]))| = pra(do[A < d]) = pra(do)+pra(d) = pra(dp)
for every d € L(Gger, A) N T, where the last equality uses d € Tp. Consequently, |posa ()] < pra(do)
for every tree ¢ in the infinite set Lo, which contradicts the finite A-ambiguity of L(G).

A similar proof works for F’y. Since DL(Gger, A) N Tarups is infinite, there exists B € N such
that DL(Gger, A)NTypyuF is infinite. Since Gger is reduced, there exists a derivation tree di € L(Gger, B).
Now let Dy = {do[A < d[B < di]] | d € DL(Gaer,A) N Tygyur} S L(Gaer). By similar argu-
ments as above, we then obtain that |posa(t)] < pra(do) + pra(di) for every tree ¢ in the infinite
set L{ = val(D{)) C L(G), which again contradicts the finite A-ambiguity of L(G). n

Now we are able to turn G into an equivalent almost A-growing MCFTG, provided that it has finite
A-ambiguity.

Lemma 35 It is decidable whether or not the MCFTG G has finite A-ambiguity, and if so, there is an
LDTR-equivalent almost A-growing MCFTG G'.

PrROOF By Lemma 33 we may assume that G is almost Y-growing. By Lemmal34]it is decidable whether
F4 is finite for every A € N, and if not, then G does not have finite A-ambiguity. If they are, then we
may assume by Lemma 29 that all non-initial terminal rules of G are A-lexicalized. Again by Lemma [34]
it is decidable whether F, is finite for every A € A/, and if not, then G does not have finite A-ambiguity.
If they are, then we may assume by Lemma B2] that G is almost A-growing. Finally, in this case G has
finite A-ambiguity by Lemma =

30

Example 36 The MCFTG G of Example [31] is already Y-growing. Moreover, all its terminal rules are
A-lexicalized for A = {«, 8, 7,v}. Let us turn G into an almost A-growing grammar by Lemma
We omit parentheses around the arguments of unary terminals. The set F' of A-free monic rules of G
consists of the rules A — T1(0(T3,T5)), B(z1) — o(x1,A), and B'(z1) — o(x1,A). Next, for each big
nonterminal A’ € A we compute the sets Far = val(DL(Gger, A') N Thrur) and obtain

Fr ={in(T)} Fa={in(A), T1(c(T,T5))} Fp ={in(B), o(z1, A), o(z1,T1(c(T2,T3)))}
Fs = {in(S)} Fp ={in(B’), o(x1,A), o(x1,T1i(c(T2,T3)))} ,

where T' = (T1,T»,T3), which are all finite. The construction in the proof of Lemma 32 asks us to apply
e the rules pPs = (T1(1'1>,T2,T3) — (OéTl(ﬂl'l),OéTQ,")/Tg) and P = (T1(1'1>,T2,T3> — (1‘1,7’, l/) for T
to Tl(O'(TQ, Tg)) S fA and 0'(561, Tl(O'(TQ, Tg))) S ‘/_'.B N IB/, and
e the rule po = A — T1(0(B(T»),T5)) for A to o(z1,A) € FpN Fp.
Consequently, we change the set of rules of G by removing the above three A-free monic rules and adding
the following 5 rules, and the 3 additional rules that make B’ an alias of B:

A = oTy(Bo(aT,vT5)) A= o(r,v)
B(z1) — o(x1, oy (Bo(aTz,vT5))) B(z1) = o(x1,0(,v)) B(z1) = o(x1, Ti(0(B(T), T5))) -

The resulting grammar G’, which we will again call G, now has the following rules (and the rules required
to make B’ an alias of B):

A = oTy(Bo(aTe,vT5)) A= o(r,v) A = Ty (0(B(T2),T3))
B(x1) = o(x1, oT1(Bo(aTz,~T5))) B(x1) = o(x1,0(7,v)) B(xz1) = o(x1,T1(0(B(T2),T3)))
B(z1) — o(B(x1), B'(A)) B(z1) — o(z1, B'(A)) B(xz1) = o(B(z1), A)

T — (aT1(Bx1), aT, vT3) S — ad T — (x1,7,v)

with T' = (T'(21), T2, T3). This MCFTG G is not only almost A-growing, but even A-growing. It is also
almost {a, 7}-growing, which proves that L(G) has finite {c, 7}-ambiguity by Lemma [27] (as observed in
Example 24). The only rules of G (without rules with left-hand side B’) that are not A-lexicalized are

A%Tl(O'(B(TQ%Tg)) B(SCl)HO'(B(ZL'l),A)
B(xl) — U(.Tl,Tl(O’(B(TQ),Tg))) B(.Tl) — O’(B(wl),B/(A)) B(acl) — U(.Tl,B/(A)) .

It is easy to lexicalize this grammar. The first non-lexicalized rule po = A — Ty(0(B(T2),T5)) can be
replaced by the two lexicalized rules A — oT1(8(0(B(aT2),7T3))) and A — o(B(7), v) that are obtained
from po by applying the two rules for T to its right-hand side. By Lemma|(4) this process preserves L(G),
and it should be clear that the resulting grammar is LDTR-equivalent to G. Now all four rules for A
are lexicalized. The remaining non-lexicalized rule in the first column can be replaced by two lexicalized
rules in the same way. Finally, the same process can be used for all the remaining non-lexicalized rules
by applying the four lexicalized rules for A to their right-hand sides; this does, however, not preserve
LDTR—equivalence |

It remains to construct an equivalent A-growing MCFTG, which is the main result of this section.

Theorem 37 It is decidable whether or not the MCFTG G has finite A-ambiguity, and if so, there is
an LDTR-equivalent A-growing MCFTG G'. Moreover, 0(G') = 0(G) and u(G') = u(G).

PRrOOF By Lemma [35lit suffices to show that if G is almost A-growing, then there is an LDTR-equivalent
A-growing MCFTG G’. Consequently, it remains to remove all non-initial terminal rules that are singly
A-lexicalized, using the construction in the proof of Lemma Let F = {t € Pa(X)" | [posa(t)] = 1},
and let F' be the set of all (terminal) rules A — u € R such that u € F. Note that Tr = F. Since G is
almost A-growing, val(d) € F if and only if d € T, for every d € L(Gger, 4). In fact, since all non-initial
terminal rules are A-lexicalized, posa (val(d')) # 0 for every d’ € L(Gger, B) with B € N'\ {S}. Hence, if
d=p(dy,...,d;) with k > 1, then either k > 2 and both val(d;) and val(dy) contribute a lexical position

20 The resulting MCFTG is X-equivalent to G for the class X of tree transductions realized by finite-copying deterministic
top-down tree transducers with regular look-ahead.

31

to val(d), or k = 1 and both val(d;) and the right-hand side of p contribute a lexical position to val(d)
because the monic rule p is A-lexicalized. Thus, F satisfies requirement (2) of Lemma 28 Additionally,
F satisfies requirement (1) of Lemma 28 because L(G, A)NF = val(L(Gger, A)NTF) ={u| A —u € F}.
Let Fo={u| A — u € F} for every A € N, and let G’ be the LDTR-equivalent MCFTG as constructed
in the proof of Lemma[28 If p = A — (u, £) is arule of G, and f is a substitution function for £ such that
f(B) € FpU {in(B)} for every B € L, then the new rule py = A — (u[f], {B € L | f(B) =in(B)}) is
either equal to the old rule p (because f(B) = in(B) for all B € L) or is A-lexicalized (because f(B) € F
for some B € £). This implies that G’ is almost A-growing. Moreover, py is a rule of G’ only if u[f] ¢ F,
so G’ does not have non-initial terminal rules that are singly A-lexicalized, and hence is A-growing.

We finally observe that G’ has the same ranked alphabet N of nonterminals and the same set A of
big nonterminals as G, as one can easily check from the constructions in Lemmas [28 and That implies
that 8(G’) = 0(G) and pu(G') = u(G). n

Example 38 We have seen that the new grammar G in Example Blis almost {«, 7}-growing. However,
it is not {a, 7}-growing because the right-hand side of each terminal rule has exactly one lexical position
(always labeled 7). Let F be the set of all terminal rules of G; i.e.,

F={A—o(r,v), B(z1) = o(z1,0(7,v)), B'(z1) = o(z1,0(7,v)), (Ti(x1),T2,T3) = (z1,7,v)} .

In the construction in the proof of Theorem[37 we apply the rules of F' in all possible ways to the right-hand
sides of the other rules of G (and then remove the rules F'). As an example, the rule B(z1) — o(z1, B'(A))
is replaced by itself and the following three additional {«, 7}-growing rules
B(xzy) — O’(:L'l, o(A,o(r, 1/))) B(xzy) — O’(:L'l, B'(o(, l/))) and B(z1) — O'(:L'l, o(o(r,v),o(r, l/))) ,
—— S~—— SN——

B/(A) A A

B'(o(1,v))
in which we marked the substitutions. O

Since every MCFTG has finite Y-ambiguity, we obtain the following result from Theorem [37 It
generalizes the corresponding result of [89, 90] for spCFTGs, which is the special case u(G) = 1.

Corollary 39 For every MCFTG G there is an LDTR-equivalent X-growing MCFTG G'. Moreover,
0(G") = 0(G) and p(G') = p(G).

At the end of this section we consider an additional basic normal form for MCFTGs that general-
izes one that is familiar from multiple context-free grammars (viz. condition (N3) of [87, Lemma 2.2]),
and will be needed in Section We say that the MCFTG G is nonerasing if u; # z1 for every
rule (A1,...,An) = ((u1,...,up), L) and every i € [n]. Note that in a grammar G, the tree u; can only
be equal to x; if tk(4;) = 1.

Lemma 40 For every MCFTG G there is an LDTR-equivalent nonerasing MCFTG G'. If the grammar
G is A-lexicalized, then so is G'. Moreover, §(G') = 0(G) and u(G') = pu(G).

PrOOF For a sequence w = (az,...,a,) we denote, in this proof only, [n] by num(w), and a; by w|; for
every j € num(w). For every ¥ C num(w), we denote by w|y the “scattered subsequence” (a;,,...,a;,,)
of w, in which ¥ = {j1,...,jm}and 1 < j; < -+ < jp < n. Intuitively, w|y is obtained from w by
selecting the j-th element of w for every j € W.

By Lemma B0 we may assume that all terminal rules of G = (N, N, X, S, R) are Y-lexicalized. More-
over, we can assume that G has disjoint big nonterminals, as observed after Lemma The set N/
of big nonterminals of the new grammar G’ = (N,N’,3, S, R’) consists of all A|y such that A € N,
U C num(A), ¥ # 0, and rk(A[;) = 1 for every j € num(A) \ ¥. Intuitively, ¥ selects those nonterminals
of A that do not generate ;. Since all terminal rules of G are Y.-lexicalized, it is not possible that all
nonterminals of A generate z;. Note that S = S|1y and that for every A’ € N there are a unique A € N’
and a unique ¥ C num(A) such that A" = A|y because G has disjoint big nonterminals. Note also that
num(A) = num(u) for every rule A — (u, L) of G.

Let p = A — (u,£) be a rule of G with £L = {By,...,Bx} C N, and let ¥y,..., ¥, C N
such that B;|lg, € N’ for every i € [k]. Finally, let ' = u[B;|; < z1 | i € [k],j ¢ ¥;], and

32

let ¥ = {j € num(A4) | v|; # x1}. Then R’ contains the rule py,, v, = Als — (v|w,L’) with
L' ={Bilw,,. .., Bk|w,} provided that ¥ # (). This concludes the definition of G’.

For every derivation tree d € L(Gaer, A) we define ¥(d) = {j € num(A) | val(d)|; # x1}. Then, as
already observed before, we have A|yq) € N'. It is straightforward to verify that if d = p(d,...,dy),
where p is the rule of the previous paragraph, then the left-hand side of the rule py(q,),... w(a,) is Alw(a)
because val(d)|; = z1 if and only if u|; = wxy with w € {B;¢ | i € [k], £ € num(B;), val(d;)|e = z1}*.

For every derivation tree d € L(Gger, A) there exists a derivation tree d’ € L(GY,,, Alw(a)) such that
val(d') = val(d)|g(a). In fact, let d = p(ds,...,dy), and let d; € L(GY,,, Bi|w(a,)) be a derivation tree such
that val(d;) = val(d;)|w(q,) for every i € [k], which exist by the induction hypotheses. By Lemma [4{2)
we have val(d’) = val(d)|y(q) for d' = py(a,),... v, (d1, ..., d}). This shows that L(G) C L(G’). Clearly,
Ly = {d € L(Gaer,A) | ¥(d) = T} is a regular tree language for every . Thus, d’ can be computed
from d by the one-state LDTR-transducer M with the rules

<q7p(y1: L\I/17" <5 Yk L\I/k)> - PYq,..., \I/k(<q7y1>7" '7<Qayk>) .

Vice versa, for every derivation tree d’ € L(GY,,, A|lw) there exists a derivation tree d € L(Gger, A)
such that M(d) = d’ and ¥ = ¥(d), where A is uniquely determined by A|y because G has disjoint big
nonterminals. In fact, let d' = p/(d},...,d},) with d; € L(G),,,Bilw,). Then there exists a rule p as
above such that p’ = py, . w,. Clearly, if d; € L(Gger, B;) such that M (d;) = d; and ¥; = ¥(d;), then
M(d) = d and ¥ = ¥(d) for d = p(di,...,dr). Thus L(G') € L(G), and d can be computed by an

LDT-transducer. n

5. Lexicalization

In this section, in Lemma[42] we present the main lexicalization step, in which we lexicalize all non-monic
non-terminal rules. It generalizes the transformation of a context-free grammar into Operator Normal
Form (see |46, Theorem 1.2] and [3, Theorem 3.5]). We assume that G is A-growing (see Theorem [BT).
Thus, all non-initial terminal rules are doubly A-lexicalized and all monic rules are A-lexicalized. In the
following we will simply write ‘lexicalized’ to mean ‘A-lexicalized’.

For a derivation tree d € L(Gger) and a position r € pos(d) such that d(r) is a non-lexicalized rule
of rank at least 2, we say that the “source” of r is the first position ¢ in a pre-order traversal of the
second direct subtree of r (i.e., the subtree at r2) such that d(q) is a doubly lexicalized rule. Clearly,
since every terminal rule at the leaves of d is doubly lexicalized, such a position exists and can be found
by only exploring the first children of each visited node; i.e., ¢ = r21™ for some m € Ny. The basic
idea of the lexicalization construction is to remove one lexical symbol § from the source g and transport
it to the “target” r. Then d(q) is still lexicalized, and d(r) has become lexicalized. Note that different
targets have different sources, which is a simple fact that is well known to be useful (cf. |76, Section 3]
and [47, page 346]). The transportation of § from the source node ¢ to the target node r is the task of
the non-lexicalized or singly lexicalized rules at the positions along the path from ¢ to r. The required
relabeling of the derivation tree can be realized deterministically by an LDTR-transducer that uses its
look-ahead at r to determine the node label d(g). From the rewriting point of view (Section B3), it is a
guess-and-verify process. We guess at position r and verify it at position gq.

Example 41 As before, let A = {«, 8, 7,v}. Since the resulting grammar G in Example can be
lexicalized by simple substitution of rules (as discussed in Example B6]), we consider another A-growing
grammar, which is similar to the original grammar of Example [1 but has an additional non-lexicalized
rule A — B(y(A)). Moreover, we replace the rule py = B(x1) — x1 by the two doubly lexicalized rules
B(xz1) = o(x1,aT1(Bo(aT2,vT3))) and B(x1) — o(x1,0(7,v)), which are taken from Example The
(big) nonterminal B’ remains an alias of B. The resulting A-growing MCFTG, which we again call G,
has the following rules (renamed with respect to Example [7):

p1: S —aA p2: A — T1(0(B(T2),T3)) p3: A — B(vA)

ps: B(z1) = o(B(z1),B'(A)) ps: B(x1) — o(x1,aTi(Bo(aT2,7T3))) pe: Bl(x1) — o(x1,0(r,v))

py: B'(z1) = o(B(z1), B'(4)) ps: B'(x1) = o(x1,aTi(Bo(aT2,7T3))) pg: B'(x1) = o(x1,0(r,v))
P T = (aTy(Bx1), aTa, vT53) P8 T — (x1,7,v)

with T = (T1(z1), T2, T3). Rule p; is singly lexicalized, whereas rules pa, ps, p4, and p)j are non-lexicalized.
The remaining rules are doubly lexicalized. We will remove the lexical symbol 8 or 7 from each doubly

33

P2
P4/ \m
B // \ \
6 Py P2 P8
/ \ / \ !
P4 T Py taes P6 P8
I\ TN
Ps pk toss P6 pg 268

Figure 7: Derivation tree of L(Gger) for the MCFTG G of Example EI] with indicated sources, targets, and transported
lexical elements, where t26s = p2(ps, pg) with 7 transported from pg to pa.

lexicalized rule that labels a source and transport it to the target. For our derivation trees, we need to
fix the order of the big nonterminals in the rules, so we let

L(p2) =B, (T1,12,T3)} L(ps) ={A, B} and L(ps) = L(py) = {B,B', A} .

Figure[shows a derivation tree of L(Gger) together with arrows indicating sources, corresponding targets,
and transported lexical elements. A transportation of 8 is marked by a dashed arrow, whereas a transport
of 7 is marked by a dotted arrow. O

We need some more terminology. Let 2 be a ranked alphabet (such as NUX) and let X, = X \{o}; i.e.,
Xoo = {x1,22,...}. For afinite subset Z of X, if Z = {a;,,...,2;, } withn € Ny and 41 < ig < -+ < 'ip,
then we define seq(Z) = z;, - - -z, € X2, the sequence of variables in Z with increasing indices. A tree ¢
in To(X) is linear if each variable occurs at most once in it; i.e., |pos,(t)] < 1 for every 2 € X. For a
linear tree t € To(X), we denote by var(t) the set of variables x; that occur in ¢; i.e., var(t) = occx__ (t).
If seq(var(t)) = x;, - - - 2;,, then we define ren(t) = t[z;; < x; | 1 < j < n], the renumbering of t, which is
a pattern in Pq(X,,) if o does not occur in ¢. Note that ¢t = ren(t)[z; < z;; | 1 < j < n]. As an example,
if t = (x4, 0(x2,x5)) then var(t) = {xa, 24, x5}, seq(var(t)) = xox4ws, and ren(t) = o(x2,0(z1, 23)). We
will use the easy fact that if h is a tree homomorphism over Q and ¢ € To(X) is linear, then h(t) is linear
and var(h(t)) = var(t) by Lemma (1), and ren(h(t)) = h(ren(t)) by Lemma

To define contexts, we use the special variable o. A context is a tree t with exactly one occurrence
of oj i.e., |posy(t)] = 1. For a linear context t € To(X) we define reng(t) = ren(t)[o < xn41], where
n = |var(t)|. Note that reny(t) is a pattern in Po(X,+1). The above easy fact also holds for contexts:
h(t) is a linear context and, by Lemma [again, rens, (h(t)) = h(rens (t)).

For a tree t € To(X)) and a position p € posg(t), there exist a unique context ¢ € To(Xy U {o}) and
a unique tree u € Tq(X}) such that pos,(¢) = {p} and ¢t = ¢[o + u]. The context ¢ is called the p-context
of t and denoted by t|P, and the tree w is called the subtree of ¢t at p and denoted by t|,. If p € pos,(t)
with rk(w) = m, then t = ¢t|P[0 <= w(t|p1, ..., t|pm)]. Let h be a tree homomorphism over Q. By Lemma[2]
h(c[o < u]) = h(c)[o + h(w)]. Thus, if pos, (h(t[")) = {p}, then h(t[?) = h(t)|? and h(t|,) = h(t)|;.
Moreover, if p € pos,,(t) and h(w) = in(w), then p € pos, (h(t)) and iz(t|pi) = iz(t)|ﬁi for every i € [m].

Lemma 42 For every A-growing MCFTG G there is an LDTR-equivalent A-lexicalized MCFTG G'.

PROOF Let G = (N,N, %, S, R) be a A-growing MCFTG. We can assume that all its terminal rules are
doubly lexicalized because initial terminal rules can be removed from G and added after lexicalization.
Moreover, for technical convenience, we assume that there is a subset Ag; of A such that (1) for every
doubly lexicalized rule A — (u, £) there is a lexical symbol § € Ag) that occurs exactly once in w, and
(2) for every singly lexicalized rule A — (u, L), the lexical symbol that occurs in u is not an element

34

of Aq4;. This can be assumed because we could even assume that G is uniquely terminal labeled as defined
after Lemma 211 In fact, as observed there, G has a cover (Gy, h) such that G, = (N, N, %y, S, Ry) is
uniquely terminal labeled. If we let A, = {0 € X, | h(o) € A}, then Gy is Ay-growing. Let G, be a
A-lexicalized MCFTG that is LDTR-equivalent to Gy, and let G’ = (G'))p; i.e., G’ is the unique MCFTG
such that (G, h) is a cover of G'. Then G’ is A-lexicalized. Moreover, G is LDTR-h-equivalent to Gy,
and G’ is LDTR-ﬁ-equivalent to G, by Lemma 21l Consequently, we can conclude that G and G’ are
LDTR-equivalent. This shows that we could even assume that G is uniquely terminal labeled. However
we do not do so, because we wish to illustrate the construction in this proof on the grammar G of
Example d]] for which Ay, = {8, 7}.

For every doubly lexicalized rule p = A — (u, £) of G, let lex(p) € Aq) be a fixed lexical symbol that
occurs exactly once in u. In the grammar G’ to be constructed, this symbol will possibly be removed
from u, leaving a rule that is still lexicalized.

We let

Niew = {<C, 5,i,Z> | C €N, o€ Adh 0<:i< rk(5), Z C er(C)}

be a set of new nonterminals such that rk((C,0,0,Z)) = |Z| + 1 and rk((C,6,i,Z)) = |Z| for ev-
ery i € [rk(4)]. The grammar G’ will have the set of nonterminals N’ = N U Nyey-

Let us provide some intuition for these new nonterminals. We first observe that for every deriva-
tion tree d € L(Gger, A) there is a natural label-preserving bijection 74 between the sets posy (val(d))
and qupos(d)({q} x posg (rhs(d(g)))); i.e., between the set of terminal positions of val(d) and the dis-
joint union of the sets of terminal positions of the right-hand sides of the rules that occur in d, cf.
Lemma [I0(1). For positions ¢ € pos(d) and p € posy(rhs(d(q))), let 74(q,p) be the corresponding po-
sition in posy(val(d)). Since 74 is only needed in this paragraph, we do not give its straightforward,
but tedious, definition. The existence of 74 should be intuitively clear, and can be proved by induc-
tion on the structure of d; the induction step is based on the fact that for a tree homomorphism h
over N UY and a forest u, there is a natural label-preserving bijection between the sets poss (h(w))
and Uy epos(u) ({q} x posg(h(u(q)))), cf. Lemma [I}2). Now, roughly speaking, the intuition for the new
nonterminals is the following. Consider a derivation tree d € L(Gger, A), and let ¢ be the shortest position
of d of the form 1™ for some m € Ny such that p = d(q) is doubly lexicalized. Thus, ¢ is a potential source
for a target that has d as its second direct subtree (in some other derivation tree). Let lex(p) = d, and
let p € posy(rhs(p)) be the unique d-labeled position of the right-hand side of rule p. Moreover, suppose
that the corresponding d-labeled position 74(g, p) of val(d) belongs to the j-th tree ¢ of the forest val(d)
with 1 < j < |Al; i.e., Ta(q,p) = #771p’ with p’ € pos(t). Let the nonterminal C be the j-th element of
the big nonterminal A. Thus, C (as part of A) generates (in G) the terminal tree t. Then (C, 6,0, Zy)
generates (in G’) the p’-context of ¢ (with o at position p’), and (C, 6,1, Z;) generates the subtree of ¢
at p'i for every ¢ € [rk(d)]. The sets Zy and Z; consist of the variables that occur in that context and
that subtree, so Zy = var(t|?) and Z; = var(t|,;). To be more precise, (C,d,0, Zy) generates ren, (t[P")
and (C, 0,1, Z;) generates ren(t|p;).

We now continue the formal proof. For a nonterminal C' € N, we say that the triple (C,4,7) is a
skeleton of C if § € Agq) and Z = (Zy, Z1, ..., Zm), where m = k() and {Zy, Z1,...,Zm} is a partition
of er(c) For such a skeleton, we will denote by tree(C,d, Z) the tree

(C,0,0, Zo) seq(Zo) 6({C, 0,1, Z1) seq(Zn), - ., (C 6,m, Zim) sed(Zm))

of which we observe (for clearness sake) that it looks as follows:

(C, 46,0, Zo)
ZO// \z"\(s
el
TN
(C,6,1,Zy) e (C6,m, Z,y,)
N AN
21 Z\lzll Pig e 2

21Recall from the beginning of Section [that we allow the empty set to be an element of a partition. Thus, we allow
Z; = 0.

35

where seq(Z;) = 2% - - - ZIiZi\ for every 0 <4 < m. Note that tree(C, 4, Z) € Py, uis}(Xik(c)). Moreover,
we will denote ydy, _ (tree(C,d, Z)) by seq(C, 6, Z); i.e., seq(C, 4, Z) is the sequence

<C, (S, O, Z0><C, (S, 1, Z1> e <C, (S, m, Zm> .

Obviously, the skeleton (C,§, Z) can be reconstructed from seq(C, d, Z), and hence from tree(C, 6, 7).
To motivate tree(C,d, Z) and seq(C, 0, Z), we observe that for every pattern ¢ € Pn/us(Xyk(c)) and
every d-labeled position p’ of ¢ (i.e., p’ € poss(t)), the pattern ¢ can be decomposed as

t = tree(C, 0, Z)[seq(C, 8, Z) + (to,t1,. - tm)] ,

where to = reng(t[’') is the renumbered p/-context and Zy = var(t|”’) is the set of its variables be-
fore renumbering, and moreover, for every ¢ € [m], t; = ren(t|,;) is the renumbered subtree at p'i
and Z; = var(t|p;) is the set of its variables before renumbering. Intuitively, tree(C,d, Z) can be viewed
as the “skeleton” of this decomposition, which was our reason to call (C,d, Z) a skeleton of C.

We let Mpew be the new set of big nonterminals of the form 3 - seq(C,d,Z) - v, where Cy € N
with C € N and 8,7 € N*, and (C,4,7) is a skeleton of C. We now construct the new MCFTG
G = (N',N',%,S,R') with N' = N U Npew and NV = N U Myew. To define the set R’ of rules of G’,
we first define an auxiliary MCFTG G4 = (N, N, %, S, RU R,) where R, is a set of new rules that,
intuitively, realize the transport of a lexical symbol from a source to a target (but not yet its arrival at
the target).

For every doubly lexicalized rule p = A;--- A, — ((u1,...,upn),L) of G with £L = {By,..., B}
(in that order), A; € N, and u; € Pyus(Xykea,)), we define a skeleton x(p) and a new rule p in Ry
as follows. Let § = lex(p) and let #7~1p be the unique d-labeled position of (ui,...,u,), so j € [n]
and poss(u;) = {p}. Moreover, let u = u;, tk(d) = m, and Z = (Zy, Z1, ..., Zp) with Zy = var(u|P) and
Z; = var(uly;) for every i € [m]. Then we define x(p) = (4;,0, 7). Note that u € Pyus(Xixa,)) and
hence (A4;,9,Z) is a skeleton of A;. Additionally, we define the rule

ﬁ: Al---Aj_l-Seq(Aj,(S,Z)-Aj+1---An
— ((ul, ey Uj—1,00,V15 - ooy Umy Ujgd,y - - ,un), [,) s
where vy = rens (ul?) and v; = ren(ulp;) for every ¢ € [m] (and £ = {Bj,..., By}, in the same order).
Clearly, p is lexicalized because |posa ((u1,...,uy))| > 2 and |posa ((vo, ..., vm))| = |posa (u)] — 1.
For every non-lexicalized or singly lexicalized rule p = Ay ---A4, — ((u1,...,u,),L) of G with

L = {Biy,...,Br} and k > 1, and for every skeleton (C,d, W) such that C € occ(By), we define a
skeleton x(p, (C,0,W)) and a new rule pcsw in Ry as follows. Let j € [n] be the unique integer such
that C' € ocen(uj), and let v’ = u;[C <+ tree(C,d, W)]. Moreover, let rk(6) = m, poss(u’) = {p}
and Z = (Zy, Z1,...,2Zp) with Zy = var(v/|P) and Z; = var(u/|p;) for every ¢ € [m]. Then we de-
fine k(p, (C,0,W)) = (4;,6,Z). Let By = BC~ for some 3,y € N*, which are unique because Bj is
repetition-free. Then we define the rule

posw = Ar---Aj_1-seq(A;,0,Z) - Aji1--- Ay
= (U ey U1, VY VY e U U1y e ey U)y L)
where v = rens (u/|P) and v] = ren(v/|p;) for every i € [m]. Additionally, L' = {Bj}, Bs, ..., By} with
B = 8 -seq(C,0,W) - ~. Note that pc 5w is non-lexicalized or singly lexicalized, respectively, because
[posa (09, V1, - - -, vj))| = [posa (w)] = 1 = [posa (ug)].

These are all the rules of Ry. Thus, G4 is the grammar obtained from G by adding all the above
new rules p and pc 5w to R. It is straightforward to check that from the rule p the original rule p can be
reconstructed, and similarly, from pc 5w we can reconstruct both p and (C, d, W). Note that all terminal
and all monic rules of G are lexicalized.

We now define the set R’ of rules of G’. First, R’ contains all lexicalized rules of G4. Second, we
define rules that realize the arrival of a lexical symbol ¢’ at a target. Let p = A — (u, L) be a non-
lexicalized rule of G4 with £ = {By,...,Bi}, where k > 2, B € N U Njew, and B; € N for 2 < i < k.
For every skeleton (C”,4’, Z) such that C’ € occ(Bz), we define the new rule {p)cs ¢,z in R’ as follows.

22Note that by our second assumption on G, the symbol § does not occur in u; because § € Aq) and p is non-lexicalized
or singly lexicalized.

36

Let By = 8C’'y with ¢/ € N and 8,7 € N*, which are again unique because By is repetition-free.
Then {(p)cr 51,z = A — (W', L"), where v’ = u[C’ + tree(C’,d’,Z)] and L' = {B1, B, Bs, ..., By} with

= [-seq(C’,d',Z) - . Clearly, (p)cr s,z is lexicalized because §’ occurs in its right-hand side. It is
easy to check that from the rule (p)c- s,z we can reconstruct both p and (C”,d’, Z). Thus, R’ consists
of:

e all lexicalized rules p of G,

e all rules p, where p is a doubly lexicalized rule of G,

o all rules pc 5w, where p is a singly lexicalized rule of G, and

o all rules (p)c 5,z and (pc.s,w)c.s,z, Wwhere p is a non-lexicalized rule of G.
This ends the construction of G’. It remains to show that G and G’ are LDT®-equivalent. We first show
how to transform the derivation trees of G into those of G’. We start by defining a skeleton for every
derivation tree of G.

For every derivation tree d € L(Gger, A) we define a skeleton x(d) = (C, 6, Z) with C' € occ(A) (and
0 = lex(p) for the label p of the shortest position of d of the form 1™ such that p is doubly lexicalized).
The definition is by induction on the structure of d = p(ds,...,dr). If p is a doubly lexicalized rule
(in particular if & = 0), then we define x(d) = k(p) as defined above. Otherwise p is not doubly
lexicalized (and so k > 1); let p = A — (u, L) with £ = {By,..., Bi}. By the induction hypothesis we
have k(dy) = (C,6,W), where C € occ(B;1). Then we define k(d) = k(p, (C,0,W)) as defined above.
Clearly, for every skeleton (C, 4, Z), the set of derivation trees

Lesz={d€ | J L(Gaer, A) | 5(d) = (C,6,2Z)}
AeN

is a regular tree language, which can be recognized by a deterministic bottom-up finite tree automaton
using all skeletons as states.

For every derivation tree d € L(Gger, A) we define two derivation trees dtry (d) and dtra(d) of G’ with
dtri(d) € L(GY,,,A) and dtra(d) € L(GL,,,5 - seq(C,0,Z) - v), where k(d) = (C,6,Z) and A = BCx

der»

with 8,v € N*. These two derivation trees are relabelings of d. They are defined by induction on the
structure of d = p(dy, ..., d).
e If p is a doubly lexicalized rule (in particular, if k¥ = 0), then we define
dtr1 (d) = p(dtr1 (dl), . ,dtr1 (dk))
dtrg(d) = ﬁ(dtrl (dl), N ,dtI‘l (dk)) .
e Now let p = A — (u,L) be a rule with £ = {Bj,..., Bi} that is not doubly lexicalized (and
hence k > 1). Moreover, let k(dy) = (C, 6, W), where C' € occ(By).
— If p is singly lexicalized, then we define
dtrl(d) = p(dtrl(dl), N ,dtI‘l (dk))
dtrg(d) = pcygﬁw(dtrg(dl), dtrl(dg), ey dtI‘l (dk)) .
— If p is non-lexicalized, and thus k& > 2, then we let k(d2) = (C’,0’,Z), where C' € occ(Baz),
and we define
dtrl(d) = <p>C/7§/7z(dtI‘1(d1), dtrg(dg), dtrl(dg), e ,dtrl(dk))
dtrg(d) = <pc,57w>cl7§/7z(dtr2(d1), dtrg(dg), dtrl(d3), e ,dtI‘l (dk)) .

Clearly, there is an LDTR-transducer M that transforms d € L(Gqer) into dtri(d) € L(G),,)- It has
states ¢; and go with initial state g1, and it uses the regular tree languages L¢ 5,z as look-ahead. It
has the following rules, corresponding directly to the above definitions, where {(q1,y; - - yx) abbreviates

(q1,9i)s -+ (a1, yw) for i € [K]:
e for every doubly lexicalized rule p

<Q1,y1 >)
<q1,y1 >)

<q15 p(yla s 7yk)> - p(
<q25 p(yla s 7yk)> - p(
e for every singly lexicalized rule p and every skeleton (C,§, W)
(a1, p(yr, - - yk)) = p((ar, y1 - yk)
(2, p(y1: Losw,yzs -5 yk)) = posw (a2, y1)s (a1, y2 - y)

37

e and for every non-lexicalized rule p and all skeletons (C’, ¢, Z) and (C, 6, W)

(g1, p(y1,92: Lers z0Y3s- -5 Uk)) = (p)erer,z({q1, v1), (a2, 92) (15 Y3 -+ Yi)
(@2, p(y1: Losw,y2: Lers z,y3, -, yk)) — (pesw)cr s z({q2, 1), (g2, y2)s (@1, Y3 - - - Uk)) -

We will prove below that d and dtr; (d) have the same value. However, to express the relationship between
val(d) and val(dtrz(d)), we need the following definition. Let A € N be a big nonterminal and (C, §, Z) be
a skeleton such that A = SC~v for some §,7 € N*. Moreover, let s and s’ be forests in Ps(X)* such
that rk(s) = rk(A) and s = (tn for some (,n € Ps(X)* with |(| = [8| and t € Pz(X,k(c)). We note
that 8, v, ¢, t, and n are unique given A, C, and s. We say that s’ decomposes s for A and (C,0,7Z) if
there exists a position p’ € poss(t) such that s’ = ¢ - (to, t1, ..., tm) - 1, where m = rk(6), to = reng (¢*"),
Zo = var(t|P), and t; = ren(t|,;) and Z; = var(t|,;) for every i € [m).
We now prove by induction on the structure of d € L(Gger, A) that
(i) val(dtri(d)) = val(d) and
(ii) val(dtra(d)) decomposes val(d) for A and x(d).
Let d = p(dy,...,dx) and suppose that (i) and (ii) hold for dy, ..., dk.
e We first consider the case where p is doubly lexicalized. Since (i) is obvious from the definition
of ‘val’ and by the induction hypotheses, it remains to prove (ii). Let p be as in the definition of p,
and let us adopt the terminology in that definition. Abbreviating [B; < val(d;) | 1 <1i < k] by [f],
we obtain that

val(d) = (U1, ..., Uj1, U Ujt1, - - -, Un) [f] = ¢t

Val(dtrQ(d)) = (ula sy Uj—1,00,V15 v oy Umy Uj4 1y .- - 7un)[f] = C ' (toatla v 7tm) o,
where the first equality in the second line uses the induction hypotheses and where we define
¢ = (uty...,u;—)[f], t = ulfl, 7 = (Wjt1,...,un)[f], and ¢t; = v;[f] for every 0 < i < m. We
know that vy = rens (ul?), Zy = var(ulP), and v; = ren(ul,;) and Z; = var(ulp;) for every i € [m].
It remains to show that a position p’ € poss(t) exists with to = reng (t'), Zo = var(¢|?'), and
t; =ren(t|y;) and Z; = var(t|,;) for every i € [m]. We select the unique position p’ € pos, ((u|P)[f])-
Then, using the easy facts that are stated before this lemma (for the tree homomorphism correspond-
ing to [f]), we obtain that (u[?)[f] = u[f][" = t[" with p' € poss(t), and (ulp:)[f] = w[f]p = tlps,
and so

to = vo[f] = rens (ul?)[f] = ren, (u[P[f]) = rens (")
Zy = var(ul?) = var(u[?[f]) = var(t]"")

and similarly for t; = v;[f] and Z; for every i € [m].

e Next we consider the case where p is non-lezicalized, and we prove (i). Let p be as in the definition
of (p)cr 1.z with k(dz) = (C', ¢, Z), where C’ € occ(Bz), and let us adopt the terminology found
there. By definition, dtrq(d) = (p)c’ e,z (dtr1(d1), dtra(da), dtri(ds), . .., dtri(dy)). Hence,

val(dtry(d)) = u[C’ « tree(C’,d’, Z)]|[B1B4Bs - - - By, < val(dy) val(dtra(dz)) val(ds) - - - val(dg)] .

We know that By = SC’y and By = (8 -seq(C’,8',Z) - v. Let val(da) = (tn with |¢] = |B|. By (ii)
for dg, there exists p’ € posg(t) such that val(dtra(ds)) = ¢ - (to, t1,...,tm) - 1, where m = rk(d),
to = reng (t[P"), Zo = var(t|P"), and t; = ren(t|,;) and Z; = var(t|,;) for every i € [m]. By Lemmas
[d(2) and [d(4), we now obtain that

val(dtry(d)) = u[C” « tree(C”, &', Z)[seq(C', &', Z) + (to,t1,. .-, tm)]] l] ,

where [g] = [By - Sy - Bs--- By « val(dy) - {n - val(ds)---val(di)]. As observed earlier (in the
paragraph after the definition of ‘tree’ and ‘seq’),

tree(C’, 8", Z)[seq(C’, 8", Z) + (to,t1,. .. tm)] =1t
and so, again by Lemmas [{2) and E{(4),
val(dtri(d)) = u[C" < t][g] = u[B1 - BC'y - B3 -+ By, < val(dy) - (tn - val(ds) - - - val(dy)] ,
which equals u[B; « val(d;) | 1 <1 < k] = val(d).
38

@ O—uD
OanO®

Figure 8: The graphs g [left] and greq [right] constructed in Example [43]

@O D

e Next we consider the case where the rule p is singly lexvicalized. Again, (i) is obvious, so it re-
mains to prove (ii). Let p be as in the definition of pcsw, and let us adopt the terminology
there. Note that p = A — ((u1,...,upn), L) with £ = {By,...,Bx} and By = SC~. Consider
the auxiliary new rule p’ = A — ((u1,...,uj-1, %, ujq1,...,u,), L) with £ = {B{,Ba,..., Bk}
and B] = S -seq(C,0,W) -~. This rule p’ is analogous to the rule {(p)c 5w, except that C oc-
curs in By instead of B (and p is singly lexicalized instead of non-lexicalized). However, we can
prove val(d’) = val(d) exactly as in the previous case, where d' = p/(dtra(dy), dtr1(dz), ..., dtri(dy)).
Also, the rule pcsw is analogous to the rule p/, if we define lex(p’) = 6. In the first (doubly
lexicalized) case we have shown that the value of p(dtry(dy),...,dtr1(dx)) decomposes the value
of d = p(di,...,dy) for A and k(d) under the assumption that dtri(d;) and d; have the same value.
In exactly the same way we can prove here that the value of pc s w (dtra(dy), dtri(dz), . .., dtri(dg))
decomposes the value of d' = p/(dtra(dy),dtri(da),...,dtr1(dy)) for A and x(d’). In other words,
val(dtrz(d)) decomposes val(d) for A and k(d’). Since k(d') = k(p") = k(p, (C,§, W)), which in turn
equals k(d), this proves (ii).

e It remains to prove (ii) in the case where the rule p is non-lexicalized. We now apply the argument
that we used to prove (i) to the rule pc s w instead of p. For pcsw we obtain from the previous
case (even though p is a non-lexicalized rather than a singly lexicalized rule) that the value of

pcﬁ&yW(dtI‘Q (d1>, dtI‘l (d2>, ‘e ,dtI‘l (dk))
decomposes val(d) for A and x(d). From the argument for (i) we obtain that the value of

<pC,6,W>C’,5’7Z(dtI“2(dl), dtrg(dg), dtry (d3), ..., dtry (dk))

equals the value of pc 5w (dtra(dy),dtri(ds), ..., dtr1(dx)), hence val(dtra(d)) decomposes val(d)
for A and k(d).
This concludes the proof that L(G) C L(G"). To prove the converse L(G’') C L(G), it is straightforward to
check that, vice versa, (i) for every derivation tree d’ € L(GY,,, A) there is a derivation tree d € L(Gger, 4)
with dtri(d) = d’, and (ii) for every derivation tree d’ € L(G),,, B - seq(C,d, Z) - 7) there is a derivation
tree d € L(Gger, BC7) with dtra(d) = d' and k(d) = (C,0,Z). To be precise, in both cases d can be
obtained from d' by changing every label p, pc.sw, {(p)c'.s'.z, and (pc.sw)cr.s,z into just p. Thus, it is
obvious that d can be computed from d’ by an LDT-transducer. Hence G and G’ are LDTR-equivalent.
Finally, we present a procedure that directly constructs the reduced version of G’ provided that G is
reduced. For a rule p = A — (u,L) with £ = {By,..., By}, we define bign,(p) = B; for ¢ € [k] and
bigng (p) = A.
e Construct the set Target C N of all bign,(p), where p is a non-lexicalized rule.
e Construct the directed graph g with set A/ of nodes and with edges bign,(p) — bign, (p) for all
non-lexicalized and singly lexicalized rules p, and let g,eq be obtained from g by removing all nodes
(and all incident edges) that are not reachable from a node in Target.
e Let Skel be a variable set of skeletons, which is initialized to .
e Compute all rules p such that bign,(p) is a node of greq, and add x(p) to Skel.
e Repeat the following subitem until Skel does not change any more:
— compute all rules pcsw such that (C,d, W) is in Skel and the edge bign(p) — bign, (p) is
in gred, and add k(p, (C, 6, W)) to Skel.
e Finally, compute all rules (p)c- 5.z such that (C’, ¢, Z) is in Skel, for the rules p obtained so far.
We leave the correctness of this procedure to the reader. n

39

Example 43 Let us lexicalize the new grammar G of Example HIl according to the construction in the
proof of Lemma We immediately construct the reduced version of G’ with the procedure presented
at the end of the proof of that lemma. Note that G satisfies the assumptions mentioned in the beginning
of the proof for Ag; = {8, 7}. For the doubly lexicalized rules p of G; i.e., for the rules

ps: B(w1) — o(x1,aT1(Bo(aT,¥T3))) pe: B(w1) — o(xy,0(z,v))
P T — (aT1(Bx1), aTa, vT3) P8 T — (x1,71,v)

(and the rules pf and pj) we define lex(p) = 3 if 5 occurs in p, and lex(p) = 7 otherwise. We marked the
lexical element in the rules by underlining it. We obtain that Target = {T, B, B'}, where T' = (T1, T», T3).
The graphs g and greq are displayed in Figure 8 Since all doubly lexicalized rules p have their left-hand
side in gyeq, We construct the new rule p for each of them. We will use the following abbreviations for the
new nonterminals

Bgo = (B,f,0,{z1}) Bg, = (B,(,1,0) B, =(B,7,0,{x1}) of rank 2, 0, and 2, resp.
TLI@,O = <T1,6,0,(Z)> leg,l = <T1,6,1,{.’L‘1}> TQ,T = <T2,T,O,(Z)> all of rank 1.

Then we obtain the new rules p5 and pg on the first line and the rules p, and pg on the second line:

(Bg,o(21,72), Bg1) = (0(x1,aT1(72)), o(aTz,vT3)) B (z1,72) — o(z1,0(72,v))
(Thg0(z1), Th5,1(21), T2, T3) — (aT1(21), 71, aTo, vT3) (T1 (1), To 7 (1), T3) = (21, 21,V) .

The construction of the first new rule is illustrated in the top box of Figure @ The rules p; and py are
obtained from 75 and pg by changing every B into B'. Let Zg = ({x1},0), Z, = ({z1}), Z = (0, {z1}),
and Z. = (0). Then

Skel = {(BaﬁaZB)a (Blaﬁazﬂ)a (BaTa Z‘r)a (BlaTaZT)a (Tlaﬁazz-})a (TQaTaZ;—)} .

The only non-lexicalized or singly lexicalized rules p with bign,(p) — bign,(p) in greq are the rules
ps = B(x1) = o(B(z1), B’(A)) and the corresponding rule p), with left-hand side B’(x;1). Since its first
link is the nonterminal B, we construct the new rules pc 5w for (C,6, W) € {(B, 8, Z3), (B, T, Z;)} C Skel
and p € {p4, p)}. For the right-hand side u of ps (and p);) we get

u[B « tree(B, 3, Z3)] = u[B + Bg,o(z1,8(Bgs,1))] = o0(Bg,o(z1,8(Bs,1)), B'(A))
u[B <+ tree(B, T, Z;)] = u|B <+ B(z1,7)] = 0(B,(x1,7), B'(4)) ,

and consequently we obtain the rules

(pa)B..z5 = (Bpo(1,22), Ba1) — (0(Bpo(z1,72), B'(A)), Bg1)

(p4)B.r,z, = Br(x1,22) = 0(Br(21,22), B'(A)) ,

and similar rules for pj. The construction of the first rule is illustrated in the bottom box of Figure
Clearly, the set Skel does not change, so we do not have to repeat this step. In the final step we lexicalize
the non-lexicalized (old and new) rules by substituting tree(C’, ¢, Z) for a nonterminal C” of the second
link of each rule. From ps = A — T1(c(B(T32),T3)) we obtain the following two new rules, by substituting
tree(11, B, Z) = T1,5,0(B8T1,,1(21)) and tree(T,7, Z1) = Ts, - (7) for T1 and T respectively:

(p2)11,8,2;, = A= T1p0(BT1p1(0(B(T2), T3)))
(p2)1s,r,2; = A = T1(0(B(12,7(7)), T3)) -

Moreover, from ps = A — B(yA) and py = B(x1) = o(B(z1), B'(A)) we obtain the new rules

(p3)B.8,25 A — Bgso(vA,BBg,1)
p3)Brz, = A= Br(vA,7)

(pa)pr 8,25, = B(x1) = o(B(21), B o(4, Bj 1))

(pa)B',r.z, = B(x1) = o(B(x1), By(A,7))

40

o
/\
Ty «
| o
1 /\ o
B | Bg,o T« /\
| - 8 /N Bsa = | d
1 \ T1 T3 T, | ‘
o | T2 T3
/N &
(‘X Y
|
T T3
o
/\
B Bgo B
Introducing an extracted : | — / \ ‘
T 1 ﬁ A
|
Bgs 1
o o
B /\ Bg o /N
| - B B /\ Bsi — Bso B’ Bga
1 | | T X2 / \ 1
r1 A T1 T2 A

Figure 9: Illustration of the construction of the rule ps extracting the underlined 8 [top box| by splitting the right-hand
side into the parts above and below the extracted symbol. In the construction of the rule (p4)p,g,z, [bottom box] we first
introduce the lexical element 3 (replacing B) and the corresponding nonterminals [top rule] and then extract it again to
obtain the final rule displayed at the bottom right.

and from the rules (p4)p,p,z, and (p4)B,r,z, we obtain

((p4)B.p.25)B" 8,25 = (Bgo(1,22), B 1) — (0(Bgo(x1,22), By (A, BBj 1)), Bp.1)
((p)B,,25) B/ 7,2, = (Bpo(w1,22), Bg1) = (0(Bg,o(x1,22), BL(A, 7)), Bg,1)
((pa)B,r,2,)B',p.25 = By (x1,22) = 0(Br(21,22), Bs o(A, BBj 1))
((pa)B,7.2.) B 7.2, By (21,22) = 0(Br(v1,22), By(A, 7))

and similar rules for p}. The (reduced) lexicalized grammar G’ has the rules

® p1, P55 P6, P75 P85 Ps> Pes P75 Pss

° <p2>T1,ﬁ,Zéa (P2)T5.7.225 (P3)B.B. 25+ \P3)B,7. 2., (Pa)B' .25, (P2) B’ 7.2,

* ((pa)B.g.25)B 8,25 ((P4)B.3.25)B 7.2, {(P4)B.7.2,) B .25, {(P4)B.7.2.) B! 7.2,
and the corresponding rules for p), pf, and pg. Note that in all these rules, as in the grammar G of
Example [7 there is only one possibility for the set of links £. Note also that the left-hand sides of
the primed rules are aliases of the left-hand sides of the nonprimed ones. We finally observe that rules
<P2>T1,ﬁ,Z23 and p; can be replaced by one rule A — oT1(Bo(B(aTy),~13)), and similarly (p2)r, - 2!
and pg can be replaced by A — o(B(7),v). In fact, these rules could have been obtained directly in
the beginning as observed in Example After this replacement, and disregarding the primed rules for
aliases, the resulting lexicalized grammar has 17 rules.

Consider in the derivation tree d of Figure[7] the path from the root to the left-most leaf with label ps.
The sequence of node labels along this path is (p1, p2, pa, P}, P4, P35, ps). In the derivation tree dtr (d) of G
these nodes are relabeled to (p1, (p2)1y,8,2;: (P4) B8 24, ((P4) B,8,24) B/ 7.2+ ((P4) B8, 24) B .25+ D5, P8)- O

41

We now state the main theorem of this paper.

Theorem 44 [t is decidable for the MCFTG G whether or not G has finite A-ambiguity, and if so,
there is a A-lexicalized MCFTG G’ that is LDTR-equivalent to G. Moreover, G’ can be chosen such that
0(G") = 0(G) + 1 and u(G') = u(G) + mrka P

PRrRoOF The first statement is immediate from Theorem 37 and Lemma Since Theorem [37] preserves
0(G) and p(G), it suffices to check that the construction in the proof of Lemma (2] satisfies the second
statement. n

Note that if A C %(%) then G’ has the same multiplicity as G. Thus, as a corollary we obtain (a more
specific version of) the main result of [70].

Corollary 45 If we have A C 2O then Theorem [{4] holds for spCFTG instead of MCFTG.

Since every MCFTG has finite (X(®) U ©(1))-ambiguity, we also obtain the following special case of
Theorem (E4]

Corollary 46 For every MCFTG G there is an LDTR-equivalent S-lexicalized MCFTG G’ such that
0(G") =0(G)+1 and u(G") = u(G) + 1.

It should be clear that Theorems 7 and 4] can be combined. If G has finite A-ambiguity, then there
is an LDTR-equivalent A-growing A-lexicalized MCFTG. Since every A-lexicalized MCFTG is almost
A-growing, it suffices to apply once more the construction in the proof of Theorem BT to the A-lexicalized
MCFTG G’ of Theorem [44

It should even be clear that, by combining rules in a standard way, we can now ensure that every rule
contains at least n lexical symbols for any n € N. This will be used in Section [6.3l Unfortunately, such
a combination of rules cannot be realized by an LDTR-transducer4 For every n > 1, let us say that a
rule A — (u, L) of an MCFTG G is n-A-lexicalized if |posa(u)| > n, and that G is n-A-lexicalized if all
its proper rules are n-A-lexicalized.

Lemma 47 For every A-lexicalized MCFTG G and every n > 1 there is an n-A-lezicalized MCFTG G’
such that 0(G") = 0(G) and u(G") = u(G).

PrOOF The proof is by induction on n. For the induction step, let G be an n-A-lexicalized MCFTG.
We may assume that all non-initial terminal rules of G are (n + 1)-A-lexicalized because otherwise we
can apply once more the construction in the proof of Theorem BT for F = {t € Px(X)* | n = |posa (¢)|}.
Moreover, we may assume that every big nonterminal A # S has an alias A such that A and A do not
occur together in any right-hand side of a rule. This can be achieved by introducing a new symbol C' for
every nonterminal C, and letting A = (Ay,..., A,) be an alias of A = (Ay,..., A,).

Now let G = (N, N, %, S, R). We construct G’ = (N, N, %, S, R’), where R’ is defined as follows. Let
p=A— (u,L)bearulein R with £L ={By,...,Bx}and k > 1, and let p’ = B; — (v/,L') bearulein R
with left-hand side By and £' = {Bj,...,B;}. Let " = u/[B] + in(BZ'-) | 1 <i</{]. Then R’ contains
the rule (p, p') = A — (u[A1 < "], L"), where L = {B},..., B}, Ba,..., By}. Moreover, R’ contains all
terminal rules of R. Obviously, G’ is (n + 1)-A-lexicalized.

It is straightforward to prove that the derivation trees of G’ are obtained from those of G by the
value-preserving mapping M such that if d = p(p'(d},...,d}),d2, ..., ds) then

M(d) = <p7 pl>(M(d/1)7 .- '7M(d2)7M(d2)a s aM(dk))v

and if d = p where p is a terminal rule then M (d) = d. Vice versa, the derivation trees of G are obtained
from those of G’ by the value-preserving tree homomorphism M’ such that

M/(<p, pl>) = p(pl(zla oo azf)a Tlt1y---s szrkfl)

and M'(p) = p for every terminal rule p. That proves that L(G') = L(G). n

23Recall that mrka is the maximal rank of the symbols in A.
24 Tt can be realized by a finite-copying deterministic top-down tree transducer with regular look-ahead.

42

6. MCFTG and MC-TAG

In this section we show that MC-TAGs have (“almost”) the same tree generating power as MCFTGs. It
is shown in [61] that non-strict tree adjoining grammars (nsSTAGs) have the same tree generating power as
monadic spCFTGs, where an spCFTG G is monadic if (G) < 1; i.e., all its nonterminals have rank 1 or 0.
In the first subsection we prove that MCFTGs have the same tree generating power as non-strict set-local
multi-component tree adjoining grammars (nsMC-TAGs), generalizing the result of |61]. To avoid the
introduction of the formal machinery that is needed to define nsMC-TAGs in the usual way, we define
them to be “footed” MCFTGs, similar to the footed spCFTGs from [61]. As shown in [61, Section 4]
for nsTAGs, the translation from one definition to the other is straightforward. In the second subsection
we prove that MCFTGs have the same tree generating power as (strict) set-local multi-component tree
adjoining grammars (MC-TAGs), where we define MC-TAGs as a special type of footed MCFTGs. The
last result implies that MC-TAGs can be (strongly) lexicalized. It also implies, as shown in the third
subsection, that MCFTGs have the same tree generating power as monadic MCFTGs (i.e., MCFTGs of
width at most 1), which is essentially the same result as in |1, Theorem 3] These results can be viewed
as additional normal forms for MCFTGs.

Roughly speaking, the transformation of an MCFTG into an MC-TAG will be realized by decomposing
each tree u; in the right-hand side of a rule A — (u, £) with A = (44,...,A,) and u = (uy,...,u,) into
a bounded number of parts, to replace u; in u by the sequence of these parts, and to replace A; in A by
a corresponding sequence of new nonterminals that simultaneously generate these parts. This is similar
to the construction in the proof of Lemma (2] where, however, just one u; was decomposed into parts.

6.1. Footed MCFTGs

Tree adjoining grammars (TAGs) are closely related to “footed” (simple) context-free tree grammars as
shown in [61), Section 4]. An spCFTG is footed if for every rule A(z1,...,z;) — u with k& > 1 there is
a node of u with exactly k children, which are labeled z, ...,z from left to right. In other words, the
arguments of A are passed in the same order to one node of u. In this section we generalize this notion
to MCFTGs and prove that for every MCFTG there is an equivalent footed MCFTG.

Definition 48 Let G = (N, N, X, S, R) be an MCFTG. A pattern t € Pyys(Xy) with k € Ny is footed
if either £ = 0, or k > 1 and there exists a position p € posy 5 (t), called the foot node of ¢, such that
tk(t(p)) = k and t(pi) = x; for every i € [k]. Arule p=A — ((u1,...,un), L) € R is footed if u; is
footed for every j € [n]. The MCFTG G is footed if every rule p € R is footed. O

Note that, by definition and for technical convenience, every tree t € Tyus = Pyus(Xo) is footed.
The foot node of a footed pattern t € Pyyus (X)) with k > 1 is obviously unique. If p is the foot node of ¢,
then t|, = in(¢t(p)). It is straightforward to show, for a footed MCFTG G, that if (¢1,...,t,) € L(G, A),
then ¢; is footed for every j € [n]. Assuming that G is reduced, this implies that (G) < mrks. Moreover,
G is permutation-free and nonerasing (cf. Lemmas 22] and Q).

Based on the close relationship between non-strict TAGs and footed context-free tree grammars
as shown in [61, Section 4], we define a non-strict tree adjoining grammar (in short, nsTAG) to be
a footed spCFTG, and similarly we define a non-strict (set-local) multi-component TAG (in short,
nsMC-TAG) to be a footed MCFTG. This definition will be motivated after we have proved that for
every MCFTG there is an equivalent footed MCFTG, which shows that MCFTGs and nsMC-TAGs have
the same tree generating power.

It is shown in [61, Proposition 3] that every monadic nonerasing spCFTG can be transformed into
an equivalent footed spCFTG. However, the proof of that proposition is not entirely correct, which can
be seen from the following example. Consider the spCFTG G with rules S — A(e), A(x1) = o(A(x1)),
and A(z1) — 7(a,21,b). Clearly, the last rule is not footed. In the proof of |61, Proposition 3] this
grammar is transformed into the equivalent spCFTG G’ with rules S — A(e), S — A'(Th,e,T3),
A(z1) — o(A(x1)), Alxr) — o(A(Th,21,T3)), A'(x1,22,23) — 7(21,22,23), T1 — a, and T3 — b.
However, the rule A(x1) — o(A'(Th,x1,T5)) is not footed, which is due to the fact that the foot node
of the right-hand side o(A(x1)) of the second rule of G has a nonterminal label. The solution to this

25Tt is shown in [I, Theorem 3] that multi-parameter STTs (streaming tree transducers) have the same power as one-
parameter STTs. Multi-parameter STTs are closely related to finite-copying macro tree transducers (cf. |1, Section 4.2]),
and hence to MCFTGs as will be shown in Section [8l The number of parameters of the STT corresponds to the width of
the MCFTG.

43

Figure 10: Decomposition into footed patterns.

problem is to introduce the nonterminals 77 and T3 in the first step of each derivation rather than in the
last step. Thus, the footed spCFTG G” with rules S — A'(Th,e,T3), A'(x1,x2,x3) = o(A'(x1,x2,x3)),
A'(x1,22,23) — 7(x1,22,23), T1 — a, and T3 — b is equivalent to G. It is not difficult to repair the
proof of |61, Proposition 3|, but the construction becomes more complicated. We generalize that con-
struction in the proof of the next theorem (without preserving the multiplicity, however). Since MRTGs
are trivially footed, we restrict ourselves to MCFTGs G with 6(G) > 1.

Theorem 49 For every MCFTG G with 6(G) > 1 there is an LDTR-equivalent footed MCFTG G’ such
that p(G') < w(G) - mrks - (2 - 0(G) — 1), where X is the terminal alphabet of G. Moreover, if G is
A-lezicalized, then so is G'.

PROOF The basic idea of this proof is that, for any ranked alphabet (2, every tree u € To(X) with
u ¢ X and posy(u) # 0 can be decomposed into at most mrkq - (2k — 1) footed patterns, where
k = |posx(u)|. This can be understood as follows. Clearly, there are a unique m > 1, a unique footed
pattern u. € Po(X,,), and unique trees uq,...,u, € To(X) such that u = u.[z; + u; | 1 <i < m] and
|pos x (u;)| < |posx (u)| for every i € [m] with u; ¢ X. In fact, the foot node of . is the position p which,
in u, is the least common -labeled ancestor of the nodes in posy(u); i.e., the longest position such
that u(p) € and |posx (ulp)| = |posx(u)|. Note that the requirement u(p) € Q is only needed when
|posy (u)] = 1. Thus, we have decomposed u as uc[z; < u; | 1 < i < m] where u. is a footed pattern.
For every i € [m] with u; ¢ X, either u; € T and so w; is a footed pattern of rank 0, or posy (u;) # 0 in
which case u; can be decomposed further. It should also be clear that, in this inductive process, there are
at most 2k — 1 such foot node positions p. The factor mrkg is due to the footed patterns of rank 0. As an
example, consider the ranked alphabet Q = {7() (2 31 ¢(0) b0} and the tree u = o(a, o (v, w)) with
v =o(a,o(a,7(x1,a,B(B(x2))))) and w = o(xs,b). For readability, let us use the notation tg[t1, ..., t,]
for tolz; < t; | 1 < i < n]. Then we obtain the decomposition u = wu,[u[x1, u12, ur3ra]], us[xs, U2a]],
illustrated in Figure [0 of u with the footed patterns u. = o(a,o(x1,x2)), u1 = o(a,o(a, 7(x1,x2,x3))),
uiz = a, w1z = B(B(x1)), uz = o(x1,2), and uzz = b. Using new symbols C}* of rank m, with p € N*,
we can also express this as u = K[y] where K is the tree C2(C$(z1, 0y, Cl3(22)), C3 (23, CS,)), which
can be viewed as the skeleton of the decomposition, and ~ is the second-order substitution such that
Y(CJ') = up. A formal version of this decomposition is formulated below and applied to (a variant of)
the trees in the right-hand sides of the rules of G. We note here that this decomposition is closely related
to the one used in [67, Section 6] to turn a “straight-line” spCFTG into a monadic one.

Let G = (N,N,%, S, R) be an MCFTG with 6(G) > 1. Then mrky - (2-60(G) — 1) > 1, because
mrky, > 1 by Definition By Lemmas and we may assume that G is permutation-free and
nonerasing[”q This means that if (Aq,..., An) = ((u1,...,un), L) is a rule in R, then the pattern w, is
in PFnus(Xika,)) \ X for every i € [n]

26 Fjrst apply Lemma[Q and then Lemma[22] It is easy to check that Lemma[22] preserves the nonerasing and A-lexicalized
properties.

27Recall from Lemma that PFq(X) denotes the set of permutation-free patterns over the ranked alphabet Q. The
requirement that u; ¢ X is only relevant when rk(4;) = 1, meaning that u; # 1.

44

We define G/ = (N’ N, 2,5, R’). The set N’ of nonterminals consists of all triples (C,m,p)
with C € N, 0 < m < mrky, and p € N* such that |p| < 6(G). The rank of (C,m,p) is m. The
initial nonterminal is S’ = (S, 0,¢). For every nonterminal C' € N, a skeleton of C' is a permutation-free
pattern K € PFn/(Xk(c)) \ X such that?d

(1) for every p € posy, (K) there exists 0 < m < mrky such that K(p) = (C,m,p), and

(2) for every p € N* and ¢ € N, if pi € posy/(K) then |posy (K|pi)| < |posX(K|%.
For such a skeleton K, we define seq(K) = ydu,(K), which is an element of (N')* [There are only
finitely many skeletons of C. In fact, it is easy to show that |posy/(K)| < mrks - (2k — 1) for every
skeleton K of C, if k = rk(C) > 1. Additionally, if rk(C) = 0, then the only skeleton of C is (C,0,¢).
Note that K can be reconstructed from seq(K) because K is permutation-free. In the example above, the
tree K is a skeleton of C, provided that C;* denotes (C,m,p), and seq(K) = (C2,C}, Cf,, Cl3, C3, C3,).

We will apply the above basic idea to a pattern u € PF y/us(Xyi(c))\X. This leads to a decomposition
of u that can be represented by a skeleton K of C' and a substitution function + such that v = K[v].
This is formalized as follows. Let K be a skeleton of C' € N. A substitution function v for occy/ (K) is
footed if, for every C" € occn/(K), the pattern v(C’) € Pyrux(X) is footed. We say that the pair (K, ~)
is a footed C-decomposition of the tree K[v].

Basic fact. Every pattern u as above has a footed C-decomposition decc(u) More precisely, for
every C € N and every u € PFnus(Xe)) \ X there is a pair deco(u) = (K,7) such that K is a
skeleton of C, « is a footed substitution function for occn/ (K), and K[y] = u.

Proof of the basic fact. To prove this by induction, we prove it for arbitrary v € Ty/uxn(X) and we
allow K to be an element of Txn/(X) such that ydy (K) = ydx(u). Obviously, if K[y] = v and u is a
k-ary permutation-free pattern = x1, then so is K.

If u=ux € X, then decc(u) = (K,v) with K = x and v is the empty function. If u € Tn/ Uy,
then deceo (u) = (K,) with K = (C,0,e) and v({C,0,¢)) = u. Now suppose that u ¢ X and posy (u) # 0.
We proceed by induction on |posx (u)|. Let the footed pattern u. in Pysus (X) and the trees uq, ..., up
in T/us(X) be as in the basic idea above, and let, by the induction hypotheses or by the previous two
basic cases, decc(u;) = (K;,7;) for every i € [m]. Then deco(u) = (K,), where K and v are defined as
follows. For every i € [m] let K be obtained from K; by changing every label (C,m/, p) into (C,m’,ip).
Then K is the tree K = (C,m,e)(K],...,K],). Moreover, the substitution function ~ is defined by
Y{C,m,e)) = ue and y((C,m/,ip)) = v ((C,m/,p)) for every i € [m] and every (C,m’,ip) € occn/ (K)).
It is straightforward to verify that K and - satisfy the requirements, which completes the proof of the
basic fact.

We define the set N of big nonterminals to consist of all sequences seq(K7) - - - seq(K,,) for which there
exists (A1, ..., A,) € N such that K is a skeleton of A; for every j € [n]. A skeleton function for A € N
is a substitution function for occ(A) that assigns a skeleton x(C) of C' to every nonterminal C' € occ(A).
The string homomorphism h,, from occ(A4) to N’ is defined by h.(C) = seq(x(C)) for every C € occ(A).
Note that N is the set of all h¥(A), where A € N and « is a skeleton function for A.

We now define the set R’ of rules. Let p = A — (u, L) be a rule in R such that A = (Aq,..., A,),
u = (u1,...,up), and L = {By,..., By}. Moreover, let & = (k1,...,kk), where k; is a skeleton func-
tion for B; for every ¢ € [k]. Intuitively, ¥ guesses for every nonterminal C' that occurs in By, ..., By
the skeleton of a footed C-decomposition of the tree generated by C. Let f be the substitution func-
tion for ocen(u) such that f = U,y ki Le, f(C) = £i(C) if C € oce(B;). It should be clear that
u;[f] € PFNnwus(Xik(a,)) \ X for every j € [n]. For every j € [n], let u/; = u;[f], let deca, (u) = (Kj,v;)
(the footed Aj-decomposition of u; according to the above basic fact), and let v = fy;-‘(seq(Kj)) Then
R’ contains the rule

(p,R) = seq(K1) - -seq(Ky,) — (v)---vp,, L)

with £" = {hy (B1),...,h}, (Bx)}. We also define the skeleton function r,z for A by x,z(4;) = K; for
every j € [n]. Intuitively, K, is the skeleton of a footed A;-decomposition of the tree generated by A;,
resulting from the skeletons guessed by %. Note that the left-hand side of the rule (p, %) is hy; _(A). This

28We usually do not denote trees with a capital, but k is already used for natural numbers.
29Recall the definition of yd / from the paragraph on homomorphisms in Section E11
30The decomposition is even unique, but that will not be needed.

31Thus, if seq(K;) = (C1,...,C}) with C{,...,C} € N, then vh = (7 (C1)s -, (C)).

45

concludes the definition of G’. It should be clear that G’ is footed. Moreover, since the right-hand sides
of the rules p and {p,K) contain the same terminal symbols, G’ is A-lexicalized if G is A-lexicalized. It
remains to prove the correctness of G.

For every derivation tree d € L(Gger, A) we define a skeleton function x4 for A and a derivation
tree q(d) € L(Gy,,,h;,(A)) inductively as follows. If d = p(di,...,dy) with the rule p as above, then
we define kg = k,% and ¢(d) = (p,R)(q(d1),...,q(dy)), where & = (Kq,,...,Kd,). We now claim the
following.

Claim: For every A = (Ay,...,A,) € N and every d € L(Gger, A), if val(d) = (t1,...,t,) then
K;lh; (A) < val(q(d))] = t;, where K; = rq4(A;), for every j € [n].

Proof of Claim: Assume that d = p(dy,...,d;) as above, and that the claim holds for d; for ev-
ery i € [k]. Let g be the substitution function for occy (u) such that g(C) is the m-th element of val(d;)
if C is the m-th element of B;. So, val(d) = u[B; < val(d;) | 1 < ¢ < k] = u[g], and hence u;[g] = t;
for every j € [n]. We write [¢’] for the substitution [h:di (B;) < val(q(di)) | 1 < i < k]. Conse-
quently, val(¢(d)) = «'[¢'], where v/ = v] - - - v},. We first show that u;[f][¢g'] = u;[g] for every j € [n]. By
Lemma H(4) it suffices to show that f(C)[g'] = g(C) for every C € occn(u). For every C' € oce(B;) we
obtain that f(C)[g'] = wa,(O)[hy, (Bi) < val(q(d;))], which equals g(C) by the induction hypotheses.
Now let j € [n]. Then '

Ky, (A) « val(g(d))] = Kj[seq(K;) < vjlg']] = K [seq(K;) + 7} (sea(E;))lg']] -
By Lemma H(4) this equals K;[v;][¢g']. Since deca; (u}) = (Kj,v;), we obtain that
Kjlylle'l = wjly'l = uslf1lg] = uslgl = 15 -

This proves the claim. Note that it provides a footed A;-decomposition of ¢; (in fact, the unique one).

In the case where A = S we obtain that k4(S) = (S,0,¢). Thus, val(¢(d)) = val(d) by the claim.
Hence L(G) C L(G"). Clearly, for every skeleton function &, the set L, of all derivation trees d with kg = K
is a regular tree language, which can be computed by a deterministic bottom-up finite tree automaton
that uses all skeleton functions as states. The LDTR-transducer M that computes ¢(d) from d has one
state ¢, and it has the rules

(@:p(W1: Ly, -yt L)) = (0, B) (@ y1), -5 (@ yw))

where ® = (k1,...,K%). In the other direction, every derivation tree d’ € L(G/,,) can be turned into a
derivation tree d = M’(d’) in L(Gqer) by changing every label (p, &) into just p, and it is straightforward
to show that ¢(d) = d’. This shows that L(G") C L(G), and hence the correctness of G'. n

Example 50 Let ¥ = {7(3) ¢ (1) 40 p©) (01 TIntuitively £ stands for a left parenthesis and r for
a right parenthesis. We consider the footed spCFTG G; = (N1,X%,S, R1) with the set of nontermi-
nals N7 = {S, A, A’}, of which A has rank 1 and A’ is an alias of A, and the rules

S — LA(A'(re)) A(zy) — LA(A' (rz1)) and A(x1) — br(a,b,rzy)

where we have omitted the rules with left-hand side A’(x1). Let A = {a, b}. Since G; is A-growing, it has
finite A-ambiguity. However, as we will show in Remark 53] there is no A-lexicalized footed spCFTG G
with L(G) = L(G1). The basic reason for this is that the set {ydy,,,(t) [t € L(G1)} C {/,7}" consists
of all balanced strings of parentheses £ and r. In fact, G; is a straightforward variant of the TAG of [65],
for which there is no (strongly) equivalent A-lexicalized TAG. Note that we defined nsTAGs to be footed
spCFTGs. We will also show in Remark 53] that there is no A-lexicalized spCFTG G with 6(G) < 1 that
is equivalent to Gj.

From Corollary 48] we obtain a A-lexicalized spCFTG G2 with 8(G2) = 2 that is equivalent to G.
It has the new nonterminals B = (A4,b,0, X;) and B’ = (A’,b,0, X1), where rk(B) = 2 and B’ is an alias
of B. For the sake of readability we interchanged the two arguments of B (and those of B’), and similarly
we used B instead of B’ in the first two rules, so that A’ has become superfluous. Its rules are

p1: S = LA(B(b,re)) pa: Axy) = LA(B(b,r21)) p3: A(x1) — br(a,b,ray)
pa: B(z1,72) = (B(x1, B'(b,r22)) ps: B(x1,22) = lr(a,x1,7122)

46

plus the rules p) and pf for the alias B’ of B. Clearly, the tree B(b, 1) generates the same terminal
trees as A(z1). More precisely, if A(z1) generates the tree £"7(a,b, wx;), where n € N and w € ¥*, then
B(x1,x2) generates £"7(a, 1, wxs).

Rules p4 and p5 are not footed. We now turn Go into an equivalent A-lexicalized footed MCFTG GY
using the construction in the proof of Theorem@9 For rule ps = B(x1,22) — us and & = ¢, we obtain the
footed B-decomposition decp(us) = (K5,vs) such that K5 = Bo(B1,z1, B3(x2)), where By = (B, 3,¢),
B; = (B,0,1), and B3 = (B, 1,3), and ~; is defined as follows: v5(Bg) = ¢7(x1, 22, 23), v5(B1) = a, and
v5(Bs) = rz1. The resulting rule ps = (ps,¢€) is

ps: (Bo(x1,22,23), B1, Bs(x1)) = (b1(x1, 22, 23), a,721)

with left-hand side seq(Ks) = (By, B1, B3), and the corresponding skeleton function for B is k5 = Kkpq ¢
such that x5(B) = K5. The construction of this rule is illustrated in the first part of Figure[[Tl Of course
we obtain similar primed results for B’. Taking % = (ks, k) and substituting K5 for B and K{ for B’ in
the right-hand side uy = ¢B(x1, B’ (b, r22)) of rule pg, we obtain u) = £By(B1, x1, B3(B{ (B}, b, B4(rx2))))
which has the footed B-decomposition decp(u)y) = (K4,7v4) where Ky = K5, v4(Bo) = ¢Bo(x1,x2,x3),
~v4(B1) = Bi, and v4(Bs) = Bs(By(By1,b, B5(rz1))). The resulting rule py = {p4, (ks, k5)) is

pa: (Bo(z1,x2,23), B1, Bs(x1)) — ({Bo(w1, %2, x3), B1, B3(B)(By,b, By(rz1)))) .

Since the skeleton function £, (+;k.) for B is again ks, these are all the necessary rules of G with
left-hand side (By, B1, B3), and similarly for (B{, B}, B;). The decomposition decs(us) = (Ks,7s3)
of ug = lr(a,b,rxy) is simply K3 = (A4,1,e)(x1) and v3((A,1,e)) = ug. Thus, identifying (A4,1,¢)
with A, grammar G} has the rule ps = ps. Substituting K3 for A and K5 for B in the right-hand
side ug of ps we obtain the tree u), = (A(By(B1,b, Bs(rz1))) which, just as uz, decomposes into it-
self. Thus, G has the rule po = A(x1) — u). The construction of this rule is illustrated in the
second part of Figure [[1l Finally, by a similar process (identifying (5,0,) with S), we obtain the rule
p1 =S — ubr1 < €]. Summarizing, G4 has the nonterminals {S, A, By, B{,, B1, B}, B3, B4} and the big
nonterminals {S, A, (Bo, B1, B3), (B{), B}, B})}. Its rules (apart from those for the alias (B, By, B})) are

K S — LA(By(B1,b, Bs(re)))

pa: A(x1) = LA(By(B1,b, Bs(rzy)))

D3 A(xz1) — br(a,b,rxy)

Dy (Bo(z1,22,23), B1, Bs(x1)) = ({Bo(z1,22,23), B1, B3(B,(B,b, By(rz1))))
P5: (Bo(x1,2,23)), B1, B3(x1)) = ({1(x1, 22, 23),a,r21) .

To see that L(GY) = L(G1) we observe that the tree K5 = Bo(Bi,x1, B3(x2)) generates the same terminal
trees as B(x1,x2) (as formalized in the Claim in the proof of Theorem H9), and hence By(Bi,b, B3(z1))
generates the same terminal trees as A(z1). O

Example 51 As another, very simple example we again consider the spCFTG G with the following rules
S — Ale) A(z1) = o(A(xr)) and A(x1) = 7(a,z1,b)

which was also discussed before Theorem The only skeleton of A needed by the equivalent footed
MCFTG G’ is Ag(A1, 21, As) where Ag = (A, 3,¢), A1 = (A,0,1), and A3 = (A, 0,3). Its big nonterminals
are S" = (5,0,¢) and (Ao, A1, A3), and its rules are
S/ — Ao(Al, e, Ag)
(Ao(l'l, T2, :C3)7 Ala A3> - (U(Ao(SCl, Z2, :L'g)), Alv A3)
(A()(Z'l, T2, :C3)7 Ala A3> - (T(xla T2, 1'3), a, b) .

Note that G’ is not an spCFTG. O

Let us now discuss set-local multi-component tree adjoining grammars (MC-TAGs). In the beginning
of this subsection we have defined a non-strict MC-TAG (nsMC-TAG) to be a footed MCFTG. To
convince the reader familiar with TAGs we add some more terminology, which should make this clear.

47

I |
B T
/\ =
e B1 1 33
T2
{
B() Bl Bg ‘ r
/1N | - T a
T T2 T3 T / ‘ \ 1
Iy T2 T3
First part

L

¢ |

\ A

A |

A | A By

|~ B = /N
1 /\ 1 By b Bs
b T 7‘1 Third part
X ‘
Z1
Second part

Figure 11: First part: Illustration of the footed decomposition (Ks,~s) of the right-hand side of rule ps, with the resulting
rule p5. Second part: Substitution of the skeleton K5 of B into rule p2. Third part: Adjoining A-decomposition of
Example

Let A — (u, L) be a rule with A = (A44,...,A4,) and u = (uq,...,uy). If the rule is initial (i.e., A = 9),
then the right-hand side u together with the set £ of links is called an initial tree, and otherwise it is called
an auziliary forest. Application of the rule consists of adjunctions and substitutions. The replacement
of the nonterminal A; by w; is called an adjunction if rk(A;) > 0 and a substitution if rk(4;) = 0. An
occurrence of a nonterminal C' € N in u with rk(C) > 0 has an obligatory adjunction (OA) constraint,
whereas an occurrence of a terminal o € ¥ in u with rk(o) > 0 has a null adjunction (NA) constraint.
In the same manner we handle obligatory and null substitution (OS and NS) constraints. Each big
nonterminal B € £ can be viewed as a selective adjunction/substitution (SA/SS) constraint, which
restricts the auxiliary forests that can be adjoined/substituted for B to the right-hand sides of the rules
with left-hand side B.

In the literature, MC-TAGs are usually free-choice, which means that the set £ of links can be dropped
from the rules (see Section [1]). By Lemma 20 this is no restriction on footed MCFTGs. An MCFTG
is said to be tree-local (as opposed to ‘set-local’) if for every rule as above and every B € L there
exists j € [n]| such that occ(B) C ocen(uj). It can easily be proved that tree-local MCFTGs have the
same power as SpCFTGs, and similarly that tree-local nsMC-TAGs have the same power as nsTAGs.

The first statement of Theorem shows that nsMC-TAGs have the same tree generating power
as MCFTGs. The second statement shows together with Theorem (4] that nsMC-TAGs can be (strongly)
lexicalized.

Corollary 52 For every finitely A-ambiguous nsMC-TAG G there is an LDTR-equivalent A-lezicalized
nsMC-TAG G’ such that u(G') < (uW(G) + mrka) - mrks - (2-0(G) + 1), where X is the terminal alphabet
of G.

Remark 53 In Example B0, the finitely A-ambiguous spCFTG G; is footed and hence an nsTAG.
Similarly, the A-lexicalized MCFTG G equivalent to G is footed and hence an nsMC-TAG. We now
prove that there does not exist a A-lexicalized nsTAG equivalent to G1. In other words, as opposed to
nsMC-TAGs, nsTAGs cannot be strongly lexicalized. The proof is a straightforward variant of the one
in [65], and we present it here for completeness’ sake.

48

To obtain a contradiction, let G = (N, 3, S, R) be a reduced A-lexicalized nsTAG equivalent to G.
Note that G is a footed spCFTG, and recall from the observations after Definition g that every tree
in L(G, A) is footed for every nonterminal A. Hence the nonterminals of G have rank 0, 1, or 3. This
implies that G is right-footed; i.e., for every rule A(x1,...,2x) — u € R of G with k > 1, the right-
hand side w is of the form vz - -z, with v € (N UX)*. In fact, if u is not of that form, then it is of
the form vw(uy,us, uz) with v € (N UX)* and w € N® U {7} such that the foot node of u occurs in

uy Or ug; i.e., either uy or ug is of the form viw'(21,...,zk)ve with v1,v2 € (NUX)* and w’ € NUZX.
But then A generates terminal trees of the form wr(t1,t2,t3) with w € ¥* such that either ¢; or t5 is of
the form wyy(z1,..., Tk)ws with wy,wy € ¥* and v € {7,¢,r}. This contradicts the form of the trees

in L(G1), in which the first and second arguments of 7 are always a and b, respectively. Consequently
A cannot be reachable, contradicting the fact that G is reduced. Now it is easy to see that every right-
footed spCFTG G can be viewed as an ordinary context-free grammar generating L(G) viewed as a
string language. We just replace every rule A(z1,...,25) — vxy--- g by the rule A — vB3 Thus, it
now remains to show that there is no {a, b}-lexicalized context-free grammar G such that L(G) = L(Gy),
where G is the context-free grammar with rules S — (AAre, A — (AAr, and A — f7abr. Here
{a, b}-lexicalized’ means that a or b occurs in every right-hand side of a rule of G. For a string w € ¥*,
let c(w) = #¢(w) — #,(w), where #¢(w) is the number of occurrences of £ in w, and similarly for #,(w).
Since the “parentheses” ¢ and r are balanced in every string in L(G) = L(G1), it follows from [63,
Lemma 4] that for every nonterminal A of G there is a number ¢(A) € Ny such that c(w) = ¢(A) for
every w € L(G, A). For every v = vy - v € (NUX)* with vy,...,v, € NUX, we let ¢(v) = Zi-c:l c(v;).
Now consider a derivation S =g viavs = wiows such that o € {a,b}, vi,v2 € (NUX)*, wi,wy € ¥,
and v; =7 w; for i € {1,2}. Consequently, wiaws € L(G). Thus ¢(w;) € Ng, due to the balancing of ¢
and r. By the above, ¢(w1) = ¢(v1). Since G is {a, b}-lexicalized and has only finitely many initial rules,
this shows that there is a number x € Ny with the following property: for every string w € L(G) there
exist a € {a,b} and wy,ws € ¥* such that w = wiaws and ¢(w1) < k. This is a contradiction because
it is easy to see that this does not hold for w = t.e € L(Gy), where tg = ¢rabr and t,41 = ltpt,r for
every n € Np.

This shows that nsTAGs cannot be strongly lexicalized. It also shows that context-free grammars
cannot be A-lexicalized. They can of course be Y-lexicalized.

The spCFTG G of Example (0] is also monadic; more precisely, it has width 6(G;) = 1. We finally
prove that, as observed in Example 50} there is no A-lexicalized monadic spCFTG equivalent to Gy. Let
G be such a grammar. By Lemma we may assume that G is nonerasing. It can then be shown as
above that G is right-footed. However, in this case we must have k¥ = 1 and w = 7; moreover, either
u1 or ug contains x1 and hence generates a tree that contains some v € {7, ¢, r} because G is nonerasing.
The remainder of the proof is the same as above. This shows that to lexicalize an MCFTG G, either the
width 6(G) or the multiplicity x(G) must increase. O

We now define strict MC-TAGs as follows. A (strict set-local) multi-component tree adjoining grammar
(in short, MC-TAG) is a footed MCFTG G = (N,N,X%, S, R) for which there exists an equivalence
relation = on NV U X such that
(1) for all 0,7 € &, if 0 # 7 and ¢ = 7, then rk(o) # rk(7);
(2) for every C € N there exists o € ¥ such that C' = o; and
(3) for every rule (Ai,...,4,) = ((u1,...,un), L) in R and every j € [n],
(a) u;(e) = A; and
(b) if rk(A;) > 1, then u;(p) = A;, where p is the foot node of u,;.
The first requirement means that distinct equivalent terminal symbols can be viewed as the same “final”
symbol with different ranks. In this way, ¥ can be viewed as corresponding to a “final” alphabet, in which
each symbol can have a finite number of different ranks, as for example in derivation trees of context-free
grammars. The second requirement means that each nonterminal C' that is equivalent to terminal ¢ can
be viewed as the same final symbol as o together with some information that is relevant to SA constraints.
The third requirement means that the root and foot node of u; are equivalent to A;; i.e., represent the
same final symbol as A;. Thus, intuitively, adjunction always replaces a final symbol by a tree with that
same final symbol as root label and foot node label. We define a tree adjoining grammar (in short, TAG)
to be an MC-TAG of multiplicity 1; i.e., a footed spCFTG that satisfies the requirements above.

32This generalizes the fact that every regular tree grammar is a context-free grammar (see Section [Z2)).

49

Example 54 A simple example of a TAG @1_ is obtained from the spCFTG G in Example B0 by adding
a terminal symbol v of rank 1. The rules of G; are

S — YLA(A (re)) A1) — yLA(A (ryxy)) and A(z1) = vlr(a,b,ryxy)

where A’ is an alias of A. The equivalence relation = is the smallest one such that S= A=A"=~. It
clearly satisfies the above three requirements. This TAG is closely related to the one in [65]. It can be
proved in exactly the same way as in Remark[53]that there is no {a, b}-lexicalized nsTAG equivalent to G,
which slightly generalizes the result of [65] Thus, TAGs cannot be strongly lexicalized by nsTAGs.
The MCFTG G’ of Example 51l is an MC-TAG. The equivalence relation = is the smallest one such
that S’ = Ag =0 =7, A1 = a, and A3 = b. Note that rk(o) # rk(r). O

Let MC-TAL denote the class of tree languages generated by MC-TAGs. In the next subsection we
prove that MCFT and MC-TAL are almost the same class of tree languages.

6.2. MC-TAL almost equals MCFT

By definition, we have MC-TAL C MCFT. In the other direction, the inclusion MCFT C MC-TAL does
not hold because a tree language from MC-TAL cannot contain two trees of which the roots are labeled
with two different symbols of the same rank. In this subsection we show that this is indeed the only
necessary restriction. To prove that every language L € MCFT satisfying this restriction is in MC-TAL,
we begin with the case where the root of each tree t € L is labeled by the same symbol oy. In this case we
will construct an MC-TAG of a special type, which we define next. We first need some more terminology.

Let G = (N,N, X%, S, R) be an MCFTG. Recall from Definition B8 that a pattern ¢t € Pyyus(Xy) with
k € Ny is footed if either £k = 0, or £ > 1 and there is a position p € posy_x(t), called the foot node of ¢,
with rk(t(p)) = k and t(pi) = z; for every i € [k]. Given a footed pattern t € Pyus(Xg) with k& > 1, we
define rlab(t) = t(¢) and flab(t) = t(p) where p is the (unique) foot node of t. Thus, rlab(¢) and flab(t) are
the labels of the root and the foot node of ¢, respectively. In the case where k = 0 we define rlab(t) = ¢(¢)
and, for technical convenience, also flab(¢) = t(¢). Thus, in this case rlab(t) is also the label of the root
of t and flab(¢) = rlab(¢). For k > 1 we define the spine of t to be the set of all ancestors of its foot node
(including the foot node itself), whereas for & = 0 the spine of ¢ is defined to be the empty set.

An adjoining MCFTG is a footed MCFTG G for which there is a mapping ¢: N UY — X such that

(1) ¢(0) = o for every o € X3, and

(2) ¢(rlab(u;)) = ¢(flab(u;)) = ¢(A;) for every rule (Ai,...,A4,) = ((u1,...,un), L) € R and

every j € [n].

This implies that ¢ is rank-preserving for nonterminals of rank at least 1 (assuming that such a non-
terminal generates at least one terminal tree). Obviously, every adjoining MCFTG is an MC-TAG with
respect to the equivalence relation = that is the kernel of ¢; i.e., @ = g if p(a) = ¢(8). By (1) above,
= is the identity on X. Vice versa, if G is an MC-TAG with respect to an equivalence relation that is the
identity on X, then G is an adjoining MCFTG (as can easily be checked).

We now prove that for every footed MCFTG G that generates a tree language in which all trees
have the same root label oy, there is an equivalent adjoining MCFTG, which is also lexicalized if G is
lexicalized. In fact, the next lemma proves a slightly more general fact, which will be needed to prove
the theorem following the lemma. The proof of the lemma is very similar to the one of Theorem [49] with
a further decomposition of the trees in the right-hand sides of the rules.

Lemma 55 Let G = (N,N,%, S, R) be a footed MCFTG and let cg € .. Then there is an adjoining
MCFTG G°° such that L(G?°) = {t € L(G) | t(¢) = oo} and p(G?°) = u(G) - |X| - mrks. Moreover,
if G is A-lexicalized, then so is G°°.

33The language class TAL generated by TAGs is properly included in the language class nsTAL, which is generated
by nsTAGs. The tree language L = {¢{"r"e | n € N}, which is root consistent (cf. Corollary [59in the next subsection), is a
witness for the properness. It is generated by an nsTAG with rules S — A(e), A(z1) — ¢A(rz1), and A(z1) — ¢rzy. For the
sake of a contradiction, let G = (N, 3, S, R) be a TAG such that L(G) = L. Clearly, (G) < 1 and G must be right-footed
(cf. Remark [53). For any unary nonterminal A € N we have L(G,A) C {¢*z1 | k € N} or L(G, A) C {rFz1 | k € N}
due to the condition that the root label and foot node label must coincide. However, since G can be viewed as an ordinary
context-free grammar generating the string language L, these languages L(G, A) must be finite, due to pumping. Hence we
can transform G into an equivalent right-linear context-free grammar, which is a contradiction because L is not regular.

50

PROOF The basic idea of this proof is that, for any alphabet 2, every string w € 2 can be decomposed
as w = wy - -~ wy such that 1 <n < |Q|, w; € QF, and the first and last symbol of w; are the same. We
quickly prove this by induction on |€2|. Let a be the first symbol of w, and let w; be the longest prefix
of w that ends on a. Then w = wyw’ with w’ € (2\ {a})*. If w’ = ¢, then we are ready. Otherwise
we apply the induction hypothesis. This decomposition is of course not unique. For example, the proof
gives abab = aba - b, but another decomposition is abab = a - bab.

Let G = (N, N, 3%, S, R) be a footed MCFTG, and let oy € . We define G = (N', N, %, 59 R’),
where N’; N/, and R’ do not depend on gy. The set N’ of nonterminals consists of all 4-tuples (C, o, m, p)
with C € N, 0 € ¥, m € {0,rk(0)}, and p € N* such that |p| < |Z|. The rank of (C,o,m,p) is m. The
initial nonterminal is S°° = (S, 00,0,€). Let p: N'UX — % be defined by ¢((C,0,m,p)) = ¢(c) = 0.
We will define N7 and R’ in such a way that G°° is an adjoining MCFTG with respect to ¢.

For every nonterminal C' € N, a skeleton of C'is a footed pattern K € Py/(X,x()) such that

(1) for every p € posy. (K) there exist 0 € ¥ and m € {0,1k(0)} such that K(p) = (C, o, m,p),

(2) every subtree of K in Ty is in (N/)(), and

(3) (K (p)) # (K (p")) for every two distinct positions p,p’ € posy, (K) on the spine of K.
For such a skeleton K, we define seq(K) = yd ./ (K), which is an element of (N’)*. We note that there
are only finitely many skeletons of C. In fact, |posy/(K)| < || - mrky for every skeleton K of C, if
rk(C) > 1. Additionally, if rk(C) = 0, then every skeleton of C is of the form (C, g,0,) with o € 3. We
finally note that K can be reconstructed from seq(K) because K is footed.

We will apply the above basic idea to the sequence of ¢-images of the labels of the nodes on the spine of
a footed pattern u; i.e., to the sequence (¢(u(p1)),...,¢(u(p,))) where p1, ..., p, are the positions on the
spine of u, in the order of increasing length. This leads to a decomposition of v that can be represented
by a skeleton K and a substitution function 7 such that v = K[y]. Formally, let K € Py/(X) be a
skeleton of C € N. A substitution function v for occy (K) is adjoining if, for every C’ € occn/ (K),
the pattern y(C") € Pnvus(X) is footed and p(rlab(v(C"))) = p(flab(v(C"))) = ¢(C’). We say that the
pair (K, ~) is an adjoining C-decomposition of the tree K[v].

Basic fact. Every footed pattern u has an adjoining C-decomposition decc(u). More precisely, for
every C' € N and every footed pattern u € Py/us (X)) there is a pair decc(u) = (K,) such that
K is a skeleton of C, « is an adjoining substitution function for occy (K), and K[y] =

Proof of the basic fact. Let o = p(rlab(u)). First suppose that rk(u) = 0. Then decc(u) = (K,) with
K =(C,0,0,¢e) and v({(C, 0,0, ¢)) = u. Now suppose that rk(u) > 1. We use induction on the cardinality
of the spine of u. Let ¢ be the longest position on the spine of u such that p(u(q)) = o, and let rk(c) = m.
If ¢ is the foot node of u, then decc(u) = (K,v) with K = in((C,0,m,¢)) and v((C,0,m,e)) = u.
Otherwise, let 7 € N be the unique integer such that gi is a position on the spine of u. Let v’ = u|q;, and
let deco(u') = (K’,~') by the induction hypothesis. Then deco(u) = (K,), where K and « are defined
as follows. Let K" be obtained from K’ by changing every label (C, o', m’, p) into (C,o’,m’ ip). Then
K is the tree

(Cyo,m,€)
(C,01,0,1) % K" @Mx (C,0m,0,m)

where 0; = p(u(gj)) for every j € [m] \ {i}. Moreover, the substitution function v is defined by:
Y(C,0,m,) = (u|?)[m « in(a)],
 1((C.0)10.3)) = ulyy for every 7 € [m] \ (i}, and
o 7(<Ca OJ) m/v Zp>) = 7/(<Ca OJ) m/7p>) for every <Ca OJ) m/v Zp> € oceny (KN>'
It is straightforward to verify that K and ~ satisfy the requirements, which completes the proof of the
basic fact.

The definition of the set N’ of big nonterminals and the set R’ of rules is exactly the same as in
the proof of Theorem EJPY It should be clear that G° is adjoining with respect to . The correctness

34Except that in the construction of the rule (p,d) it should be clear that u;[f] is a footed pattern in Pyrus (X))
Moreover, the decomposition deca (u;[f]) is of course an adjoining A;-decomposition of wu;[f].

o1

of G is also proved in the same way as in the proof of Theorem 49 The Claim and its proof are exactly
the same. In the case where A = S we obtain in the claim that x4(S) = (S5, 0,0,&) with o € ¥, and
hence val(q(d)) = val(d). Since G?° is adjoining, it is easy to see that o = val(¢(d))(¢); i.e., the root
symbol of val(d). Hence {t € L(G) | t(¢) = oo} C L(G?°). As in the proof of Theorem A9 there is an
LDT®-transducer M that computes ¢(d) from d, and every derivation tree d’ € L(G3°,,(S,0,0,¢)) can
be turned into a derivation tree d = M'(d') € L(Gaer) such that g(d) = d’ by changing every label (p, %)
into p. Taking o = o this shows that L(G?°) C {¢t € L(G) | t(¢) = oo}, and hence the correctness
of G. n

Example 56 Let us consider the MCFTG G of Example B0l As already observed in Remark (53] GY, is
footed and hence an nsMC-TAG. Here we illustrate the proof of Lemma[B8 by constructing the adjoining
MCFTG G* for G = G%; note that G is equivalent to G% because t(¢) = ¢ for every t € L(G%). We recall
that G4 has the following rules (where we replace p; by p;, for convenience):

p1: S — LA(Bo(B1,b, Bs(re)))

P2 A(x1) = LA(Bo(B1,b, B3(rz1)))

p3: A(xz1) = l1(a,b,raq)

P4 (Bo(.fCl,SCQ,SCg) By, Bs(x1)) — ({Bo(x1, x2,23), B1, Bs(B\(B,b, By(rz1))))
ps: (Bo(x1), By, B3(x1)) = (¢1(21,22,23),a,721)

plus the rules p} and p§ for the alias (B}, By, B4) of (By, B1, B3). For rule ps and & = ¢, we obtain the
skeleton function k5 = k,; - for (Bo, B1, B3) such that

Hs(Bo) = Bg(Bg(SCl,SCQ,Z'g)) Iis(Bl) = B(f and Hs(Bg) = Bg(l‘l) s
where Bf = (Bo,{,1,¢), B = (By,7,1,1), B{ = (B1,a,0,¢), and B} = (Bs,r,1,¢). The resulting rule
ps = (ps,€) 18
D5 : (Bg(xl),Bg(xl,xg,:Eg),Bf,Bg(:El)) = (bxq, T(x1, 22, 23), @, T21) .

Substituting k5(B;) for B; (and x5(B]) for B}) in the right-hand side w4 of rule ps, we obtain the
forest u) = (¢(BS(Bg(x1,22,73)), BY, By (BY(BY (B, b, By (rz1))))) and from that the following rule
ﬁ4 = <P4; (’155 Kl5)>:
pa: (Bf(x1), Bj (21,22, x3), By, B (1))
- (ng(xl)a Bg('rlax%x?))a BY, Bg(B(I)Z(B(I)T(Biaab’ BéT(Txl))))))

and the skeleton function Kpa,(ks.t) = K5 for (By, B1, Bs). Thus, these are all the new rules obtained
from ps and ps;. We now turn to rules p3 and p2. The only skeleton needed for A is the tree

K = kpy (A) = AY(AT(A", A°, A" (21)))

where A¢ = (A,0,1,¢), AT = (A, 7,1,1), A% = (A,a,0,11), A’ = (A4,b,0,12), and A" = (A,r,1,13). The
resulting rule ps = (ps, €) is

p3: (AYw1), A7 (21, 22, 23), A%, A", A" (21)) = (Can, T(21,22,23), a, b, T21) .

Substituting K for A and k5(B;) for B; in the right-hand side ug = ¢A(Bo(B1,b, B3(rx1))) of p2, we
obtain the tree
uly = LA*(AT(A%, A°, A" (BG(BG (BY, b, B (rz1)))))) -

It has the adjoining A-decomposition decA(uQ) = (K,) such that y(A?) = (LAY (AT (A%, A® A" (B{(21)))),
Y(AT) = B} (1,12, 23), 7(A%) = B$, v(A®) = b, and y(A") = B5(rz1), which is illustrated in the third
part of Figure [Tl The resulting rule pa = (p2, (Kps,e, K5)) is
P2 (A1), A7 (21, @2, 23), A®, A®, A" (1))
— (LA(A7 (A", A, A7 (Bg(21)))), B (a1, 22,25), B, b, B3(rz1)) .

52

Finally, we consider rule p;. The only skeleton needed for S is S* = (S,£,0,¢), which is the initial
nonterminal of G*. Substituting K for A and r5(B;) for B; in the right-hand side ¢A(By(By, b, Bs(re)))
of p1, we obtain the tree uj[x; < ¢] and the new rule

pr: St — LAY(AT(AY, AP, AT (BS(BG (B, b, By (re))))))

where p1 = {p1, (Kps e, k5)). Thus, G* has the rules {p1, p2, ps, pa, ps, Py, 5 }. Clearly, the tree K generates
the same terminal trees as A(z1) and the tree k5(B;) generates the same terminal trees as in(B;) for
every i € [3]. Tt is easy to check that G is an {a, b}-lexicalized MC-TAG with respect to the smallest
equivalence = such that C* = x for every C € {S, A, By, B}, B1, B, Bs, B4} and every x € {{,7,a,b,r}.

We finally mention that, in Example B0 the first rule of the grammar G5 could be changed into
the rule S — ¢B(b, B'(b,re)), because B(b,x1) generates the same terminal trees as A(x1). This makes
the nonterminal A superfluous. We have not done this, for the sake of illustration of our construc-
tions. As a result of this change, the three rules ji, j2, 53 of G* can be changed into the one rule
St — (BY(BY (B2, b, By (B (By (B, b, BY (re))))). 0

Example 57 As another, similar example, let us consider the {a,b}-lexicalized MCFTG G obtained
from G% by changing in its rules every £ into v and every r (except the one in p;) into r+y, where v has
rank 1. Thus, G has the rules

pL: S — vLA(By(By,b, Bs(re))) p3: A(xz1) = ve7(a, b, ryzy)
po: A(x1) = Y A(Bo(B1,b, Bs(ryz1))) p5 B — (yer(z1,%2,23),a, 7y21)
pa: B — (vBo(w1, 22, 23), B1, B3(B(B1,b, By(ryz1))))

where B = (By(z1, 2, 23), B1, Bs3(z1)). Clearly, G is equivalent to the TAG G of Example[54] for which
there is no equivalent {a, b}-lexicalized nsTAG.

Since ps and p3 are MC-TAG rules with respect to A = ~y, they do not have to be changed. It is not dif-
ficult to see that the only skeleton function needed for (By, By, Bs) is k5 with r5(Bo) = By (B§(B§ (1)),
K5(31> = B‘ll, and Hs(Bg) = Bg(B;(SCl)), where Bg = <B0,’)/, 1,€>, Bg = <B0,€, 1, 1>, Bg)— = <Bo,T, 1, 11>,
and similarly for Bs, and B{ = (B, a,0,¢). Given these skeletons, it is straightforward to construct the
following rules for G7:

pii ST - ALA(B](BY(B] (B} b, By (B

(re ﬁg: A(xy) = ybr(a,b, ryzy)
pa: Aler) — vA(BY(BY(BE (B, b, By(B <mx1

)

)

W W2

) B — (7,7:1,&1:1, (xl,xg,xg),a,rxl,vxl)
ﬁ4: B — (’YEB(’)Y(wl)’ Bg(‘rl)’ Bg ('Tlaan x3), B 1> Bg((BW(B(/)Z(B (Bia’b B ((T$1))))))), ’YZCl)

where B = (B (x1), B{(z1), B (z1,22,23), Bf, B5(x1), Bj (21)). Clearly, G7 is an {a,b}-lexicalized
MC-TAG equivalent to the TAG G. O

Let us say that a tree language L is root consistent if rk(t1(g)) # rk(t2(€)) for all ¢1,¢3 € L such that
t1(e) # ta(e). It should be clear that every tree language in MC-TAL is root consistent.

Theorem 58 For every MCFTG G such that L(G) is root consistent, there is an LDTR-equivalent
MC-TAG G’ such that

N V(€] oG =
wG') = {M(G) 8]k - (20 0(G) — 1) if 0(G) > 1

where 3 is the terminal alphabet of G. Moreover, if G is A-lexicalized, then so is G'.

ProOOF With the help of Theorem B9, we may assume that G = (N,N,%, S, R) is a footed MCFTG.
The set Q@ = {t(¢) | t € L(G)} can be computed by deciding the emptiness of L(G?) for every o € X,
where G is the MCFTG of Lemma Now let oy be an arbitrary element of €2, and construct the
adjoining MCFTG G = (N',N’,%, 579 R’) as in the proof of Lemma (B3l From G°° we construct G’
by identifying all nonterminals (S, 0, 0,¢) such that o € Q and taking the resulting nonterminal S’ to be
the initial nonterminal of G’. Since G is adjoining, it is straightforward to check that G’ is an MC-TAG
with respect to the smallest equivalence = such that o1 = g9 = 5’ for all 01,02 € Q and (C, 0,b,p) = o for
all (C,0,b,p) € N'. Tt is easy to modify the LDTR-transducers M and M’ in the proof of Lemma 55 such
that they show the LDTR-equivalence of G and G’. We finally note that if (G) = 0, then u(G°) = u(G)
by the proof of Lemma -

93

We now can characterize MCFT and MC-TAL in terms of each other in a very simple way.

Corollary 59 Let # be a new symbol of rank 1. Then
MC-TAL = {L € MCFT | L is root consistent} and ~ MCFT = {L | #(L) € MC-TAL} .

PROOF The first equality is immediate from Theorem b8 and the fact that every tree language in MC-TAL
is root consistent. It is easy to see that if L € MCFT, then #(L) € MCFT. This also holds in the other
direction because MCFT is closed under tree homomorphisms by Lemma 2T} The second equality now
follows from Theorem B8 because # (L) is root consistent. n

As observed in the Introduction this corollary settles a problem stated in |93, Section 4.5], which
can be reformulated as “it would be interesting to investigate whether MC-TAL is properly included in
MCFT”. By the first statement of Corollary B9 that is indeed the case; i.e., MCFTGs are slightly more
powerful than MC-TAGs. However, by the second statement they have the same power provided that
MC-TAGs are allowed to make use of a root-marker. Another obvious way to “force” equality of MCFT
and MC-TAL is to allow MCFTGs, and hence MC-TAGs, to use several initial nonterminals instead of
just one. It is clear that this does not change the class MCFT. Thus, the proper inclusion of MC-TAL
in MCFT is due to minor technicalities. For that reason we feel justified to state that MCFTGs and
MC-TAGs have the same tree generating power.

As another corollary we obtain from Theorems b8 and 4] that MC-TAGs can be (strongly) lexicalized.
Thus, although TAGs cannot be strongly lexicalized, as proved in [65] (cf. Remark (3]), MC-TAGs can.
This was illustrated in Example B7

Theorem 60 For every finitely A-ambiguous MC-TAG G there is an LDTR-equivalent A-lexicalized
MC-TAG G such that i(G") < (u(G) +mrka)-|S|-mrky - (2-0(G) +1), where X is the terminal alphabet
of G.

6.3. Monadic MCFTGs

We say that an MCFTG G is monadic if (G) < 1. For instance, the grammars of Examples[d [l and
are monadic. As observed in the beginning of this section, it is shown in [61] that nsTAGs have the same
tree generating power as monadic spCFTGs. Similarly, on the basis of Theorem B8, we can now prove
that MCFTGs have the same tree generating power as monadic MCFTGs. The construction in the proof
is the same as in [40].

Theorem 61 For every MCFTG G with 0(G) > 2 there is an LDTR-equivalent monadic MCFTG G’
such that p(G') < u(G) - S| - mrks, - (2 - 0(G) — 1), where ¥ is the terminal alphabet of G. Moreover,
if A C »O) and G is A-lezicalized, then G’ is A-lezicalized.

PROOF It should be clear from Lemma and the proof of Corollary that we may assume that
G = (N,N,%,S,R) is an adjoining MCFTG with respect to a mapping ¢: N UY — 3, as defined in
Section We define the monadic G’ = (N, N, %, S, R') such that every nonterminal C € N with
rk(C) > 2 in G now has rank rk’(C) = 1 in G’, and rk’(C) = rk(C) for the nonterminals with rk(C) < 1.
The idea of the proof is that every occurrence of a nonterminal C(x1, ..., 2,) of rank m > 1 is replaced
by C(o(x1,...,om)) where o = ¢(C), such that in G’ the nonterminal C' does not generate the foot
node of the tree generated by C in G. Thus, for a footed pattern t € Pyyus(X) of rank at least 1,
let cut(t) denote the unique pattern of rank 1 such that ¢ = cut(¢)[z1 « in(flab(¢))]. For instance,
cut(o(a, 7(x1,22))) = o(a,x1). Moreover, for simplicity, let cut(t) =t for every tree t € Tyyux. Now let
p=A—= ((u1,...,un),L) be arule in R with A = (A1,...,A4,), and let f be the substitution function
for N such that f(C) = C(in(p(C))) if tk(C) > 1 and f(C) = C if tk(C) = 0, for every C € N. Then
R’ contains the rule p' = A — ((u},...,u}), L) where u/; = cut(u;[f]) for every j € [n]. It can be shown
that L(G', A) = {(cut(t1),...,cut(tn)) | (t1,...,tn) € L(G, A)} and so L(G") = L(G). The formal proof,
together with the proof of LDTR-equivalence, is left to the reader.

If G’ is A-lexicalized and A C (9, then G is A-lexicalized. In fact, the right-hand sides of p and p’
contain the same elements of A because the only symbols that are removed or added have rank at least 2.
We also observe that, for unrestricted A C ¥, if G is n-A-lexicalized for n > p(G), as defined before
Lemma @7 then G’ is (n — u(G))-A-lexicalized. In fact, in the definition of p’ we have that for every

J € [nl; [posa(u;[f])] = [posa (uj)| and [posa (uf)] = [posa (u;[f])] — 1. u

35Otherwise, we replace every initial rule S — (u, £) by S — (#(u), £) and after the construction remove # by Lemma 2Tl

54

For unrestricted A this theorem also holds except that G’ is just equivalent to G, not necessarily
LDTR-equivalent. This follows from Lemma A7 and the last paragraph of the proof of Theorem GII
Thus, for every A-lexicalized MCFTG G with 6(G) > 2 there is an equivalent A-lexicalized monadic
MCFTG G’ such that u(G") < u(G) - |%| - mrk% - (2- 6(G) — 1).

Example 62 We consider the MCFTG G = (N,N, %, S, R) with N = {S, A® B} N = {S,(A,B)},
¥ ={c® 73 a4 pO) O and the rules

S — A(a, B(e, b))
(A(z1,22), B(x1,22)) = (0(a, A(x1,22)), B(7(x1,22),b))
(A(z1,x2), B(x1,22)) = (0(21,22), T(21,22)) .

It generates the tree language L(G) = {(ca)"7™ed™ | n > 1}. Note that we here use string notation.
Thus, e.g., (ca)?r2eb? is the tree cacarTebb which can be written as the term o(a, o(a, 7(7(e,b),b))).
Obviously, G is an adjoining MCFTG with ¢(S) = ¢(A) = o and ¢(B) = 7. The equivalent monadic
grammar G’ as constructed in the proof of Theorem [G1] has the rules

S — A(o(a, B((e, b))))
(A(z1), B(21)) = (0(a, A(z1)), B(7(z1,b)))
(A(z1), B(21)) = (21, 1) .

Note that G’ is not footed. O

As observed in the Introduction, Theorem [GI] does not hold for spCFTGs; i.e., spCFTGs do not
have the same tree generating power as monadic spCFTGs. In fact, it is shown in [30, Theorem 6.5]
(see also [67, Lemma 24]) that spCFTGs (and arbitrary context-free tree grammars) give rise to a strict
hierarchy with respect to 0(G). It is shown in [67, Theorem 10]) that every “straight-line” spCFTG can
be transformed into an equivalent monadic one in polynomial time; the construction is similar to the one
for Theorem [B1] (in particular to the one in the proof of Theorem [E9)).

We finally observe that some tree languages in MCFT cannot be generated by an MCFTG that is
both monadic and footed. An example is the language L = {(ca)"™(da)"e | n € Ny} that is generated by
the spCFTG with rules S — A(e), A(z1) — ¢(a, A(d(a,x1))), and A(z1) — x1. If G is a monadic footed
MCFTG with L(G) = L, then G must be an MRTG because there is no terminal symbol of rank 1B9 1t
follows from Theorem [76lin Section B and [81, p. 277] that all tree languages in MRT have regular “path
languages”. However, the intersection of the path language of L with ¢*d*e is {¢"d"e | n € Ny}, which is
not regular. Thus, L is not in MRT (see also the last paragraph of Section).

7. Multiple context-free grammars

In this section we define the multiple context-free (string) grammars (MCFG) of 87, 192]. We first prove
that MCFGs can be lexicalized. Then we prove that every tree language in MCFT can be generated by
an MCFG, which is possible because we defined T; as a subset of ¥*. Using this we prove that MCFTGs
have the same string generating power as MCFGs, by taking the yields of the generated tree languages.
Moreover, we show that MCFTGs can be parsed in polynomial time.

7.1. String generating power of MCFTGs

To avoid the formalities involved in defining MCFGs in the classical way, we define them as a special
case of MCFTGs. We introduce a special symbol > of rank 0 and we identify, as usual, the strings over
a finite (unranked) alphabet 3 with the trees over the “monadic” ranked alphabet ¥ U { >}, where every
symbol in ¥ has rank 1. Thus, w € ¥* is identified with w> € Tyyp)-

A multiple context-free grammar (in short, MCFG) is an MCFTG G = (N U {S},N, XU {>},S,R)
such that S ¢ N, every nonterminal in N has rank 1, > ¢ ¥, and every terminal in ¥ has rank 1.

36We already observed below Definition 8 that every tree of the forest (t1,...,tn) € L(G,(A1,...,Ay)) is footed.
Suppose that rk(A;) = 1 for some j € [n], then the corresponding tree t; € Px(X1) only contains terminal symbols (and
the variable x1). The foot node label of t; must have rank 1, but the ranked alphabet ¥ does not contain a unary symbol.
Hence no unary nonterminal can be useful.

95

We also require (without loss of generality) that G is start-separated; i.e., that S does not occur
in the right-hand sides of rules. With the above identification we have L(G) C X*, and for ev-
ery A € N\ {S} we have L(G, A) C Pg(X1)* and Px(X1) = ¥*z1. Note that every rule of G is either
of the form S — (u>, £) with u € (N UX)* or of the form (Ai,...,4,) = ((v1z1,...,unx1), L) where
Ai,...,A, € N and uq,...,u, € (N UX)*. For a uniquely N-labeled tree t = vCwp (or vCwzx;) with
v,w € (NUX)* and C € N, the rewriting of C by uxy with u € (N UX)* results in the tree t[C' + ux],
which equals vuw> (or vuwz,); thus, it is the usual rewriting of a nonterminal in a sentential form of
a context-free grammar. It is straightforward to see that this definition of MCFG is equivalent to the
classical notion of multiple context-free grammar [87, 92], taking into account the information-lossless
condition (f3) of [87, Lemma 2.2]. The class of languages generated by MCFGs will be denoted by MCF.

Through the above identification of strings with monadic trees, MCFTGs can also generate strings
directly as opposed to taking yields of the generated trees. In the next lemma we show that every MCFTG
that generates strings in this way, has an equivalent MCFG.

Lemma 63 For every MCFTG G with terminal alphabet ¥ U {1}, where every symbol in ¥ has rank 1,
there is an LDTR-equivalent MCFG G'. Moreover, u(G') = u(G).

PROOF Due to the specific form of the terminal alphabet, it should be clear that reachable and useful big
nonterminals cannot contain nonterminals of rank strictly larger than 1. Consequently, we may assume
that G is monadic without the help of Theorem[EIl We transform G into an MCFG G’ with the same big
nonterminals and the same nonterminals, which all have rank 1 in G’ except for the initial nonterminal S
of rank 0. Additionally, in the right-hand side of every initial rule we replace every occurrence of a nullary
nonterminal C' by C(r), and in the right-hand side of every non-initial rule we replace every occurrence
of a nullary nonterminal C' by C(z1) and every occurrence of > by x7. n

Let strMCFT denote the class of all string languages generated by MCFTGs, where strings over %
are viewed as monadic trees over ¥ U {>} as explained above.

Corollary 64 strMCFT = MCF.

Another consequence of Lemma [63]is that MCFGs can be lexicalized, as stated in [95, Section 4.4] for
the case A = 3. This should be contrasted to the fact that context-free grammars cannot be A-lexicalized
for every A, as shown in Remark

Corollary 65 For every finitely A-ambiguous MCFG G there is a A-lexicalized MCFG G’ that is
LDTR-equivalent to G. Moreover, u(G') = u(G) + 1.

PRrROOF By Theorem [there is an LDTR-equivalent A-lexicalized MCFTG G’ such that 6(G’) = 2 and
1(G") = u(G) + 1. Next we apply Lemma [G3 n

Example 66 Consider the context-free grammar G with rules S — fAAr, A — (AAr, and A — {lrabr
(cf. Example and Remark B3). Obviously, we may view G as an MCFG of multiplicity 1 with an
alias A’ of A. Tts terminal alphabet is ¥ U {p} with ¥ = {71 ¢M +O) 1) p(MY and its rules for
S and A are

S = LA(A(re)) A(zy) = LA(A (rzy)) and A(xq) — lrabrazy .

Let A = {a,b}. Since G is A-growing, it has finite A-ambiguity. Applying a slightly simplified version of
the proof of Corollary[65, we obtain a A-lexicalized MCFG G’ of multiplicity 2 such that L(G’") = L(G).
It has the big nonterminals {S, A, (B, C), (B’,C")}, where (B’,C") is an alias of (B, C), and the following
rules, in which we omit > and x; (and all the parentheses in trees) for readability:

S —(ABbCr A —(ABVWCr A —{rabr (B,C)— ({B,CB'bC'r) (B,C)— ({ta,r) .
Clearly, the string BbC' generates the same terminal strings as A. O

In the next theorem, we show that every tree language that is generated by an MCFTG can also be
generated by an MCFG provided that we change the ranks of the terminal symbols. In this theorem
we (temporarily) identify each tree ¢ over the ranked alphabet ¥ (which is defined as a string over the
unranked alphabet X) with the tree ¢ over the ranked alphabet ¥ U {}, in which every symbol of X
has rank 1. As an example, the tree o(a,b) = oab is identified with the tree oab> = o(a(b(>))). The
idea behind the proof is essentially the same as the one of [28, Theorem 15]. In the case of an spCFTG,
the resulting MCFG is well-nested (see |44, |55, [56, [72]).

56

Theorem 67 For every MCFTG G there is an LDTR-equivalent MCFG G'. If G is A-lexicalized, then
so is G'. Moreover, u(G') = u(GQ) - (0(G) + 1) and N(G') = MN(GQ). If G is footed (i.e., is an nsMC-TAG)
then u(G") =2 - u(G).

PRrROOF By Lemma 22] we may assume that G = (N, N, X, S, R) is permutation-free. We will define the
MCFG G' = (N'U{S"}, N'U{S"}, ZuU{>}, 5", R’), where S’ is a new nonterminal and all the symbols in ¥
now have rank 1. First of all, we let N’ = {(C,i) | C € N, 0 <i < 1k(C)}. For every C € N*) the intu-
ition behind this is that (C,i)(x1) generates the string w;x1, when C'(z1, . .., x)) generates (as part of a big
nonterminal) the terminal tree woziw; - - - xpwy € PFs(X}) with wy,...,wg € X*. For every C' € N®&),
let its expansion be exp(C) = ({C,0),(C,1),...,(C,k)) € (N')*, and for every A = (Ay,...,A,) €N,
let exp(A) = exp*(4) = exp(A1)---exp(4,) € (N')* be the concatenation of the expansions of its
nonterminals. Then we define N7 = {exp(4) | A € N'}.

In the remainder of this proof we need the following two bijections m and A. The right-hand side
forest u = (uix1,...,upx1) € Pnun(X:1)t of a possible non-initial rule of G’ is in one-to-one cor-
respondence with the string m(u) = wizy - upzy € (N UX U X7)* that ends on 27 and with the
sequence A(u) = (u,...,uy) of strings uy,...,u, € (N’ UZX)*. For the definition of the rules of G’
we need the expansion of the right-hand side forests of the rules of G. For every t € Tyusn(X) we
define exp(t) = nl(exp/(t) - #1) € Pnus(X1)*, where 7 is the bijection defined above and where
exp’(t) € (N'UX U X;)* is defined inductively as follows:

1 ifteX
exp’(t) = < o -exp/(t1) - - -exp’(tx) ift =0(t1,...,tx) with o € X
(C,0) - exp/(t1) - (C, 1) - exp! (t) - (C, k) if £ = Ct1,...,4) with C € N .

We note that exp’(t) = tlx + x1 | z € X]if t € Tx(X). Given t = (t1,...,t,) € Tyus(X)t we
let exp(t) = exp*(t) = exp(t1) - - - exp(tn) be the concatenation of the expansions of its elements.
Now, if p = A — (u,{B1,...,Br}) € R, then R’ contains the non-initial rule

Pexp = exp(A) — (exp(u), {exp(B1),...,exp(Bk)}) -

Clearly, the rule p can be reconstructed from pexp. Finally we define the initial rules of G'. If pexp =
(S,0) = (va1,L) is a rule in R’ as constructed above for A = S, then R’ contains the additional rule
Posp = " — (v, L',) At this point, we completed the construction of G’. To prove its correctness we
need the following claim.

Claim. Given a tree t € Tnusn(X), a repetition-free sequence (Ay,...,A,) € N, and permutation-free
patterns si,..., s, € PFx(X) such that rk(A4;) = rk(s;) for every i € [n], we have

exp(t[(A1, ..., An) < (51,--.,8,)]) = exp(t)[exp(A1) - - - exp(Ay,) < exp(s1) - - - exp(sn)] -

Proof of claim. Tt can first be shown that exp’(t[(A41,...,A4n) < (81,...,8n)]) = h*(exp/(t)), where h is
the string homomorphism over N’ UX U X7 such that the string h({4;, 7)) is the (j + 1)-th element of the
sequence A(exp(s;)), with the bijection A defined above, for every i € [n] and (A;, j) € N’'. Moreover, h is
the identity for the remaining elements of N’ U X U X;. The straightforward proof is left to the reader;
it is by induction on the structure of ¢ using the obvious fact that exp’(s[z; < t; | 1 < i < k] = ¢g*(s)
for all s € Tx(Xy) and t1,...,tx € Tnux(X), where g is the string homomorphism over ¥ U X}, such
that g(x;) = exp/(t;) for i € [k] and g(o) = o for ¢ € X. Thus, the left-hand side of the equation
is 7 1(h*(exp/(t)) - x1). We now observe that this is equal to 7~ !(h*(7(exp(t)))), which clearly equals
the right-hand side of the equation. This proves the claim.

For every derivation tree d € L(Gger, A) there is a derivation tree d’ € L(GY,,,exp(A4)) such that
val(d') = exp(val(d)). In fact, d’ is obtained from d by changing every label p simply into pexp.
Let d = p(d1,...,dx), and let d; be such that val(d) = exp(val(d;)). Now consider d’ = pexp(d},...,d}).
Then we have

val(d') = exp(u)[exp(B1) - - - exp(By) + exp(val(dy)) - - - exp(val(dy))] and

37The rule pexp = (S,0) — (vx1, L) is then superfluous, but we keep it to simplify the correctness proof.

57

val(d) = u[B; - - - B val(dy) - - - val(dy)] .

Thus val(d’) = exp(val(d)) by the above claim. Hence if d € L(Gger), then d' € L(Gl,,,(S,0))
and hence d” € L(G),) where d” is obtained from d' by priming the label of its root. Moreover,
val(d') = exp(val(d)) = val(d)x;. Hence, by Lemma Bl val(d”) = val(d')[z; <] = val(d)> = val(d).
This shows that L(G) C L(G’). Clearly, there is a two-state LDT-transducer that transforms d into d”.
In fact, it is a finite-state relabeling. Since, obviously, every derivation tree in L(GY,,) is of the form d”
with d € L(Gger), it also follows that L(G’) C L(G). Clearly, there is a one-state LDT-transducer that
transforms d” into d by changing every pexp and pg,,, into p.

If G is footed, then the nonterminals (C,1),...,(C,k — 1), where k = rk(C), are superfluous because
they always generate 1. Thus, in this case it suffices to define exp(C) = ({(C,0), (C, k)) and adapt the
construction accordingly. The resulting construction is similar to the one described in |93, Section 4.5.1]
where it is shown that the yield of a tree language in MC-TAL is in MCF. ™

Example 68 We consider the permutation-free MCFTG G = (N, N, X, S, R) with N = {S, A®) B©)},
N ={S,(A,B)}, £ ={c®, a0 0 ~01 and the following three rules:

S — o(A(a, 8), B)
(A(1'1,$2>,B) — (U(a,A(U(ﬂ,xl),o(’y,zg))), U(B,ﬂ)) (A(1'1,1'2>,B) — (U(ZEl,SCQ), 'y) .

Clearly, L(G, (A, B)) consists of all forests ((ca)"o(cB)"21(0y)" xa, 0"yB") with n € No. Consequently,
L(G) = {o(ca)"c(cB)"a(oy)"Bc™y5™ | n € Ng}. The MCFG G’ constructed in the proof of Theorem [67]
has the following four rules (in which we omit all parentheses in trees):

S" — (A, 0)a(A,1)B(A,2)(B,0)>
(S,0)x1 — o(A,0)a({A, 1)B(A,2)(B,0)x;
((A,0)zq, (A, Dy, (A, 2)x1,(B,0)x1) = (ca({A,0)oBx1, (A, 1)oyxy, (A,2)x1, o(B,0)Sx1)
((A,0)xq, (A, 1)ay1, (A, 2)21,(B,0)x1) = (01, 21, T1, Y21) -

Clearly, L(G’, ({(A,0),(A,1),(A,2),(B,0))) = {((ca)"o(cB8)"x1, (67)" @1, 1, c"yB"x1) | n € No} and
hence L(G') = L(G). The second rule of G’ is of course superfluous.

For the next lemma and corollary we note that the MCFG G” that is obtained from G’ by removing o
and thus has the rules

S — (A, 0)a(A, 1)3(A,2)(B,0) >
((A,0)x1, (A, Dy, (4, 2)x1, (B, 0)x1) — (a4, 0)8z1, (A, 1)vx1, (A, 2)x1, (B,0)5r1)
((A,0)xq, (A, Dy, (4, 2)x1, (B, 0)x1) — (21, 21, 1, Y21)

generates the string language yd(L(G)) = {a™f"ay"By5™ | n € No}. O

Theorem [67] suggests that we do not need MCFTGs at all, because MCFGs can generate the “same”
languages. However, the MCFTG is a way of guaranteeing that all intermediate results during the
generation process are trees, which supports the structured generation of the trees.

It follows from Theorem [67] that known properties of MCF languages (see, e.g., [54, 187, 192]) also hold
for MCFT tree languages. Thus MCFT C LOG(CFL); i.e., the recognition problem for an MCFT tree
language is log-space reducible to that of a context-free string language. Also, every tree language
generated by an MCFTG G can be parsed in polynomial time by first parsing the given tree according
to the MCFG G’ of Theorem [67] in polynomial time and then transforming the resulting derivation tree
of G’ by the corresponding LDTR-transducer into one of G in linear time. This will be discussed in more
detail in Section Additionally, every MCFT tree language is semi-linear.

Next we show that MCFGs generate exactly the yield languages of the tree languages generated
by MCFTGs. We recall that the yield of a tree t € T is defined as yd(t) = ydg)\ 3 (t), where e
is a special symbol e of rank 0 that satisfies yd(e) = ¢. For a class X of tree languages, let yX be
the class of all languages yd(L) with L € X. Thus, we will show that yMCFT = MCF. In fact, this
is already a consequence of (the second equation of) Corollary in Section [6.2] which implies that
yMCFT = yMC-TAL, and the equation yMC-TAL = MCF which was shown in [93] We additionally

38The equality yYMCFT = MCEF is also stated in [§, Theorem 1].

o8

prove LDTR-yd-equivalence, for which we refer to Definition In the first half of the next lemma we
consider, more generally, a subset A C X of lexical symbols and we prove LDTR-yd s -equivalence (where
yd is defined in the paragraph on homomorphisms in Section [Z1]). This general case will be used in the
proof of Theorem [(2]

Lemma 69 Let A C X.
(1) For every MCFTG G there is an MCFG G" that is LDTR-yd A -equivalent to G.
(2) For every MCFG G there is an MRTG G such that G is LDTR-yd-equivalent to G1.

ProoF It is straightforward to generalize the well-known proofs for RT'Gs and context-free grammars
(see, e.g., |16, Theorem 3.28]). To prove statement (1), let G = (N,N,%, S, R) be an MCFTG, and
let G' = (N, N", X U{r}, 5 R') be the LDTR-equivalent MCFG that exists by Theorem B7LY Clearly,
the mapping yd, is a tree homomorphism over the monadic ranked alphabet ¥ U {>}. To be precise,
let h be the tree homomorphism from ¥ U {>} to A U {>} such that h(a) = x; if @« € ¥\ A and
h(e) = in(e) otherwise. Then h(tp) = yda (t)> for every ¢ € Tk, and so h = yd,. Now let G” be the
grammar G}, as defined before Lemma 2]l Clearly, G” is again an MCFG and LDTR-h-equivalent to G’
by that lemma. Since G’ and G are LDTR-equivalent, it follows that G” is LDTR-yd A -equivalent to G.

To prove statement (2), let G = (N,N,X U {>},S,R) be an MCFG. We construct the MRTG
G1 = (N,N,XU{e,c}, S, Ry), where cis a new terminal symbol of rank 2, and all symbols of U{e} and N
have rank 0. The new set R; of rules is obtained by replacing each rule p = A — ((u1, ..., un), L) of G by
therule p’ = A — ((u),...,u,), L) of Gy, where uj, ..., u], are defined as follows. For u € (NUX)*{®>, x1},
if w € {21}, then v/ = e, and if u = yv with v € N U X, then ' = ¢(y,v’). Note that p can be re-
constructed from p’. It should be clear that G is LDTR-yd-equivalent to G because the derivation trees
of G are the primed versions of the derivation trees of G. n

Recall that if G’ is LDTR-yd-equivalent to G, then L(G’) = yd(L(G)). Thus, we immediately obtain
from Lemma B3 (with A = X(© \ {e}) that MCFGs generate the yield languages of the tree languages
generated by MCFTGs.

Corollary 70 yMCFT = MCF = yMRT.

Thus, strMCFT = yMCFT by Corollary 64l This is quite unusual for a class of tree languages as
already observed at the end of |28, Section 4]. For instance, the monadic tree languages generated by
RTGs are the regular string languages, whereas the yield languages are the context-free string languages.

The proof of MRT C MCF, and hence of MCF = yMRT, is also straightforward (cf. Example [G]).
For an MRTG G = (N, N, %, S, R), we construct the MCFG G' = (N U{S'}, NU{S'},%,5", R"), where
the set R’ consists of all rules A — ((u11,...,un21), L) such that A — ((u1,...,u,),L) € R and all
rules 8" — (v, L) such that S — (v, £) € R. Then L(G’) = L(G) because this construction is a special
case of the construction in the proof of Theorem if, in that proof, (C,0) is identified with C for
every C' € N. Note that in the constructions that prove MCF = yMRT the multiplicity of the grammars
is preserved.

As observed before Theorem[67], the above proofs show that CFTg, C MCFy,y, and yCFT, € MCFyn,
where MCFy,,, denotes the class of languages generated by well-nested MCFGs. It is, in fact, not difficult
to prove that yCFT,, = MCFy, as stated in [56]. The multiplicity of the well-nested MCFG equals one
plus the width of the spCFTG. It is proved in [59] that MCFy,, is properly included in MCF.

7.2. Parsing of MCFTGs

In the remainder of this section we consider the parsing problem for MCFTGs. We start by showing the
well-known fact (cf., e.g., |54, I87]) that every MCFG G can be parsed in polynomial time in the sense
that given a string w as input, the parsing algorithm outputs an RTG H,, that generates all derivation
trees of G with value w. In fact, the usual CYK parsing algorithm for MCFGs constructs the RTG H,,
in such a way that all its nonterminals are useful. Clearly, w € L(G) if and only if L(H,,) # 0, which can
be tested in linear time. Moreover, a derivation tree with value w can be computed from H,, in linear
time provided that L(H,) # (. In the next lemma we also state the degree of the polynomial, as taken

39For the purpose of this proof, there is no need to reconsider the construction of G/ in its proof.

99

from [87)[9 It involves both the multiplicity 4(G) and the rule-width A(G) of G It should be noted
that, as shown in [84] (see also [6, [52]), the uniform membership problem for MCFGs is NP-hard, even
when u(G) or M\(G) is fixed (except of course for ;(G) =1 and for the trivial case A(G) = 0).

Lemma 71 For every MCFG G with terminal alphabet ¥ U {>} there is a polynomial time algorithm
that, on input w € ¥*, outputs an RTG H,, such that L(H,) = {d € L(Gg4er) | val(d) = w}. The degree
of the polynomial is 1(G) - (A(G) + 1).

PrOOF Let G = (NU{S}, N, XU {r}, S, R) and w € ¥*. Moreover, let w = 071 -0, with n € Ny and
01y...,0, € 3. We define the set of positions of w by pos(w) = {0,1,...,n}. Intuitively, position 0 is
just before o1 and position ¢ is just after o; for every ¢ € [n]. For positions i,j € pos(w) with i < j we
let w[i, j] = oi41---0; be the substring of w between positions ¢ and j. Note that w[i,i] = € for every
i € pos(w).

The construction of H,, is similar to the usual “triple construction” for proving that the intersec-
tion of a context-free language with a regular language is again context-free (in this case the regular
language {w}). We construct the RTG H,, = (Ny, R, Sy, Ry), in which N, is the set of all sequences
((€1,A1,71), ooy by Ay 7)) such that (A, ..., Ay) € Nand 0 < ¢; <r; < nforall j € [m]. Moreover,
Sw = (0,5,n). The idea of the proof is that ((¢1, A1,71), ..., (€m, Am,m)) generates all derivation trees
d € L(Gger, (A1, ..., Ap)) such that val(d) = (w[€1,71], ..., w[lm, Tm])-

We now define the set Ry, of rules of H,. Let p = A — (u, L) be arule in R with A = (A1,..., An),
L={Bi,...,B;},and u = (w11, ..., umz1) if A # S and u = u; > otherwise (with A; € N and u; € £*
for every j € [m]). Moreover, let £1,71, ..., b, m € pos(w) and let £ and r be mappings from occn (u)
to pos(w) such that

(a) €; < r; for every i € [m] and £(C) < r(C) for every C € occn (u),

(b) for every j € [m], if uj = voChv1 --- Cpvp with p € Ny, v, v; € ¥, and C; € N for every i € [p],

then

(1) vo = w[t;,€; + |vo|] and v; = wr(C;),r(C;i) + |vi|] for every i € [p],

(2) £(C1) =4; + |vo| and £(Cit1) = r(C;) + |vs] for every i € [p — 1],

(3) r; =1+ |vo] if p=0 and r; = r(C,) + |vp| otherwise.
Then the set R,, contains the rule ((£1, A1,71), ..., (€, Amyrm)) = p(h(By), ..., h(By)), where h is the
string homomorphism from occy (u) to pos(w) x N x pos(w) such that h(C) = (¢(C),C,r(C)) for every
C € occy(u). Note that ocey(u) = Ule oce(B;).

The above proof idea can easily be shown by induction on the structure of d. Thus, S, generates
all derivation trees in d € L(Gger) such that val(d) = w[0,n] = w. Before constructing the rules of R,,,
the set {i € pos(w) | v = wli,i + |v]]} can be computed for every string v € ¥* that occurs in a rule
of R. Since G is fixed, this can be done in linear time and takes care of the conditions in (1) above.
When constructing a rule in R,, corresponding to the rule p € R as above, it clearly suffices to choose
ly,..., 0y and the mapping r, because 71,...,r, are determined by (3) above and the mapping ¢ is
determined by (2) above. Since each rule of R,, can be constructed in constant time, constructing the
rules corresponding to p takes time O(n?) where ¢ = m + Zf:1|BZ—| is the number of possible choices of
{1,..., 0y and . Thus, the algorithm runs in time O(n*) where k = u(G)+A(G)-u(G) = u(G)-(MN(G)+1).

We note that the set N,, can be constructed in quadratic time In fact, it should be clear that H,,
can be constructed in such a way that only useful nonterminals occur in its rules. Such a construction
corresponds directly to a CYK parsing algorithm. n

We now generalize this result to MCFTGs. Let G be an MCFTG with terminal alphabet ¥, and
let A C X0\ {e} be a set of lexical symbols. We can use the MCFTG G to specify the MCF string
language yd (L(G)) together with a set of “syntactic trees”, where every tree ¢ in L(G) is viewed as a
syntactic tree for the string yda(¢). In such a case, the parsing problem for G amounts to finding the
syntactic trees for a given string over A.

401n [87] a recognition algorithm is presented for MCFGs in a certain normal form. In [54, Section 7] a parsing algorithm
is presented for all MCFGs, with the RT'G defined as a chart with back-pointers, but the degree of the polynomial is not
analyzed.

41 As defined after Definition [f] the rule-width of G is A(G) = max{|L(p)| | p € R} where R is the set of rules of G.

421n the trivial case where A\(G) = 0 (and hence u(G) = 1) we can take Ny = {Sw}.

60

Theorem 72 For every MCFTG G with terminal alphabet ¥ and every A C X, there is a polynomial
time algorithm that, on input w € A*, outputs an RTG H,, and an MCFTG G, such that

L(Hy,) ={d € L(Gaer) | yda(val(d)) = w} and L(Gy) ={t € L(GQ) | ydA(t) = w} .

The degree of the polynomial is u(G) - (0(G) +1) - (AN(G) +1). If G is footed (i.e., is an nsMC-TAG) then
the degree is 2 - 1(GQ) - (A(G) + 1).

PRrOOF Let G’ be the LDTR-ydA-equivalent MCFG that exists by Lemma B3(1), and let M be the
LDTR-transducer from G to G'. It can easily be verified that u(G’) = u(G)-(6(G)+1) and \(G') = A\ (G),
and that M is a (composition of) finite-state relabeling(s). Moreover, let w € A*. By Lemma [71] we can
construct an RTG H/, such that L(H}) = {d € L(GY,,) | val(d) = w}, in the required polynomial time.
Then, by Proposition [[4] and using a product construction with the RTG Gger, we construct in linear
time an RTG H,, such that

L(H,) = M~HL(H,,)) N L(Gaer) = {d € L(Gaer) | val(M (d)) = w}

which satisfies the requirement because val(M(d)) = yda(val(d)). It remains to construct G,, from
G and H,,, which we achieve in linear time by an easy product construction. Let G = (N, N, 3, S, R) be
the MCFTG and H,, = (N, R, Sy, Ry) be the constructed RTG. We construct G, = (N', N, %, S, R')
such that N = N x N,, and N consists of all ({(A1,C),..., (A,,C)) with (A1,...,A,) € N and C € N,,.
For A = (44,...,A,), we denote ({(41,C),...,(A,,C)) by A® C. The initial nonterminal of G,
is S =518, =(5,8. fA— (u,L)isarulein R with £ = {By,...,Br} and Cy — p(Cy,...,Cy) is
a rule in R, then R’ contains the rule A ® Cy — (u/, £'), in which v/ = u[B; + in(B; ® C;) | 1 <1 < k]
and £ = {B1 ® C1,...,Br ® Cy}. It is easy to show that L(Gy, A ® C) = val(L(Gaer, A) N L(Hy, C))
for every big nonterminal A ® C € N’. Hence L(G,,) = val(L(H,)), which shows that G,, satisfies the
requirement. m

For A = 3 this theorem shows that MCFTGs can be parsed as tree grammars in polynomial
time. For every input tree ¢t € Ty the parsing algorithm produces as output an RTG H; such that
L(H;) = {d € L(Gger) | val(d) = t}. The algorithm can easily be extended to test in linear time whether
or not t € L(G) by testing whether L(H;) is nonempty. Additionally, if L(H;) #), then it can also
compute in linear time an element of L(H;); i.e., a derivation tree d € L(Gqer) such that val(d) = t.

For A C X(9\ {e} we are in the situation described before the theorem. For every input string w € A*
the parsing algorithm outputs an MCFTG G, such that L(G,,) is the set of all syntactic trees t € L(G)
with yd (t) = w. Using H,, as in the previous case, the algorithm can be extended to test in linear time
whether w € yd (L(G)), and if so compute a derivation tree d € L(Gqer) such that yda (val(d)) = w.
Moreover, it can then compute ¢t = val(d) in linear time; i.e., a syntactic tree t € L(G) with yd A (t) = w.

We note that, by the proof of Theorem [[2] these parsing algorithms are directly based on a parsing
algorithm for MCFGs; i.e., any algorithm that satisfies Lemma [71l If such a parsing algorithm for the
LDTR-yd ,-equivalent MCFG G’ does not output an RTG H/, for all derivation trees d’ with value w,
but outputs just one such derivation tree d’, then there is no need to construct H, and G, because
the above derivation tree d € L(Gaer) and syntactic tree t € L(G) can be obtained in linear time as
d= M'(d’") and t = val(d), where M’ is the LDT®R-transducer from G’ to G.

8. Characterization

In this section we prove that MCFT is equal to the class DMT¢ (RT) of images of the regular tree
languages under (total) deterministic finite-copying macro tree transducers, and hence equal to the
class DMSOT(RT) of images of the regular tree languages under (total) deterministic MSO tree trans-
ducers After proving this result we discuss a number of consequences, in particular several alternative
characterizations of MCFT. As opposed to the usual notation in the literature |26, 27, 134, 39], we use Y as
the set of input variables and X as the set of output variables (or parameters) for macro tree transducers.
We only consider total deterministic macro tree transducers that are simple (i.e., linear and nondeleting)
in the parameters; this is indicated by ‘D’ and ‘sp’, respectively.

43 Since the domain of a macro tree transduction is a regular tree language [34, Theorem 7.4], the class DM Ty (RT) does
not depend on the totality of the transducers. The same is true for MSO tree transductions and the class DMSOT(RT).

61

A macro tree transducer (in short, DMTg,-transducer) is a system M = (Q,Q, X, qo, R), where Q is
a finite ranked alphabet of states, {2 and ¥ are finite ranked alphabets of input and output symbols,
respectively, with Q N'Y = 0, ¢o € Q) is the initial state, and R is a finite set of rules. For every
g€ Q™ and w e QF) with m, k € Ny there is exactly one rule of the form

(q,w(y1y - ye)) (@1, oy Tm) = C

in R such that ¢ € Pgxy,)us(Xm), where every element (¢’,y;) of @ x Y} has the same rank as ¢’. We
denote ¢ by rhsys (g, w).

For every input tree s € T and every state ¢ € @, the g-translation of s by M, denoted by M,(s),
is a tree in Px(X,x(g)) defined inductively as follows. Let s = w(s1,...,s;) and consider the above rule.
Then My(s) = C([(¢',y:) + My(si) | ¢ € Q,1 < i < k]. As in the case of LDTR-transducers, we
define M(s) = My, (s) and call it the translation of s by M. Since go has rank 0, M(s) is a tree in T¥..
The tree transduction realized by M, also denoted by M, is the total function M = {(s,M(s)) | s € Ta}
from T to Tx. A DMTg,-transducer is a (total deterministic) top-down tree transducer (in short,
DT-transducer) if all its states have rank 0.

Finite-copying macro tree transducers were introduced in [26]. To define them, we need the well-
known notion of “state sequence” (cf. |30, Definition 3.1.8]). Let (¢1,...,qn) € Q* with n € Ny and
Q1,5 qn € Q, and let w € Q) for some k € Ny. For i € [k] we define sts, ;(q1,---,¢n) € Q" to be the
sequence of states

stsw,i(q1, - - > qn) = m; (thsar(q1,w) - - - thsp(gn, w))

where 7; is the string homomorphism from (Q x Y3)UXUX to @ such that m;({¢’, y;)) = ¢’ for every ¢’ € Q
and m;(a) = ¢ for every « € XU X. For s € Tg and p € pos(s), we define the state sequence of M
at p, denoted by sts(s,p), inductively as follows: (i) sts(s,e) = qo and (ii) if sts(s,p) = (¢1,--.,qn)
and s(p) = w € QW) then sts(s, pi) = sts,.i(q1, . - -, qn) for every i € [k]. The set of state sequences of M,
denoted by sts(M), is defined by sts(M) = {sts(s,p) | s € Tq, p € pos(s)}. Note that it is the smallest
subset S of Q* such that (i) go € S and (ii) if § € S, then sts,, ;(7) € S for all k € Np, w € Q®) and i € [K].
We say that the DMTgp,-transducer M is finite-copying (in short, DMT.-transducer) if sts(M) is finite;
it is m-copying for m € N, if the state sequences in sts(M) have length at most m. A DT¢.-transducer is
a finite-copying DT-transducer.

For a notion of X-transducer, we denote by X the class of transductions realized by X-transducers.
For a class X of transductions, we denote by X (RT) the class of all tree languages M (L), where
M € X and L € RT is a regular tree language.

The finite-copying macro tree transducers of [26] are not necessarily simple; i.e., linear and nondeleting
in the parameters. However, it follows from the results of |26, Section 6] that adding the feature of
regular look-ahead, which we do not need here, to the above finite-copying macro tree transducers yields
the same expressive power as in [26]. In particular, our notion of state sequence corresponds to the one
in Definition 6.8 and Lemma 6.9 of |26]. Since regular look-ahead can be simulated by a relabeling of
the input tree (see |17]), the class DMTy(RT), which we are interested in here, coincides with the one
n [26] (denoted MT T (REGT) there). Let us finally note that it is decidable whether or not a macro
tree transducer is finite-copying [29, Lemma 4.10], and if so, its set of state sequences can be computed
by iteration.

The inclusion MCFT C DMT (RT) is a direct consequence of the next lemma and Theorem
The lemma shows that ‘val’ can be realized by a DMTg.-transducer. In its proof we use the following
additional terminology. For ¢ = (q1,...,qn) € Qt with n € N and q1,...,9, € Q, we define the
g-translation of s € Tg by Mz(s) = (Mg, (s), ..., My, (s)).

Lemma 73 For every MCFTG G there is a DMTj.-transducer M such that M(d) = val(d) for ev-
ery d € L(Gaer). If G is an MRTG, then M is a DTy.-transducer.

PRrROOF Let G = (N,N,%, S, R) be an MCFTG. Since the result is obvious if L(G) =), we may assume
that ©(© £ §. We construct the macro tree transducer M = (N,R,%,S,Ry). Thus, M uses the
nonterminals of G with the same rank as states, of which S is the initial state. Moreover, the input
alphabet is R and the output alphabet is X. If p = (A1,...,4,) = ((u1,...,u,), L) is a rule in R such
that £ = {By,...,Bg} with By,..., By € N, then Rj; contains the following rule for every j € [n]:

<Aj,p(y1, - ,yk)>(:€1, - ,:L'rk(Aj)) — UJ[C — in((C, yz>) | Ce OCC(BZ'), 1< < k] .

62

Moreover, it has the (dummy) rule (C, p(y1,...,y%))(@1,..., Tm) = b for every C € N\ {A41,..., A, }
of rank m, where t,, is an arbitrary element of Ps (Xm)

Clearly, M is simple in the parameters because u; € Pyus(Xik(a;)). Let d € L(Gaer). We claim
that sts(d,p), the state sequence of M at a node p of d, is a permutation of the left-hand side of the
rule d(p) of G. This is obvious for the root of d with state sequence S, and if it holds for p, then it holds
for pi for every i € [k] by the definition of the above rules of M. Hence M is finite-copying on L(Gger). It
is, in fact, finite-copying everywhere because the state sequence becomes empty due to the dummy rules
as soon as there is a type error in the input tree (which means that the input tree is not a derivation tree
of G).

We now claim that Ma(d) = val(d) for every A € N and every derivation tree d € L(Gger, 4),
where M4(d) is defined just before this lemma. The proof is by induction on the structure of d.
Let d = p(dy,...,dx). For the above rule p of G, let A = (Ay,...,A,) and u = (uq,...,u,). Then
val(d) = u[B; « val(d;) | 1 <i < k]. From the definition of the rules of M we obtain that

MA(d) = U[C — Mc(dl) | Ce OCC(BZ'), 1< < k/’] :U[Bi — MBZ(dz) | 1< < k/’] .

By the induction hypotheses, Mp,(d;) = val(d;) for every ¢ € [k]. Consequently, M4(d) = val(d). In
particular, if d € L(Gger), then M(d) = Mg(d) = val(d). n

For the converse inclusion we need a normal form for DMT¢.-transducers from |26], which is based on
the same result for DT¢.-transducers in [91]. The DMT¢.-transducer M is repetition-free if all its state
sequences in sts(M) are repetition-free.

Proposition 74 For every DMTy.-transducer M there is a repetition-free DMTyc-transducer M’ that
realizes the same tree transduction as M. Moreover, if M is a DTy -transducer, then so is M'.

PROOF It is proved in |26, Lemma 6.10] that there is a single-use restricted DMTgp-transducer M’ that
realizes the same tree transduction as M. It is in fact proved for macro tree transducers with regular
look-ahead, but the construction preserves the absence of look-ahead. Moreover, in the proof of [26,
Theorem 6.12] it is shown that single-use restricted DM Tgp-transducers are finite-copying and repetition-
free. The construction in |26, Lemma 6.10] preserves DTg-transducers, but for them the result was
already proved in [91, Lemma 5.3]. -

Lemma 75 DMT¢(RT) C MCFT and DT¢(RT) C MRT.

PROOF Let M = (Q,Q, X, qo, Ry) be a DMTy-transducer, of which we assume, by Proposition [(4] that
it is repetition-free. Moreover, let G = (IV, 2, S, R) be an RTG. We can assume that in each of its rules
C — w(C,...,C), with C,C4,...,Cr € N and w € Q%) the sequence (C4,...,Cy) is repetition-free
(cf. Section 2.T)). We will construct an MCFTG G’ = (N',N",%,5’, R’) such that L(G') = M(L(G)).
The MCFTG G’ will simulate both M and G. Thus, we define N’ = @ x N, where every (q,C) € N’
has the same rank as ¢, and S’ = (go,S). For every nonempty state sequence § = (q1,...,qn) € QF
and nonterminal C € N, we abbreviate the sequence ({(g1,C),...,{g,,C)) € (N')* by § ® C. Then
we define NV = {g@ C | ¢ € sts(M) \ {e}, C € N}, so in other words, the big nonterminals of G’
are of the form ((¢1,C),...,{(qn,C)), where (q1,...,qn) is a nonempty state sequence of M, and C is a
nonterminal of G. Tt remains to define the rules of G'. Let p = C — w(Cy,...,C%) be a rule of G, and
let § = (q1,-..,qn) be a nonempty state sequence of M. Then R’ contains the rule

Pq = (<q1ac>a"'a<Q7tvc>) — ((ula"'aun)v‘c)

with left-hand side ¢ ® C, where u; = rhsa(gj,w)[{q,¥:) < in({¢,Cs)) | ¢ € @, 1 < i < k] for ev-
ery j € [n] and £ = {sts,;(7) ®C; | i € [k]} NN’ . Note that (uq,...,u,) is uniquely N’-labeled because
(Cy,...,C%) is repetition-free and every state sequence sts,, ;(§) is repetition-free. The correctness of G’
is a direct consequence of the following claim.

Claim. For every nonempty state sequence g € sts(M) \ {e}, nonterminal C' € N, and forest ¢t € Px(X)*
we have t € L(G’,§® C) if and only if there exists s € L(G, C) such that Mz(s) = ¢4

447f (k) £ () for some k > 2, then Ps(X,) # 0 for all m (recall that $(0) £ 0). If £ = (O U@ then N = NOuND
(because G is reduced) and we only need tg € 20 and ¢ = z1.
451n other words, L(G’,q ® C)) = Mz(L(G, C)). Recall the definition of Mz(s) just before Lemma [73]

63

Proof of sufficiency. We have to show that Mz(s) € L(G',§® C) for every s € L(G, C). The proof is by
induction on the structure of s. Let s = w(s1,...,5k). Then there is a rule p = C — w(C1,...,Cf) of G
such that s; € L(G, C;) for every i € [k]. Let q; = sts,, ;(¢) for every i € [k]. By the induction hypotheses,
Mg, (s;) € L(G', g; ® C;) provided that §; # €. Let pg be the rule in R’ as defined above. Then the least
fixed point semantics of G’ implies that L(G’,§ ® C) contains the forest

(ul, . ,Un)[(jl ® C; + M,jl(sl) | 1€ [k], G # E] ,
which equals Mjz(s).

Proof of necessity. The proof is similar and proceeds by induction on the structure of a derivation
tree d € L(GY,,,q® C) with val(d) = t. Let d = pz(du1,...,dr). Then

t= (’U,l,. .. ,Un>[(jz ®Cz (*Val(dﬂ | 1 E [k], (?z ?é 5] .

By the induction hypotheses, there exist trees s; € L(G, C;) such that Mg, (s;) = val(d;) for every i € [k]
with @; # e. Since we assume that G is reduced, there also exist trees s; € L(G, C;) for every i € [k]
with §; = e. Consequently, s € L(G,C) and Mg(s) =t for s = w(s1, ..., Sk). n

From Lemmas [73] and [75] we obtain our characterization result, of which the second part was proved
in |79, Proposition 4.8].

Theorem 76 MCFT = DMTy.(RT) and MRT = DT (RT).

We observe that the multiplicity of the MCFTG corresponds to the “copying number” of the corre-
sponding DMTy.-transducer. For every m € N, let m-MCFT be the class of tree languages generated
by MCFTGs G with u(G) < m, and let DMT¢ () be the class of transductions realized by m-copying
DMT¢.-transducers, and similarly for subclasses of these grammars and transducers. Then, checking the
proofs above, we obtain that m-MCFT = DMT¢(,,,)(RT) and m-MRT = DT¢c(,,,)(RT) for every m € N.
For the preservation of the m-copying property in Proposition [[4] we additionally need to inspect the
proof of [26, Lemma 6.10]). For m = 1 we obtain that CFTg, = DMT1)(RT). A DMTgp-transducer
is simple (in short, DMTg; ¢p-transducer) if it is also simple (i.e., linear and nondeleting) in the input
variables. Clearly, DMTy; ,-transducers are 1-copying. Checking again the proofs above, it is easy to see
that CFT,, = DMTg; ¢, (RT) B9

In the remainder of this section we discuss the consequences of the characterization result in Theo-
rem One immediate consequence is that MCFT is closed under intersection with regular tree lan-
guages: If M is a DMTg.-transducer and Ry and Ry are in RT, then M (R1) N Ry = M(R; N M~1(Ry)).
Moreover, M ~!(Rz) is in RT by [34, Theorem 7.4] and so Ry N M ~1(Ry) is in RT.

From Theorem [76 and Corollary [0l we obtain two known results. First, MCF = yDT, (RT). Since
it is easy to check from the proof of Corollary [0l that m-MCF = y(m-MRT), we even obtain that
m-MCF = yDTy,,,)(RT) for every m € N. It was, in fact, proved in [94] that m-MCF equals the class
of output languages of deterministic tree-walking transducers with “crossing number” m, which equals
YD T (1) (RT) by [30, Corollary 4.11]. Second, yDMT (RT) = yDT(RT), which was proved in [26,
Corollary 7.10]. Vice versa, this equality and Theorem [0l imply that yMCFT = yMRT (Corollary [70).
We also observe that this equality is a restricted version of yDMT,(RT) = yDT(RT), which was proved
in [28, Theorem 15] (cf. the last sentence before Theorem [67)) and will follow from the results in Section [Tl

More interestingly, Theorem [76] implies three other characterizations of MCFT and MCF (of which
those of MCF are already known). First, they can be characterized in monadic second-order logic (MSO).
Let DMSOT be the class of deterministic (or parameterless) MSO-definable tree transductions (see,
e.g., [12, Chapter 8]), and let DMSOTS be the analogous class of tree-to-string transductions. Since
regular look-ahead can be simulated by a relabeling of the input tree, it follows from |26, Theorem 7.1]
that DMSOT(RT) = DMT¢(RT) and from |26, Theorem 7.7] that DMSOTS(RT) = yDT.(RT).

Corollary 77 MCFT = DMSOT(RT) and MCF = DMSOTS(RT).

46The only small technical problem is the deletion of all input variables in the dummy rules in the proof of
Lemma [[3] This can be easily remedied by introducing an additional state q of rank 1, changing the dummy
rules into (C, p(y1,...,yk))(®1,...,zm) — (g, y1)(--- (¢, yk)({tm)) ---) and adding additionally all dummy rules of the
form (g, p(y1,- -, yr)) (1) = (@ y1) (- (g ye) (1)) -)

64

Since MSO-definable transductions are closed under composition [12, Theorem 7.14], this implies that
MCFT is closed under DMSOT-transductions, and hence under DMT¢.-transductions even when they
are equipped with regular look-ahead by |26, Theorem 7.1]. Similarly, MCF is closed under deterministic
MSO-definable string transductions, which are the transductions realized by two-way deterministic finite-
state transducers [23]. In particular, it follows from Lemma [73] that MCFT is closed under control, in
the following sense. Let G be an MCFTG and let C' be a (“control”) tree language in MCFT. Then
val(L(Gaer) N C) is in MCFT. Intuitively, the derivation trees of the grammar G are restricted to be an
element of C; in that way C “controls” the derivation trees (and hence the derivations) of G.

Second, MCFT and MCF can be characterized in terms of context-free graph grammars. It is
known that DMSOT(RT) equals the class of tree languages that can be generated by (either hyperedge-
replacement or vertex-replacement) context-free graph grammars (see, e.g., |19, Section 6] or the intro-
duction of [12, Section 8.9]). Similarly, DMSOTS(RT) is the class of string languages generated by such
grammars. These facts were also used to obtain |26, Corollaries 7.3 and 7.8].

Corollary 78 MCFT (resp. MCF) is the class of tree languages (resp. string languages) generated by
context-free graph grammars.

Remark 79 For completeness’ sake we show here how easy it is to simulate an MCFTG by a context-free
graph grammar, in particular a hyperedge-replacement grammar (HRG). We assume the reader to be
familiar with HRGs (see, e.g., [5, 14, 19]). Let us first recall how trees and forests can be represented
as hypergraphs. Let Q be a ranked alphabet. A forest t = (t1,...,t,) € Po(X)T is represented by the
hypergraph gr(¢) that has the set of nodes pos(t) and the set of hyperedges {e, | p € posq(t)} such that e,
has label ¢(p) and sequence of incident nodes inc;(p) = (pl,...,pk,p) where k = rk(¢(p)). Moreover, gr(t)
has the sequence of external nodes ext(t) = ext(t1)---ext(t,) such that ext(t;) = (pj1,-..,pjk,, # 1)
where t;(p;¢) = x¢ € X for every j € [n] and ¢ € [k;] with k; = rk(¢;). We say that an HRG is
tree generating (or, generates a tree language) if its terminal alphabet is a ranked alphabet ¥ and the
generated hypergraph language is a subset of {gr(¢) | t € Tx}.

Now let G = (N,N, %, S, R) be an MCFTG. We construct an HRG G’ that has the set of nontermi-
nals NV, with initial nonterminal S, and the set of terminals 3. Let A — (u, £) be a rule in R. Then G’
has the rule A — gr(u, L), where gr(u, £) is the hypergraph obtained from gr(u) as follows. For every
B = (u(p1),...,u(pm)) € L with p1,...,pm € posy(u), remove the hyperedges e, ..., ep, and replace
them by one new hyperedge ep that has label B and sequence of incident nodes inc,(p1) - - - inc,, (pm)
Intuitively, the hyperedge ep explicitly links the occurrences in u of the nonterminals u(p1),...,u(pm)
of the link B. Now let tg € Px(X)' be a forest with rk(tg) = rk(B), for every B € L. Then it is
straightforward to check that gr(u[B < tp | B € £]) is equal to the result of simultaneously substituting
gr(tp) for the hyperedge ep in gr(u, L) for every B € L. Thus, using the least fixed point semantics of
the HRG G’ (see |14, Theorem 2.4.2]), we obtain that L(G’") = {gr(¢) | t € L(G)}. It can also easily be
checked that the derivations of G, as defined in Section B.3] can be simulated by the derivations of G’:
for every t € T(nxn+)us and n € Ny, if S ® e = t then gr(S) =¢ gr(t,£), where gr(t, £) is defined
similarly to gr(u, £) above using the set £ C N ® N* mentioned at the end of Section[3:3 Moreover, these
are all possible derivations in G’. Intuitively, the role of the link identifiers in the derivation S ® € =% t
is taken over by explicit hyperedges.

We say that an HRG is in tree generating normal form if it can be obtained from an MCFTG in
the way described above, eventually followed by a renaming of its nonterminals and an identification of
nonterminals that are aliases Then the above, together with Lemma 0 and Corollary [78] proves that
every tree generating HRG has an equivalent HRG in tree generating normal form (see |27, Theorem 7).
We finally note that there is a similar easy construction showing that every string language in MCF can
be generated by an HRG (see [19, Theorem 6.4]).

As an example of the above construction we consider the MCFTG G of Example [l The rules of
the HRG G’ are shown in Figure [[2] (without the rules for the alias B’ of B) and the derivation of G’
corresponding to the one of G in Figure [l is shown in Figure By definition, G’ is in tree generating
normal form. Note that the sequence of external nodes of the right-hand side of rule ps (and of rule

4"Every terminal or nonterminal symbol a of an HRG should have a “rank”. For every hyperedge e with label a the
“rank” of a should be equal to the number of nodes that are incident with e. Moreover, for every rule A — g the “rank”
of A should be equal to the number of external nodes of the hypergraph g. In the grammar G’, every terminal o € ¥ has
“rank” rk(c) + 1 and every nonterminal A = (A1,..., A,) has “rank” > 7 | (rk(A;) +1).

48Tt can be checked that this is equivalent to [27, Definition 6], provided that the MCFTG is assumed to be nonerasing.

65

pri S — P3 B —
3 4
2 2
P4t B ° Ps - P6 T—
oo !

Figure 12: Rules of the HRG G’ corresponding to the MCFTG G of Example [T (without the rules for B’). Hypergraphs are
drawn as in |14, [19]. A hyperedge e is drawn as a box containing the label of e. A line with label ¢ connects e with its i-th
incident node. If the label of e is in N U ¥ with rank k, then the labels of the incidence lines are dropped; by convention,
the first k incident nodes of e are below the box, from left to right, and the last incident node is above the box. The j-th
external node of the hypergraph is labeled j.

pe) of G’ is not repetition-free, which allows G’ to erase hyperedges (or “parts” of hyperedges). For a
nonerasing MCFTG G the above construction results in an HRG G’ for which all sequences of external
nodes (and all sequences of incident nodes) are repetition-free. Thus by Lemma [0} this requirement can
be added to the tree generating normal form. a

Third, MCFT and MCF can be characterized in terms of second-order abstract categorial grammars.
It is shown in [57] that such grammars have the same tree and string generating power as hyperedge-
replacement context-free graph grammars, which was already known for strings from earlier results as
discussed in [57)].

Corollary 80 MCFT (resp. MCF) is the class of tree languages (resp. string languages) generated by
second-order abstract categorial grammars.

PRrROOF Let TR(2AC) denote the class of tree languages generated by second-order abstract categorial
grammars (in short, 2ACGs). It is shown in [57] that TR(2AC) is included in the class of tree languages
generated by hyperedge-replacement context-free graph grammars (HRG), and hence TR(2AC) C MCFT
by Corollary [[8 In the other direction, it is shown in [57] by a simple construction that every tree
language generated by an HRG in tree generating normal form (as in |27, Definition 6] or equivalently
in Remark [T9) is in TR(2AC). Note that together with the construction in Remark [T this also shows
that there is a simple construction to transform every MCFTG into an equivalent 2ACG. n

We finally observe (cf. the paragraph after [26, Corollary 7.10]) that MRT is properly included
in MCFT. The tree language {a™b" > | n € No} over ¥ = {a¥), 5™ 50} is in MCFT and even in CF Ty,
but not in DT (RT) because all tree languages over ¥ in this class are regular |81, Theorem 4]. Also
CFT,p is properly included in MCFT since it is shown in [20, Section 5] that the tree language L(G),
where G is the MRTG of Example[] is not in CFT,. Thus, MRT and CFTg, are incomparable subclasses
of MCFT.

66

Figure 13: Derivation of the HRG of Figure corresponding to the MCFTG derivation of Figure

67

9. Translation

As observed in [79] for MRTGs, MCFTGs are not only a natural generation device but also a natural
translation device. In general, we can also use an MCFTG G to define a forest language (i.e., an n-ary
relation on T%) by considering L(G, A) for a big nonterminal A = (Ay,...,A,) with rk(4;) = 0 for
every ¢ € [n]. In particular, for the case n = 2, the MCFTG can be used as a synchronous translation
device, which we will call an MCFT-transducer. After defining MCFT-transducers we present two re-
sults analogous to those in 73] (see also [69]). Namely, we prove a characterization of the corresponding
MCFT-transductions by macro tree transducers, similar to the one for MCFT tree languages in Theo-
rem (in the previous section), and we present a solution to the parsing and translation problem for
MCFT-transducers, similar to the one for MCFTGs in Theorem [[2] (in Section [7]).

A multiple context-free tree transducer (in short, MCFT-transducer) is a system G = (N, N, %, S, R),
where N, N, 2, and R are as in Definition [and S = (S1,52) € N is the initial big nonterminal
with S, So € N(©. We require (without loss of generality) that G is start-separated; i.e., that S; and S,
do not occur in the right-hand sides of rules. Moreover, we require that IV is partitioned into two subsets
N7 and N» of input nonterminals and output nonterminals, respectively, such that

(1) S1 € Ny and Sy € No, and

(2) for every rule (Ay,...,An) = ((u1,...,up), L) in R, every j € [n], and every i € [2] we have

ocen(uj) € Ny if Aj € N;.

Intuitively this requirement means that the nonterminals in N7 generate the input tree, and those in No
generate the output tree. For every A € N, the forest language L(G, A) is defined as for MCFTGs,
and the tree transduction realized by G is the binary relation 7(G) = L(G) = L(G,S) C Tx x Tx.
We also define Gge, as for MCFTGs. Thus, the initial nonterminal of Gger is S = (51,52). Conse-
quently, 7(G) = val(L(Gqer)) by Theorem[@ Note that the input and output alphabet of G are the same
ranked alphabet . This is a slight restriction that could be solved by allowing symbols in a ranked
alphabet to have more than one rank. The latter feature is easy to implement, but technically rather
tiresome. We will say that G is an MCFT-transducer over ¥ and that 7(G) is an MCFT-transduction
over ¥.. The synchronous context-free tree grammar of [73] is the special case of the MCFT-transducer
in which N Q N1 X N2.

Our characterization of MCFT-transductions by macro tree transducers uses a generalization of
the notion of bimorphism. Bimorphisms are a classical symmetrical way to characterize classes of
string and tree transductions (see, e.g., [2, 68, [75]). Let X be a class of tree transductions. For a
finite ranked alphabet X, we define an X-bimorphism over 3 to be a transduction 7 C Tx, x Tx such
that 7 = {(M1(s), M2(s)) | s € L}, where L is a regular tree language over a finite ranked alphabet
and M; and Ms are X-transductions with input alphabet 2 and output alphabet ¥. In the classical
case X is a class of tree homomorphisms (or string homomorphisms in the similar case of strings); cf. the
proof of Proposition T4l In the present case we take X = DMTj. and we show that MCFT-transductions
are as expressive as DMT¢.-bimorphisms. Clearly, if M; and Ms are DMT¢.-transductions, then the
domain L1 = {M;(s) | s € L} and the range Ly = {Ma(s) | s € L} of the DMT¢.-bimorphism 7 are
tree languages in MCFT by Theorem and 7 can be viewed as translating L, into Ly. The inverse
of 7 is the DMT¢.-bimorphism 77! = {(Mx(s), M1(s)) | s € L} which translates Ly into L;. Thus,
DMT¢.-bimorphisms are a natural symmetrical model for the translation of MCFT languages. To prove
the characterization we need a few more definitions.

We first modify the notion of DMT¢.-transducer in such a way that it translates trees into forests
of length 2. We define a DMTyg, o-transducer to be a system M = (Q,Q,X%,qo, R), where the only
difference to a DMTgp-transducer is that go = g1z is the initial state sequence with ¢1,¢2 € Q). For
s € Tg and ¢q € Q, the tree M,(s) is defined as for DMTy,-transducers, and M (s) = My, (s) which equals
(Mg, (s), My, (s)) by the definition before Lemma [[3l The tree transduction realized by M is defined as
for DMTp-transducers; i.e., it is the total function M = {(s, M (s)) | s € Ta} from T to Tx; x Tx. The
state sequences of a DMTy, o-transducer are defined in the same way as for DMTg,-transducers with
sts(s, &) = qo, and finite-copying DMTy, o-transducers are called DMT o-transducers.

We now define the product of two DMT,-transducers My and My with the same input and output al-
phabets to be the DMTg, o-transducer M; @ M given as follows. Let M; = (Q;,Q, X, ¢;, R;) with i € [2],
where we assume that @1 and Qo are disjoint. Then M; ® Ms = (Q1 U Q2,92,%, q1g2, R1 U Ry). It
should be clear that for every s € Tq we have (M; ® Ms)(s) = (Mi(s), Ma(s)). It should also be
clear that for every p € pos(s) the state sequence of M; ® My at p is the concatenation of the state
sequences of M; and Ms at p. This implies that M; ® Ms is finite-copying (repetition-free) if and only

68

if My and My are both finite-copying (repetition-free). Vice versa, for every DMTg, o-transducer M
there are DMTg,-transducers My and My such that M and My ® M realize the same tree transduction.
Clearly, if M = (Q,,%, q1g2, R), then we can take M; = (Q,Q,%,¢1, R) and My = (Q',Q,%, ¢}, R'),
where the primes indicate a consistent renaming of the states of M such that Q N Q" = @. The trans-
ducer M7 ® M> is obviously equivalent to M and it is finite-copying if M is. Thus we have shown that
DMTyc 2 = {M1® My | M1, My € DMTy.}. Note that it follows from Proposition [[4] that this proposition
also holds for DMT¢, o-transducers.

With these preparations, we can now prove our characterization of MCFT-transductions as bimor-
phisms of macro tree transductions.

Theorem 81 Let X be a finite ranked alphabet. A transduction 7 C Tx, X Tx; is an MCFT -transduction
over % if and only if it is a DMT¢.-bimorphism over 3.

ProOOF Exactly the same proofs as those of Lemmas[73and [[5]show that the class of MCFT-transductions
equals the class DMTy. 2(RT). The latter class coincides with the class of DMT¢.-bimorphisms because
it M = M; ® M, where M is a DMTy o-transducer and M; and M, are DMTy.-transducers, then
M(L) = {(Mi(s), M2(s)) | s € L} for every regular tree language L € RT. Note that if M; and M,
have the disjoint sets of states (J; and Qs, then the set N’ of nonterminals of the MCFT-transducer G’
constructed in the proof of Lemma [70] is partitioned into the set ()1 X N of input nonterminals and the
set Q2 X N of output nonterminals, where N is the set of nonterminals of the given RTG.]

We note that we can define MRT-transducers and DT¢.-bimorphisms in the obvious way, and prove
as a special case of Theorem [B] that the MRT-transductions (which are the binary rational tree trans-
lation of |79]) coincide with the DT¢.-bimorphisms. In [69] the MRT-transducers are called synchronous
forest substitution grammars, and it is shown in [69, Theorem 3] that the MRT-transductions are the
1d-MBOT-bimorphisms, where 1d-MBOT is the class of transductions realized by linear deterministic
multi bottom-up tree transducers [24] B4 By [24, Theorem 18] and [26, Theorems 5.10 and 7.4], this is es-
sentially the same result. We also note that we can define DMT fg—bimorphisms in the obvious way, where
DMT}%—transducers are defined just as DMTy.-transducers, but with regular look-ahead as in the defini-
tion of LDTR-transducer. Since regular look-ahead can be simulated by a relabeling of the input tree, the
DMTg-bimorphisms are the same as the DMT¢.-bimorphisms. In other words, the addition of regular
look-ahead does not increase the power of these bimorphisms. Moreover, the class of DMTﬁ-tranSductions
coincides with the class DMSOT of deterministic MSO-definable tree transductions (cf. Corollary [77 and
the preceding paragraph). Thus, the MCFT-transductions are the DMSOT-bimorphisms. The notion of
DMSOT-bimorphism is quite natural as it is a transduction of the form {(M;(s), Ma(s)) | s € L}, where
L is an MSO-definable tree language and M; and M are deterministic MSO-definable tree transductions.
Even if we assume that DMSOT transductions need not be total (cf. footnote A3, it follows that the
class of MCFT-transductions properly includes the class DMSOT. To see this note that, in particular,
every DMSOT transduction and its inverse are DMSOT-bimorphisms. Thus, since DMSOT is not closed
under inverse (see [12, Remark 7.23]), DMSOT is properly included in the class of DMSOT-bimorphisms.

We now turn to the parsing and translation problem for MCFT-transducers, generalizing the parsing
algorithm for MCFTGs in Theorem Let G be an MCFT-transducer over ¥, and let A C X(9)\ {e}
be a set of lexical symbols. We can view G as translating input strings into output strings, thereby
realizing the string transduction {(yda(t1),yda(t2)) | (t1,t2) € 7(G)}. In such a case the parsing
and translation problem for G amounts to finding the syntactic trees for a given string over A and
finding its possible translations together with their syntactic trees. In the next result we show that this
can be done in polynomial time. For its proof we need some more terminology. It is straightforward
to prove the analogue of Lemma 21| for MCFT-transducers, which shows that MCFT-transductions
are closed under tree homomorphisms. For a given MCFT-transducer G and tree homomorphism h,
the MCFT-transducer GGj, has the same initial big nonterminal as G. Moreover, the lemma implies
that 7(Gp) = {(h(t1), h(t2)) | (t1,t2) € 7(G)}. As before, (G, h) is said to be a cover of Gy, if h is a
projection. An MCFT-transducer G over ¥ is i/o-disjoint if ¥ is partitioned into subsets X7 and ¥o of
input and output terminal symbols, and

(2") for every rule (Ay,...,An) — ((u1,...,un), L) in R, every j € [n], and every i € [2] we have
OCCNug(’U,j) C N;U%;if Aj € N;.

49The restriction to linear d-MBOT is implicit in [69].

69

This guarantees that 7(G) C Tx, x Tx,. It should be clear that every MCFT-transducer G over X
has a cover (G", h) such that G" is i/o-disjoint, the terminal alphabet ¥ U ¥’ of G" is partitioned into
Y, =¥ and ¥y = ¥, and the restriction of h to ¥ is ‘in’. To construct G" from G, change every u;
with A; € N» in the above rule into u’;, where u/ is obtained from u; by changing every label o into its
primed version ¢’, and define h(c’) = h(o) = in(o) for every o € X.

Theorem 82 For every MCFT-transducer G over % and every A C X, there is a polynomial time
algorithm that, on input w € A*, outputs an RTG H,, and an MCFT-transducer G,, such that

L(Hy) ={d € L(Gqer) | val(d) € 7(Gw)} and 7(Gy) ={(t1,t2) € 7(G) | yda(t1) = w} .
The degree of the polynomial is u(G) - (0(G) +1) - (AM(G) + 1).

PROOF We first show how to construct the RTG H,,. Note that L(H,,) should consist of all derivation
trees d € L(Gger) such that yda(val(d);) = w, where val(d); is the first tree of the forest val(d). To
show this, we may assume that G is i/o-disjoint with ¥ partitioned into 3; and 39 and with A C 3.
In fact, let (G*, h) be an i/o-disjoint cover of G with the properties described before this theorem. Now
let H be an RTG such that L(H)) = {d € L(GY,,) | yda(val(d)1) = w}. By the proof of Lemma 21
there is a projection 7 such that #(L(GY.,)) = L(Gaer) and val(7t(d)) = h(val(d)) for every d € L(GY,,)-
Applying # to the rules of Hy, we obtain an RTG H,, such that L(H,,) = #(L(H})). Clearly, H,, satisfies
the above requirement.

Assuming that G = (N, N, %, (S1,52), R) is i/o-disjoint with ¥ partitioned into ¥; and 35 and
with A C ¥, we construct the MCFTG G# = (NU{S"}, NU{S'}, SU{#3}, 8, R#), where S’ is a new
nonterminal, # is a new terminal, and R# contains all rules of R and the rule py = S" — (#(S1, S2), £)
with £ = {(S1, 52)}. Note that

L(G*) = {#(tt2) | (b1,t2) €7(G)} and L(GY,,) = {py(d) | d € L(Gaer)} -

der

By Theorem there is a polynomial time algorithm that, on input w € A*, outputs an RTG HJ
such that L(H?) = {d € L(foer) | yda(val(d)) = w}. We construct the RTG H,, from H} by remov-
ing py; i.e., changing every initial rule S — pg(C) of H into all rules S — p(Cy,...,Cy) such that
C — p(Ch,...,Cy) is a rule of H*. Then L(H,) = {d € L(Gaer) | yda(val(d)) = w} because # ¢ A.
Clearly, since X7 and X9 are disjoint and A C %5, we have yda (val(d)) = w if and only if val(d) = (t1, t2)
with yda (t1) = w. Thus, H,, satisfies the requirement.

Finally, we construct G,, from G and H, as in the proof of Theorem with initial big nonter-
minal (S1,52) ® Sy = ({(S1,Sw), (S2,Sw)). Then 7(G,) = val(L(H,)), and hence G,, satisfies the

requirement. n

Remarks similar to those following Theorem are also valid here. For A = X, Theorem
solves the parsing and translation problem for MCFTG-transducers as tree transducers in polyno-
mial time. For every input tree ¢ € Ty the algorithm produces as output an RTG H; such that
L(H:) = {d € L(G4er) | 3" € Tx: val(d) = (t,t')}. The algorithm can be extended to test in linear
time whether or not ¢ is in the domain of 7(G), by testing whether L(H;) is nonempty. Additionally, if
L(H) # 0, then it can also compute in linear time a derivation tree d € L(H;) and a tree ¢’ € Tk such
that val(d) = (¢,t'). Thus, t’ is a possible translation of ¢.

For A C X\ {e}, we are in the situation described before Theorem For every input string
w € A* the algorithm outputs an MCFT-transducer G,, such that 7(G,,) is the set of all pairs of syntactic
trees (t1,t2) € 7(G) such that ¢; is a syntactic tree for w; i.e., yd(¢;) = w. Using H,, as before, the
algorithm can be extended to test in linear time whether w is in the domain of the string transduction
{(yda(t1),yda(t2)) | (t1,t2) € 7(G)} realized by G, and if so compute a derivation tree d € L(H,,), its
value (t1,t2) such that yd (1) = w, and the string w’ = yd (t2). Thus, ¢; is a syntactic tree of w and
to is a syntactic tree of a possible translation w’ of w. Note that, since the proof of Theorem [R2]is based
on Theorem [T2] these parsing and translation algorithms for MCFT-transducers are, again, based on a
parsing algorithm for MCFGs.

Let us finally consider the class of string transductions realized by MCFT-transducers as discussed
above. We first restrict attention to the case A = X(9)\ {e}, which means that each MCFT-transducer G
realizes the string transduction {(yd(¢1),yd(t2)) | (t1,t2) € 7(G)}. Let us call this a yMCFT-transduction.
We can define MCF-transducers in the obvious way, with 57 and S5 being the only nonterminals of rank 0.

70

It should now be clear that we can generalize Corollary [{0] as follows: The yMCFT-transductions coin-
cide with the MCF-transductions (and with the yMRT-transductions). These MCF-transductions can
also be characterized as the yDT;.-bimorphisms, or equivalently, as the bimorphisms determined by
deterministic tree-walking transducers (cf. the third paragraph after Theorem [76). Since there is an
analogue of Lemma [2T] for MCFT-transducers (as discussed before Theorem [82]), the MCF-transductions
are closed under string homomorphisms. This implies that, for every MCFT-transducer G and every set
A C X\ {e} of lexical symbols, the string transduction {(yda (t1),yd(t2)) | (t1,t2) € 7(G)} is also a
yMCFT-transduction.

10. Parallel and general MCFTG

In this last section we consider two natural extensions of the MCFTG that allow the grammar to make an
unbounded number of copies of subtrees. The definitions of the syntax and semantics of these extensions
are easy variants of those for the MCFTG. The first extension is the parallel MCFTG (or PMCFTG),
which is the obvious generalization of the well-known parallel MCFG of [87]. In a parallel MCFTG (or
parallel MCFG), two or more occurrences of the same nonterminal may appear in the right-hand side of
a rule. In the least fixed point semantics the terminal tree generated by that nonterminal is therefore
copied. In the derivation semantics, after application of the rule, the occurrences must be rewritten
in exactly the same way in the remainder of the derivation. The second generalization, which we only
briefly consider, is the general (P)MCFTG, for which we drop the restriction that the rules must be
linear. Thus, two or more occurrences of the same variable may appear in the same tree of the right-hand
side of a rule and, when the rule is applied in a derivation step, the tree that is the current value of the
variable is copied. The classical (nondeleting) IO context-free tree grammar is the general MCFTG of
multiplicity 1.

A parallel multiple context-free tree grammar (in short, PMCFTGQG) is a system G = (N, N, X, S, R) as
in Definition Bl except that the right-hand side u of a rule A — (u, £) € R is not required to be uniquely
N-labeled. The least fixed point semantics of G is defined just as for an MCFTG. As an example, the
PMCFTG G with N = N = {S} and & = {0, a(® 5O} using the rules

S — (0(5,5),{S}) S = (a,0) and S — (b,0)

generates the tree language L(G) consisting of all full binary trees over ¥ of which all leaves have the same
label. Thus, yd(L(G)) = {a®" | n € Ng} U {b*" | n € Ny}. In fact, from the least fixed point semantics
we first obtain that a and b are in L(G). Next, we obtain that the trees o(S,5)[S + a] = o(a,a) and
o(8,8)[S < b] = o(b,b) arein L(G), and then we confirm that o(S, S)[S < o(a,a)] = o(c(a,a),0(a,a)) is
in L(G), etc. Here we use the trivial fact that a tree homomorphism (and hence a second-order sub-
stitution) replaces different occurrences of the same nonterminal by the same tree. Since yd(L(G)) is
not semi-linear, PMCFTGs are more powerful than MCFTGs, even when they are used to define string
languages via the yields of the generated tree languages.

Intuitively, for a rule A — (u, L) of G, it is still the case that every big nonterminal B € £ occurs
“spread-out” exactly once in u, but now each nonterminal of B may occur more than once in u. More
precisely, for each big nonterminal B = (C4,...,Cp,) € £ with Cy,...,C,, € N, there is a unique set
Pp C posy(u) of positions such that {u(p) | p € Pg} = {C4,...,Cn}, and we have that Pg N Pg = {)
for every other B’ € £ and posy(u) = Uge, Pp. After the application of the rule, all occurrences of
each nonterminal C; must be rewritten in the same way. This idea was first introduced for context-
free grammars in [80] with a least fixed point semantics; for a rewriting semantics similar to the one in
Section [B.3] we refer to [88].

Derivation trees can be defined for G as in Section with the same results, which are proved in the
same way, with one notable exception. Statements (1) and (2) of Lemma [I0 do not hold and must be
reformulated. For our purposes here it suffices to replace them by the following weaker statements:

(1) ocea(val(d)) = U eocep () 0cca(rhs(p)) for every A C X, and

(2) ocen(val(d)) = UBeoch(d) occ(B),
which can easily be proved by induction on the structure of d. The rewriting semantics in Section [3.3] also
applies to PMCFTGs without change. For instance, the tree o(o(a,a),o(a,a)) is derived by the above
grammar in three derivation steps:

8% =4 a(81,8Y) =@ a(o(5M, M), 0(5M,8M) =g a(0(a,a),0(a,a))

71

where p; is the first rule of G and ps is the second.

The results and proofs of Section] on basic normal forms are also valid for PMCFTGs. The same
is true for Lemmas [30 and @0l However, we did not further study the lexicalization of PMCFTGs. Thus,
we leave it as an open problem whether finitely ambiguous PMCFTGs can be lexicalized, which we
conjecture to be true. The results and proofs of Section [f] are also valid for PMCFTGs (without the
statements on lexicalization). Thus, for every PMCFEFTG there are an equivalent monadic PMCFTG, an
equivalent footed PMCFTG, and an equivalent “paralle]” MC-TAG (provided that the generated tree
language is root consistent).

Parallel MCFGs (in short, PMCFGs) can be defined as in Section [l and all the results and proofs
in that section are also valid for the parallel case, except Corollary [65] on lexicalization. Thus, we have
that yPMCFT = PMCF = yPMRT. Moreover, PMCFGs and PMCFTGs can be parsed in polyno-
mial time; i.e., Lemma [[I] and Theorem [[2] also hold in the parallel case (cf. |66, 87]). However, as
observed in [87], the degree of the polynomial is one more than in those results because in the proof of
Lemma [Tl in the construction of the rules of H,,, it must be checked additionally in linear time that
wll(Cy,), r(Cy,)] = wt(Ciy), m(Ci,)] whenever C;, = Cy, (where C;; may occur in a different u; than C,).
It should also be noted that, for a given derivation tree d, the syntactic tree ¢t = val(d) can no longer be
computed in linear time. Instead, it should be clear that in linear time a directed acyclic graph g can be
computed that represents the tree ¢ with shared nodes. In the case where X(%) C A, this graph g can be
unfolded into ¢ in time linear in the size of g plus the size of w = yd (), and thus ¢ is obtained in the
required polynomial time from the string w by the parsing algorithm.

The results of Section [§ (except Corollaries [T, [78 and B0) as well as those of Section [are also valid
for the parallel case provided that we change DMT¢. into DMTy,, and DTy into DT. The proofs are
also the same, except that in the proof of Lemma [[3] we do not have to consider the state sequences
of M, and for the proof of Lemma we do not need Proposition [[4] and we have to redefine state
sequences, as follows. Roughly speaking, the new state sequences are the old ones from which repeti-
tions have been removed; thus, they can be viewed as ‘state sets’ (cf. |30, Definition 3.1.8]). Formally,
let M = (Q,9,%,q0,R) be a DMTg,-transducer, and consider a fixed order py T --- T p, on the
set Q = {p1,...,pr} of states of M. For a subset Q" = {psy,...,pi,, } of Q with i3 < -+ < iy, we define
the state sequence seq(Q’) = ps, - - ps,, . Nowlet qi,...,¢, € Q and n € Ny, and let w € Q) with k € Ny.
For i € [k] we (re-)define sts, ;(q1,-..,qn) € Q* to be the sequence of states

stsw.i(q1, .-, qn) =seq({q' € Q | 3j € [n]: (¢, yi) € occqxy (thsy(gs,w))})

Then sts(s,p) and sts(M) can be defined as in Section B] and with these definitions the proof of
Lemma is valid. Note that sts(M) is now finite for every DMTg,-transducer. Consequently, we
have that PMCFT = DMT,,(RT) and PMRT = DT(RT). As further consequences we obtain the
known result yDMT,,(RT) = yDT(RT), which was proved in [28, Theorem 15|, and the known re-
sult PMCF = yDT(RT), which was proved in |91, Theorem 3.1] by taking into account the well-known
fact that string-valued attribute grammars without inherited attributes generate yDT(RT). As in Sec-
tion B the multiplicity of the grammars corresponds to the copying power of the transducers. Thus,
m-PMCFT = DMTg, (,,,)(RT) and m-PMRT = DT\,,)(RT) and m-PMCF = yDT(m)(RT), where the
prefix ‘m-’ means that the grammars have multiplicity at most m and the subscript ‘(m)’ means that the
transducers are m-copying (with the new definition of state sequence). As shown in |30, Theorem 3.2.5] by
a pumping lemma for yDT ,,)(RT), the language L, = {afa} - --aj,, 45 | n € No} is in (m +1)-MCF but
not in m-PMCF. As results analogous to those in Section[@ we obtain that the PMCFT-transductions are
the same as the DMT,-bimorphisms, and the PMRT-transductions are the same as the DT-bimorphisms,
and hence by [38] they coincide with the &-MBOT-bimorphisms, where the d-MBOTSs are not necessarily
linear. Moreover, PMCFT-transductions can be parsed and translated in polynomial time (with the
degree of the polynomial one more than in Theorem [82]).

Finally we consider a further extension of PMCFTGs. Until now we have restricted our grammars to
be simple (i.e., linear and nondeleting), which means that for every rule (Ay,..., A,) = ((u1,...,un), L)
and every j € [n], the tree u; contains every variable in X 4;) exactly once. We now drop the linearity
condition and just require every such variable to occur at least once. Technically it is convenient to
achieve this by redefining the notion of pattern (see the first paragraph of Section [2.3)). Thus, we redefine
the set Ps(X}) of patterns of rank k to consist of all trees t € Tx(X}) such that occx(t) = Xi; i.e.,
each z € X} occurs at least once in t. It should be noted that this also changes our definition of
tree homomorphism, which is now only required to be nondeleting, and hence that of second-order

72

substitution. Clearly, Lemma [I] is not true anymore. For our purposes here it can be replaced by the
following weaker statements:

(1) ocex (h(t)) = ocex (t), and

(2) OCCE(h(t)) = U'reoccz(t) OCCZ(h‘(T))'

The remaining definitions and results of Section can be taken over without change.

The definition of a general parallel multiple context-free tree grammar (in short, gPMCFTG) is iden-
tical to the one of a PMCFTG with the new meaning of Pyus(X) as above. The semantics of a
gPMCFTG G is defined just as for an MCFTG. The class of tree languages generated by gPMCFTGs
is denoted by PMCFT,. Derivation trees are defined for G just as for an MCFTG, and Section is
valid for gPMCFTGs with the same change of Lemma [I0 as stated above for PMCFTGs. The rewriting
semantics in Section is also valid for gPMCFTGs. The semantics of a PMCFTG is essentially an
“inside-out” semantics in the sense of [31]. In fact, consider a classical IO context-free tree grammar G
such that (i) G is nondeleting (i.e., every variable in the left-hand side of a rule also occurs in the right-
hand side) and (ii) the right-hand side of each rule is uniquely N-labeled (i.e., every nonterminal occurs
at most once in the right-hand side of each rule). Viewing G as a gPMCFTG in the obvious way, it is
easy to see that the least fixed point semantics of G as a gPMCFTG coincides with the least fixed point
semantics of G as an IO context-free tree grammar as stated in [31, Theorem 3.4]. Since requirements
(i) and (ii) are a normal form for IO context-free tree grammars (cf. |35, Theorem 3.1.10]), this shows
that all IO context-free tree languages can be generated by gPMCFTGs. More precisely, they are the
tree languages generated by the (nonparallel) gMCFTGs of multiplicity 1.

As an example, the gPMCFTG G with N = N = {S©, AW BMW} and ¥ = {¢®,a® 50} using
the rules

S — A(b) A(z1) = B(A(o(a,21))) A1) = o1 and B(z1) = o(x1,21)

generates the tree language L(G) consisting of all trees ti[x; < t2], where t; is a full binary tree
over {o,x1} of height n and ty equals (oa)™b. Thus, yd(L(G)) = Lec = {(a™b)*" | n € N}. For n = 2,
the tree t = o(o(cacab, cacadb),o(cacab, cacab)) is obtained by the derivation

§° =g ANb) =g BY (A (0ab)) =1 B (B (4™ (0u0ab)))

ég’”lm BH(B121(Uaoab)) ééﬁ"ul Bll(o(oaoab,aaaab)) ééﬁ"u t,

which corresponds to the “inside-out” derivation of the IO context-free tree grammar G, but is, for
instance, also obtained by the “outside-in” derivation

S =00 AL(b) :>’é2’1 B (A2 (cab)) :>’é4’11 o(A'?(oab), A% (cab))
:2?’12 o(B?1 (A% (cacab)), B'*' (A2 (cacab)))

ééﬁ"ul o(o(A??(cacab), A'**(cacab)), o(A**? (cacab), A'*2 (cacab))) épGS’uQ t.

The language L. is the well-known example of an 10 context-free tree language that is not an OI context-
free tree language (see 35, Section 4.3]). It is shown in [18, Theorem 3.16], using again the pumping
lemma for yDT(RT), that L. is not in yDT(RT), and hence not in PMCF. Thus, gPMCFTGs are
more powerful than PMCFTGs, even when they are used to define string languages via the yields of the
generated tree languages. Note that the above grammar is even a gMCFTG because the right-hand sides
of its rules are uniquely N Jlabeled P The multiple context-free tree grammars in [8] are the gMCFTGs,
whereas our MCFTGs are there called linear multiple context-free tree grammars. It is shown in [§] that
the closure of MCF under IO-substitution is included in yMCFT, and that the string languages in this
closure satisfy the constant-growth property and can be recognized in polynomial time.

The only result we have for gPMCFTGs is their characterization in terms of macro tree transduc-
ers. Let DMT,, denote the class of tree transductions realized by macro tree transducers with the
new definition of pattern (where ‘np’ stands for ‘nondeleting in the parameters’). The semantics of
such transducers is as in Section [§l Using the redefined notion of state sequence as for PMCFTGs, the
proofs of Lemmas [73] and [T5] are still valid. Thus, we obtain that PMCFT, = DMT,,(RT). Now let

50We do not know whether there is a tree language in PMCFT that is not in MCFTyg; i.e., we do not know whether
PMCFT and MCFTg are incomparable subclasses of PMCFTy.

73

DMT denote the class of tree transductions realized by all (total deterministic) macro tree transduc-
ers as known from the literature, which means that also deletion of parameters is allowed; i.e., for a
rule (¢, w(y1,.- - Yx)) (21, Tm) — ¢, it is just required that ¢ € Tioxy,)us(Xm). Their semantics is
still the same as in Section[§ It is proved in |26, Lemma 6.6] that for every DMT-transducer with regular
look-ahead there is an equivalent one that is nondeleting in the parameters. Since regular look-ahead
can be simulated by relabeling the input tree, this implies that DMT(RT) = DMT,,,(RT). Thus we
obtain the characterization PMCFT, = DMT(RT). We observe that the two types (P and g) of copying
subtrees that can be realized by gPMCFTGs, correspond for macro tree transducers to the copying of
input variables (from Y') and the copying of output variables (or parameters, from X), respectively.

At the end of this section we discuss the class S-CF of synchronized-context-free tree languages
introduced in [9] and applied, e.g., in [7]. The logic programs generating these tree languages are es-
sentially tree-valued attribute grammars, which means that S-CF = AT(RT), where AT denotes the
class of attributed tree transductions (see, e.g., |26, 39]). It was shown in [22] that AT(RT) is the class
of tree languages obtained by unfolding the term graphs generated by a context-free graph grammar,
where a term graph is a directed acyclic graph representing a tree with shared subtrees (cf. Corol-
lary [(8). It is well known that DT C AT C DMT (see, e.g., [39]). Thus, the class AT(RT) is included
in PMCFT,. It seems to be unknown whether the inclusion is proper. It follows from |26, Theorem 7.1]
that DMTg(RT) C AT(RT). Thus, MCFT is included in AT(RT), but the relationship of AT(RT)
to PMCEFT is not clear. However, PMCF = yDT(RT) C yAT(RT), because Lec € yAT(RT). Hence we
have MCFT C AT(RT) C PMCFT, and MCF C PMCF C yAT(RT) C yPMCFT,. We finally note that
the class CFTyp, is characterized in terms of a special type of attributed tree transducers in [72].

11. Conclusion

We have proved in Theorem 4] that every finitely ambiguous MCFTG can be lexicalized, for an arbitrary
set A of lexical symbols. A remaining question is whether the given bounds on the multiplicity and width
of the resulting MCFTG are optimal. In the particular case where all lexical symbols in A have rank 0,
the multiplicity stays the same, but the width increases by 1. By Theorems 4] and [G1] together, there
is also an equivalent lexicalized grammar of width at most 1 but with increased multiplicity. A similar
question is relevant for the transformation of an MCFTG into an equivalent MC-TAG (Theorem [G8)),
and for the lexicalization of MC-TAGs (TheoremB0). As shown in [25], the factor mrks, in Theorems [5S),
[60] and [61] can be reduced to mrkys, by combining the two constructions in the proofs of Theorem 49 and
Lemma [55] into one.

All our grammar transformations produce an MCFTG that is grammatically close (i.e., LDTR-
equivalent) to the given MCFTG, except for the transformation of an MCFTG into a monadic MCFTG
(Lemma A7 and Theorem [61]), for which we could only prove LDTR-equivalence in the special case in
which all lexical symbols in A have rank 0. As already observed in footnotes 20l and 24} this problem can
be “solved” by considering the weaker notion of DTﬁ—equivalence instead of LDTR-equivalence, where
DTE is the class of transductions realized by finite-copying top-down tree transducers with regular look-
ahead. The definition of DTE—equivalence is the same as that of LDTR-equivalence in Definition[I5l Since
DTR is closed under composition (see, e.g., [30, Theorem 5.4]), this is indeed an equivalence relation.
Actually, we feel that DTR-equivalence is a better formalization of the notion of grammatical closeness
than LDTR-equivalence because it can also handle the combination of rules as needed, e.g., in the proof
of Lemma [I7l Such a combination of rules is also needed for the binarization of grammars (which we
did not study for MCFTGs), to transform the derivation trees of the binarized grammar into those of
the original one. An MCFTG G is binary if its rule-width A\(G) is at most 2. In view of Lemma [Tl
and Theorem [[2 binarization is important for parsing (see, e.g., |45, [78]). We note that most of our
constructions preserve A(G). The two exceptions are Lemmas 28 and [7] which decrease and increase
A@G), respectively.

In Theorem [76] we have proved a characterization of MCFTGs in terms of finite-copying macro tree
transducers, and from that we have deduced characterizations in terms of monadic second-order logic
(Corollary [TT)), context-free graph grammars (Corollary [78)), and abstract categorial grammars (Corol-
lary B0). It would be worthwhile to investigate whether there are more results from the literature on
macro tree transducers that can be applied to MCFTGs.

In Section @ we have introduced the MCFT-transducer and we have shown that they realize the
DMT¢.-bimorphisms and hence the DMSOT-bimorphisms. This class of MCFT-transductions deserves
further study. Only subclasses have been investigated in the literature. As stated in |77, Example 5], the

74

MRT-transductions are not closed under composition. We do not know whether the MCFT-transductions
are closed under composition or whether composition gives rise to a proper hierarchy. Another question
is whether or not every functional MCFT-transduction is a composition of deterministic macro tree
transductions.

Our remaining problems concern the extensions of MCFTGs discussed in Section [0t the PMCFTGs
and the g(P)MCFTGs. As observed in that section it is open whether PMCFTGs can be lexicalized,
and the same is true for g(P)MCFTGs. Although Theorem [7G] can be generalized to PMCFTGs and
gPMCFTGs, it is not clear whether there are natural generalizations of the three corollaries mentioned
above. Also, a characterization of MCFT, is missing. Finally, it would be interesting to determine
the correctness (or incorrectness) of the obvious Hasse diagram of the six classes MRT, MCFT, PMRT,
PMCFT, MCFT,, PMCFT,. The tree language {a™b"1> | n € Ny}, which we considered at the end of
Section B is in MCFT (even in CFTg,) but not in PMRT because all monadic tree languages in the
class DT(RT) are regular [81, Theorem 4]. The IO context-free tree language Le. that we considered
in Section [I0is in MCFT, but not in PMCFT. The PMRTG (of multiplicity 1) that we considered in
the second paragraph of Section [I0] generates a tree language that is not in MCFT. However, we do
not know whether there exists a tree language in PMCFT (or even in PMRT) that is not in MCFT,.
If we also add the six classes (as above) with multiplicity 1, then the situation is less clear. In view
of [33, Corollary 3.5] we guess that 1-PMRT = HOM(RT) where HOM is the class of all (not necessarily
simple) tree homomorphisms. Thus, apart from the trivial inclusions, we obtain the additional inclusion
1-PMRT C 1-MCFT, because the class of IO context-free tree languages is closed under arbitrary tree
homomorphisms [32, Corollary 6.4]. The tree language of Example[l which we also considered at the end
of Section [§ is in MRT but not in 1-MCFT, because it cannot be generated by an IO context-free tree
grammar as shown in |20, Section 5]. However, we do not know whether there exists a tree language in
MRT that is not in 1-PMCFTg; i.e., that cannot be generated by a parallel IO context-free tree grammar.

References

References

[1] Rajeev Alur and Loris D’Antoni. Streaming tree transducers. CoRR, abs/1104.2599, 2011.

[2] André Arnold and Max Dauchet. Bi-transductions de foréts. In S. Michaelson and Robin Milner, editors, ICALP,
pages 74-86. Edinburgh University Press, 1976.

[3] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Context-free languages and pushdown automata. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, volume 1, chapter 3, pages 111-174. Springer,

1997.

[4] Brenda S. Baker. Composition of top-down and bottom-up tree transductions. Inform. and Control, 41(2):186—-213,
1979.

[5] Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings. Math. Systems Theory, 20(2-3):83—
127, 1987.

[6] Henrik Bjorklund, Martin Berglund, and Petter Ericson. Uniform wvs. nonuniform membership for mildly context-
sensitive languages: A brief survey. Algorithms, 9(2):32, 2016.

[7] Yohan Boichut, Jacques Chabin, and Pierre Réty. Towards more precise rewriting approximations. In Adrian Horia
Dediu, Enrico Formenti, Carlos Martin-Vide, and Bianca Truthe, editors, Proc. 9th Int. Conf. Language and Automata
Theory and Applications, volume 8977 of LNCS, pages 652-663. Springer, 2015.

[8] Pierre Bourreau, Laura Kallmeyer, and Sylvain Salvati. On I0-copying and mildly-context sensitive formalisms. In
Glyn Morrill and Mark-Jan Nederhof, editors, Proc. 17th and 18th Int. Conf. Formal Grammar, volume 8036 of LNCS,
pages 1-16. Springer, 2013.

[9] Jacques Chabin, Jing Chen, and Pierre Réty. Synchronized-contextfree tree-tuple languages. Technical Report RR-
2006-13, INRIA, France, 2006. Available at https://hal.inria.fr/inria-00464114.

[10] John Chen. Towards Efficient Statistical Parsing using Lezicalized Grammatical Information. PhD thesis, University
of Delaware, Newark, USA, 2001.

[11] Bruno Courcelle. An axiomatic definition of context-free rewriting and its application to NLC graph grammars.
Theoret. Comput. Sci., 55(2-3):141-181, 1987.

[12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic — A Language-Theoretic
Approach, volume 138 of Encyclopedia of mathematics and its applications. Cambridge University Press, 2012.

[13] Bruno Courcelle and Paul Franchi-Zannettacci. Attribute grammars and recursive program schemes. Theoret. Comput.
Seci., 17:163-191, 235-257, 1982.

[14] Frank Drewes, Hans-Jorg Kreowski, and Annegret Habel. Hyperedge replacement graph grammars. In Grzegorz
Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations,
pages 95-162. World Scientific, 1997.

[15] Joost Engelfriet. Bottom-up and top-down tree transformations—a comparison. Math. Systems Theory, 9(3):198-231,
1975.

[16] Joost Engelfriet. Tree automata and tree grammars. Technical Report DAIMI FN-10, Aarhus University, 1975. A
slightly revised version is available at http://arxiv.org/abs/1510.02036.

5

https://hal.inria.fr/inria-00464114
http://arxiv.org/abs/1510.02036

[41]
[42]
[43]

[44]

[45]

[46]
[47]
48]
[49]
[50]
51]

[52]

Joost Engelfriet. Top-down tree transducers with regular look-ahead. Math. Systems Theory, 10:289-303, 1977.
Joost Engelfriet. Three hierarchies of transducers. Math. Systems Theory, 15(2):95-125, 1982.

Joost Engelfriet. Context-free graph grammars. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of
Formal Languages, volume 3, chapter 3, pages 125-213. Springer, 1997.

Joost Engelfriet and Gilberto Filé. The formal power of one-visit attribute grammars. Acta Inform., 16:275-302, 1981.
Joost Engelfriet and Linda Heyker. The string generating power of context-free hypergraph grammars. J. Comput.
System Sci., 43(2):328-360, 1991.

Joost Engelfriet and Linda Heyker. Context-free hypergraph grammars have the same term-generating power as
attribute grammars. Acta Inform., 29(2):161-210, 1992.

Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and two-way finite-state transducers.
ACM Trans. Comput. Log., 2(2):216-254, 2001.

Joost Engelfriet, Eric Lilin, and Andreas Maletti. Extended multi bottom-up tree transducers. Acta Inform., 46(8):561—
590, 2009.

Joost Engelfriet and Andreas Maletti. Multiple context-free tree grammars and multi-component tree adjoining gram-
mars. In Ralf Klasing and Marc Zeitoun, editors, Proc. 21st Int. Symp. Fundamentals of Computation Theory, LNCS.
Springer, 2017. to appear.

Joost Engelfriet and Sebastian Maneth. Macro tree transducers, attribute grammars, and MSO definable tree trans-
lations. Inform. and Comput., 154(1):34-91, 1999.

Joost Engelfriet and Sebastian Maneth. Tree languages generated by context-free graph grammars. In Hartmut
Ehrig, Gregor Engels, and Hans-Jorg Kreowski, editors, Proc. 8th Int. Workshop Theory and Application of Graph
Transformation, volume 1764 of LNCS, pages 15-29, 2000.

Joost Engelfriet and Sebastian Maneth. Output string languages of compositions of deterministic macro tree trans-
ducers. J. Comput. System Sci., 64:350-395, 2002.

Joost Engelfriet and Sebastian Maneth. Macro tree translations of linear size increase are MSO definable. SIAM J.
Comput., 32(4):950-1006, 2003.

Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. Tree transducers, L systems, and two-way machines. J.
Comput. System Sci., 20(2):150-202, 1980.

Joost Engelfriet and Erik M. Schmidt. IO and OI I. J. Comput. System Sci., 15(3):328-353, 1977.

Joost Engelfriet and Erik M. Schmidt. IO and OI II. J. Comput. System Sci., 16(1):67-99, 1978.

Joost Engelfriet and Sven Skyum. The copying power of one-state tree transducers. J. Comput. System Sci., 25(3):418—
435, 1982.

Joost Engelfriet and Heiko Vogler. Macro tree transducers. J. Comput. System Sci., 31(1):71-146, 1985.

Michael J. Fischer. Grammars with Macro-Like Productions. PhD thesis, Harvard University, 1968.

Akio Fujiyoshi. Epsilon-free grammars and lexicalized grammars that generate the class of the mildly context-sensitive
languages. In Proc. 7th Int. Workshop Tree Adjoining Grammar and Related Formalisms, pages 16—23, 2005.

Akio Fujiyoshi and Takumi Kasai. Spinal-formed context-free tree grammars. Theory Comput. Syst., 33(1):59-83,
2000.

Zoltdn Fulop, Armin Kihnemann, and Heiko Vogler. A bottom-up characterization of deterministic top-down tree
transducers with regular look-ahead. Inform. Process. Lett., 91(2):57-67, 2004.

Zoltan Filop and Heiko Vogler. Syntaz-Directed Semantics—Formal Models Based on Tree Transducers. EATCS
Monographs on Theoretical Computer Science. Springer, 1998.

Kilian Gebhardt and Johannes Osterholzer. A direct link between tree-adjoining and context-free tree grammars. In
Thomas Hanneforth and Christian Wurm, editors, Proceedings of the 12th International Conference on Finite-State
Methods and Natural Language Processing, FSMNLP 2015. The Association for Computer Linguistics, 2015.

Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadd, Budapest, 1984. A re-edition is available at
http://arxiv.org/abs/1509.06233.

Ferenc Gécseg and Magnus Steinby. Tree languages. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of
Formal Languages, volume 3, chapter 1, pages 1-68. Springer, 1997.

Jonathan Goldstine, Hing Leung, and Detlef Wotschke. On the relation between ambiguity and nondeterminism in
finite automata. Inform. and Comput., 100(2):261-270, 1992.

Carlos Gémez-Rodriguez, Marco Kuhlmann, and Giorgio Satta. Efficient parsing of well-nested linear context-free
rewriting systems. In Proc. 2010 Int. Conf. HLT-NAACL, pages 276—284. Association for Computational Linguistics,
2010.

Carlos Gémez-Rodriguez and Giorgio Satta. An optimal-time binarization algorithm for linear context-free rewriting
systems with fan-out two. In Keh-Yih Su, Jian Su, and Janyce Wiebe, editors, ACL 2009, Proc. of the 47th Annual
Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 985-993. The Association for Computer Linguistics, 2009. Available at
http://www.aclweb.org/anthology/P09-1111.

James N. Gray and Michael A. Harrison. On the covering and reduction problems for context-free grammars. J. ACM,
19(4):675-698, 1972.

Hendrik Jan Hoogeboom and Paulien ten Pas. Monadic second-order definable text languages. Theory Comput. Syst.,
30(4):335-354, 1997.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, languages, and compu-
tation. Addison-Wesley series in computer science. Addison Wesley, second edition, 2001.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct grammars. J. Comput. System Sci., 10(1):136—
163, 1975.

Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars and lexicalized grammars. In Maurice Nivat and Andreas
Podelski, editors, Tree Automata and Languages. North-Holland, 1992.

Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grzegorz Rozenberg and Arto Salomaa, editors,
Beyond Words, volume 3 of Handbook of Formal Languages, pages 69—123. Springer, 1997.

Yuichi Kaji, Ryuchi Nakanishi, Hiroyuki Seki, and Tadao Kasami. The computational complexity of the universal

76

http://arxiv.org/abs/1509.06233
http://www.aclweb.org/anthology/P09-1111

[84]

[85]

[86]

recognition problem for parallel multiple context-free grammars. Computational Intelligence, 10:440-452, 1994.
Laura Kallmeyer. A declarative characterization of different types of multicomponent tree adjoining grammars. Res.
Lang. Comput., 7(1):55-99, 2009.

Laura Kallmeyer. Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer, 2010.

Makoto Kanazawa. The convergence of well-nested mildly context-sensitive grammar formalisms. Invited talk at the
14th Int. Conf. Formal Grammar, 2009. Slides available at research.nii.ac. jp/~kanazawal

Makoto Kanazawa. The pumping lemma for well-nested multiple context-free languages. In Volker Diekert and Dirk
Nowotka, editors, Proc. 13th Int. Conf. Developments in Language Theory, volume 5583 of LNCS, pages 312-325.
Springer, 2009.

Makoto Kanazawa. Second-order abstract categorial grammars as hyperedge replacement grammars. J. Log. Lang.
Inf., 19(2):137-161, 2010.

Makoto Kanazawa. Multidimensional trees and a Chomsky-Schiitzenberger-Weir representation theorem for simple
context-free tree grammars. J. Log. Comput., 26(5):1469-1516, 2016.

Makoto Kanazawa and Sylvain Salvati. The copying power of well-nested multiple context-free grammars. In Adrian Ho-
ria Dediu, Henning Fernau, and Carlos Martin-Vide, editors, Proc. 4th Int. Conf. Language and Automata Theory
and Applications, volume 6031 of LNCS, pages 344-355. Springer, 2010.

Makoto Kanazawa and Ryo Yoshinaka. Lexicalization of second-order ACGs. Technical Report NII-2005-012E, National
Institute of Informatics, Tokyo, Japan, 2005.

Stephan Kepser and James Rogers. The equivalence of tree adjoining grammars and monadic linear context-free tree
grammars. J. Log. Lang. Inf., 20(3):361-384, 2011.

Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity and sequentiality from
a finitely ambiguous max-plus automaton. Theoret. Comput. Sci., 327(3):349-373, 2004.

Donald E. Knuth. A characterization of parenthesis languages. Inform. and Control, 11(3):269-289, 1967.

Marco Kuhlmann. Dependency Structures and Lexicalized Grammars: An Algebraic Approach, volume 6270 of LNAI
Springer, 2010.

Marco Kuhlmann and Giorgio Satta. Tree-adjoining grammars are not closed under strong lexicalization. Comput.
Linguist., 38(3):617-629, 2012.

Peter Ljunglof. Practical parsing of parallel multiple context-free grammars. In Proc. 11th International Workshop
on Tree Adjoining Grammars and Related Formalisms (TAG+11), pages 144-152, Paris, France, September 2012.
Available at http://www.aclweb.org/anthology/W12-4617.

Markus Lohrey, Sebastian Maneth, and Manfred Schmidt-Schauf. Parameter reduction and automata evaluation for
grammar-compressed trees. J. Comput. System Sci., 78(5):1651-1669, 2012.

Andreas Maletti. Compositions of extended top-down tree transducers. Inform. and Comput., 206(9-10):1187-1196,
2008.

Andreas Maletti. Synchronous forest substitution grammars. In Traian Muntean, Dimitrios Poulakis, and Robert
Rolland, editors, Proc. 5th Int. Conf. Algebraic Informatics, volume 8080 of LNCS, pages 235-246. Springer, 2013.
Andreas Maletti and Joost Engelfriet. Strong lexicalization of tree adjoining grammars. In Proc. 50th Ann. Meeting
Association for Computational Linguistics, pages 506-515, 2012.

Uwe Moénnich. Adjunction as substitution: An algebraic formulation of regular, context-free and tree adjoining lan-
guages. In Proc. 3rd Int. Conf. Formal Grammar, pages 169—178. Université de Provence, France, 1997. Available at
arxiv.org/abs/cmp-1g/9707012v1.

Uwe Monnich. Well-nested tree languages and attributed tree transducers. In Proc. 10th Int.
Conf. Tree Adjoining Grammars and Related Formalisms. Yale University, 2010. Available at
www2.research.att.com/~srini/TAG+10/papers/uwe.pdf.

Mark-Jan Nederhof and Heiko Vogler. Synchronous context-free tree grammars. In Proc. 11th Int. Workshop Tree
Adjoining Grammars and Related Formalisms, pages 55-63. Association for Computational Linguistics, 2012.

Anton Nijholt. Context-Free Grammars: Covers, Normal Forms, and Parsing, volume 93 of LNCS. Springer, 1980.
Maurice Nivat. Transductions des langages de Chomsky. Annales de linstitut Fourier, 18(1):339-455, 1968. Available
at https://eudml.org/doc/73950.

Andreas Potthoff and Wolfgang Thomas. Regular tree languages without unary symbols are star-free. In Proc. 9th
Int. Symp. Fundamentals of Computation Theory, volume 710 of LNCS, pages 396—405. Springer, 1993.

Frank G. Radmacher. An automata theoretic approach to rational tree relations. In Viliam Geffert, Juhani Karhumaéki,
Alberto Bertoni, Bart Preneel, Pavol Névrat, and Maria Bielikové, editors, Proc. SOFSEM 2008, 34th Conference on
Current Trends in Theory and Practice of Computer Science,, volume 4910 of LNCS, pages 424-435. Springer, 2008.
Owen Rambow and Giorgio Satta. Independent parallelism in finite copying parallel rewriting systems. Theoret.
Comput. Sci., 223(1-2):87-120, 1999.

Jean-Claude Raoult. Rational tree relations. Bull. Belg. Math. Soc., 4:149-176, 1997.

Gene F. Rose. An extension of ALGOL-like languages. Commun. ACM, 7(2):52-61, 1964.

William C. Rounds. Mappings and grammars on trees. Math. Systems Theory, 4(3):257-287, 1970.

Sylvain Salvati. Encoding second order string ACG with deterministic tree walking transducers. In Shuly Wintner,
editor, Proc. 11th Int. Conf. Formal Grammars, FG Online Proceedings, pages 143—-156. CSLI Publications, 2007.
Aniello De Santo, Aléna Aksénova, and Thomas Graf. An alternate view on strong lexicalization in TAG. In David
Chiang and Alexander Koller, editors, Proceedings of the 12th International Workshop on Tree Adjoining Grammars
and Related Formalisms (TAG+12), pages 93-102. The Association for Computer Linguistics, 2016.

Giorgio Satta. Recognition of linear context-free rewriting systems. In Henry S. Thompson, editor, Proc. 30th Annual
Meeting of the Association for Computational Linguistics, pages 89-95. Association for Computational Linguistics,
1992.

Yves Schabes. Mathematical and Computational Aspects of Lexicalized Grammars. PhD thesis, University of Penn-
sylvania, Philadelphia, USA, 1990.

Yves Schabes, Anne Abeillé, and Aravind K. Joshi. Parsing strategies with ‘lexicalized’ grammars: Application to tree
adjoining grammars. In Proc. 12th Int. Conf. Computational Linguistics, pages 578-583. John von Neumann Society

(s

research.nii.ac.jp/~kanazawa
http://www.aclweb.org/anthology/W12-4617
arxiv.org/abs/cmp-lg/9707012v1
www2.research.att.com/~srini/TAG+10/papers/uwe.pdf
https://eudml.org/doc/73950

(93]

[94]

[95]

for Computing Sciences, Budapest, 1988.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple context-free grammars. Theoret.
Comput. Sci., 88(2):191-229, 1991.

Sven Skyum. On extensions of ALGOL-like languages. Inform. and Control, 26(1):82-97, 1974.

Heiko Stamer. Restarting Tree Automata: Formal Properties and Possible Variations. PhD thesis, University of
Kassel, Germany, 2009.

Heiko Stamer and Friedrich Otto. Restarting tree automata and linear context-free tree languages. In Proc. 2nd Int.
Conf. Algebraic Informatics, volume 4728 of LNCS, pages 275—289. Springer, 2007.

Nike van Vugt. Generalized context-free grammars. Technical Report 96-12, Department of Computer Science, Leiden
University, 1996. Master’s Thesis, available at: http://liacs.leidenuniv.nl/assets/PDF/vvugt.96.pdf|

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Characterizing structural descriptions produced by various
grammatical formalisms. In Proc. 25th Ann. Meeting Association for Computational Linguistics, pages 104—111.
Association for Computational Linguistics, 1987.

David J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD thesis, University of Pennsylvania,
1988.

David J. Weir. Linear context-free rewriting systems and deterministic tree-walking transducers. In Henry S. Thompson,
editor, Proc. 30th Ann. Meeting Association for Computational Linguistics, pages 136—143. Association for Compu-
tational Linguistics, 1992.

Ryo Yoshinaka. Extensions and Restrictions of Abstract Categorial Grammars. PhD thesis, University of Tokyo, 2006.

78

http://liacs.leidenuniv.nl/assets/PDF/vvugt.96.pdf

	1 Introduction
	2 Preliminaries
	2.1 Sequences and strings
	2.2 Trees and forests
	2.3 Substitution

	3 Multiple context-free tree grammars
	3.1 Syntax and least fixed point semantics
	3.2 Derivation trees
	3.3 Derivations

	4 Normal forms
	4.1 Basic normal forms
	4.2 Lexical normal forms

	5 Lexicalization
	6 MCFTG and MC-TAG
	6.1 Footed MCFTGs
	6.2 MC-TAL almost equals MCFT
	6.3 Monadic MCFTGs

	7 Multiple context-free grammars
	7.1 String generating power of MCFTGs
	7.2 Parsing of MCFTGs

	8 Characterization
	9 Translation
	10 Parallel and general MCFTG
	11 Conclusion

